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A B S T R A C T

With the integration of computation, networking, and physical process components to seamlessly combine
hardware and software resources to improve process efficiency, cybersecurity has become increasingly
important for reliable process control, process operation, and supply chain management in the chemical process
industries. This paper provides an overview of recent works on cybersecurity issues in the area of process
control, process operation and supply chain. We start with an overview of recent cyber-attack detection
and mitigation works via machine learning (ML) and model predictive control (MPC) to detect and handle
intelligent cyber-attacks. Several most common intelligent cyber-attacks in industrial control systems are first
presented, followed by machine learning detection methods and resilient control strategies with encryption–
decryption tools to achieve secure communication in the sensor–controller and controller–actuator links. Novel
control architectures with inherent robustness to prevent cyber-attacks are then presented. We continue with
an overview of cybersecurity issues in process operations and supply chains as well as the interface between
information technology and operational technology. Finally, we discuss recent efforts on the interface of
cybersecurity and process safety and conclude with a discussion of open issues in this emerging research
field.
1. Introduction

Over the last two decades, internet communication and wireless
networks have been starting to replace or complement existing wired
point-to-point communications in traditionally large-scale process op-
erations (e.g., Christofides et al., 2007; Venkatasubramanian, 2009; Li,
2016; Daoutidis et al., 2018; Venkatasubramanian, 2019; Shah et al.,
2020). As these new developments bring improved efficiency to the
existing system, the heightened concern for unestablished, industrial
cybersecurity at all levels has also been rising following cyber-attacks
that disrupt standard operations. Due to the connectivity and interac-
tion between the cyber and physical components in chemical processes,
operational cybersecurity requires a different strategy from the tradi-
tional information technology (IT) approach. This is a consequence of
key differences between IT and OT (operational technology): (a) OT
employs purpose-built technologies and protocols, (b) OT systems are
typically kept much longer than IT systems where most companies
cannot easily perform upgrades or implement changes to the technol-
ogy, (c) upgrades or changes in the OT space generally require plant
shutdowns which are costly, and as a result, may lead to equipment
running for years, making it difficult for its support, and (d) OT is very
much concerned with reliability and intellectual property.

∗ Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095-1592, USA.
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Despite these differences that raise challenges in implementing
cybersecurity solutions in the OT space, recent cyber-attacks have
driven the need for developing and implementing novel cybersecu-
rity solutions in the OT space. Most companies and organizations
recognize today the need to deploy a combination of traditional IT cy-
bersecurity products and services with tailored operational technology
(OT)-specific cybersecurity solutions. The failure to ensure cybersecu-
rity in OT can lead to unsafe and potentially catastrophic consequences
in a chemical process operation, causing critical asset damage and
human injuries. During the past two decades with the facilitation
of technology and processes, the industry has exposed the vulnera-
bilities of unestablished cybersecurity systems following the rise of
cyber-attacks. From 2000 to 2019, a reported 77 cybersecurity-related
incidents were uncovered in critical infrastructure including the process
industry with a vast majority of attacks on energy and oil production
industries (Iaiani et al., 2021). The lack of adequate prevention of
cyber-attacks endangers the balance of the economy, environment, and
society. For instance, in 2021, the oil pipeline system in the United
States, Colonial Pipeline, endured a cyber-attack, which stalled the
transportation of oil to much of the eastern United States, causing
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Fig. 1. The focus areas of operational technology cybersecurity.

skyrocketing gas prices (Tsvetanov and Slaria, 2021) and volatile sup-
plies of fuel. In 2015, Ukraine encountered the BlackEnergy malware
attack that forced over 200,000 people without power and electric-
ity (Böröcz et al., 2021). The aforementioned examples of cyber-attacks
are stark reminders of the repercussions of cyber-attacks and their im-
pact on societal welfare, which are reasons for a greater need for well-
established cybersecurity systems. Therefore, the design and implemen-
tation of cyber-defense in OT domain that involves industrial control,
operation, and supply chain management systems remain an ongo-
ing systems and control engineering research issue of great practical
importance.

Chemical and manufacturing industries have adopted firewall iso-
lation, multi-factor authentication, and developed cyber protection
protocols over the past decade to improve cybersecurity, particularly
in the context of IT tasks. However, with the integration of IT and OT
in the framework of Industry 4.0 and the development of intelligent,
targeted cyber-attacks that have access to the technical details of the
control system and production processes in the plant that aim to modify
the operator and control system actions applied to a chemical process,
the need for OT task cybersecurity has grown significantly. Earlier ef-
forts to enhance the cybersecurity of the OT space started around 2010
but gained momentum around 2017 by taking advantage of industrial
process operation and automation groups. Today, OT cybersecurity is
viewed as a key concern across the entire chemical sector and aims to
establish cybersecurity standards and raise the level of protection across
chemical plants. In particular, to enhance cybersecurity and physical
security of process operations, the fundamental cybersecurity research
roadmap (a framework, whose key components are summarized in
Fig. 1) proposed originally by National Institute of Standards and Tech-
nology (2018) (NIST) that has influenced the efforts of many companies
including Dow, has proposed a five-step plan to detect and mitigate the
impact of cyber-attacks with recovery plans: identify, detect, protect,
respond, and recover. However, within this five-step framework, there
are many key research questions that need to be considered. Specifi-
cally, despite a series of recent efforts over the past five years, designing
efficient detection methods and suitably optimal, yet secure, operation
control and supply chain strategies for chemical processes in the pres-
ence of intelligent cyber-attacks remains an important, fundamental
research issue. Furthermore, while the development of most of the
existing cyber-attack detection methods still depends partly on human
analysis, the increased use of data and the design of stealthy cyber-
attacks pose challenges to the development of timely detection methods
with high detection accuracy. In the following paragraph, we provide
an overview of results on the development of machine learning-based
cyber-attack detection schemes as this is a topic central to cybersecurity
approaches in the OT space, and it is covered in greater detail later on
in the manuscript (please see ‘‘Machine Learning-Based Cyber-Attack
Detection’’ section).

Machine learning, a method of data analysis that can help engineers
learn from data, identify patterns, and make decisions with minimal
2

human intervention, has attracted increasing attention and has shown
promising potential for use in the detection of cyber-attacks. While the
use of machine learning methods in solving classification, regression,
and clustering problems has a long history (please see Schmidhuber
(2015), Kramer (2016) for a broad overview), over the last decade,
we have witnessed many efforts to address these problems more effi-
ciently with machine learning algorithms by taking advantage of more
advanced and powerful computing resources/platforms, and many free
and open-source software libraries. To detect cyber-attacks, machine
learning methods can be utilized to solve classification problems to
determine the existence of cyber-attacks in the chemical plant and its
control systems using an abundance of industrial process data that
is generated by machines and devices under normal operations and
under cyber-attacks. Machine-learning methods deployed for cyber-
attack detection were presented in a number of works (Tsai et al., 2009;
Buczak and Guven, 2015; Ozay et al., 2015). Using various machine-
learning classification methods, cyber-attacks on power systems were
distinguished from process disturbances in Hink et al. (2014), and a
behavior-based intrusion detection algorithm was developed to identify
the type of attack (Junejo and Goh, 2016). Similarly, the detection of
cyber-attacks in a chemical process was realized via the development
of feedforward artificial neural networks in Wu et al. (2018a), where
compromised signals were rerouted to a secure sensor upon detection.
In Shon and Moon (2007), a hybrid approach using support vector
machines and genetic algorithms was implemented and compared to
existing network intrusion detection systems in industry. An overview
of recent research directions for applying supervised and unsuper-
vised machine learning techniques to address the problem of anomaly
detection was presented in Omar et al. (2013).

Among many machine learning methods, neural network and many
of its variances have demonstrated remarkable performance. For in-
stance, a Long Short-Term Memory (LSTM) recurrent neural network
(RNN) was used to build a classifier model for the intrusion detection
system in Kim et al. (2016). The anomaly detection algorithm outlined
in Goh et al. (2017) also used a LSTM network as a predictor to
model normal behavior of a water treatment testbed and used the
Cumulative Sum (CUSUM) method to identify anomalies. A multi-
layer data-driven cyber-attack detection system was proposed in Zhang
et al. (2019a) where four classification methods including k-nearest-
neighbor, decision tree, bootstrap aggregating, and random forest,
were used to detect cyber-attacks including man-in-the-middle, denial-
of-service, data exfiltration, data tampering, and false data injection
attacks based on network and host system data. Many variants of
convolutional neural networks with different topologies, parameters,
and structures were analyzed for the task of intrusion detection in cy-
bersecurity of network traffic in Vinayakumar et al. (2017), which have
shown significant improvement over conventional classifiers. These
recent literature contributions have demonstrated the feasibility of
machine-learning algorithms in anomaly detection including anomalies
caused by cyber-attacks. At any large-scale chemical production plant, a
tremendous amount of data is being collected and archived daily in the
historian. Using neural-network algorithms, the data can be utilized to
train effective detection devices for monitoring and guarding the plant
against malicious cyber-attacks.

Besides the detection of cyber-attacks, efforts are made to improve
cyber and physical security through a variety of fundamental operation
and control methods that address the following aspects: security by
design, advanced recovery, advanced threat detection, secure remote
access, and combined safety (Fig. 1). This work will discuss recent
works within the elements of Fig. 1 in context of cybersecurity of
process control and operation systems and supply chains. Specifically,
to guarantee the process performance and to mitigate the impact of
cyber-attacks, process control systems, e.g., model predictive control
(MPC) and economic MPC (EMPC), utilizing encrypted signals may be
employed to operate the process with secure remote access in the pres-
ence of cyber-attacks. With regard to security by design and advanced
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recovery, a cyber-secure two-tier control architecture can be developed
and integrated with ML-based detectors to enhance process cybersecu-
rity by reconfiguring the control system to stabilize the process at the
original steady state upon the detection of a cyber-attack. Additionally,
to account for the interactions among control, cybersecurity, and safety
systems, the integration of attack detection and control policies as
well as combined control and safety systems have been pursued and
will be discussed. Safety Technology (ST) will also be an important
component in the IT-OT framework of cybersecurity to integrate safety
with cybersecurity. Finally, directions for future research in the context
of cybersecurity of process control, process operation systems, and
supply chains will be discussed.

2. Class of nonlinear process systems

To describe mathematically the various types of cyber-attacks as
well as detection and mitigation control methods, we need to introduce
a suitable notation, a class of process systems, and specific stabilizabil-
ity assumptions. Specifically, we consider the class of continuous-time
nonlinear systems represented by the following state-space model:

̇ = 𝐹 (𝑥, 𝑢,𝑤) ∶= 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + ℎ(𝑥)𝑤, 𝑥(𝑡0) = 𝑥0 (1)

where the 𝑛-dimensional state vector is denoted by 𝑥 ∈ 𝐑𝑛 and 𝑢 ∈ 𝐑𝑘

denotes the 𝑘-dimensional manipulated input vector bounded by 𝑢 ∈ 𝑈 .
The set 𝑈 defines the maximum value 𝑢max and the minimum value
𝑢min for input vectors, i.e., 𝑈 ∶= {𝑢min ≤ 𝑢 ≤ 𝑢max} ⊂ 𝐑𝑘. 𝑤 ∈ 𝑊
s the disturbance vector, where 𝑊 ∶= {𝑤 ∈ 𝐑𝑞 ∣ |𝑤| ≤ 𝜃, 𝜃 ≥ 0}.
(⋅), 𝑔(⋅), and ℎ(⋅) are sufficiently smooth vector and matrix functions
f dimensions 𝑛 × 1, 𝑛 × 𝑘, and 𝑛 × 𝑞, respectively. We assume that
(0) = 0 without loss of generality, and therefore, the origin is a
teady-state of Eq. (1). Additionally, we assume there exists a feedback
ontroller that can stabilize the system at the origin. Specifically, we
ssume there exists a continuously differentiable Lyapunov function
(𝑥) and a Lyapunov-based controller 𝑢 = 𝛷(𝑥) ∈ 𝑈 such that the
rigin of the nominal system (𝑤(𝑡) ≡ 0) is rendered asymptotically

stable for the states in an open neighborhood 𝐷 around the origin. The
stability region 𝛺𝜌 ∶= {𝑥 ∈ 𝐷 ∣ 𝑉 (𝑥) ≤ 𝜌}, 𝜌 > 0 is characterized as
a level set of 𝑉 within 𝐷. Throughout this manuscript, |⋅| is used to
denote the Euclidean norm of a vector. Set subtraction is denoted by
‘‘∖’’, i.e., 𝐴∖𝐵 ∶= {𝑥 ∈ 𝐑𝑛

| 𝑥 ∈ 𝐴, 𝑥 ∉ 𝐵}.

3. Background and description of cyber-attacks

From the perspective of process control systems as well as process
operation and supply chains, cyber-attacks are malicious signals that
can compromise actuators, sensors, communication channels between
devices, and the operation and control system algorithms. With re-
spect to control system cybersecurity, cyber-attacks modify the control
implementation using process and control system information in an
attempt to disrupt closed-loop performances. A comprehensive review
in Ashibani and Mahmoud (2017) includes an analysis on security
issues, requirements, and possible solutions at various layers of the OT
architecture. A review of possible weaknesses in corporate networks
and in production environments is presented in Asghar et al. (2019).
In Amin et al. (2012), a hierarchical attack on automated canal systems
was described with various deception attacks in different cyber layers
and a field-operational test attack was reported on the Gignac canal
system located in Southern France.

Sensor attacks strategically modify the feedback measurements of
the attacked states, from which the controller receives and subsequently
computes a control action that is different or contrary to its actual
optimal value based on the true plant state. Actuator attacks also have
access to the plant model and controller design details, which aim
to diverge the system away from its ideal operating point. However,
instead of altering the sensor measurements, actuator attacks modify
3

the direction and magnitude of the control actions without being s
detected by sensor monitoring tools. Common detection strategies in-
clude designing excitation signals that are superimposed on the control
commands to increase the detectability of the attack and developing an
input observer to detect attacks as well as estimate the magnitude of
the attack (Muniraj and Farhood, 2019). In addition to the detection
of actuator attacks, an isolator was developed to identify the affected
actuator(s) in the network. As intelligent cyber-attacks are adaptive to
the process and control system behavior, we may assume that they
are as powerful as having access to the measurement feedback signals
(sensor attack), control command signals (actuator attack), or auxiliary
information such as the threshold and bias parameters in detection
methods such as cumulative sum (CUSUM) (Mohanty et al., 2007; Cár-
denas et al., 2011). Being aware of the process and controller behavior,
the attacks will therefore have information on the stability region of the
process, as well as the existing alarm triggers imposed on the input and
output variables. Among sensor cyber-attacks, some common attack
types are denial-of-service attacks, replay attacks, and deception attacks
— such as min–max, geometric, and surge attacks (Cárdenas et al.,
2011). The formulations of the aforementioned three deception and
replay attacks are presented below.

3.1. Min–max cyber-attack

Min–max attacks are designed to induce the maximum destabilizing
impact within the shortest time without being detected. In order to stay
undetectable by classical detection methods such as CUSUM, which de-
tects cyber-attacks by calculating the cumulative sum of the deviation
between the expected and measured states based on the process model
of Eq. (1), min–max attacks are introduced using the falsified state
values furthest from the equilibrium point (minimum or maximum)
such that the system does not exit the closed-loop stability region
𝛺𝜌. In this way, the min–max attacks ensure that the attacked state
measurements fed to the control system do not exit the stability region
and do not trigger any conventional detection alarms. The min–max
attack can be formulated as follows:

̄(𝑡𝑖) = min
𝑥∈𝐑𝐧

∕ max
𝑥∈𝐑𝐧

{𝑥 ∣ 𝑉 (𝑥(𝑡𝑖)) = 𝜌}, ∀ 𝑖 ∈ [𝑖0, 𝑖0 + 𝐿𝑎] (2)

where 𝜌 defines the level set of the Lyapunov function 𝑉 (𝑥) that
characterizes the stability region 𝛺𝜌 for the system of Eq. (1). �̄� is the
compromised sensor measurement at each sampling step, 𝑖0 marks the
time instant that attack is added, and 𝐿𝑎 denotes the time duration of
the attack in terms of sampling periods.

3.2. Replay cyber-attack

In a replay attack, the attacker first records segments of the system
output corresponding to a nominal operating condition where large
oscillations occur. The attacker then intercepts and resets the cur-
rent process state measurements to these pre-recorded values. Replay
attacks can be represented by the following equations:

̄(𝑡𝑖) = 𝑥(𝑡𝑘), ∀ 𝑘 ∈ [𝑘0, 𝑘0 + 𝐿𝑎], ∀ 𝑖 ∈ [𝑖0, 𝑖0 + 𝐿𝑎] (3)

here 𝑥(𝑡𝑘) is the true plant measurement, 𝐿𝑎 represents the length of
he attack in terms of sampling periods, and �̄� is the series of replay
ttacks introduced at time 𝑡𝑖0 duplicating previous plant measurements
hat are recorded starting from time 𝑡𝑘0 . As previous plant outputs
re obtained from legitimate closed-loop measurements and given by
ecure sensors, these state values are supposedly inside the stability re-
ion and the operating envelope. Therefore, by replicating these values
nd feeding them back to the controller, classical detectors will not be
ble to recognize the abnormality caused by replay cyber-attacks.

.3. Geometric cyber-attack

Geometric cyber-attacks aim to deteriorate the closed-loop system

tability slowly at the beginning, then geometrically increase their
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Fig. 2. True and measured values of concentration in deviation variable form when (a) min–max, (b) replay, (c) geometric, and (d) surge cyber-attacks are introduced at the
ensor.
mpact as time progresses, with their maximum damage achieved at the
nd of the attack duration. Initially, the attacker adds a small constant
to the true measured output where 𝛽 is well below the maximum

llowable value as defined in a min–max attack. At each subsequent
ime step, this offset is multiplied by (1 + 𝛼), where 𝛼 ∈ (0, 1), until it
eaches the maximum allowable attack value. Geometric attacks can be
ritten in the following form:

̄(𝑡𝑖) = 𝑥(𝑡𝑖) + 𝛽 × (1 + 𝛼)𝑖−𝑖0 , ∀ 𝑖 ∈ [𝑖0, 𝑖0 + 𝐿𝑎] (4)

where �̄� is the compromised sensor measurement, 𝛽 and 𝛼 are param-
eters that define the magnitude and speed of the geometric attack.

3.4. Surge cyber-attack

Surge attacks act similarly as min–max attacks initially to maximize
the disruptive impact for a short period of time; then they are reduced
to a lower value by introducing a bounded noise 𝜂𝑙 ≤ 𝜂(𝑡𝑢) ≤ 𝜂𝑢 (𝜂𝑢 and
𝑙 are the upper and lower bounds of the noise, respectively) such that
he cumulative error between state measurements and their steady-state
alues will not exceed the threshold defined by some statistic-based
etection methods such as CUSUM. The formulation of a surge attack
s presented below:

̄(𝑡𝑖) = min
𝑥∈𝐑𝐧

∕ max
𝑥∈𝐑𝐧

{𝑥 ∣ 𝑉 (𝑥(𝑡𝑖)) = 𝜌}, if 𝑖0 ≤ 𝑖 ≤ 𝑖0 + 𝐿𝑠

̄(𝑡𝑖) = 𝑥(𝑡𝑖) + 𝜂(𝑡𝑖), if 𝑖0 + 𝐿𝑠 < 𝑖 ≤ 𝑖0 + 𝐿𝑎

(5)

where 𝑖0 is the start time of the attack, 𝐿𝑠 is the duration of the
initial surge, and 𝐿𝑎 is the total duration of the attack in terms of
sampling periods. To illustrate the pattern and effect of the four cyber-
attack types discussed above, Fig. 2 shows the true concentration values
and the cyber-attack-modified sensor values of the concentration when
min–max, replay, geometric, and surge attacks target this sensor.
4

4. Machine learning-based cyber-attack detection

The first step in the cybersecurity roadmap is to detect and iden-
tify cyber-attacks by developing advanced threat detection and pro-
tection methods. Cyber-attack detection carried out using data-based
approaches, and more specifically, machine-learning methods, have
been studied (Huang et al., 2007; Omar et al., 2013; Agrawal and
Agrawal, 2015). Machine learning can be utilized to develop detection
algorithms based on the time-series data from the dynamic operation
of the system of Eq. (1) (Wu et al., 2018a). Depending on the training
data, the neural networks can be used to distinguish between ‘‘attack’’
and ‘‘no attack’’ (two classes), or to identify the type of attack (multiple
classes). While under attack, data collected from individual sensors
can also be used to locate the corruption where the neural network
model distinguishes between multiple classes with each class repre-
senting one problematic sensor. In our study, a feedforward artificial
neural network is used for supervised classification. Through a series
of nonlinear transformations, each layer in the neural network consists
of a series of nonlinear functions of the weighted sum of inputs or
neurons (i.e., activation functions), yielding values for the neurons in
the subsequent layer from the previous layer.

The structure of a neural network model with two hidden layers is
shown in Fig. 3, with each input unit representing a nonlinear function
𝑝(⋅) of the full state measurements at each sampling time and an
output vector representing the probability of each class label. The two-
hidden-layer feedforward neural network is mathematically formulated
as follows:

𝜃(1)𝑗 = 𝑔1(
𝑁𝑇
∑

𝑖=1
𝑤(1)

𝑖𝑗 𝑝(�̄�(𝑡𝑖)) + 𝑏(1)𝑗 ) (6a)

𝜃(2)𝑗 = 𝑔2(
ℎ1
∑

𝑤(2)
𝑖𝑗 𝜃

(1)
𝑖 + 𝑏(2)𝑗 ) (6b)
𝑖=1



Computers and Chemical Engineering 171 (2023) 108169S. Parker et al.
Fig. 3. A two-hidden-layer feedforward neural network structure with inputs 𝑝(𝑥) being a nonlinear function of state measurements within the detection window 𝑁𝑇 , and output
being the probability of each class label that indicates the status and/or type of cyber-attack.
Fig. 4. The sliding alarm verification window with detection activated every 𝑁𝑎
sampling steps where triangles represent 𝐷𝑖 and the window length is 𝑁𝑠.

𝜃(3)𝑗 = 𝑔3(
ℎ2
∑

𝑖=1
𝑤(3)

𝑖𝑗 𝜃
(2)
𝑖 + 𝑏(3)𝑗 ), 𝑦𝑝𝑟𝑒𝑑 = [𝜃(3)1 , 𝜃(3)2 ,… , 𝜃(3)𝐻 ]𝑇 (6c)

where 𝜃(𝑙)𝑗 , 𝑗 = 1,… , ℎ𝑙, 𝑙 = 1, 2 are the neurons in the first (𝑙 = 1)
and second (𝑙 = 2) hidden layers, respectively. The output node is
represented by 𝜃(3)𝑗 , 𝑗 = 1,… ,𝐻 , where 𝐻 is the number of class
labels. In general, the number of layers is determined through trial-
and-error to achieve the best classification accuracy and computational
efficiency. The input node 𝑝(𝑥(𝑡𝑖)) receives the state measurement at
time 𝑡𝑖, where 𝑖 = 1,… , 𝑁𝑇 is the length of the time-varying trajectory.
𝑤(𝑙)

𝑖𝑗 and 𝑏(𝑙)𝑗 represent the weights connecting neurons 𝑖 and 𝑗 in
consecutive layers (from 𝑙−1 to 𝑙), and the bias term on the 𝑗th neuron
in the 𝑙th layer, respectively. Based on the information received from
the previous layer as well as the optimized biases, weights, and the
nonlinear activation function 𝑔𝑙, each layer calculates an output and
sends it to the next layer. Examples of the activation functions include
the softmax function 𝑔(𝑧𝑗 ) = 𝑒𝑧𝑗

∑𝐻
𝑖=1 𝑒

𝑧𝑖
, the hyperbolic tangent sigmoid

transfer function 𝑔(𝑧) = 2
1+𝑒−2𝑧 − 1, and some other common functions

such as the sigmoid, radial basis functions, and Rectified Linear Unit
(ReLu). The output node 𝑦𝑝𝑟𝑒𝑑 computes the probabilities of each class
label, from which the class with the highest probability will indicate
the status (i.e., no attack or under attack) or the type of cyber-attack
that will depend on the requirement of the machine-learning detector.

The classification accuracy of the test dataset is utilized to demon-
strate the performance of the neural network since the test dataset is
independent of the training dataset and is not used in training the NN
model. The classification accuracy (i.e., the test accuracy) of the trained
NN model is calculated by the ratio of the number of data samples
with correct predicted classes to the total number of data samples in
the testing dataset. Additionally, to reduce false alarm rates, a sliding
5

alarm verification window in Fig. 4 is implemented, where the number
of positive attack detections 𝐷𝑖 = 1 within this window needs to surpass
a threshold before a cyber-attack alarm is confirmed. The size of this
verification window and the threshold value are determined based on
the closed-loop evolution of the process as these two parameters have
a direct impact on the detection time and alarm rate.

5. Attack-resilient MPC approaches exploiting sensor redundancy

5.1. Tracking MPC

Upon the detection of an attack on the sensors providing real-time
state measurements to the control system, advanced recovery strategies
have been developed to mitigate the impact of attacks. Specifically, one
of the most common approaches adopted in industry is to switch to an
accurate measurement from redundant, secure sensors. We present the
resilient control strategies in the framework of Lyapunov-based MPC
that can be represented by the following optimization problem:

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿𝑡(�̃�(𝑡), 𝑢(𝑡))𝑑𝑡 (7a)

s.t. ̇̃𝑥(𝑡) = 𝐹 (�̃�(𝑡), 𝑢(𝑡), 0) (7b)

�̃�(𝑡𝑘) = 𝑥(𝑡𝑘) (7c)

𝑢(𝑡) ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (7d)

�̇� (𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) ≤ �̇� (𝑥(𝑡𝑘), 𝛷(𝑥(𝑡𝑘))), if 𝑉 (𝑥(𝑡𝑘)) > 𝜌𝑚𝑖𝑛 (7e)

𝑉 (�̃�(𝑡)) ≤ 𝜌𝑚𝑖𝑛, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if 𝑉 (𝑥(𝑡𝑘)) ≤ 𝜌𝑚𝑖𝑛 (7f)

where �̃�(𝑡) is the predicted state trajectory, 𝑆(𝛥) is the set of piecewise
constant functions with period 𝛥, and 𝑁 is the number of sampling
periods in the prediction horizon. �̇� (𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) represents the time
derivative of 𝑉 (𝑥), i.e., 𝜕𝑉

𝜕𝑥 𝐹 (𝑥(𝑡𝑘), 𝑢(𝑡𝑘), 0). 𝛷(𝑥) is the stabilizing control
law assumed for the nonlinear system of Eq. (1). The cost function
𝐿𝑡(�̃�(𝑡), 𝑢(𝑡)) satisfies 𝐿𝑡(0, 0) = 0 and 𝐿𝑡(�̃�(𝑡), 𝑢(𝑡)) > 0, ∀(�̃�(𝑡), 𝑢(𝑡)) ≠ (0, 0)
such that the minimum value of the cost function will be attained at the
equilibrium of the system of Eq. (1). We assume that the states of the
closed-loop system are measured at each sampling time instance and
will be used as the initial condition in the MPC optimization problem
of Eq. (7) in the next sampling step. Specifically, based on the measured
state 𝑥(𝑡𝑘) at 𝑡 = 𝑡𝑘, the above optimization problem is solved to obtain
the optimal solution 𝑢∗(𝑡) over the prediction horizon 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ). The
first control action of 𝑢∗(𝑡), i.e., 𝑢∗(𝑡𝑘), is sent to the control actuator to
be applied over the next sampling period. Then, at the next sampling
time 𝑡𝑘+1 ∶= 𝑡𝑘 + 𝛥, the optimization problem is solved again, and
the horizon will be rolled one sampling time. Specifically, the MPC
optimization problem minimizes the objective function of Eq. (7a) over
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Fig. 5. A schematic representing the stability region 𝛺𝜌 and the target set 𝛺𝜌𝑚𝑖𝑛 around
the steady-state 𝑥∗𝑠 . The trajectory first moves away from the origin due to cyber-attack
and finally reconverges to 𝛺𝜌𝑚𝑖𝑛 under the MPC of Eq. (7) after the detection of the
cyber-attack.

Fig. 6. Demonstration of closed-loop operation under EMPC around a secure operating
region showing the nominal state trajectory under no attacks and state measurements
and true state evolution under a cyber-attack.

the prediction horizon 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) subject to the constraints of
Eqs. (7b)–(7f) that represent the process model, the state measurement
used as the initial condition for MPC at 𝑡 = 𝑡𝑘, the input constraints, and
the two Lyapunov-based constraints for ensuring closed-loop stability,
respectively. Once the attack is verified through the sliding alarm
window, the MPC of Eq. (7) switches to the state measurement from re-
dundant, secure sensors as the initial condition 𝑥(𝑡𝑘) for Eq. (7c) for the
remaining time of process operation such that the closed-loop stability
is maintained by bounding the state trajectory within 𝛺𝜌 and ultimately
driving the state into the terminal set 𝛺𝜌𝑚𝑖𝑛 around the origin. Note
that the back-up sensors are not connected to the online system to
ensure they remain secured to any sensor cyber-attacks that have access
to sensor measurement through network. In addition to physically
isolating the problematic sensors, the impact of sensor attacks can be
mitigated by reconstructing tampered state measurements and restoring
system stability via machine-learning-based state observers (Wu et al.,
2020). An exemplar trajectory under attack-resilient MPC is shown in
Fig. 5.

5.2. Economic MPC

In addition to utilizing sensor redundancy in the context of tracking
MPC, one can develop a similar approach for Economic MPC (EMPC),
which is another form of MPC that directly integrates process economic
considerations with process control to dynamically optimize process
economics through time-varying operation. A number of past works
6

have been developed to address stability, safety, and computational
efficiency issues in EMPC (Heidarinejad et al., 2012; Angeli et al., 2011;
Müller et al., 2013; Ellis et al., 2014; Wu et al., 2018b). To handle the
cyber-attacks that compromise both closed-loop stability and process
economic benefits under EMPC, the attack-resilient Lyapunov-based
EMPC design, which combines open-loop and closed-loop control, is
developed and represented by the following optimization problem:

 = max
𝑢′∈𝑆(𝛥)∫

𝑡𝑁0+𝑁𝑝

𝑡𝑁0

𝑙𝑒(�̃�(𝑡), 𝑢′(𝑡))𝑑𝑡 (8a)

s.t. ̇̃𝑥(𝑡) = 𝐹 (�̃�(𝑡), 𝑢(𝑡), 0) (8b)

𝑢′(𝑡) ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑁0
, 𝑡𝑁0+𝑁𝑝

) (8c)

�̃�(𝑡𝑁0
) = �̄�(𝑡𝑁0

) (8d)

𝑉 (�̃�(𝑡)) ≤ 𝜌𝑠𝑒𝑐𝑢𝑟𝑒, ∀ 𝑡 ∈ [𝑡𝑁0
, 𝑡𝑁0+𝑁𝑝

), if �̄�(𝑡𝑁0
) ∈ 𝛺𝜌𝑠𝑒𝑐𝑢𝑟𝑒 (8e)

�̇� (�̄�(𝑡𝑁0
), 𝑢) ≤ �̇� (�̄�(𝑡𝑁0

), 𝛷(�̄�(𝑡𝑁0
))), if �̄�(𝑡𝑁0

) ∈ 𝛺𝜌∖𝛺𝜌𝑠𝑒𝑐𝑢𝑟𝑒 (8f)

where 𝛺𝜌𝑠𝑒𝑐𝑢𝑟𝑒 is the set that the process will be operated within such
that the system will not immediately lose stability when under ma-
licious cyber-attacks. 𝑁𝑝 is the number of sampling periods in one
material constraint period, which is the prediction horizon for open-
loop control. Since it is common that chemical processes are subject
to periodic feed stock constraints, which are specified as part of the
input constraint set 𝑈 , we also require, for example, the quantity of
feed materials to be limited within a fixed period of time 𝑡𝑁𝑝

. During
this period of time (termed material constraint period), the total feed
material is constrained to a constant value 𝐶, i.e., 1

𝑡𝑁𝑝
∫
𝑡𝑁𝑝
𝑡0

𝑢𝑚(𝜏)𝑑𝜏 =

𝐶, where 𝑢𝑚 represents feed material used at every sampling period.
Therefore, the material consumption constraint renews every 𝑡𝑁𝑝

. If
the total operation time is longer than one material constraint period,
this material consumption constraint results in cyclic operation of
the plant, and consequently, the cyclic behavior of the state-space
trajectory. At the start of a new material constraint period, the total
consumption limit is renewed, as new feed materials become available
to be used again for the next constraint period. In the presence of
cyber-attacks, the attack-resilient EMPC is implemented as follows. At
time 𝑡𝑘, the EMPC in the open-loop control mode receives the state
measurement 𝑥(𝑡𝑘) and computes the optimal trajectory of 𝑁𝑝 control
action that will be applied in a sample-and-hold manner until the
end of this material constraint period. In the case that there are no
cyber-attacks or process disturbances, this optimal trajectory of control
actions would yield maximum economic benefits while meeting all
input and state constraints. While at the closed-loop operation, if the
feedback measurement is no longer reliable and cannot be used for
closed-loop control, the open-loop control actions that were calculated
at the beginning of the material constraint period will be used as a
substitute until the end of the material constraint period.

At the end of the material constraint period, a cyber-attack detector
is activated to determine any occurrence of an attack and the reliability
of the control system is reassessed. The detector will provide informa-
tion on the security status of the feedback measurements over the latest
material constraint period. Upon mitigating the impact of a confirmed
attack and/or confirming the security of the control system, closed-
loop control with secure feedback measurement can be reactivated as a
new material constraint when the period starts. The operation of EMPC
around a secure operating region is illustrated in Fig. 6 and the attack-
resilient strategy of switching from closed-loop to open-loop control is
illustrated in Fig. 7.

6. Integrated attack detection and control policies: Additional
recent results

A key issue for cyber-attacks in chemical process industries is that
they can impact process safety by directly adjusting process states
or potentially the equipment condition (Nieman et al., 2020). This
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Fig. 7. Demonstration of attack-resilient EMPC control strategy by switching from closed-loop control actions to pre-calculated open-loop control actions when the state
measurements reach the boundary of the secure operating region.
motivates a fundamental understanding of the nature of the interactions
between the control design and cyber-attacks on various components of
the control loop. For example, Durand (2018) elucidated a challenge
with attempting to thwart the falsification of sensor measurements us-
ing a randomized control law selection. This challenge prevents attacks
from causing an issue that may require certain control laws to be used
in different regions of state-space, which an attacker can use to provide
attacks that are destabilizing. Randomness was further explored in
the context of taking advantage of noise in quantum computation
for adding randomness to control action selection in Rangan et al.
(2022a) and for similar reasons, was not able to thwart cyber-attacks
on the sensor measurements. However, designing cyberattack detection
policies in tandem with control laws can aid in forcing attacks to reveal
themselves by setting expectations for what a non-attacked process
state trajectory should appear as using the control theory and then
by detecting whether the control-theoretic requirements are achieved
using the detection policy (in the spirit of other active attack detection
policies such as dynamic watermarking (Satchidanandan and Kumar,
2016)).

Integrated attack detection and control policies have been explored
in the context of Lyapunov-based economic model predictive con-
trol (LEMPC) (Heidarinejad et al., 2012) of nonlinear systems when
sensors (Durand and Wegener, 2020; Oyama and Durand, 2020), ac-
tuators (Rangan et al., 2022b), or sensors and actuators at the same
time (Oyama et al., 2022b) can be attacked. These policies have con-
sidered indicators of attacks such as whether the Lyapunov function is
decreasing along the state measurement trajectory, is comparing state
predictions with state measurements, or is adding redundancy in state
estimates that can be used to provide cross-checking of whether state
measurements are correct. These provide different safety guarantees (in
the sense that the closed-loop state is maintained within an expected
region of state-space at least for some time after an attack) when the
sensors are attacked, when the actuators are attacked, or when different
detection policies are combined and both sensors and actuators are
attacked. The case that sensor measurements are attacked has also
7

been considered for the case that the process dynamics could change at
the same time (Oyama et al., 2021; Rangan et al., 2021). Through an
extension of the LEMPC-based integrated detection and control policies
to this case through a two-tier attack detection policy, safety for at
least some time period after an attack on the sensors, process dy-
namics change, or both can be guaranteed under sufficient conditions.
An example of further practical consideration for the cybersecurity
of control systems is enabling the evaluation of attacks on sensors,
which might be considered in a next-generation manufacturing process,
such as in image-based control systems, for which simulations of how
replacing or falsifying images used in a level control loop might impact
the tank level was explored using the 3D graphics software toolset
Blender (Oyama et al., 2022a).

Additionally, as discussed in the previous section, achieving process
control resiliency to cyber-attacks requires the ability to detect the pres-
ence of a cyberattack targeting the process control system. For some
classes of cyber-attacks, the ability to detect attacks is impacted by the
process control system design (Narasimhan et al., 2022c). To this end,
a controller parameter screening methodology was developed to select
control parameters that do not mask the impact of cyber-attacks on
detection schemes, rendering cyber-attacks detectable by the detection
schemes (Narasimhan et al., 2022c). The analysis in Narasimhan et al.
(2022c) revealed that the control system design impacted the ability
to detect multiplicative attacks with residual-based detection schemes.
Additionally, the control system design may also impact cyberattack
identification and mitigation, albeit more work in this direction is
needed. While the selection of such controller parameters can enhance
the ability to detect attacks, it can also degrade the performance of
the attack-free closed-loop system relative to the performance under
control parameters selected based on conventional design criteria. To
balance this trade-off, an active attack detection methodology that em-
ploys the controller parameter switching was developed (Narasimhan
et al., 2022a). The detection methodology involves switching between
two sets of control parameters. The first parameter set is chosen based

on the conventional design criteria and the other based on the ability to
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detect a range of cyber-attacks. Since switching may excite the process
dynamics resulting from the potential of false alarms, a switching
condition was presented to minimize false alarms (Narasimhan et al.,
2022b).

7. Encrypted control

In addition to detection and recovery, another way to enhance the
cybersecurity of control systems is to establish secure remote access.
Encryption-based control using the encryption of the communication
signals (e.g., semi-homomorphic encryption methods) can be devel-
oped to ensure secure communication in the sensor–controller and
controller–actuator links in the presence of cyber-attacks. Homomor-
phic Encryption (HE) allows the performing of arithmetic operations
such as addition and multiplication in the ciphertext (encrypted mes-
sage) space such that no decryption on messages is needed in order
to perform these operations. Unlike conventional control schemes, en-
crypted control systems compute encrypted inputs based on encrypted
states and encrypted controller parameters without intermediate de-
cryptions by the controller to ensure the confidentiality of safety-
critical system states, control actions, and controller parameters in
the closed-loop system. Specifically, encryption-based control systems
will first encrypt state measurements at the sensor and transmit the
ciphertexts to the cloud where the encrypted control actions are com-
puted. Once the actuator receives the encrypted control actions, it
decrypts the ciphertexts and applies the control actions in the form
of plaintext to the nonlinear system of Eq. (1). Since data remains
encrypted during transmission and optimization of control actions,
cyber-attacks targeting the communication in the sensor-controller and
controller–actuator links are effectively prevented. Paillier encryption,
one of the additive homomorphic cryptosystems, has been widely used
whose security guarantees rely on a standard cryptographic assumption
called Decisional Composity Residuosity (DCR) (Paillier, 1999; Kogiso
and Fujita, 2015; Darup et al., 2017, 2021). In Darup et al. (2017), an
encrypted explicit MPC scheme was designed using the Paillier cryp-
tosystem for a linear constrained system, where the authors developed
the quantized control law as a linear piecewise affine function. The
property of homomorphism allows the computing of the encryption
of the sum of two signals (i.e., 𝑚1 + 𝑚2) given only the encryption
f 𝑚1 and 𝑚2 and the public key. It is important to note that Pallier
ryptosystem or any other Partially Homomorphic Encryption (PHE)
cheme allows the encrypted evaluation of the control input (using
ncrypted states and controller parameters) only for a linear control law
f the form 𝑢 = 𝐾𝑥 + 𝑏. Hence, the design of encrypted controllers for
onlinear systems is not straightforward. Specifically, the key of Paillier
ryptosystem is generated as follows.

1. Select two random large prime numbers 𝑝 and 𝑞 such that
𝑔𝑐𝑑(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1 where 𝑔𝑐𝑑(𝑖, 𝑗) refers to the greatest
common divisor of 𝑖, 𝑗 ∈ 𝐍;

2. Calculate 𝑀 = 𝑝𝑞 and 𝜆 = 𝑙𝑐𝑚(𝑝−1, 𝑞−1) where 𝑙𝑐𝑚(⋅, ⋅) denotes
least common multiple;

3. Select 𝑔 as a random integer where 𝑔 ∈ 𝐙𝑀2 ∶= {𝑔 ∈ 𝐙 ∣ 1 < 𝑔 <
𝑀2};

4. Ensure that 𝑛 divides the order of 𝑔 i.e., 𝑔 > 𝑀 ;
5. Calculate 𝑢 =

(

𝐿
(

𝑔𝜆 mod 𝑀2))−1 mod 𝑀 where 𝐿(𝑥) = 𝑥−1
𝑀

and the inverse refers to modular inverse;
6. If the inverse does not exist, go back to step 3 and change the

value of 𝑔; if the inverse does exist, the public key (𝑀,𝑔) and
the private key (𝜆, 𝑢) are obtained;

Using the keys generated, the data 𝑚 ∈ 𝐙𝑀 (e.g., state measurements
𝑥 of the nonlinear system of Eq. (1)) is encrypted by first selecting
a random integer 𝑟 ∈ 𝐙𝑀 and then calculating the ciphertext as
𝑀 (𝑚, 𝑟) = 𝑐 = 𝑔𝑚 × 𝑟𝑀 mod 𝑀2. The decryption of a message 𝑐 ∈ 𝐙𝑀2

s calculated by 𝐷𝑀 (𝑐) = 𝑚 = 𝐿(𝑐𝜆 mod 𝑀2) × 𝑢 mod 𝑀 . Since the
aillier Encryption allows the addition operations in encrypted form,
8

the sum of plaintext messages 𝑚1, 𝑚2 ∈ 𝐙𝑀 such that 𝑚1+𝑚2 ∈ 𝐙𝑀 can
e calculated by the following equation for all 𝑟1, 𝑟2 ∈ 𝐙𝑀 .

𝐸𝑀 (𝑚1 + 𝑚2, 𝑟1𝑟2) = 𝐸𝑀 (𝑚1, 𝑟1)𝐸𝑀 (𝑚2, 𝑟2) mod 𝑀2

= 𝑐1𝑐2 mod 𝑀2 (9)

It is demonstrated in Eq. (9) that the addition operation can be carried
out with the encrypted numbers directly, and therefore, no decryption
is needed at this stage. Following the additive homomorphism property,
a semi-encrypted product can be computed as follows. Given 𝑚1, 𝑚2 ∈
𝐙𝑀 such that 𝑚1𝑚2 ∈ 𝐙𝑀 , the multiplication of 𝑚1 and 𝑚2 can be
written as addition of 𝑚1 with itself for 𝑚2 times. Therefore, using the
additive homomorphism property of Eq. (9), the following equation is
obtained for all 𝑟 ∈ 𝐙𝑀 .

𝐸𝑀 (𝑚1𝑚2, 𝑟
𝑚2 ) = 𝐸𝑀 (𝑚1, 𝑟)𝑚2 mod 𝑀2 = 𝑐𝑚2

1 mod 𝑀2 (10)

ote that the product calculated in Eq. (10) is semi-encrypted since
nly 𝑐1 is encrypted and 𝑚2 is not. This also explains why Paillier
ryptosystem is not a fully homomorphic scheme.

Since the messages/numbers to be encrypted in Paillier cryptosys-
em are required to be a set of integers, quantization of the signals
s needed to map real numbers to integers to encrypt-decrypt the
ommunication signals in the closed-loop system of Eq. (1) (Darup
t al., 2017). Specifically, we first map the set of real numbers to the
et 𝐐𝑙1 ,𝑑 as follows.

𝑔𝑙1 ,𝑑 ∶ 𝐑 → 𝐐𝑙1 ,𝑑

𝑙1 ,𝑑 (𝑎) ∶= arg min
𝑞∈𝐐𝑙1 ,𝑑

|𝑎 − 𝑞| (11)

here 𝐐𝑙1 ,𝑑 is a set of rational numbers between −2𝑙1−𝑑−1 and 2𝑙1−𝑑−1−
−𝑑 separated from each other with a resolution of 2−𝑑 , i.e., ∀𝑞 ∈ 𝐐,
𝛽 ∈ {0, 1}𝑙1 , such that 𝑞 = −2𝑙1−𝑑−1𝛽𝑙 +

∑𝑙1−1
𝑖=1 2𝑖−𝑑−1𝛽𝑖. Subsequently,

e map the set of rational numbers to the set of integers 𝐙2𝑙2 as follows:

𝑓𝑙2 ,𝑑 ∶ 𝐐𝑙1 ,𝑑 → 𝐙2𝑙2

𝑙2 (𝑞) ∶= 2𝑑𝑞 mod 2𝑙2
(12)

hile the sensor data is encrypted and utilized by the controller to
ompute control actions without decryption, the control actions need
o be decrypted before sending to the actuator to be applied to the
ystem of Eq. (1). Therefore, the inverse operation 𝑓−1

𝑙2 ,𝑑
∶ 𝐙2𝑙2 → 𝐐𝑙1 ,𝑑

s defined as follows:

−1
𝑙2 ,𝑑

(𝑚) ∶= 1
2𝑑

{

𝑡 − 2𝑙2 if 𝑡 ≥ 2𝑙2−1

𝑡 otherwise
(13)

hile Eq. (13) maps the decrypted inputs back to the rational number
pace, it can be observed that there will be some error in the input
ue to the difference between the actual control input and the one
apped to its closest rational number within the set 𝐐𝑙1 ,𝑑 . Therefore,

to address this issue, the control system should be designed to ensure
a certain degree of robustness with respect to potential encryption pro-
cess errors. For example, the quantizations of the state measurements
and controller matrices can be modeled as artificial disturbances to the
system of Eq. (1) (i.e., ℎ(𝑥)𝑤) and accounted for in the design of a
obust control scheme.

Darup et al. (2017) describes the encrypted control law evaluation
nly for a linear system having the control law of the form 𝑢 = 𝐾𝑥+ 𝑏.

This limitation is imposed by the nature of the Partially Homomorphic
Cryptosystems which only allow the addition and multiplication oper-
ations in the encrypted message space. Thus, in the case of nonlinear
systems or nonlinear control laws, it is important to modify our ap-
proach. A nonlinear control law can be defined as 𝑢 = 𝛷(𝑥). The sensor
measures the states, encrypts them using the Public Key and sends them
to the controller establishing a secure communication of the signals.
The controller then decrypts the states and performs the nonlinear

control law calculations. Once the control action has been computed,
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Fig. 8. Encrypted control scheme for nonlinear processes.
the controller then encrypts it (using the Public Key) and sends it to the
actuator. At the actuator, the control input is decrypted and the control
action is applied to the nonlinear system. We use quantization functions
to convert the states and controller parameters to the integer message
space in order to prepare them for encryption. This quantization of real
numbers induces some loss of data or quantization errors. Thus, in the
case of nonlinear systems, it is important to model these quantization
errors as disturbances to the system and the controller should be able
to handle these disturbances. A schematic of this encrypted control
scheme for nonlinear systems is shown in Fig. 8. More work needs
to be done in this direction to address the stability, robustness, and
performance issues for explicit nonlinear control as well as model
predictive control.

8. Control architecture design for handling cyber-attacks: Decou-
pling stability and performance objectives

To enhance the robustness of MPC to cyber-attacks, a two-tier
control architecture was designed by Chen et al. (2020b) to allow
convenient reconfiguration of the control system to stabilize the pro-
cess to its operating steady state upon successful detection of cyber-
attacks. Specifically, we consider the following class of continuous-time
nonlinear systems:

�̇�(𝑡) = 𝑓 (𝑥(𝑡), 𝑢𝑐 (𝑡), 𝑢𝑎(𝑡)) (14a)

𝑦𝑐 (𝑡) = ℎ𝑐 (𝑥(𝑡)), 𝑦𝑎(𝑡) = ℎ𝑎(𝑥(𝑡)) (14b)

where 𝑥 ∈ 𝐑𝑛𝑥 is the state vector, 𝑦𝑐 (𝑡) ∈ 𝐑𝑛𝑦𝑐 represents the vector
of state measurements that are sampled continuously (e.g., reactor
temperature), and 𝑦𝑎(𝑡) ∈ 𝐑𝑛𝑦𝑎 represents the vector of networked
state measurements that may be sampled asynchronously at 𝑡 = 𝑡𝑘
(e.g., reactor product concentration); 𝑢𝑐 and 𝑢𝑎 are the manipulated
input vectors, which are constrained by [𝑢𝑐 ∈ 𝐑𝑚𝑢𝑐 , 𝑢𝑎 ∈ 𝐑𝑚𝑢𝑎 ] ∈ 𝑈 .
Through 𝑦𝑐 and 𝑦𝑎, we assume measurement of the full state vector 𝑥
can be obtained at 𝑡𝑘. The cyber-secure control architecture integrates a
lower-tier control system that uses the dedicated sensor measurements,
𝑦𝑐 (𝑡), to ensure stability of the steady-state of the closed-loop system
and an upper-tier, high-performance control system (e.g., MPC) that
uses both dedicated (𝑦𝑐 (𝑡)) and networked (𝑦𝑎(𝑡)) sensor measurements
to improve closed-loop performance significantly above what could be
achieved with the lower-tier control system.

Specifically, we assume that for the lower-tier controller, there
exists an explicit feedback controller 𝑢𝑐 (𝑡) = 𝜙𝑐 (𝑦𝑐 (𝑥)) ∈ 𝑈 that can
stabilize the closed-loop system of Eq. (14) using only the continuous
measurements 𝑦𝑐 (𝑡). The Lyapunov-based MPC (LMPC) of Eq. (7) can
be used as the upper-tier controller to fully utilize the networked
(potentially asynchronous) state measurements 𝑦 (𝑡) and to compute
9

𝑎

𝑢𝑎(𝑡) that improves the overall closed-loop performance over what can
be achieved with 𝜙𝑐 (𝑦𝑐 ) while not jeopardizing the stability proper-
ties achieved by 𝑢𝑎(𝑡). Upon detection of an attack on the sensors
providing networked asynchronous state measurements to the two-
tier control system, the control system reconfiguration logic allows
for two mitigation plans. First, the control system can deactivate the
upper-tier controller completely and operate the system under the
stabilizing lower-tier control system only, which uses cyber-secure,
dedicated sensor measurements. Since the lower-tier controllers are
capable of driving the process to its operating steady state with se-
cure continuous measurements, the effect of the cyber-attacks is fully
eliminated in the closed-loop system in this case and the process is
stabilized to the operating steady-state. Second, if a sensor isolation
detector is also implemented, it will be activated once a sensor attack
is verified. Subsequently, the upper-tier controller can choose to switch
the compromised sensor to its redundant back-up sensor with secure
readings. By abandoning the corrupted sensor and using its back-up
sensor using a secure sensor–controller communication, the upper-
tier controller remains functional and is able to drive the process to
its steady state with better closed-loop performance. In the extreme
case that both continuous and asynchronous sensor measurements are
attacked, the upper-tier controller will be shut off and the lower-tier
controllers will reroute their continuous measurement signals from the
corrupted sensors to their respective secure back-up sensors. The two-
tier control design, where the networked sensor measurements, 𝑦𝑎(𝑡),
used only by the upper-tier controller may be under potential cyber-
attack, is illustrated in Fig. 9. In addition to shutting off the upper-tier
control system, the use of encryption of the signals of the upper-tier
control system may be employed at the expense of reduced closed-loop
performance in order to improve its robustness to signal quantization
errors.

9. Application to a chemical process example

We use a chemical process example as a benchmark to demonstrate
the application of integrated data-based attack detectors and cyber-
secure MPC schemes that minimize the impact of cyber-attacks on
process operation. Specifically, machine learning detectors via feedfor-
ward neural network are developed using sensor measurements under
nominal and noisy operating conditions in Chen et al. (2020b), and
applied online to a simulated reactor-reactor-separator process. Two
reactions take place in series (𝐴 → 𝐵 → 𝐶) in both CSTRs and the
overhead vapor from the flash tank is recycled to the first CSTR. The
performance-improvement LMPC receives asynchronous measurements
on the mass fractions of 𝐴 and 𝐵 in each of the three vessels (𝑥𝐴1, 𝑥𝐵1,
𝑥𝐴2, 𝑥𝐵2, 𝑥𝐴3, 𝑥𝐵3, all of which can be subject to cyber-attacks), and
manipulates the fresh feed flowrate into the second CSTR, 𝐹 . Three
20
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Fig. 9. Two-tier control-detector architecture showing lower-tier controllers using continuous secure sensor measurements and an upper-tier MPC using both continuous (secure)
and networked (vulnerable to cyber-attacks) sensor measurements, where secure back-up sensors, if available, can be used to replace the compromised networked sensor for
upper-tier MPC (Chen et al., 2020b).
Fig. 10. State-space plot showing the evolution of true process states (blue trajectories) and attacked state measurements (red trajectories) over two material constraint periods
under the resilient LEMPC when (a) min–max, (b) geometric, and (c) surge attacks, targeting the temperature sensor are successfully detected by a NN detector at the end of the
first material constraint period, 𝑡 = 0.06 h, where the dash-dotted ellipse is the stability region 𝛺𝜌 and the dashed ellipse is 𝛺𝜌𝑠𝑒𝑐𝑢𝑟𝑒 (Chen et al., 2020a).
safety critical PI controllers receive continuous measurements on the
temperatures of the three vessels (𝑇1, 𝑇2, 𝑇3) and manipulate the heat
inputs into each vessel 𝑄1, 𝑄2, and 𝑄3, respectively.

The process description and parameter values are given in Chen
et al. (2020b), and are omitted here. An upper-tier Lyapunov-based
MPC, which uses networked sensor measurements to improve closed-
loop performance, is coupled with lower-tier cyber-secure explicit feed-
back controllers to drive a nonlinear multivariable process to its steady
state. Although the networked sensor measurements may be vulner-
able to cyber-attacks, the two-tier control architecture ensures that
the process will stay immune to destabilizing malicious cyber-attacks.
Simulation results demonstrate the effectiveness of these detection
algorithms in detecting and distinguishing between multiple classes
of intelligent cyber-attacks that may occur at different locations of
the sensor network. Upon the detection of cyber-attacks, the two-tier
control architecture allows convenient reconfiguration of the control
system to stabilize the process to its operating steady state. The training
and testing accuracy for detecting the presence of an attack, the attack
type, or the location of the attack are given in Table 1. Furthermore, a
modified Lyapunov-based EMPC using combined closed-loop and open-
loop control action implementation schemes was proposed in Chen
10
Table 1
Detection accuracies of NN detectors trained under different scenarios
of noise level, attack types, and detection purposes (Chen et al., 2020b).

Scenario Training (%) Testing (%)

Nominal, One Attack 99.6 92.2
With Noise, One Attack 99.9 100
With Noise, Two Attacks 98.2 91.4
With Noise, Sensor Isolator 99.6 99.0

et al. (2020a) to optimize economic benefits in a time-varying manner
while maintaining closed-loop process stability and resiliency against
various types of cyber-attacks. Data-based cyber-attack detectors are
developed using sensor data via machine-learning methods and these
detectors are periodically activated and applied online in the context
of process operation. With FNN detectors trained and applied online,
the closed-loop state evolution under the resilient EMPC is shown
in Fig. 10 where the process is exposed to three types of sensor

cyber-attacks (Chen et al., 2020a).
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10. Control architecture design for handling cyber-attacks: Decen-
tralized and distributed control

In addition to constructing control architectures where control sys-
tems are structured according to closed-loop stability and performance
objectives, decentralized and distributed control systems provide an
efficient solution to many challenges of controlling large-scale indus-
trial processes (Christofides et al., 2013) and may provide certain
advantages with respect to robustness to cyber-attacks in comparison
with centralized control systems. We will discuss decentralized and
distributed control systems in the context of model predictive control.
In a decentralized MPC system, no communication is established be-
tween the different local controllers, therefore each controller does not
have any knowledge on the control actions calculated by the other
controllers. While this may lead to reduced closed-loop performance,
it may be beneficial in the context of cyber-attacks as the control
systems can operate independently. Specifically, for each subsystem,
a separate MPC is designed to regulate the states 𝑥𝑗 of the subsystem
𝑗, 𝑗 = 1,… , 𝑁𝑠𝑦𝑠, and optimize the respective control actions. Each
decentralized MPC 𝑗, 𝑗 = 1,… , 𝑁𝑠𝑦𝑠 can be represented by the following
optimization problem:

𝑗 = min
𝑢𝑑𝑗 ∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�𝑗 (𝑡), 𝑢𝑑𝑗 (𝑡))𝑑𝑡 (15a)

s.t. ̇̃𝑥𝑗 (𝑡) = 𝐹𝑗 (�̂�(𝑡), 𝑢𝑑𝑗 (𝑡), 0) (15b)

�̂�(𝑡) = [�̄�1(𝑡𝑘)⋯ �̄�𝑗−1(𝑡𝑘) �̃�𝑗 (𝑡) �̄�𝑗+1(𝑡𝑘)⋯ �̄�𝑁𝑠𝑦𝑠
(𝑡𝑘)] (15c)

𝑢𝑑𝑗 (𝑡) ∈ 𝑈𝑗 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (15d)

�̃�𝑗 (𝑡𝑘) = �̄�𝑗 (𝑡𝑘) (15e)
𝜕𝑉 (�̄�(𝑡𝑘))

𝜕𝑥𝑗
𝐹𝑗 (�̄�(𝑡𝑘), 𝑢𝑑𝑗 (𝑡𝑘), 0)

≤
𝜕𝑉 (�̄�(𝑡𝑘))

𝜕𝑥𝑗
𝐹𝑗 (�̄�(𝑡𝑘), 𝛷𝑗 (�̄�(𝑡𝑘)), 0), if �̄�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠 (15f)

𝑉 (�̃�(𝑡)) ≤ 𝜌𝑠, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if �̄�(𝑡𝑘) ∈ 𝛺𝜌𝑠 (15g)

The control actions optimized by MPC 𝑗, denoted by 𝑢𝑑𝑗 , will be applied
to the corresponding control actuators in subsystem 𝑗. Note that while
full-state feedback measurements could be available to all MPCs, each
MPC in the decentralized MPC only has the information of the process
dynamics of its respective subsystem.

To achieve better closed-loop control performance compared to
decentralized MPC, distributed MPC systems may be developed to take
advantage of some level of communication that may be established
between the different controllers. Specifically, iterative distributed MPC
systems (one of several DMPC architectures discussed in Christofides
et al. (2013)) allow signal exchanges between all controllers, thereby
allowing each controller to have full knowledge of the predicted state
evolution along the prediction horizon and yielding better closed-loop
performance via multiple iterations at the cost of more computational
time. For example, both controllers communicate with each other in a
two-MPC system to cooperatively optimize the control actions. The two
controllers solve their respective optimization problems independently
in a parallel structure and at the end of each iteration they will
exchange solutions with each other. The optimization problem of MPC
1 in an iterative distributed LMPC at iteration 𝑐 = 1 is presented as
follows:

 = min
𝑢𝑑𝑗 ∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�(𝑡), 𝑢𝑑𝑗 (𝑡), 𝛷𝑖(�̃�(𝑡)))𝑑𝑡 (16a)

s.t. ̇̃𝑥(𝑡) = 𝐹 (�̃�(𝑡), 𝑢𝑑𝑗 (𝑡), 𝛷𝑖(�̃�(𝑡)), 0) (16b)

𝑢𝑑𝑗 (𝑡) ∈ 𝑈𝑗 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (16c)

�̃�(𝑡𝑘) = �̄�(𝑡𝑘) (16d)
𝜕𝑉 (�̄�(𝑡𝑘))𝐹 (�̄�(𝑡 ), 𝑢 (𝑡 ), 𝛷 (�̄�(𝑡 )), 0)
11

𝜕𝑥 𝑘 𝑑𝑗 𝑘 𝑖 𝑘 o
≤
𝜕𝑉 (�̄�(𝑡𝑘))

𝜕𝑥
𝐹 (�̄�(𝑡𝑘), 𝛷(�̄�(𝑡𝑘)), 0), if �̄�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠 (16e)

𝑉 (�̃�(𝑡)) ≤ 𝜌𝑠, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if �̄�(𝑡𝑘) ∈ 𝛺𝜌𝑠 (16f)

here the variables and constraints are defined following those in the
ecentralized MPC design. For each control action 𝑗 corresponding to
ubsystem 𝑗, 𝑖 = 1,… , 𝑁𝑠𝑦𝑠, 𝑖 ≠ 𝑗, which refers to the control actions of
ll other subsystems except for 𝑗. At iteration 𝑐 > 1, after the exchange
f the optimized input trajectories 𝑢∗𝑑𝑗 (𝑡),∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) between all

PCs 𝑗 = 1,… , 𝑁𝑠𝑦𝑠, the optimization problem of MPC 𝑗 is as follows:

 = min
𝑢𝑑𝑗 ∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�(𝑡), 𝑢𝑑𝑗 (𝑡), 𝑢

∗
𝑑𝑖
(𝑡))𝑑𝑡 (17a)

.t. ̇̃𝑥(𝑡) = 𝐹 (�̃�(𝑡), 𝑢𝑑𝑗 (𝑡), 𝑢
∗
𝑑𝑖
(𝑡), 0) (17b)

𝑢𝑑𝑗 (𝑡) ∈ 𝑈𝑗 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (17c)

�̃�(𝑡𝑘) = �̄�(𝑡𝑘) (17d)
𝜕𝑉 (�̄�(𝑡𝑘))

𝜕𝑥
𝐹 (�̄�(𝑡𝑘), 𝑢𝑑𝑗 (𝑡𝑘), 𝑢

∗
𝑑𝑖
(𝑡𝑘), 0)

≤
𝜕𝑉 (�̄�(𝑡𝑘))

𝜕𝑥
𝐹 (�̄�(𝑡𝑘), 𝛷(�̄�(𝑡𝑘)), 0), if �̄�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠 (17e)

𝑉 (�̃�(𝑡)) ≤ 𝜌𝑠, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if �̄�(𝑡𝑘) ∈ 𝛺𝜌𝑠 (17f)

hile both distributed and decentralized MPC systems are designed
o alleviate the computational complexity for solving large-scale opti-
ization problems for multiple subsystems as opposed to centralized
PC, the vulnerability to cyber intrusions also increases with the

xpansion of communication networks. The work in Chen et al. (2021)
nvestigates the effect of different types of standard cyber-attacks on
he operation of nonlinear processes under centralized, decentralized,
nd distributed model predictive control systems. The robustness of
he decentralized control architecture over distributed and centralized
ontrol architectures was analyzed. Considering the inherent structure
nd operating requirement of both systems, the decentralized control
ystem was found to exhibit greater robustness against potential cyber-
ttacks at the expense of a small performance loss versus centralized
nd distributed MPC.

While isolation and handling of actuator faults in nonlinear pro-
esses under continuous, synchronous measurements have been studied
n Gani et al. (2007), Mhaskar et al. (2008), Ohran et al. (2008a),
cFall et al. (2008), Ohran et al. (2008b), detection and handling

f cyber-attacks in cooperative, distributed control architectures for
onlinear processes is a challenging task due to cyber-attack intelli-
ence. Additionally, it cannot be addressed with the aforementioned
rocess monitoring and control methods dealing with the centralized
ontrol systems because cyber-attacks may not only affect the sensor
easurements going to the controllers but also the inter-controller

ommunication. Therefore, as shown in Fig. 11 (Chen et al., 2021),
machine-learning-based detector can be developed to detect and

solate cyber-attacks in the context of sequential DMPC. Subsequently,
resilient control strategy can be employed that orchestrates the

econfiguration of the control system. This strategy determines if the
PC algorithms should be reconfigurated or new backup control loops

e.g., switching from distributed MPC to decentralized MPC where
here is no communication between the controllers) should be activated
n the presence of cyber-attacks in order to preserve closed-loop system
tability.

A chemical process example of two CSTRs in series with the reaction
→ 𝐵 taking place in both reactors is simulated in Chen et al. (2021) to

emonstrate the robustness of decentralized control architectures and
he effectiveness of the neural-network detection scheme in maintain-
ng the closed-loop stability of the system. The process description and
arameters can be found in Chen et al. (2021) and are omitted here.
he following Figs. 12–13 from Chen et al. (2021) show the true closed-

oop state trajectories under the decentralized control-detector system.
he proposed control-detector architecture and detection methodology
an be extended to other applications of model predictive control or
ther methods of advanced control systems, in general.
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Fig. 11. Sequential distributed MPC with machine-learning-based detector.

11. Cybersecurity in operations and supply chains

As new technologies such as wireless networks and internet commu-
nication bring efficiency to the existing chemical plants, the integration
of digitalization in process operations and supply chains is exposing
chemical plants to unknown cybersecurity risks. These issues go, of
course, beyond chemical plants and influence the operation of all
industrial sectors of the economy (e.g., Sun et al., 2018; Smetana et al.,
2021; Perez et al., 2021). Cyber-attacks targeting operations and supply
chains can lead to loss of production, unplanned downtime, quality
degradation, and disturbances to cash-to-order processes and the supply
chain.

To enhance the security of plant operations in the OT cyberspace,
a plant engagement model is typically developed to: (1) assess the
current state of cybersecurity, (2) identify and catalog all networked
computing devices, and (3) create a plan of improvements. Addition-
ally, conventional IT methods such as anti-virus software, operating
system patches, network firewalls and the use of multi-factor authen-
tication for remote access are also utilized to provide another layer of
security in process operations. When developing OT security methods
for critical plants and manufacturing operations, it should be kept in
mind that many chemical plants were designed decades ago with OT
networks that are not able to handle cyber-attacks. To ensure secure,
safe, and resilient operations, operators should develop a recovery plan
to restore plant operations when a cyber-attack occurs and impacts
plant operations. Some common practices for operators to proactively
integrate cybersecurity into operations include alerts design, operation
monitoring, attack identification and investigation, event reporting, log
review, event analysis, and incident handling and response.

Similarly, cybersecurity in supply chain cannot be viewed as an
IT problem only. A diagram of a supply chain network with common
cyber-secure IT and OT approaches is shown in Fig. 14. Since a supply
chain includes a large number of sectors such as product design,
manufacturing, and distribution via the combination of hardware and
software, cloud or local storage, and distribution mechanisms, a cyber-
attack on a single supplier may remain undetected for a long time until
it leads to chain reaction and eventually compromises the entire net-
work. The cybersecurity risks in supply chain may involve a number of
aspects such as sourcing, vendor management, supply chain continuity
and quality, transportation security and many other functions across
the enterprise. To improve the cybersecurity of supply chain manage-
ment, companies have adopted a variety of practices such as including
security requirements in every contract, automation of manufacturing,
testing regimes to reduce the risk of human intervention, validating
third-party code and software before using, and limited software access
to vendors (Ghadge et al., 2019; Cheung et al., 2021; Sobb et al., 2020).

The recent survey article by Enayaty-Ahangar et al. (2020) provides
a survey of optimization models and methods for cyberinfrastructure
security in the past two decades in which it is demonstrated that
12

various optimization methods such as game theory, mixed integer p
programming, and linear/nonlinear programming have been widely
used to improve cyberinfrastructure security in many ways involving
prevention/protection, detection, mitigation, response and recovery
from a cyber-threat. In Sun et al. (2018), recent research results on
the cybersecurity of a smart grid were discussed and a cyber-power
system test-bed was used to demonstrate the impact of attacks and
the effectiveness of cybersecurity solutions. More recently, Smetana
et al. (2021) introduced the integration of food system technologies
with cyber–physical system technologies and pointed out the need for
the development of efficient defense mechanisms to address potential
cyber-food-safety risks and hazards.

In another recent work, Cheung et al. (2021) provided an overview
of research works on cybersecurity in supply chain management. It was
pointed out that the measures for enhancing cybersecurity can be clas-
sified into three broad categories: precautionary measures, real-time
recovery measures, and aftermath measures, which are very similar
to the practices introduced for process control systems (i.e., advanced
threat detection, security by design, secure remote access, and ad-
vanced recovery) and reviewed in the earlier part of this manuscript.
Specifically, some common precautionary measures for supply chains
are the identification of vulnerabilities in cyberspace, secure access,
authentication, data protection, firewall, and gateway development.
Machine learning, game theory, Bayesian analysis, and attack path gen-
eration and analysis methods have been applied to identify and locate
vulnerabilities while blockchain technology has been widely used for
data protection and authentication (Kshetri, 2017; Taylor et al., 2020).
For example, game theory has been widely used in the supply chain to
optimize a defender’s strategy by modeling each player’s (i.e., attack
and defender) behavior and strategies and to capture the interaction
between two opposing players. To provide a high-level description of
this approach, consider an attacker with a set of 𝑁𝑎 potential attacking
strategies {𝑠𝑎,𝑖} ∈ 𝑆𝑎 and a defender with a set of 𝑁𝑑 potential defense
trategies {𝑠𝑑,𝑖} ∈ 𝑆𝑑 , where 𝑆𝑎, 𝑆𝑑 are the space of all possible
trategies for attacker and defender, respectively, and 𝑖 represents the
trategy index (Colbert et al., 2020). Given an attack strategy 𝑖 and
defense strategy 𝑗, the attacker suffers a cost 𝐶𝑎,𝑖𝑗 to penetrate the

ecurity layer and accomplish its goal and the defender spends a cost
𝑑,𝑖𝑗 to apply its strategy. Additionally, given a strategy tuple {𝑖, 𝑗},

it is assumed that the attacker succeeds in attacking the 𝑙𝑡ℎ system
ith probability 𝑝𝑙(𝑠𝑎,𝑖, 𝑠𝑑,𝑗 ), 𝑙 = 1,… , 𝑁 . Assuming the attacker gains a
enefit 𝑏 by successfully attacking a network of 𝑁 subsystems and both
he attacker and defender have complete knowledge of the system, the
tility 𝑢𝑎 for the attacker can be calculated as follows:

𝑠(𝑠𝑎,𝑖, 𝑠𝑑,𝑗 ) = 𝑏 ⋅𝛱 𝑙=𝑁
𝑙=1 𝑝𝑙(𝑠𝑎,𝑖, 𝑠𝑑,𝑗 ) − 𝐶𝑎,𝑖𝑗 (18)

imilarly, the utility 𝑢𝑑 for the defender is as follows:

𝑑 (𝑠𝑎,𝑖, 𝑠𝑑,𝑗 ) = 𝑏 ⋅ [1 −𝛱 𝑙=𝑁
𝑙=1 𝑝𝑙(𝑠𝑎,𝑖, 𝑠𝑑,𝑗 )] − 𝐶𝑑,𝑖𝑗 (19)

herefore, for both the attacker and defender, the objective is to select
he optimal strategy that maximizes their utilities, for which a num-
er of strategy selection methods have been developed in literature.
nterested readers may refer to Zhu et al. (2010), Do et al. (2017),
ttiah et al. (2018), Cheung and Bell (2021) for the applications of
ame theory in cybersecurity. In addition to the optimization-based
pproaches discussed above, laws, policies, regulations, and standards
e.g., National Institute for Standards and Technology (NIST)) are
nother important precautionary measure to provide guidelines for
ompanies. With regards to real-time recovery, component isolation
nd recovery, real-time monitoring as well as communication and
nteraction between supply chain partners are some common measures
o mitigate the impact of cyber-attacks on the supply chain networks.
inally, aftermath measures such as data backup, resilient infrastruc-
ure design, and system restoration are needed to ensure full recovery
f the network and to refine the precautionary and real-time recovery

lans.
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𝑇

12. Industrial cybersecurity with IT and OT integration

Operational technology (OT) cybersecurity has gained increasing
attention since 2010. To handle recent cyber events that have driven
the need for more regulations and measures to combat cyber-threats
in chemical industries, major chemical companies, such as Dow, have
developed very significant cybersecurity programs. For example, Dow
established its first generation cybersecurity program in 2017 and has
greatly improved the program in the following years to keep pace
with the evolving threats. While this article has mainly addressed
cybersecurity concerns in OT space, it is noted that both IT and OT
are utilized in industry to develop cybersecurity solutions to protect
13

software, hardware, infrastructure, people, and data. It is important
for process engineers to understand both IT and OT cybersecurity
landscapes to be able to develop frameworks for detection and con-
trol/learning system design that integrate the best policies from both
domains to create workable solutions. On the one hand, the connection
to IT network enables constant monitoring of the performance and
condition of equipment and systems, and allows the industrial systems
to obtain a more detailed view of individual equipment and conduct
a more comprehensive analysis of the entire plant through big data.
On the other hand, traditional OT systems do not have cybersecurity
features such as encryption and authentication systems for secure data
access and the equipment with long life cycles in OT systems cannot
be regularly updated with patch systems due to stability concerns.
Therefore, to allow for digital modernization of chemical industries,
Fig. 12. Closed-loop trajectories of true states. The two-CSTR process is operated under the decentralized MPC system when surge attacks are added to the temperature sensor 𝑇1
of the first CSTR at 𝑡 = 0.30 h and detected by the 2-class FNN detector at 𝑡 = 0.32 h, after which all sensors are switched to their secured back-up sensors and the true process
states are driven back to the ultimate bounded region 𝛺𝜌𝑠 around the operating steady state (Chen et al., 2021).
Fig. 13. Closed-loop trajectories of true states. The two-CSTR process is operated under the decentralized MPC system when geometric attacks are added to the temperature sensor
1 of the first CSTR at 𝑡 = 0.30 h and detected by the 2-class FNN detector at 𝑡 = 0.35 h, after which all sensors are switched to their secure back-up sensors and the true process

states are maintained within the ultimate bounded region 𝛺𝜌𝑠 around the operating steady-state (Chen et al., 2021).
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Fig. 14. Cyber-secure supply chain with IT and OT integration.
advanced cybersecurity solutions with IT and OT integration need to
be developed and broadly implemented.

Compared to traditional IT cybersecurity, OT solutions are unique
purpose-built technologies and protocols for systems that have been
operated much longer than IT systems. Since upgrades or changes in the
OT space generally require plant shutdowns which are not easily done,
cyber-assessment and cyber-protection packages with minimum disrup-
tion to operations should be developed and deployed at high priority
plants. Additionally, the International Society of Automation (ISA) has
provided a guidance (i.e., International Electrotechnical Commission
(IEC) 62443) for companies to evaluate the cost of any potential attacks
from four aspects: consequences, threats, recovery, and investment in
the development of OT cybersecurity solutions.

13. Cybersecurity and safety

Since a primary objective of cybersecurity in OT space is to ensure
the safe operation of physical assets at all times, there is a clear need
to combine safety and security concerns with control systems to handle
cyber-attacks on safety-critical systems that have the potential to cause
real harm in the physical world. Novel safety and security methods
have been developed in important recent works (e.g., (Hashimoto
et al., 2013; Ahooyi et al., 2016; Albalawi et al., 2018; Zhou et al.,
2019)) to proactively detect attacks and operation hazards as well as
to improve safety assurance against cyber-attacks. Furthermore, in Wen
et al. (2022b), Amin et al. (2022), Amin and Khan (2022), the authors
have developed data-driven methods for process safety analysis and
proposed a holistic framework for process safety and security analysis.

Khan et al. (2015) reviews the evolution of the methods and models
for process safety and risk management in the last few decades and
discusses the current trend of process safety and risk related develop-
ments. In El-Kady et al. (2022), the authors provide a review of physical
and cyber threats and their defense/protection measures in digitalized
process systems. Additionally, Arunthavanathan et al. (2021) provides
a review of methods in process safety, where the integration of dy-
namic fault detection and diagnosis with risk assessment tools has been
demonstrated to significantly improve safety in process facilities. Fol-
lowing this direction, many recent efforts have been made in this area
to improve process safety. For example, in Kopbayev et al. (2022), ma-
chine learning methods have been utilized to detect the fault and take
early corrective actions in order to improve process safety. In Cheded
and Doraiswami (2021), a novel integrated framework that integrates
model-free and model-based methods was developed for fault detection
and isolation to tackle the issue of process safety. While both the
ordinary process faults due to process upsets or forced-induced faults
(i.e., cyber-attack) can lead to safety and security threat in process
operations, the main difference between cyber-attack and process fault
14
is that the intelligent cyber-attacks with knowledge of the plant layout
and of the control structure are programmed to disrupt plant operation,
which is fundamentally different from ordinary sensor and actuator
faults. In addition to fault detection research, the conflicts in human-
automated systems due to contradictory observations and actions under
cyber-attacks is another deeper and more implicit phenomenon that
may bring risks to process safety. To address this issue, human-centered
design is important to reduce the occurrences of human-automated
system conflict in automation and digitalization of process operations,
as pointed out in Wen et al. (2022a).

In the intersection of cyber-security with safety systems and auto-
matic feedback control systems, process safety systems such as alarms
systems, emergency shutdown systems, and safety relief devices can
provide the last line of defense in the event of an abnormal situation
due to cyber-attacks. To prevent the system states from leaving their
safety limits prior to the successful detection of cyber-attacks, safety
systems can be integrated with control systems to reduce the physical
risks of cyber-attacks ranging from simple unplanned downtime in
operations to a plant explosion or release of hazardous materials (Wu
and Christofides, 2021). To integrate safety systems with control sys-
tems, Safeness Index functions 𝑆(𝑥), a function of the (closed-loop)
process states that characterizes the ‘‘safeness’’ of a process operation,
are adopted as a safety metric for the activation/deactivation of safety
systems (Albalawi et al., 2017; Wu et al., 2018c; Zhang et al., 2019b).
Safe and unsafe operations can then be evaluated by comparing the
value of 𝑆(𝑥) with the threshold value that is pre-determined using
process first-principles knowledge or past plant data. Additionally,
because the Safeness Index function can provide information on both
measured and estimated states, its use in the alarm system can help
manage the trade-off between measuring fewer states (which may lead
to missed alarms) and more states (which leads to instrumentation
expenses and possibly more occurrences of alarm overloading).

In addition to integrating process safety metrics into the decision
making models of safety systems, integrating the actions of safety
systems and control systems may be beneficial as well, as pointed out
in Wu and Christofides (2021). Specifically, in the traditional process
safety paradigm, process variables are stabilized at their set-points
by basic process control systems under normal operation; when the
control system fails to operate the process in a safe operating region
in the presence of disturbances or cyber-attacks, the safety systems
(e.g., alarm systems, emergency shutdown systems (ESS), and safety
relief devices) are activated to prevent further unsafe operation. How-
ever, since the process dynamics is changed after the activation of
safety systems (e.g., the opening of a pressure relief valve to prevent
high pressure in a chemical reactor), the actions taken by the safety
systems should be taken into account in the reconfiguration of control

systems. For example, the cyber-secure control system proposed in
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the previous section can be integrated with safety systems that take
actions based on whether 𝑆(𝑥) crosses the threshold. We assume secure,
redundant sensors or reliable state estimations are available to the
control, alarm, emergency shutdown, and relief systems with standard
industrial practice. Additionally, the actions taken by the alarm, ESS,
and relief systems are assumed to be on-off type actions to simplify
the discussion. In the case that safety systems are triggered due to
cyber-attacks, the safety-based (lower-tier) control system continues to
regulate the process state, while the upper-tier MPC needs to switch to
secure, redundant sensors or encrypted secure channels to obtain the
true state, and update the prediction model to account for the change in
system dynamics. The safety system will be taken off-line after process
states enter the safe operating region, and subsequently, the two-tier
control system switches to the initial process model.

14. Future research directions

14.1. Actuator cyber-attack detection and handling

Similar to sensor cyber-attacks, actuator cyber-attacks also have
access to the plant model and controller design details, aiming to
diverge the system away from its ideal operating point. However, in-
stead of altering the sensor measurements, actuator attacks modify the
direction and magnitude of the control actions without being detected
by sensor monitoring tools. Common detection strategies include active
detection methods that design excitation signals to be superimposed on
the control commands to increase the detectability of the attack and
developing an input observer to detect attacks as well as estimating
the magnitude of the attack (Muniraj and Farhood, 2019). Unlike the
passive detection methods that use regular operation data to determine
if the operation is being affected by a cyberattack, active detection
methods that apply some perturbation to the closed-loop process system
through the control system can actively probe systems for cyberattacks.
Conceivably, active detection methods may ensure that a process is
free of a wider range of possible cyberattacks than passive detection
methods. Future work developing novel active detection methods and,
potentially, extending these methods to aid identification and mitiga-
tion may prove fruitful. Furthermore, it is noted that certain actuator
attacks are undetectable by an observer-based controller (Ayas and
Djouadi, 2016); thus, a machine-learning-based detection method may
provide new insights. In addition to the detection of actuator attacks, an
isolator may need to be developed to identify the affected actuator(s)
in the network. Subsequently, to mitigate the effect of actuator attacks,
machine learning methods may be utilized to identify cyber-attack
patterns and predict future attack actions. Based on that, a resilient
control system may be developed to compensate the effect of attacks
without having to shut down the entire plant. Additionally, in the
case that a safety-critical actuator is under attack, a controller that
can operate the system in the presence of actuator attacks needs to be
developed to account for the unavailability of the affected actuators
due to a physical intervention of maintenance personnel.

14.2. Encrypted control

Since implementing encryption to encrypt-decrypt the communica-
tion signals involves the quantization of the signals and calculations
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using large integers, which may result in significant delays in or-
der to ensure error-free signal encryption–decryption, the encryption–
decryption scheme should be tuned to ensure that the calculations
can be done with the available computational resources for a specific
operating region in the state-space. Once the region of operation size
is increased, the computational burden of the encryption–decryption
scheme increases as larger deviations from the steady state correspond
to larger numbers that need to encrypt using fixed-point operations
that are more computationally expensive. This trade-off needs to be
carefully studied, and quantitative computational formulas need to be
developed to determine how the size of the allowable operating region
should be influenced by the presence of potential cyber-attacks such
that encryption can be used with allowable computational resources,
need to be developed.

14.3. Incorporation of domain knowledge in the design of machine-learning-
based cyber-attack detectors

Process dynamics and control strategies can be used to determine
the most cost-effective and flexible frameworks for providing security
to process networks and computing devices. This is important be-
cause an overly conservative cybersecurity policy can impede progress
toward an efficient next-generation manufacturing framework; better
understanding how the physics of the process help to dictate what
types of security measures are required is important for preventing
the negative impacts of attacks without getting in the way of process
adaptability. For example, the machine-learning detector presented
above is built using all the input variables available with an attempt to
capture all possible relationships between inputs and outputs. However,
in the case of large-scale chemical process networks, several issues may
arise if taking all inputs into the training of the detector, especially
when the outputs are not sensitive (or are fully decoupled) to some
of the inputs or process states. In the example of two CSTRs in series,
the states of the first CSTR influence the states (and thus, the dynamic
behavior) of the second CSTR, but the states of the second CSTR do
not influence the states of the first CSTR. This is important informa-
tion that can be used as specific constraints on the structure of the
machine learning detector for the entire two-CSTR system to improve
its sensitivity to noise. Second, the detector structure may become
complicated in terms of more layers and neurons in order to find a
good approximation between all inputs and outputs, which increases
the computational burden required for training the detector both off-
line and on-line. Motivated by the above, one method for optimizing
the detector structure is to perform an input selection (also termed as
feature selection in machine learning) to select a subset of relevant
features for use in detector construction using direct information of
process structural relationships from process-directed graphs. By carry-
ing out an input selection, the detector structure is simplified, which
reduces the training times and avoids the burden of dimensionality.
Additionally, another approach to improve the performance of the de-
tector in terms of better prediction accuracy and less computation time
is to incorporate chemical process structural knowledge in constructing
it. Specifically, constraints will be imposed using process-directed graph
information on some of the weight parameters in the detector such that
the connected inputs, which have no impact on the output variables,
exhibit no correlation to the outputs in the training process of the
detector.

14.4. Decentralized learning for data security and privacy

Improving process data security is another important direction,
particularly when this data is being operated upon using control laws
or machine learning algorithms, to provide flexibility in manufacturing
without concerns for data privacy. Therefore, further advances in tech-
niques and frameworks for promoting privacy are needed to provide
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tractable solutions for industry. For example, developing a machine-
learning-based detector for large-scale distributed systems requires a
tremendous volume of data to be collected from all subsystems through
various mediums of communication such as Internet and wireless net-
works, and then processed in a central server or cloud for training.
However, as the communication mediums are vulnerable to attackers,
the machine-learning-based detector developed in a local server or
cloud could be misguided and unable to detect the target cyber-attacks
in the presence of data tampering or data manipulation. In addition,
as machine learning approaches have been widely used to develop
data-driven models for chemical processes that can be incorporated
in advanced process control schemes (e.g., MPC), data security and
privacy is also of great importance and is gaining increasing attention.
While centralized learning can process data and develop machine learn-
ing models in a centralized manner for large-scale distributed systems
by taking advantage of a high performance computing cluster/cloud,
data security and privacy becomes a big issue due to insecure commu-
nication links. To alleviate the security concerns, decentralized learning
and federated learning methods that distribute a pretrained model
to all subsystems, and allow each subsystem to develop and update
its own model locally without sharing the raw data with the central
server/cloud (AbdulRahman et al., 2020; Li et al., 2020; Ghimire and
Rawat, 2022; Khan et al., 2021b). The updated model parameters will
be sent to the server for model aggregation, and finally, the updated
model will be distributed to all subsystems. The idea of decentralized
learning has shown its great potential in developing privacy-aware
machine learning models, and needs to be further explored in the
development of machine-learning-based detectors.

14.5. Cybersecurity, safety, operation and control: Engaging vendors

The interface of cybersecurity, safety, operation and control will
certainly be explored further in the years to come. Despite the recent
efforts to detect and mitigate the impact of cyber-attacks on process
control systems, the impact of cyber-attacks on process safety has re-
ceived very limited attention. How plant operators and control systems
should work together to safely handle a cyber-attack with minimal
performance loss and without costly plant shut-downs is an important
question that needs to be studied. Engaging vendors that design, build,
and implement safety and control systems to account directly in their
architecture and implementation for cybersecurity concerns as well
as monitor and analyze evolving cybersecurity threats should be an
important consideration and a potential avenue to bring academic
advances on the industrial floor. In this context, it is important that
the cybersecurity solutions that are implemented in the OT space can
work and cooperate effectively with multiple control system platforms
developed by different vendors.

14.6. Industrial cases studies

In addition to the simulation studies of chemical reactors discussed
in this manuscript, it is also important to investigate the implementa-
tion of the machine-learning-based detector and MPC to handle poten-
tial cyber-attacks in a variety of chemical process networks and energy
systems (for example, gas pipeline networks). Novel detector–controller
architectures need to be developed to improve the robustness of the
entire pipeline network to cyber-attacks which is a critical need for the
existing US pipeline networks. It is particularly important to build case
studies using large-scale process simulators and incorporate as many
as possible practical concerns based on direct industrial feedback to
test the effectiveness and applicability of the methods developed by
16

academics.
14.7. Cybersecurity awareness education and training

Cybersecurity concerns and cybersecurity mitigation methods are
absent from today’s chemical engineering curriculum at both under-
graduate and graduate levels. With the digitalization in process oper-
ations, the scope of safety concerns has broadened due to the failure
of process control and software systems. Therefore, process safety and
cybersecurity concerns should be taught in the classroom to educate
and train the next generation of chemical engineers in response to
the process industry’s emphasis on digital solutions in process opera-
tions (Khan et al., 2021a). Process control and process design courses
as well as chemical engineering labs could be good starting points
to introduce cybersecurity issues to raise awareness of cybersecurity
concerns among our students who, in their vast majority, go to work in
industry. In addition, the organization of short courses and workshops
to communicate recent academic advances of cybersecurity approaches
to engineers in industry and inform academics of industrial cybersecu-
rity issues should be pursued. It is important to point out that while
the present manuscript addresses OT cybersecurity concerns within a
chemical process context, cybersecurity issues are present in all indus-
tries employing chemical engineers from chemical to pharmaceutical
to food and materials industries.

15. Conclusion

This work presents an overview of recent research results on cy-
bersecurity in process control, process operations, and supply chains.
The design and implementation of cyber-defense OT methods includ-
ing machine-learning-based cyber-attack detection, resilient control
strategies, and their integration with MPC, encryption–decryption algo-
rithms, and cyber-secure control architectures were discussed. Chem-
ical process examples were used to demonstrate the efficiency and
effectiveness of machine-learning-based detection schemes, and the
robustness of attack-resilient MPCs and decentralized MPCs against
several most common intelligent cyber-attacks discussed in the open
literature. Additionally, an overview of cybersecurity issues in pro-
cess operations and supply chains was presented, followed by the
integration of IT and OT into industrial practices, as well as inte-
grated safety and cybersecurity solutions for safety-critical systems.
The paper concluded with a discussion of future directions for aca-
demic research, vendor engagement, academia-industry dialogue, and
educational needs.
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