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a b s t r a c t 

This paper focuses on the design of model predictive controllers for nonlinear two-time-scale processes 

using only process measurement data. By first identifying and isolating the slow and fast variables in a 

two-time-scale process, the model predictive controller is designed based on the reduced slow subsystem 

consisting of only the slow variables, since the fast states can deteriorate controller performance when 

directly included in the model used in the controller. In contrast to earlier works, in the present work, 

the reduced slow subsystem is constructed from process data using sparse identification, which identi- 

fies nonlinear dynamical systems as first-order ordinary differential equations using an efficient, convex 

algorithm that is highly optimized and scalable. Results from the mathematical framework of singular 

perturbations are combined with standard assumptions to derive sufficient conditions for closed-loop 

stability of the full singularly perturbed closed-loop system. The effectiveness of the proposed controller 

design is illustrated via its application to a non-isothermal reactor with the concentration and tempera- 

ture profiles evolving in different time-scales, where it is found that the controller based on the sparse 

identified slow subsystem can achieve superior closed-loop performance versus existing approaches for 

the same controller parameters. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Chemical processes such as fluidized catalytic crackers, bio- 

hemical reactors and distillation columns, often involve physico- 

hemical phenomena occurring in vastly-different time scales. In 

hemical process modeling, time-scale separation has been han- 

led via singular perturbation techniques ( e.g. , Kumar et al., 1998 ) 

n the context of first-principles modeling with the goal of building 

ell-conditioned ordinary differential equation (ODE) models that 

an be used for process analysis and controller design. More re- 

ently, in Alanqar et al. (2015) , a constraint was incorporated in the 

ptimization problem of fitting a polynomial nonlinear state-space 

odel to nonlinear process data to avoid identified model ill- 

onditioning (stiffness) in the construction of nonlinear ODE mod- 

ls. To control a two-time-scale system, a composite control sys- 

em using multi-rate sampling was proposed in Chen et al. (2011) , 

here a “fast” feedback controller was designed to stabilize the 

ast dynamics subsystem, and a model predictive controller (MPC) 

as developed to stabilize the slow dynamic and optimize closed- 

oop performance. Additionally, in Ellis et al. (2013) , a composite 
∗ Corresponding author. 
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ontroller which consisted of a Lyapunov-based MPC for the fast 

ubsystem, and a Lyapunov-based Economic MPC for the slow sub- 

ystem, was developed to operate the system in a time-varying 

ashion in order to improve process economics while achieving 

esired closed-loop stability properties. In all the above efforts, 

n explicit nonlinear process model, typically obtained from first- 

rinciples, was assumed to be available. 

Model predictive control (MPC) is an optimization-based pro- 

ess control scheme that can optimize process performance and 

ccount for state and control input constraints. Since the MPC 

ptimization problem relies on a process model for predicting 

he future state evolution, the performance of MPC relies heav- 

ly on its model quality. In recent years, machine learning tech- 

iques have been applied to model chemical processes from data 

hen first-principle models are unavailable. For example, in Wu 

t al. (2019a,b) , recurrent neural networks were used to build the 

ata-driven model for a general class of nonlinear processes, and 

ere then incorporated in Lyapunov-based MPC to ensure desired 

losed-loop stability and performance. In Abdullah et al. (2021) , 

educed-order data-driven models were developed for nonlinear 

wo-time-scale systems using nonlinear principal component anal- 

sis and sparse identification methods. The simultaneous design 

nd control of nonlinear dynamical systems via the use of robust 

https://doi.org/10.1016/j.compchemeng.2021.107411
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107411&domain=pdf
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.compchemeng.2021.107411


F. Abdullah, Z. Wu and P.D. Christofides Computers and Chemical Engineering 153 (2021) 107411 

t

i

S

i

s

c

p

t

h

a

e

m

e

m

i

a

r

n

t

u

s

r

a

t

A

w

i

s

w

H

c

a

m

t

p

i

d

f

i

d

c

t

f

t

i

S

w

s

b  

c

i

m

2

2

u  

s  

n  

o

t  

i

c  

t  

w

t

2

s

g

x

ε

w  

r  

v  

1

s

v  

v  

a

s

b

s

s  

E

x

0

R

p

m

p

s  

i

d

A

z

w  

R

w

m

a

r

x

F

c  

r

t

W

r

t

x  

w

t

ools based on Lyapunov theory has been investigated generally 

n Ricardez Sandoval et al. (2008) ; Sanchez-Sanchez and Ricardez- 

andoval (2013) and also under uncertainty in the context of MPC 

n Ricardez-Sandoval et al. (2009) . 

In the field of nonlinear dynamical modeling, the technique of 

parse identification developed in Brunton et al. (2016b) has suc- 

essfully been applied to a diverse array of nonlinear regression 

roblems, including chaotic systems and nonlinear partial differen- 

ial equations. However, its application to two-time-scale systems 

as only recently been investigated. In Champion et al. (2019) , the 

uthors extended the sparse identification procedure to the discov- 

ry of two-time-scale systems when full or even partial measure- 

ents of the variables are available under the assumption of lin- 

ar coupling across the time-scales. In particular, when full state 

easurements were available, it was shown that, although sparse 

dentification could correctly identify uni-time-scale systems with 

s little data as 5% of a period, for two-time-scale systems, the data 

equirement increased linearly with the ratio of slow to fast dy- 

amics under naive uniform sampling. This was due to the fast 

rajectories requiring a smaller sampling period. In fact, even in 

ni-time-scale systems, when the aforementioned 5% of data was 

ufficient to rebuild the system, the data had to be captured at the 

elatively fast segments of the period at a very high sampling rate, 

s the information contained in the faster regions was much more 

han the information captured in the slower regions of the period. 

n alternative to overcome the linear increase in data requirement 

ith diverging time-scale-multiplicities was proposed and devised 

n Champion et al. (2019) known as burst sampling, which allowed 

parse identification to identify both the slow and fast subsystems 

ith a significantly smaller fragment of the data over one period. 

owever, since the present work aims to utilize sparse identifi- 

ation for the purpose of control, identifying the fast subsystem 

s a stiff differential equation via a more complicated composite 

ultirate sampling is not advantageous. Instead, sparse identifica- 

ion is only used to identify the slow subsystem, which is incor- 

orated into the controller. The application of sparse identification 

n closed-loop control is an area that has not been investigated in- 

epth yet. 

Inspired by these results, in this work, we use time-series data 

rom the slow process variables (subset of process state variables 

n some coordinate system) to construct well-conditioned data- 

riven models for a general class of two-time-scale nonlinear pro- 

esses, and evaluate their performance in the context of MPC of 

wo-time-scale processes. The rest of this article is organized as 

ollows: in Section 2 , the notations, and the class of nonlinear two- 

ime-scale systems considered are given. In Section 3 , the sparse 

dentification (SI) model for the slow subsystem is introduced. In 

ection 4 , the formulation of LMPC using SI models is presented, 

hile the closed-loop singularly perturbed system stability analysis 

howing the boundedness of closed-loop states in a small neigh- 

orhood around the origin is given in Section 5 . In Section 6 , a

hemical reactor example which exhibits two-time-scale behav- 

or is simulated to demonstrate the effectiveness of the proposed 

odeling and control approaches. 

. Preliminaries 

.1. Notation 

The notation | ·| denotes the Euclidean norm of a vector. x � is 

sed to denote the transpose of x . The notation L f V (x ) denotes the

tandard Lie derivative L f V (x ) := 

∂V (x ) 
∂x 

f (x ) . Set subtraction is de-

oted by “\ ”, i.e. , A \ B := { x ∈ R 

n | x ∈ A, x / ∈ B } . The function f (·) is
f class C 1 if it is continuously differentiable in its domain. A con- 

inuous function α : [0 , a ) → [0 , ∞ ) is said to belong to class K if

t is strictly increasing and is zero only when evaluated at zero. A 
2 
ontinuous function β : [0 , a ) × [0 , ∞ ) → [0 , ∞ ) is said to belong

o class KL if, for each fixed t , the function β(·, t) is of class K,

hile, for each fixed s , the function β(s, ·) is decreasing and tends 

o zero as s → ∞ . 

.2. Class of systems 

The general class of two-time-scale continuous-time nonlinear 

ystems with m states considered in this work has the following 

eneral form: 

˙ 
 = f 1 (x, z, u, ε) (1a) 

˙ z = f 2 (x, z, ε) (1b) 

here x ∈ R 

n and z ∈ R 

p are the slow and fast state vectors,

espectively, with n + p = m . u ∈ R 

q is the manipulated input

ector with constraints defined by u ∈ U := { u min 
i 

≤ u i ≤ u max 
i 

, i =
 , . . . , q } ⊂ R 

q . ε is a small positive parameter representing the 

peed ratio of the slow to the fast dynamics of the system. The 

ector functions f 1 (x, z, u, ε) and f 2 (x, z, ε) are sufficiently smooth

ector functions in R 

n and R 

p , respectively. In the system of Eq. (1) ,

fter a short transient period, the fast states, z, converge to a 

low manifold (provided such an isolated manifold exists) and can 

e expressed by a nonlinear algebraic expression in x , the slow 

tates. Therefore, following the standard two-time scale decompo- 

ition procedure in Kokotovi ́c et al. (1986) , we can set ε = 0 in

q. (1) and obtain: 

˙ 
 = f 1 (x, z, u, 0) (2a) 

 = f 2 (x, z, 0) (2b) 

emark 1. The class of singularly perturbed system of Eq. 1 are 

resented for analysis purposes, and will not be used to derive 

odels that will be used in the controllers. Furthermore, to sim- 

lify the development, we focus on two-time-scale processes with 

table fast dynamic, and for this reason, we take f 2 (x, z, ε) to be

ndependent of u . However, our analysis can be readily adapted to 

eal with systems in which f 2 (·) is a function of u . 

ssumption 1. Eq. (2b) possesses a unique root given by 

 s = 

ˆ f 2 (x ) (3) 

here z s is a quasi-steady state for the fast state z, and 

ˆ f 2 : R 

n →
 

p and its derivative are locally Lipschitz continuous. 

Assumption 1 is standard in the singular perturbation frame- 

ork as it ensures that the system has an isolated equilibrium 

anifold for the fast dynamics on which z can be written as an 

lgebraic function of x . Substituting Eq. (3) into Eq. (2a) gives the 

educed slow subsystem, 

˙ 
 = f 1 (x, ˆ f 2 (x ) , u, 0) (4) 

or the fast state, we define a fast time scale τ = t/ε and a new 

oordinate y := z − ˆ f 2 (x ) . Rewriting Eq. (1b) as a derivative with

espect to τ rather than t and setting ε = 0 yields the fast subsys- 

em, 

d y 

d τ
= f 2 (x, ˆ f 2 (x ) + y, 0) (5) 

e assume the input appears linearly in Eq. (4) and, therefore, 

ewrite the slow subsystem of Eq. (4) in the following form 

hroughout the manuscript: 

˙ 
 = F (x, u ) := f (x ) + g(x ) u, x (t 0 ) = x 0 (6)

here f (·) and g(·) are sufficiently smooth vector and matrix func- 

ions of dimensions n × 1 and n × q , respectively. Without loss of 
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enerality, throughout the manuscript, the initial time t 0 is taken 

o be zero ( t 0 = 0 ), and it is assumed that f (0) = 0 , and thus,

he origin is a steady-state of the nonlinear system of Eq. (6) , i.e. ,

x ∗s , u ∗s ) = (0 , 0) , where x ∗s and u ∗s represent the steady-state slow

tate and input vectors, respectively. 

ssumption 2. The origin of the closed-loop fast subsystem of 

q. (5) is globally asymptotically stable, uniformly in x in the sense 

hat there exists a function βy of class KL such that for any y (0) ∈
 

p , 

 y (t) | ≤ βy 

(
| y (0) | , t 

ε

)
∀ t ≥ 0 (7) 

.3. Stabilizability assumption via control Lyapunov function 

With respect to the stabilizability requirement for the slow dy- 

amics, it is assumed that there exists a stabilizing control law 

 = �(x ) ∈ U ( e.g. , the universal Sontag control law ( Lin and Son-

ag, 1991 )) such that the origin of the nominal slow subsystem of 

q. (6) is rendered asymptotically stable in an open neighborhood 

 around the origin in the sense that there exist a C 1 control Lya-

unov function, V (x ) , and four functions, a 1 , a 2 , a 3 , a 4 of class K
uch that ∀ x ∈ R 

n : 

 1 (| x | ) ≤ V (x ) ≤ a 2 (| x | ) , (8a)

˙ 
 (x ) = 

∂V (x ) 

∂x 
F (x, �(x )) ≤ −a 3 (| x | ) , (8b)

∂V (x ) 

∂x 

∣∣∣∣ ≤ a 4 (| x | ) (8c) 

The Sontag law, a candidate controller for �(x ) , is given in the 

ollowing form: 

 i (x ) = 

⎧ ⎨ 

⎩ 

− p + 

√ 

p 2 + q 4 

q � q 
q if q � = 0 

0 if q = 0 

(9a) 

�i (x ) = 

{ 

u 

min 
i 

if ϕ i (x ) < u 

min 
i 

ϕ i (x ) if u 

min 
i 

≤ ϕ i (x ) ≤ u 

max 
i 

u 

max 
i 

if ϕ i (x ) > u 

max 
i 

(9b) 

here p denotes L f V (x ) and q denotes L g i V (x ) , f = [ f 1 · · · f n ] 
� ,

 i = [ g 1 i , . . . , g ni ] 
� , i = 1 , 2 , . . . , q . ϕ i (x ) of Eq. (9a) represents the i th 

omponent of the control law ϕ(x ) . �i (x ) of Eq. (9) represents the

 th component of the saturated control law �(x ) that accounts for 

he input constraint u ∈ U . 

First, a region where the conditions of Eq. (8) are satisfied 

nder the controller u = �(x ) ∈ U as φu = { x ∈ R 

n | ˙ V (x ) = L f V +
 g V u < −kV (x ) , u = �(x ) ∈ U} ∪ { 0 } , where k > 0 , is characterized.

hen the closed-loop stability region 
ρ for the nonlinear slow 

ubsystem of Eq. (6) is defined as a level set of the Lyapunov func-

ion, which is inside φu : 
ρ := { x ∈ φu | V (x ) ≤ ρ} , where ρ > 0

nd 
ρ ⊂ φu . Furthermore, the Lipschitz property of F (x, u ) com- 

ined with the bound on u implies that there exist positive con- 

tants M, L, L ′ such that the following inequalities hold ∀ x, x ′ ∈ D ,

 u ∈ U: 

 F (x, u ) | ≤ M (10a) 

 F (x, u ) − F (x ′ , u ) | ≤ L | x − x ′ | (10b) 

∂V (x ) 
F (x, u ) − ∂V (x ′ ) 

F (x ′ , u ) 

∣∣∣∣ ≤ L ′ | x − x ′ | (10c) 

∂x ∂x f

3 
. Sparse identification model for the slow subsystem 

.1. Sparse identification 

Sparse identification is a nonlinear system identification 

ethod used to model dynamical systems. The application of spar- 

ity methods to dynamic system modeling can be found in the re- 

ent literature ( Wang et al., 2011; Schaeffer et al., 2013; Ozolinš

t al., 2013; Mackey et al., 2014; Brunton et al., 2014; Proctor et al., 

014; Bai et al., 2015; Arnaldo et al., 2015 ). Sparse identification is 

sed to approximately reconstruct a continuous-time ODE of the 

orm, 

˙ ˆ 
 = 

ˆ f ( ̂  x ) (11) 

sing only numerical data from the system without requiring 

nowledge of the underlying physics of the process. 

Sparse identification exploits the sparsity of the right-hand side 

f Eq. (11) since ˆ f ( ̂  x ) contains very few nonzero terms in practi- 

al systems, rendering it sparse in a higher-dimensional space of 

andidate nonlinear functions. The nonzero terms can then be cal- 

ulated using scalable convex methods. To carry out sparse identi- 

cation, the open-loop process is simulated over a wide range of 

nitial conditions. From the resulting data, the slow state measure- 

ents are sampled with a sufficiently small sampling period and 

oncatenated into a data matrix, X , of the form, 

 = 

[
x 1 x 2 · · · x n 

]
(12) 

here each x i is a column of time-series data for state i for i =
 , . . . , n . The time-derivative of X , denoted by ˙ X , is estimated in

his work using second-order central finite differences since the 

oise-free case is considered and since the sampling period is suf- 

ciently small. Subsequently, a function library, �(X ) , is created 

onsisting of r nonlinear functions of the columns of X . The r func- 

ions represent possible terms for f , the right-hand side of Eq. (6) . 

he goal of the sparse identification algorithm is to identify the ac- 

ive terms in this library by taking advantage of sparsity. The aug- 

ented library, �(X ) , considered in this work is of the form, 

(X ) = 

[ | | | | | | | | 
1 X X 

P 2 X 

P 3 sin X cos X tan X tanh X 

| | | | | | | | 

] 

(13) 

here, for example, X P 2 denotes all quadratic nonlinearities, given 

y 

 

P 2 = 

[
x 2 1 x 1 x 2 · · · x 2 2 x 2 x 3 · · · x 2 n 

]
(14) 

he above choice of candidate nonlinear functions was mo- 

ivated by the fact that polynomials and trigonometric func- 

ions form a basis for many practical systems as mentioned in 

runton et al. (2016b) . 

emark 2. As this is a novel method, only the noise-free case is 

onsidered in this work. However, if the method is applied to noisy 

ata, the time-derivative ˙ X cannot be computed using regular finite 

ifference methods as such methods will amplify the noise present 

nd not yield meaningful values. Instead, the derivative approxima- 

ion will require the application of more advanced techniques such 

s the total-variation regularized derivative ( Chartrand, 2011 ) or 

moothed finite difference, where the noisy data is first smoothed 

ut using a filter (such as the Savitzky-Golay filter) before calculat- 

ng the finite differences ( Savitzky and Golay, 1964 ). 

In sparse identification, for each of the n slow states, we deter- 

ine the r coefficients that pre-multiply the r candidate nonlinear 

unctions considered in the function library, �(X ) . Denoting each 
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orresponding coefficient vector by ξ , the n coefficient vectors can 

e compactly written in matrix form as 

= 

[
ξ1 ξ2 · · · ξn 

]
(15) 

here each ξi ∈ R 

r is a sparse column vector of coefficients identi- 

ying the nonzero terms in the dynamic model of the correspond- 

ng slow state, ˙ x i = f i (x ) . Therefore, to determine �, we need to

olve the following equation: 

˙ 
 = �(X )� (16) 

In brief, Eq. (16) can be solved using a straightforward least- 

quares routine after neglecting and zeroing all coefficients in �

hat are smaller than a threshold, λ. The least-squares problem as- 

ociated with Eq. (16) can most generally be formulated as follows: 

= arg min 

�′ 

∥∥ ˙ X − �(X )�′ ∥∥
2 

+ λ
∥∥�′ ∥∥

1 
(17) 

here �′ is a notational substitute for �, and the second term en- 

orces sparsity of �. Practically, we first define the matrix �′′ to be 

he matrix �′ with all coefficients with magnitudes below λ set to 

ero, which is the practical implementation of the L 1 regularization 

erm in Eq. (17) . Subsequently, we solve the following least-squares 

roblem 

= arg min 

�′′ 

∥∥ ˙ X − �(X )�′′ ∥∥
2 

(18) 

n each iteration using MATLAB’s built-in linear solver called with 

 \ b where A = 

˙ X and b = �(X ) until the big/nonzero coefficients 

larger than λ in each iteration) converge. 

To find the Pareto optimal value of the parameter λ that bal- 

nces model complexity with accuracy, methods such as cross- 

alidation from machine learning may be utilized ( Brunton et al., 

016b ). In this work, a broad sweep of λ is first used to identify the

rder of magnitude above which the model has too few nonzero 

erms to capture the dynamics, resulting in large error values. Sub- 

equently, a narrower sweep in the relevant order of magnitude is 

sed to refine this value of λ. Further refinement was not found to 

e necessary as a wide range of values from the first refinement 

ielded identical and optimal models. Once � is found, the overall 

odel is written as the continuous-time differential equation, 

˙ 
 = �� (�(x � )) � 

here �(x � ) is not a data matrix but a column vector of sym-

olic functions of elements of x corresponding to the functions 

onsidered in the function library. It is noted that the sampling 

eriod of the discrete-time data used to carry out sparse iden- 

ification affects the accuracy of the finite-difference estimate of 

he time-derivative, which significantly affects the accuracy of the 

ontinuous-time model identified by sparse identification. 

.2. Identifying a model for the slow subsystem 

In this work, sparse identification (SI) is used to reconstruct the 

low dynamic model for the slow states. The following slow dy- 

amic model is developed to approximate the slow subsystem of 

q. (5) . 

˙ ˆ 
 = F si ( ̂  x , u ) := 

ˆ f ( ̂  x ) + 

ˆ g ( ̂  x ) u, ˆ x (t 0 ) = x 0 (19)

here ˆ f (·) and ˆ g (·) are sufficiently smooth vector and matrix func- 

ions of dimensions n × 1 and n × q that approximately capture 

he functions f (·) and g(·) , respectively. Specifically, we first con- 

truct the following slow dynamic model using the data set gen- 

rated with various initial states and u = 0 ( i.e. , steady-state input 

alue): 

˙ ˆ 
 = 

ˆ f 
(

ˆ x 
)

4 
ubsequently, we use the data set generated with various inputs 

 ∈ U and initial states to approximate the function g(x ) associated 

ith the input u in the right-hand side of Eq. (6) as ˆ g ( ̂  x ) = 

˙ ˆ x − ˆ f ( ̂ x ) 
u 

here u � = 0 . Finally, the model performance is evaluated using un- 

een data in the testing data set, and is shown to achieve a good 

epresentation of ˆ f (·) and ˆ g (·) with a desired accuracy. 

emark 3. An alternative method to find ˆ g (·) is to use a more ad- 

anced sparse identification algorithm that expands the function 

ibrary �(X ) to include input terms ( i.e., �(X, u ) ) ( Brunton et al.,

016a ). However, due to the presence of feedback control in this 

ork, this method would require further development before im- 

lementation, and the method described above was considered 

ufficiently accurate. 

. Lyapunov-based MPC using SI models 

This section proposes the design of a Lyapunov-based MPC 

LMPC) that incorporates the SI model to predict future slow 

tates, followed by a stability analysis of the closed-loop system 

f Eq. (6) in the succeeding section. Specifically, the stability of 

he nonlinear system of Eq. (6) under a Lyapunov-based controller 

ssociated with the SI model of Eq. (19) is first analyzed. Subse- 

uently, the SI model of Eq. (19) is incorporated into the design 

f the LMPC under sample-and-hold implementation of the con- 

rol action to drive the state of the closed-loop system to a small 

eighborhood around the origin. 

.1. Lyapunov-based control using SI models 

For the slow dynamics, it is assumed that there exists a stabi- 

izing control law u = �si (x ) ∈ U such that the origin of the SI slow

ubsystem of Eq. (19) is rendered asymptotically stable in an open 

eighborhood 

ˆ φu around the origin in the sense that there exist a 

 

1 control Lyapunov function 

ˆ V (x ) and four functions, ˆ a 1 , ̂  a 2 , ̂  a 3 , ̂  a 4 
f class K such that ∀ x ∈ R 

n : 

ˆ 
 1 (| x | ) ≤ ˆ V (x ) ≤ ˆ a 2 (| x | ) , (20a) 

˙ ˆ 
 (x ) = 

∂ ̂  V (x ) 

∂x 
F si (x, �si (x )) ≤ − ˆ a 3 (| x | ) , (20b)

∂ ̂  V (x ) 

∂x 

∣∣∣∣ ≤ ˆ a 4 (| x | ) (20c) 

We first characterize the region 

ˆ φu ⊂ R 

n in which the condi- 

ions of Eq. (20) are satisfied under the controller u = �si (x ) ∈ U .

herefore, starting from inside ˆ φu , the sparse identified slow sub- 

ystem of Eq. (19) can be rendered asymptotically stable under the 

ontroller u = �si (x ) ∈ U . The closed-loop stability region of the 

parse identified slow subsystem of Eq. (19) is defined as a level 

et of the Lyapunov function inside ˆ φu : 
 ˆ ρ := { x ∈ 

ˆ φu | ˆ V (x ) ≤
ˆ } , ˆ ρ > 0 . The assumptions of Eq. (8) and Eq. (20) are essentially

he stabilizability requirements of the first-principles slow model 

f Eq. (6) and the sparse identified slow model of Eq. (19) , respec-

ively. 

Since the dataset for developing the sparse identified slow 

odel of Eq. (6) is obtained from open-loop simulations for x ∈ 
ρ

nd u ∈ U , we have 
 ˆ ρ ⊆ 
ρ . Additionally, there exist positive con- 

tants M si and L si such that the following inequalities hold for all 

, x ′ ∈ 
 ˆ ρ and u ∈ U: 

| F si (x, u ) | ≤ M si (21a) 

∂ ̂  V (x ) 

∂x 
F si (x, u ) − ∂ ̂  V (x ′ ) 

∂x 
F si (x ′ , u ) 

∣∣∣∣ ≤ L si | x − x ′ | (21b) 
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The following proposition demonstrates that the feedback con- 

roller u = �si (x ) ∈ U is able to stabilize the nominal slow subsys- 

em of Eq. (6) in the presence of model mismatch between the 

ominal subsystem of Eq. (6) and the sparse identified slow model 

f Eq. (19) , provided that the modeling error is sufficiently small. 

roposition 1 (c.f. proposition 2 in Wu et al. (2019a) ) . Under 

he assumption that the closed-loop sparse identified slow subsys- 

em of Eq. (19) is rendered asymptotically stable under the controller 

 = �si (x ) ∈ U ∀ x ∈ 
 ˆ ρ , if there exists a positive real number νm 

<

ˆ  3 (| x | ) / ̂  a 4 (| x | ) that constrains the modeling error | ν| = | F (x, u ) −
 si (x, u ) | ≤ νm 

, ∀ u ∈ U and ∀ x ∈ 
 ˆ ρ , then the nominal closed-loop

ystem of Eq. (6) under u = �si (x ) ∈ U is also asymptotically stable

 x ∈ 
 ˆ ρ . 

roof. To prove that the nominal slow subsystem of Eq. (6) can be 

endered asymptotically stable ∀ x ∈ 
 ˆ ρ under the controller based 

n the sparse identified model of Eq. (19) , we show that ˙ ˆ V based

n the state of the nominal slow subsystem of Eq. (6) can still be

endered negative under u = �si (x ) ∈ U , ∀ x ∈ 
 ˆ ρ . 

Based on Eq. (20b) and Eq. (20c) , the time-derivative of ˆ V is 

omputed as follows: 

˙ ˆ 
 = 

∂ ̂ V (x ) 
∂x 

F (x, �si (x )) 

= 

∂ ̂ V (x ) 
∂x 

(
F si (x, �si (x )) + F (x, �si (x )) − F si (x, �si (x )) 

)
≤ − ˆ a 3 (| x | ) + 

ˆ a 4 (| x | ) 
(
F (x, �si (x )) − F si (x, �si (x )) 

)
≤ − ˆ a 3 (| x | ) + 

ˆ a 4 (| x | ) νm 

(22) 

f νm 

is chosen to satisfy νm 

< ˆ a 3 (| x | ) / ̂  a 4 (| x | ) , then it holds that
˙ ˆ 
 ≤ − ˜ a 3 (| x | ) ≤ 0 where ˜ a 3 (| x | ) = − ˆ a 3 (| x | ) + ˆ a 4 (| x | ) νm 

> 0 . This is

ossible because ˆ a 3 and ˆ a 4 are known functions. For example, if 

e choose ˆ a 3 = a 3 | x | and ˆ a 4 = a 4 | x | , then νm 

= a 3 /a 4 . As a result,

he closed-loop state of the nominal slow subsystem of Eq. (6) con- 

erges to the origin under u = �si (x ) ∈ U for all x 0 ∈ 
 ˆ ρ . �

After incorporating the SI model of Eq. (19) in the LMPC design, 

he control actions of the LMPC will be implemented in a sample- 

nd-hold fashion. Hence, the next two propositions demonstrate 

he sample-and-hold properties of the Lyapunov-based controller 

 = �si (x ) . In particular, the following proposition derives an up- 

er bound for the error between the slow states calculated by the 

ominal slow subsystem of Eq. (6) and the slow states predicted 

y the SI model of Eq. (19) . 

roposition 2 (c.f. proposition 3 in Wu et al. (2019a) ) . For the non-

inear system ˙ x = F (x, u ) of Eq. (6) and the SI model ˙ ˆ x = F si ( ̂  x , u ) of

q. (19) with the same initial condition x 0 = ˆ x 0 ∈ 
 ˆ ρ , there exist a

lass K function f w 

(·) and a positive constant κ such that the follow- 

ng inequalities hold ∀ x, ̂  x ∈ 
 ˆ ρ : 

 x (t) − ˆ x (t) | ≤ f w 

(t) := 

νm 

L 
(e Lt − 1) (23a) 

ˆ 
 (x ) ≤ ˆ V ( ̂  x ) + 

ˆ a 4 
(

ˆ a −1 
1 ( ̂  ρ) 

)| x − ˆ x | + κ| x − ˆ x | 2 (23b) 

roof. Denoting the error vector between the solutions of the sys- 

em ˙ x = F (x, u ) and the SI model ˙ ˆ x = F si ( ̂  x , u ) by e (t) = x (t) − ˆ x (t) ,

he time-derivative of e (t) is obtained as follows: 

 ̇

 e (t) | = | F (x, u ) − F si ( ̂  x , u ) | 
≤ | F (x, u ) − F ( ̂  x , u ) | + | F ( ̂  x , u ) − F si ( ̂  x , u ) | (24) 

rom Eq. (10b) , ∀ x, ̂  x ∈ 
 ˆ ρ , it is derived that 

 F (x, u ) − F ( ̂  x , u ) | ≤ L | x (t) − ˆ x (t) | (25)

ince the second term | F ( ̂  x , u ) − F si ( ̂  x , u ) | in Eq. (24) represents the

odeling error, it is bounded by | ν| ≤ νm 

for all ˆ x ∈ 
 ˆ ρ . Hence, 
5 
ased on Eq. (25) and the bound on the modeling error, ˙ e (t) is 

ounded as follows: 

 ̇

 e (t) | ≤ L | x (t) − ˆ x (t) | + νm 

≤ L | e (t) | + νm 

(26) 

ased on the zero initial condition ( i.e. , e (0) = 0 ), the norm of the

rror vector can be bounded as follows ∀ x (t) , ̂  x (t) ∈ 
 ˆ ρ : 

 e (t) | = | x (t) − ˆ x (t) | ≤ νm 

L 
(e Lt − 1) (27) 

ubsequently, to derive Eq. (23b) for all x, ̂  x ∈ 
 ˆ ρ , we derive the 

aylor series expansion of ˆ V (x ) around ˆ x as follows: 

ˆ 
 (x ) ≤ ˆ V ( ̂  x ) + 

∂ ̂  V ( ̂  x ) 

∂x 
| x − ˆ x | + κ| x − ˆ x | 2 (28) 

here κ is a positive real number. Using Eq. (20a) and Eq. (20c) , it

ollows that 

ˆ 
 (x ) ≤ ˆ V ( ̂  x ) + 

ˆ a 4 
(

ˆ a −1 
1 ( ̂  ρ) 

)| x − ˆ x | + κ| x − ˆ x | 2 (29)

his completes the proof of Proposition 2 . �

The final proposition below proves that the closed-loop state of 

he nominal slow subsystem of Eq. (6) remains bounded in 
 ˆ ρ for 

ll times, and can be ultimately bounded in a small subset 
ρmin 

ontaining the origin under the sample-and-hold implementation 

f the Lyapunov-based controller u = �si (x ) ∈ U . 

roposition 3. Consider the nominal slow subsystem of Eq. (6) un- 

er the controller u = �si ( ̂  x ) ∈ U that is designed to stabilize the SI

ystem of Eq. (19) and meets the conditions of Eq. (20) . The controller

s implemented in a sample-and-hold fashion, i.e., u (t) = �si ( ̂  x (t k )) , 

 t ∈ [ t k , t k +1 ) , where t k +1 := t k + �. Let εs , εw 

> 0 , � > 0 and ˆ ρ >

min > ρsi > ρs satisfy 

− ˆ a 3 
(

ˆ a −1 
2 (ρs ) 

)
+ L si M si � ≤ −εs (30a) 

− ˜ a 3 
(

ˆ a −1 
2 (ρs ) 

)
+ L ′ M� ≤ −εw 

(30b) 

and 

si := max { ̂  V ( ̂  x (t + �)) | ˆ x (t) ∈ 
ρs 
, u ∈ U} (31a) 

min ≥ ρsi + 

ˆ a 4 
(

ˆ a −1 
1 ( ̂  ρ) 

)
f w 

(�) + κ( f w 

(�)) 2 (31b) 

Then, for any x (t k ) ∈ 
 ˆ ρ\ 
ρs , there exists a class KL function βx 

nd a class K function γ̄ such that the following inequality holds: 

 x (t) | ≤ βx (| x (0) | , t) + γ̄ (ρmin ) (32) 

nd the slow states x (t) of the nominal subsystem of Eq. (6) is 

ounded in 
 ˆ ρ for all times and ultimately bounded in 
ρmin 
. 

roof. Part 1 : Assuming x (t k ) = ˆ x (t k ) ∈ 
 ˆ ρ\ 
ρs , we first show that

ˆ 
 ( ̂  x ) is decreasing under the controller u (t) = �si (x (t k )) ∈ U for

 ∈ [ t k , t k +1 ) , where x (t) and ˆ x (t) denote the solutions of the nom-

nal slow subsystem of Eq. (6) and the SI subsystem of Eq. (19) ,

espectively. The time-derivative of ˆ V ( ̂  x ) along the trajectory ˆ x (t) 

f the SI model of Eq. (19) for t ∈ [ t k , t k +1 ) is computed as follows:

˙ ˆ 
 ( ̂  x (t)) = 

∂ ̂ V ( ̂ x (t)) 
∂ ̂ x 

F si ( ̂  x (t) , �si ( ̂  x (t k ))) 

= 

∂ ̂ V ( ̂ x (t k )) 
∂ ̂ x 

F si ( ̂  x (t k ) , �si ( ̂  x (t k ))) 

+ 

∂ ̂ V ( ̂ x (t)) 
∂ ̂ x 

F si ( ̂  x (t) , �si ( ̂  x (t k ))) 

− ∂ ̂ V ( ̂ x (t k )) 
∂ ̂ x 

F si ( ̂  x (t k ) , �si ( ̂  x (t k ))) 

(33) 

ombining Eq. (20a) and Eq. (20b) , the following inequality is de- 

ived: 

˙ ˆ 
 ( ̂  x (t)) ≤ − ˆ a 3 

(
ˆ a −1 

2 
(ρs ) 

)
+ 

∂ ̂ V ( ̂ x (t)) 
∂ ̂ x 

F si ( ̂  x (t) , �si ( ̂  x (t k ))) 

− ∂ ̂ V ( ̂ x (t k )) F si ( ̂  x (t k ) , �si ( ̂  x (t k ))) 
(34) 
∂ ̂ x 
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sing the Lipschitz condition of Eq. (21) and the fact that ˆ x ∈ 
 ˆ ρ , 

 ∈ U , the upper bound of ˙ ˆ V ( ̂  x (t)) is obtained ∀ t ∈ [ t k , t k +1 ) : 

˙ ˆ 
 ( ̂  x (t)) ≤ − ˆ a 3 

(
ˆ a −1 

2 
(ρs ) 

)
+ L si | ̂  x (t) − ˆ x (t k ) | 

≤ − ˆ a 3 
(

ˆ a −1 
2 

(ρs ) 
)

+ L si M si �
(35) 

ence, if Eq. (30a) is satisfied, the following inequality holds 

 ̂  x (t k ) ∈ 
 ˆ ρ\ 
ρs , ∀ t ∈ [ t k , t k +1 ) : 

˙ ˆ 
 ( ̂  x (t)) ≤ −εs (36) 

ntegrating the above differential equation with respect to time 

ver t ∈ [ t k , t k +1 ) , it is derived that V ( ̂  x (t k +1 )) ≤ V ( ̂  x (t k )) − εs �. We

ave shown thus far that for all ˆ x (t k ) ∈ 
 ˆ ρ\ 
ρs , the closed-loop

tate of the SI slow subsystem of Eq. (19) is bounded inside the 

losed-loop stability region 
 ˆ ρ for all times and moves towards 

he origin under the controller u = �si ( ̂  x ) ∈ U when implemented 

n a sample-and-hold fashion. 

We note, however, that Eq. (36) may fail to hold when x (t k ) =
ˆ  (t k ) ∈ 
ρs , which would imply that the state may exit 
ρs within 

ne sampling period. Hence, we design another region 
ρsi 
accord- 

ng to Eq. (31a) , which ensures that the closed-loop state ˆ x (t) of 

he SI model does not leave 
ρsi 
for all t ∈ [ t k , t k +1 ) , u ∈ U and

ˆ  (t k ) ∈ 
ρs within one sampling period. If the state ˆ x (t k +1 ) leaves 

ρs , Eq. (36) is satisfied again at t = t k +1 , reactivating the con-

roller u = �si (x (t k +1 )) and driving the state towards 
ρs over the 

ext sampling period. As a result, it is shown that the state con- 

erges to 
ρsi 
for the closed-loop SI subsystem of Eq. (19) for all 

ˆ  0 ∈ 
 ˆ ρ . In Part 2, we show that the closed-loop state of the nom- 

nal slow subsystem of Eq. (6) can also be bounded in 
 ˆ ρ for all 

imes and ultimately bounded in a small neighborhood around the 

rigin under the sample-and-hold implementation of the controller 

 = �si (x ) ∈ U . 

Part 2 : Repeating the analysis performed for the SI subsystem 

f Eq. (19) , we first assume x (t k ) = ˆ x (t k ) ∈ 
 ˆ ρ\ 
ρs and compute

he time-derivative of ˆ V (x ) for the nominal slow subsystem of 

q. (6) ( i.e. , ˙ x = F (x, u ) ) as follows: 

˙ ˆ 
 (x (t)) = 

∂ ̂ V (x (t)) 
∂x 

F (x (t) , �si (x (t k ))) 

= 

∂ ̂ V (x (t k )) 
∂x 

F (x (t k ) , �si (x (t k ))) 

+ 

∂ ̂ V (x (t)) 
∂x 

F (x (t) , �si (x (t k ))) 

− ∂ ̂ V (x (t k )) 
∂x 

F (x (t k ) , �si (x (t k ))) 

(37) 

rom Eq. (22) , 
∂ ̂ V (x (t k )) 

∂x 
F (x (t k ) , �si (x (t k ))) ≤ − ˜ a 3 

(
x (t k ) 

)
holds

or all x ∈ 
 ˆ ρ\ 
ρs where ˜ a 3 (·) was defined at the end 

f Proposition 1 . Using Eq. (8a) and the Lipschitz defini- 

ion in Eq. (10) , the following inequality is obtained for 
˙ ˆ 
 (x (t)) , ∀ t ∈ [ t k , t k +1 ) and ∀ x (t k ) ∈ 
 ˆ ρ\ 
ρs : 

˙ ˆ 
 (x (t)) ≤ − ˜ a 3 

(
ˆ a −1 

2 
(ρs ) 

)
+ 

∂ ̂ V (x (t)) 
∂x 

F (x (t) , �si (x (t k ))) 

− ∂ ̂ V (x (t k )) 
∂x 

F (x (t k ) , �si (x (t k ))) 

≤ − ˜ a 3 
(

ˆ a −1 
2 

(ρs ) 
)

+ L 
′ | x (t) − x (t k ) | 

≤ − ˜ a 3 
(

ˆ a −1 
2 

(ρs ) 
)

+ L 
′ 
M�

(38) 

onsequently, if Eq. (30b) is satisfied, the following inequality 

olds ∀ x (t k ) ∈ 
 ˆ ρ\ 
ρs , ∀ t ∈ [ t k , t k +1 ) : 

˙ ˆ 
 (x (t)) ≤ −εw 

(39) 

ntegrating the above differential equation with respect to time 

etween any two points in [ t k , t k +1 ) , it is derived for all x (t k ) ∈
ˆ ρ\ 
ρs : 

ˆ 
 (x (t k +1 )) ≤ V (x (t k )) − εw 

� (40) 

ˆ 
 (x (t)) ≤ ˆ V (x (t k )) , ∀ t ∈ [ t k , t k +1 ) (41) 
6 
herefore, the state of the closed-loop system of Eq. (6) remains 

n 
 ˆ ρ for all times. Furthermore, it follows that the controller 

 = �si (x ) is still able to drive the state of the nominal slow sub-

ystem of Eq. (6) towards the origin within every sampling period. 

oreover, if x (t k ) ∈ 
ρs , it was already shown in Part 1 that the

tate of the SI model of Eq. (19) is maintained in 
ρsi 
for one sam-

ling period. Considering the bounded modeling error between the 

tate of the SI model of Eq. (19) and the state of the nominal slow

ubsystem of Eq. (6) given by Eq. (30a) , there exists a compact set 

ρmin 
⊃ 
ρsi 

that satisfies Eq. (31b) such that the state of the nom- 

nal slow subsystem of Eq. (6) remains within 
ρmin 
during one 

ampling period if the state of the SI model of Eq. (19) is bounded

n 
ρsi 
. If the state x (t) enters 
ρmin 

\ 
ρs , we have shown that 

q. (41) holds, and thus, the state will be driven towards the ori- 

in again under u = �si (x ) during the next sampling period, ulti- 

ately bounding the closed-loop slow subsystem in 
ρmin 
. There- 

ore, based on the continuity of the Lyapunov function 

ˆ V , there ex- 

st a class KL function βx and a class K function γ̄ such that if 

 0 ∈ 
 ˆ ρ , then x (t) ∈ 
 ˆ ρ , ∀ t ≥ t 0 and 

 x (t) | ≤ βx (| x (0) | , t) + γ̄ (ρmin ) (42) 

�

.2. Lyapunov-based MPC (LMPC) formulation 

The LMPC is based on the Lyapunov-based controller �si (x ) . 

he controller �si (x ) is used to define a stability constraint for 

he LMPC controller. This ensures that the LMPC controller inherits 

he stability and robustness properties of the Lyapunov-based con- 

roller �si (x ) . The LMPC controller is given by the following opti- 

ization problem: 

 = min 

u ∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , u (t)) d t (43a) 

.t. ˙ ˜ x (t) = F si ( ̃  x (t ) , u (t )) (43b) 

 (t) ∈ U, ∀ t ∈ [ t k , t k + N ) (43c) 

˜ 
 (t k ) = x (t k ) (43d) 

˙ ˆ 
 (x (t k ) , u ) ≤ ˙ ˆ V (x (t k ) , �si (x (t k )) , if x (t k ) ∈ 
 ˆ ρ\ 
ρsi 

(43e) 

ˆ 
 ( ̃  x (t)) ≤ ρsi , ∀ t ∈ [ t k , t k + N ) , if x (t k ) ∈ 
ρsi 

(43f) 

here ˜ x denotes the predicted trajectory of the slow states, S(�) 

s the set of piece-wise constant functions with period �, and N

s the number of sampling periods within the prediction horizon. 
˙ ˆ 
 (x, u ) denotes ∂ ̂ V (x ) 

∂x 
(F si (x, u )) . Let u = u ∗(t) , t ∈ [ t k , t k + N ) denote

he optimal input trajectory calculated by the LMPC over the en- 

ire prediction horizon. It is noted that only the first control action 

f the computed sequence, u ∗(t k ) , which corresponds to the first 

ampling period of the prediction horizon, is applied over the first 

ampling period, and the LMPC is resolved at the next sampling 

ime. 

In the optimization problem of Eq. (43) , the objective function 

f Eq. (43a) is equal to the integral of L ( ̃  x (t) , u (t)) over the en-

ire prediction horizon. The constraint of Eq. (43b) is the approx- 

mate slow model of Eq. (19) that is used to predict the slow 

tates of the closed-loop slow subsystem. Eq. (43c) specifies the 

nput constraints to be applied over the entire prediction horizon. 

q. (43d) defines the initial condition ˜ x (t ) of Eq. (43b) , which is
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Fig. 1. A continuous-stirred tank reactor with jacket. 

Fig. 2. Plot of the constant residual term in Eq. (58) as a function of the total sim- 

ulation duration t f used for data generation. 
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Fig. 3. Plot of ˙ ˆ V and −k ̂ V . 

Fig. 4. Comparison of the slow state as computed by the first-principles slow sub- 

system (solid line) of Eq. (52) and predicted by the SI slow subsystem (dashed line) 

of Eq. (59) with u = 0 . 

Fig. 5. State-space trajectories for the CSTR in closed-loop under the LMPC utilizing 

the SI slow model for a range of initial conditions. Each line represents a trajectory 

from an initial condition marked by a colored dot of the corresponding color. The 

black dot is the origin. 
he slow state measurement at t = t k . The first Lyapunov constraint 

f Eq. (43e) guarantees that the closed-loop state moves towards 

he origin if x (t k ) ∈ 
 ˆ ρ\ 
ρsi 
. However, if x (t k ) enters 
ρsi 

, the

tates predicted by the approximate slow model of Eq. (43b) will 

e maintained in 
ρsi 
over the entire prediction horizon. 

. Closed-loop stability analysis 

The closed-loop stability of the singularly perturbed system of 

q. (1) under the LMPC of Eq. (43) is established in the following 

heorem under appropriate conditions. 

heorem 1. Consider the system of Eq. (1) in closed-loop with u ∗

omputed by the LMPC of Eq. (43) based on the Lyapunov-based con- 

roller �si (x ) that satisfies the conditions of Eq. (20) . Let Assumptions 

 and 2 and the conditions of Propositions 1 –3 hold. Then there exist 

unctions βx , βy of class KL , a pair of positive real numbers (δ, d) and

 ε∗ > 0 such that if max {| x (0) | , | y (0) |} ≤ δ and ε ∈ (0 , ε∗] , then

 t ≥ 0 , 

 x (t) | ≤ βx (| x (0) | , t) + γ̄ (ρmin ) + d (44) 

 y (t) | ≤ βy 

(
| y (0) | , t 

ε

)
+ d (45) 
7 
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Fig. 6. State profiles for the CSTR in closed-loop under the LMPC utilizing the SI slow model for a range of initial conditions, each line representing a trajectory from a 

different initial condition. 

Fig. 7. State-space profiles for the CSTR in closed-loop under the LMPC utilizing the 

first-principles model (blue line) and the SI slow model (orange line) and in open- 

loop with u = 0 (black line). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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roof. The closed-loop system takes the following form after sub- 

tituting the optimal control action u ∗ into Eq. (1) . 

˙ 
 = f 1 (x, z, u 

∗, ε) (46a) 

˙ z = f 2 (x, z, ε) (46b) 

By setting ε = 0 , we have 

˙ 
 = f 1 (x, z, u 

∗, 0) (47a) 

 = f 2 (x, z, 0) (47b) 

Since Eq. (47b) has a unique, isolated solution z s = 

ˆ f 2 (x ) , fol-

owing Eq. (4) , Eq. (47) can be written in the following form: 

˙ 
 = f 1 (x, ˆ f 2 (x ) , u 

∗, 0) (48) 

hen x (t k ) ∈ 
 ˆ ρ\ 
ρsi 
, the constraint of Eq. (43e) requires that

he Lyapunov function value decrease at least at the rate un- 

er u = �si (x ) . As a result, the time-derivative of Lyapunov func- 

ion 

˙ V under u = u ∗ is rendered negative. Based on the results in 

roposition 3 , the state of the slow subsystem of Eq. (46a) will ap-

roach the origin and enter 
ρsi 
within finite sampling steps pro- 

ided that the modeling error is sufficiently small. After x (t k ) en- 

ers 
ρ , the constraint of Eq. (43f) maintains the predicted state 

si 

8 
ithin 
ρsi 
afterwards. Since the modeling error and sampling pe- 

iod are sufficiently small, we have shown in Proposition 3 that the 

rue state of Eq. (46a) can be bounded in 
ρmin 
, which is a slightly 

arger set containing 
ρsi 
. Therefore, for any initial state x 0 ∈ 
 ˆ ρ , 

MPC ensures that the state x (t) of the closed-loop slow subsys- 

em of Eq. (46a) is bounded in 
 ˆ ρ for all times, and satisfies the 

ound of Eq. (32) in Proposition 3 . 

Subsequently, by letting τ = 

t 
ε , y = z − ˆ f 2 (x ) and ε = 0 , we ob-

ain the closed-loop fast subsystem: 

d y 

d τ
= f 2 (x, ˆ f 2 (x ) + y, 0) (49) 

Note that the origin of the closed-loop system of Eq. (49) is as- 

umed to be globally asymptotically stable such that Eq. (7) holds 

or any y (0) ∈ R 

p in Assumption 2. Therefore, the closed-loop sys- 

em of Eq. (46) satisfies all the assumptions for Theorem 1 in 

hristofides and Teel (1996) , which implies that there exist class 

L functions βx (·) and βy (·) , positive real numbers (δ, d) , and 

∗ > 0 such that if max {| x (0) | , | y (0) |} ≤ δ and ε ∈ (0 , ε∗] , then, the

low and fast system states are bounded by Eqs. (44) and (45) . �

. Application to a chemical process example 

.1. Process description 

We demonstrate the application of the LMPC of Eq. (43) based 

n the sparse-identified slow subsystem using a chemical process 

xample. We consider a perfectly-mixed, non-isothermal CSTR as 

hown in Fig. 1 . 

A single, endothermic, irreversible reaction of the form, 

 

k → B (50) 

ccurs in the CSTR. The concentration of reactant A in the reac- 

or is denoted by C A . Assuming the vessel has a constant holdup, 

he volume of the liquid in the reactor is represented by V r . The

emperature of the reactor contents is denoted by T r . The feed to 

he reactor contains pure species A with molar concentration C A0 , 

t a flow rate F , and temperature T A0 . Owing to the endothermic

eaction taking place in the reactor, energy must be provided to 

he reactor via a jacket. The heating jacket has a volume V j with 

eat transfer fluid at an inlet temperature of T j0 being added to it 

t a flow rate F j . The reactor contents and the heat transfer fluid 

ave constant densities of ρm 

and ρ j , respectively, and have con- 

tant heat capacities of c p,m 

and c p, j , respectively. �H r denotes the 

nthalpy of the reaction, U represents the heat transfer coefficient, 

nd A r is the heat transfer contact area between the reactor and 

he jacket. The rate constant k in Eq. (50) is assumed to be of the

orm, 

 = k 0 exp 

(−E 

RT r 

)
(51) 

here k 0 , R , and E denote the pre-exponential constant, ideal gas 

onstant, and activation energy of the reaction, respectively. Under 
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Fig. 8. State profiles for the CSTR in closed-loop under the LMPC utilizing the first-principles model (blue line) and the SI slow model (orange line) and in open-loop with 

u = 0 (black line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Input profiles for the CSTR in closed-loop under the LMPC utilizing the first- 

principles model (blue line) and the SI slow model (orange line). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Table 1 

Parameter values for chemical process example. 

V r = 1 . 0m 

3 k 0 = 3 . 36 × 10 6 h −1 

V j = 0 . 08m 

3 E = 8 . 0 × 10 3 kcal kg 
−1 

A r = 6 . 0m 

3 T A0 = 310 . 0K 

U = 10 0 0 . 0 kcal h −1 m 

−2 K −1 T j0 = 357 . 5K 

R = 1 . 987 kcal kmol 
−1 

K −1 ρm = 900 . 0 kg m 

−3 

�H r = 5 . 4 × 10 4 kcal mol 
−1 ρ j = 800 . 0 kg m 

−3 

c p,m = 0 . 231 kcal kg 
−1 

K −1 F r = 3 . 0m 

3 h −1 

c p, j = 0 . 200 kcal kg 
−1 

K −1 F j = 20 . 0m 

3 h −1 

C A0 ,s = 3 . 75 kmol m 

−3 C A ,s = 2 . 54 kmol m 

−3 

T r,s = 274 . 4K T j,s = 303 . 3K 

t

b

e

V

V

V

w

 

d

Fig. 10. Cost function of LMPC for the CSTR in closed-loop under the LMPC utiliz- 

ing the first-principles model (blue line) and the SI slow model (orange line). (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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hese modeling assumptions, the dynamic equations governing the 

ehavior of the reactor are given by the following material and en- 

rgy balances: 

 r 
d C A 
d t 

= F r ( C A0 − C A ) − k 0 e 
−E/RT r C A V r (52) 

 r 
d T r 

d t 
= F r ( T A0 − T r ) + 

( −�H r ) 

ρm 

c p,m 

k 0 e 
−E/RT r C A V r + 

UA r 

ρm 

c p,m 

(
T j − T r 

)
(53) 

 j 

d T j 

d t 
= F j (T j0 − T j ) −

UA r 

ρ j c p, j 

(
T j − T r 

)
(54) 

ith the process parameters’ values given in Table 1 . 

While we may define ε = V r /V j to rewrite Eq. (54) in the stan-

ard singularly perturbed form, in which case both temperatures 
9 
ave fast dynamics relative to the concentration dynamics, this can 

lso be deduced from the data generation outlined in the next sub- 

ection. 

The initial operating point of the CSTR is its steady- 

tate (C A ,s , T r,s , T j,s ) = (2 . 54 kmol m 

−3 , 274 . 4K , 303 . 3 K) and C A0 ,s =
 . 75 kmol m 

−3 . The manipulated input variable is the feed con- 

entration of reactant A, represented by the deviation variable 

C A0 = C A0 − C A0 ,s and bounded as per | �C A0 | ≤ 3 . 5 kmol m 

−3 . Con-

equently, the states and manipulated input of the closed-loop sys- 

em in deviation form are represented by 

 = C A − C A ,s (55) 

nd 

 = �C A0 (56) 

espectively. Hence, the origin of the state-space, given by 

x ∗s , u ∗s ) = (0 , 0) , is the equilibrium point of the system. 

It is desired to apply the SI-based LMPC of Eq. (43) to maintain 

he operation of the CSTR at the equilibrium point (C A ,s , T r,s , T j,s )

y manipulating the feed concentration �C A0 . For the simulation 

f the ODE system of Eqs. (52) to (54) , the explicit Euler method 

s used to numerically integrate the equations with an integra- 

ion time step of h c = 0 . 1 seconds . Since the optimization problem

n the LMPC of Eq. (43) is nonlinear, it is solved using PyIpopt, 

he python interface of the IPOPT software package ( Wächter and 

iegler, 2006 ), with a sampling period of � = 10 seconds . 
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Fig. 11. Iteration time of each MPC step for prediction horizon lengths of N = 16 

(blue line) and N = 17 (orange line) when the LMPC utilizes the first-principles pro- 

cess model, where the black dotted line represents the sampling time � = 10 s. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 12. Iteration time of each MPC step for prediction horizon lengths of N = 23 

(blue line) and N = 24 (orange line) when the LMPC utilizes the sparse-identified 

slow model, where the black dotted line represents the sampling time � = 10 s. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 13. Input profiles for the CSTR in closed-loop under the LMPC utilizing the 

first-principles model with N = 16 (blue line) and the SI slow model with N = 24 

(orange line). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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.2. Data generation and model development 

To design the LMPC of Eq. (43) , the slow subsystem must be 

rst reconstructed as an ODE to be incorporated as the process 

odel. To identify the slow subsystem using data, a range of 10 

ifferent initial conditions are chosen with C A (0) taking values 

etween 0 mol m 

−3 and 9 . 0 mol m 

−3 in intervals of 1 . 0 mol m 

−3 ,

 r (0) taking values between 280 K and 370 K in intervals of 10

, and T j (0) varying between 300 K and 390 K in intervals of 10

. The system of differential equations described by Eqs. (52) to 

54) is numerically integrated for each set of initial conditions from 

he initial time of 0.0 hr to 1.0 hr with a step size of 1 × 10 −6 

r to simulate the experimental/industrial process. The generated 

ata is then sampled with a sampling period larger than the step 

ize to simulate data collection via sensors and measuring instru- 

ents. This sampling is conducted with a sampling period of 0.005 

r since any larger sampling period leads to inaccurate estimates of 

he time-derivative, causing the sparse identification algorithm to 

ail for this system. The sampled data from the 10 runs is finally 
10 
ombined into the data matrix, X . A plot of X and/or the gradient 

f X versus time clearly indicates that both temperature variables, 

 r and T j , are the fast states, while C A is the only slow state in this

ystem. Examples of such plots can be found in Figures. 7 , 8 and

 in the simulation results ( Section 6.3 ). Therefore, we only con- 

truct a model for the concentration C A using sparse identification, 

s it is the slow subsystem. 

The sparse identification algorithm was applied to the concen- 

ration data from the open-loop simulations. Ten iterations were 

ompleted, and the nonzero coefficients were confirmed to have 

onverged within five iterations. The coefficient threshold λ was 

ne-tuned to a value of 2.0 to yield the following slow model, 

d C A 
d t 

= 9 . 93101 − 3 . 85957 C A (57) 

owever, Eq. (57) needed to be converted to deviation variables 

nd the input accounted for. Hence, using Eq. (55) , Eq. (57) was 

ritten as 

d x 

d t 
= 9 . 93101 − 3 . 85957(x + C A ,s ) = 0 . 11901 − 3 . 85957 x (58)

n Eq. (58) , the constant term, 0.11901, was due to numerical inac- 

uracies resulting from modeling via sparse identification and the 

ack of data near the origin of the system in deviation variables 

which corresponds to data near the steady-state of the original 

ystem). The data generation was carried out over a 1-hour simula- 

ion duration, within which the system did not reach very close to 

ts steady-state. However, the simulation length can be increased 

eyond 1 h to increase the amount of data near the steady-state, 

hich would improve model performance near the origin. The 

alue of this constant residual term in Eq. (58) was found to mono- 

onically decrease with increasing simulation length for the data 

eneration step as shown in Fig. 2 . If the data generation is carried 

ut over a simulation length of 20 hours, the value of the resid- 

al term reduces to 0.00562783. The optimal sparse identification 

odel built from data generated over an infinitely long simulation 

ould not contain the constant term. Furthermore, we know that 

he origin is an equilibrium point for the system in deviation vari- 

bles. Therefore, the constant term in Eq. (58) was neglected. Addi- 

ionally, the input term must be present in the closed-loop model. 

he procedure outlined in Section 3.2 was used to calculate ˆ g (x ) , 

hich was approximately between 3 and 4. Comparing this result 

o the first-principles model, where the term corresponding to the 

anipulated input was known to be 3 u , ˆ g (x ) is taken to be equal
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Fig. 14. State profiles for the CSTR in closed-loop under the LMPC utilizing the first-principles model with N = 16 (blue line) and the SI slow model with N = 24 (orange 

line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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o 3. Hence, the sparse-identified slow subsystem was identified as 

d x 

d t 
= −3 . 85957 x + 3 u (59) 

hile the above procedure required partial knowledge of the 

rst-principles model of the process, the stability results of 

ection 5 merely assumed an input-affine model as given in 

q. (19) . Hence, we could alternatively add a manipulated input 

erm of u rather than 3 u to Eq. (59) , and the stability results would

old, while the simulation results would scale accordingly. Further- 

ore, the coefficient associated with u could also be found more 

ccurately using steady-state data for different input sequences 

nd initial conditions. Henceforth, Eq. (59) will be referred to as 

he SI slow subsystem or SI slow model for the CSTR system. 

After the model identification, the Lyapunov functions for the 

ominal slow subsystem and the SI slow subsystem are chosen 

o be identical i.e., V (x ) = 

ˆ V (x ) = 0 . 01 x 2 . The region 

ˆ φu where
˙ ˆ 
 < −k ̂  V under the controller u = �si (x ) ∈ U is analyzed in Fig. 3 .

he range x ∈ [ −2 , 2] is considered because the steady-state con- 

entration is 2 . 54 kmol m 

−3 , and concentrations may not be neg- 

tive. As the Lyapunov function in this case is a quadratic func- 

ion, its level sets are represented by intervals in x . Hence, the 

losed-loop stability region 
 ˆ ρ for the reactor system described 

y the SI slow subsystem is represented by the largest level set 

f ˆ V in 

ˆ φu . From Fig. 3 , it is observed that ˙ ˆ V < −k ̂  V is satisfied

or the entire range of x . Therefore, the closed-loop stability region 

ˆ ρ is also characterized as the entire range of x ∈ [ −2 , 2] . Con-

idering | x | < 0 . 05 to be sufficiently close to the origin, a value of

 . 5 × 10 −5 was calculated for ρsi . The cost function in Eq. (43a) is 

hosen to be L (x, u ) = | x | 2 Q 1 
+ | u | 2 Q 2 

where Q 1 = 10 and Q 2 = 1 , such

hat L achieves its minimum at the origin of the closed-loop sys- 

em. 

.3. Simulation results 

First, simulations are conducted for the closed-loop system un- 

er the MPC using the nominal slow subsystem and the SI slow 

ubsystem as the process model of Eq. (43b) , separately. While, 

n practice, if solely data is available, only the sparse identifica- 

ion approach can be used, the nominal slow subsystem is used 

o represent the experimental process. Hence, the LMPC utilizing 

he nominal slow subsystem yields the ideal performance that an 

MPC with a data-driven process model can achieve and be com- 

ared against. Fig. 4 shows that the open-loop state trajectory 

f the slow state predicted by the sparse-identified concentration 

odel of Eq. (59) with u = 0 is in close agreement with the first-

rinciples concentration model of Eq. (52) , for a fixed time interval 

nd the same initial condition of x 0 = 1 ∈ 
 ˆ ρ . As a result, it can be

oncluded that the sparse-identified model of Eq. (59) can be con- 

idered a satisfactory approximation of the first-principles process 
11 
odel of Eq. (52) . Consequently, the sparse-identified slow model 

f Eq. (59) is used as the process model in the LMPC of Eq. (43) . 

Figures. 5 and 6 depict the closed-loop states of the CSTR for 

 range of initial conditions x 0 ∈ 
 ˆ ρ under the LMPC utilizing the 

I slow model. It is observed that the states converge to a small 

eighborhood containing the origin, 
ρmin 
, for all initial conditions 

tudied. Therefore, the LMPC with the SI slow model can be con- 

idered adequate to stabilize the CSTR system due to the suffi- 

iently small modeling error. 

The closed-loop states and manipulated input profiles of the 

STR system of Eqs. (52) to (54) under the LMPC are shown 

n Figs. 7, 8 and 9 . Figure 7 compares the state trajectories for 

he closed-loop system from an initial condition of (C A − C A ,s , T r −
 r,s , T j − T j,s ) = (1 kmol m 

−3 , 30K , 40K) when the different process

odels are used in the controller. An MPC prediction horizon 

ength of N = 5 is chosen for both cases. In both simulations, it 

s observed that the state trajectory is driven to 
ρmin 
under the 

ontroller faster than in the open-loop scenario without a con- 

roller. Analyzing the time-varying states more closely as shown in 

ig. 8 , it is demonstrated that the evolution of the states is nearly 

dentical for both the nominal slow model and the SI slow model. 

ig. 9 shows the manipulated input profiles for the closed-loop sys- 

em, which are observed to be within the range of permissible u . 

he results of Figs. 7, 8, 9 were also reproduced for other initial 

onditions, implying the LMPC incorporating the SI slow model is 

ble to stabilize the CSTR system and drive the states to the ori- 

in nearly as efficiently as the LMPC utilizing the nominal slow 

odel. Furthermore, when the integral of the cost function of the 

MPC 

∫ t p 
t=0 

L (x (τ ) , u (τ )) d τ is calculated over the simulation period

 p = 1 hr , it is obtained that L = 330 . 2 and L = 330 . 0 for the LMPC

tilizing the first-principles model and the SI slow model, respec- 

ively. The negligible difference indicates that the closed-loop per- 

ormance under both models is similar with respect to energy as 

ell as speed of convergence to the origin. The value of the cost J 

ver the simulation period of 1 hr is shown in Fig. 10 , indicating

hat there is no significant difference in the states and manipulated 

nputs computed by the LMPC using either process model. 

.4. Effect of process model selection on computational time and 

aximum allowable prediction horizon length 

The choice of the process model for the LMPC has a significant 

ffect on the total as well as per iteration computational time of 

he MPC, directly limiting the maximum prediction horizon length 

hat can be implemented. Due to the increased complexity of the 

rst-principles process model, the computational time required to 

olve the LMPC optimization problem for the LMPC incorporating 

he first-principles slow model is higher for any given prediction 

orizon length. Consequently, the longest prediction horizon that 

an be implemented in the controller is lower for the LMPC with 



F. Abdullah, Z. Wu and P.D. Christofides Computers and Chemical Engineering 153 (2021) 107411 

Table 2 

Maximum allowable prediction horizon length and corresponding integral of cost 

function over simulation period t p . 

LMPC Process Model Max allowable N Integral of Cost Function 

First-principles slow model 16 243.8 

Sparse-identified slow model 24 225.9 
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he first-principles model, leading to a higher total of the integral 

f the LMPC cost function over the simulation period. 

Figs. 11 and 12 depict the iteration time required for each 

f the 360 LMPC steps overs the entire simulation period of 

600 s with a sampling period � of 10 s for the LMPC un- 

er the first-principles model and the SI slow model, respectively, 

hile using the initial conditions, (C A − C A ,s , T r − T r,s , T j − T j,s ) =
1 kmol m 

−3 , 30 K, 40K) . Practically, since the optimization problem 

s solved in every sampling period �, the computational time for 

 single iteration cannot exceed �. As � is chosen to be 10 s in

his application, for a feasible N, no iteration time can exceed 10 s. 

rom Fig. 11 , it is observed that, for the LMPC utilizing the first- 

rinciples slow model, the maximum allowable prediction horizon 

ength is N = 16 . Numerically, it is confirmed that, in this case, 

he longest iteration times when N = 16 and N = 17 are 9.59 s

nd 10.85 s, respectively. In contrast, for the LMPC with the SI 

low model, the maximum allowable prediction horizon length is 

 = 24 as seen in Fig. 12 . For this controller, the longest iteration

imes for prediction horizon lengths of N = 24 and N = 25 were

alculated to be 9.83 s and 13.6 s, respectively. Finally, the time- 

ntegral of the LMPC cost function 

∫ t p 
t=0 

L (x (τ ) , u (τ )) d τ is calcu-

ated over the simulation period t p = 1 hr for the controller utiliz- 

ng the first-principles model with N = 16 and the controller incor- 

orating the SI slow model with N = 24 . It is found that the costs

re L = 243 . 8 and L = 225 . 9 for the first-principles model-based

ontroller and SI-based controller, respectively. This implies that 

he LMPC based on the SI slow model, when maximizing the pre- 

iction horizon length to N = 24 , outperforms the LMPC based on 

he first-principles slow model with its prediction horizon length 

aximized at N = 16 , in terms of lower energy and faster conver-

ence to the origin. This fact can also be observed from the state 

nd input profiles, shown in Figs. 14 and 13 , respectively. The LMPC 

ased on the SI slow model takes more aggressive control action in 

he earlier MPC steps as seen in Fig. 13 , causing the state to con-

erge slightly faster to the origin as depicted in Fig. 14 . The maxi-

um allowable prediction horizon lengths and their corresponding 

osts are summarized in Table 2 . 

. Conclusion 

This article focused on the design of a Lyapunov-based MPC 

or a class of nonlinear singularly perturbed systems using only 

easurement data from processes. In singularly perturbed systems, 

ue to the presence of time-scale multiplicities, a direct applica- 

ion of MPC without accounting for the evolution of the states 

n different time scales can lead to closed-loop performance de- 

erioration or even closed-loop instability due to controller ill- 

onditioning. Hence, we proposed a method to first separate the 

low and fast variables in the system and then design the MPC 

ased on the reduced-order slow subsystem. Furthermore, due 

o the lack of a first-principles model in most practical appli- 

ations, our method used only sampled experimental/industrial 

imulation data to reconstruct the reduced slow subsystem via a 

achine-learning method known as sparse identification. Subse- 

uently, the theory was developed by deriving sufficient conditions 

or closed-loop stability under sample-and-hold implementation. 

inally, the proposed LMPC design was applied to a non-isothermal 

eactor that exhibited time-scale separation. It was observed that 
12 
he controllers yielded nearly identical performance for the same 

ontroller parameters. However, the LMPC based on the sparse- 

dentified slow subsystem could implement superior controller pa- 

ameters, such as a longer prediction horizon, due to its reduced 

omplexity and, hence, lower computational time. As a result, the 

I based LMPC outperformed the LMPC utilizing the first-principles 

odel when the superior parameters were used for the former 

ontroller, demonstrating the practicality and benefits of designing 

PC by reconstructing the reduced slow subsystem from measure- 

ent data. 
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