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This paper focuses on the design of model predictive controllers for nonlinear two-time-scale processes
using only process measurement data. By first identifying and isolating the slow and fast variables in a
two-time-scale process, the model predictive controller is designed based on the reduced slow subsystem
consisting of only the slow variables, since the fast states can deteriorate controller performance when
directly included in the model used in the controller. In contrast to earlier works, in the present work,
the reduced slow subsystem is constructed from process data using sparse identification, which identi-
fies nonlinear dynamical systems as first-order ordinary differential equations using an efficient, convex
algorithm that is highly optimized and scalable. Results from the mathematical framework of singular
perturbations are combined with standard assumptions to derive sufficient conditions for closed-loop
stability of the full singularly perturbed closed-loop system. The effectiveness of the proposed controller
design is illustrated via its application to a non-isothermal reactor with the concentration and tempera-
ture profiles evolving in different time-scales, where it is found that the controller based on the sparse
identified slow subsystem can achieve superior closed-loop performance versus existing approaches for
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the same controller parameters.
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1. Introduction

Chemical processes such as fluidized catalytic crackers, bio-
chemical reactors and distillation columns, often involve physico-
chemical phenomena occurring in vastly-different time scales. In
chemical process modeling, time-scale separation has been han-
dled via singular perturbation techniques (e.g.,, Kumar et al., 1998)
in the context of first-principles modeling with the goal of building
well-conditioned ordinary differential equation (ODE) models that
can be used for process analysis and controller design. More re-
cently, in Alanqar et al. (2015), a constraint was incorporated in the
optimization problem of fitting a polynomial nonlinear state-space
model to nonlinear process data to avoid identified model ill-
conditioning (stiffness) in the construction of nonlinear ODE mod-
els. To control a two-time-scale system, a composite control sys-
tem using multi-rate sampling was proposed in Chen et al. (2011),
where a “fast” feedback controller was designed to stabilize the
fast dynamics subsystem, and a model predictive controller (MPC)
was developed to stabilize the slow dynamic and optimize closed-
loop performance. Additionally, in Ellis et al. (2013), a composite
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controller which consisted of a Lyapunov-based MPC for the fast
subsystem, and a Lyapunov-based Economic MPC for the slow sub-
system, was developed to operate the system in a time-varying
fashion in order to improve process economics while achieving
desired closed-loop stability properties. In all the above efforts,
an explicit nonlinear process model, typically obtained from first-
principles, was assumed to be available.

Model predictive control (MPC) is an optimization-based pro-
cess control scheme that can optimize process performance and
account for state and control input constraints. Since the MPC
optimization problem relies on a process model for predicting
the future state evolution, the performance of MPC relies heav-
ily on its model quality. In recent years, machine learning tech-
niques have been applied to model chemical processes from data
when first-principle models are unavailable. For example, in Wu
et al. (2019a,b), recurrent neural networks were used to build the
data-driven model for a general class of nonlinear processes, and
were then incorporated in Lyapunov-based MPC to ensure desired
closed-loop stability and performance. In Abdullah et al. (2021),
reduced-order data-driven models were developed for nonlinear
two-time-scale systems using nonlinear principal component anal-
ysis and sparse identification methods. The simultaneous design
and control of nonlinear dynamical systems via the use of robust
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tools based on Lyapunov theory has been investigated generally
in Ricardez Sandoval et al. (2008); Sanchez-Sanchez and Ricardez-
Sandoval (2013) and also under uncertainty in the context of MPC
in Ricardez-Sandoval et al. (2009).

In the field of nonlinear dynamical modeling, the technique of
sparse identification developed in Brunton et al. (2016b) has suc-
cessfully been applied to a diverse array of nonlinear regression
problems, including chaotic systems and nonlinear partial differen-
tial equations. However, its application to two-time-scale systems
has only recently been investigated. In Champion et al. (2019), the
authors extended the sparse identification procedure to the discov-
ery of two-time-scale systems when full or even partial measure-
ments of the variables are available under the assumption of lin-
ear coupling across the time-scales. In particular, when full state
measurements were available, it was shown that, although sparse
identification could correctly identify uni-time-scale systems with
as little data as 5% of a period, for two-time-scale systems, the data
requirement increased linearly with the ratio of slow to fast dy-
namics under naive uniform sampling. This was due to the fast
trajectories requiring a smaller sampling period. In fact, even in
uni-time-scale systems, when the aforementioned 5% of data was
sufficient to rebuild the system, the data had to be captured at the
relatively fast segments of the period at a very high sampling rate,
as the information contained in the faster regions was much more
than the information captured in the slower regions of the period.
An alternative to overcome the linear increase in data requirement
with diverging time-scale-multiplicities was proposed and devised
in Champion et al. (2019) known as burst sampling, which allowed
sparse identification to identify both the slow and fast subsystems
with a significantly smaller fragment of the data over one period.
However, since the present work aims to utilize sparse identifi-
cation for the purpose of control, identifying the fast subsystem
as a stiff differential equation via a more complicated composite
multirate sampling is not advantageous. Instead, sparse identifica-
tion is only used to identify the slow subsystem, which is incor-
porated into the controller. The application of sparse identification
in closed-loop control is an area that has not been investigated in-
depth yet.

Inspired by these results, in this work, we use time-series data
from the slow process variables (subset of process state variables
in some coordinate system) to construct well-conditioned data-
driven models for a general class of two-time-scale nonlinear pro-
cesses, and evaluate their performance in the context of MPC of
two-time-scale processes. The rest of this article is organized as
follows: in Section 2, the notations, and the class of nonlinear two-
time-scale systems considered are given. In Section 3, the sparse
identification (SI) model for the slow subsystem is introduced. In
Section 4, the formulation of LMPC using SI models is presented,
while the closed-loop singularly perturbed system stability analysis
showing the boundedness of closed-loop states in a small neigh-
borhood around the origin is given in Section 5. In Section 6, a
chemical reactor example which exhibits two-time-scale behav-
ior is simulated to demonstrate the effectiveness of the proposed
modeling and control approaches.

2. Preliminaries
2.1. Notation

The notation |-| denotes the Euclidean norm of a vector. xT is
used to denote the transpose of x. The notation LV (x) denotes the

standard Lie derivative L;V (x) := % f(x). Set subtraction is de-
noted by “\”, i.e, A\B:= {x e R" | x € A, x ¢ B}. The function f(-) is
of class ¢! if it is continuously differentiable in its domain. A con-
tinuous function « : [0, a) — [0, co) is said to belong to class K if
it is strictly increasing and is zero only when evaluated at zero. A
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continuous function B : [0, a) x [0, ) — [0, c0) is said to belong
to class KL if, for each fixed t, the function B(-,t) is of class K,
while, for each fixed s, the function 8(s, -) is decreasing and tends
to zero as s — oo.

2.2. Class of systems

The general class of two-time-scale continuous-time nonlinear
systems with m states considered in this work has the following
general form:

x=fix,z,u,€) (1a)

€z=fr(x,z, €) (1b)

where x € R" and z e RP are the slow and fast state vectors,
respectively, with n+p=m. ueR? is the manipulated input
vector with constraints defined by ueU := {uIFrlin <y <ufi=
1,...,q} cRY. € is a small positive parameter representing the
speed ratio of the slow to the fast dynamics of the system. The
vector functions f(x,z,u,€) and f,(x, z, €) are sufficiently smooth
vector functions in R" and RP, respectively. In the system of Eq. (1),
after a short transient period, the fast states, z, converge to a
slow manifold (provided such an isolated manifold exists) and can
be expressed by a nonlinear algebraic expression in x, the slow
states. Therefore, following the standard two-time scale decompo-
sition procedure in Kokotovic et al. (1986), we can set € =0 in
Eq. (1) and obtain:

x= fi(x,z,u,0) (2a)

0=fo(x,2,0) (2b)

Remark 1. The class of singularly perturbed system of Eq. 1 are
presented for analysis purposes, and will not be used to derive
models that will be used in the controllers. Furthermore, to sim-
plify the development, we focus on two-time-scale processes with
stable fast dynamic, and for this reason, we take f,(x,z,€¢) to be
independent of u. However, our analysis can be readily adapted to
deal with systems in which f,(-) is a function of u.

Assumption 1. Eq. (2b) possesses a unique root given by

z= () 3)

where zs is a quasi-steady state for the fast state z, and fz R —
RP and its derivative are locally Lipschitz continuous.

Assumption 1 is standard in the singular perturbation frame-
work as it ensures that the system has an isolated equilibrium
manifold for the fast dynamics on which z can be written as an
algebraic function of x. Substituting Eq. (3) into Eq. (2a) gives the
reduced slow subsystem,

X=fi(x, f(x),u,0) (4)

For the fast state, we define a fast time scale T =t/e and a new
coordinate y :=z — f,(x). Rewriting Eq. (1b) as a derivative with
respect to t rather than t and setting € = 0 yields the fast subsys-
tem,

d ~
= hx [0 +y.0) (5)
We assume the input appears linearly in Eq. (4) and, therefore,
rewrite the slow subsystem of Eq. (4) in the following form
throughout the manuscript:

x=Fxu:=fX+gXu,  x(t) =xo (6)

where f(-) and g(-) are sufficiently smooth vector and matrix func-
tions of dimensions n x 1 and n x q, respectively. Without loss of
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generality, throughout the manuscript, the initial time ty is taken
to be zero (tp =0), and it is assumed that f(0) =0, and thus,
the origin is a steady-state of the nonlinear system of Eq. (6), ie.,
(x%,ut) = (0,0), where x§ and u} represent the steady-state slow
state and input vectors, respectively.

Assumption 2. The origin of the closed-loop fast subsystem of
Eq. (5) is globally asymptotically stable, uniformly in x in the sense
that there exists a function B, of class K£ such that for any y(0) €
RP,

VOIEA(On 2) Ve =0 7

2.3. Stabilizability assumption via control Lyapunov function

With respect to the stabilizability requirement for the slow dy-
namics, it is assumed that there exists a stabilizing control law
u= ®(x) eU (e.g, the universal Sontag control law (Lin and Son-
tag, 1991)) such that the origin of the nominal slow subsystem of
Eq. (6) is rendered asymptotically stable in an open neighborhood
D around the origin in the sense that there exist a ¢! control Lya-
punov function, V(x), and four functions, aq, a;, as, ag of class K
such that Vx € R":

ai (]x]) <V (x) < ax(|x]), (8a)
V0 = 20 Ex @0 = a5 (1. (8b)
|a‘g§:‘) < aq(|x]) (8¢c)

The Sontag law, a candidate controller for ®(x), is given in the
following form:

PEVPHA g

i) =1 " qq 970 (9a)
0 if g=0
ymin if  @i(x) <umin
Q;(x) = 1@i(x)  if  uMt < @i(x) < uPx (9b)
ymax if  @i(x) > umax

where p denotes L¢V(x) and q denotes LgV(x), f=[f o fal
gi=1g1....8il,i=1,2,...,q. ¢;i(x) of Eq. (9a) represents the iy,
component of the control law ¢ (x). ®;(x) of Eq. (9) represents the
iy, component of the saturated control law & (x) that accounts for
the input constraint u € U.

First, a region where the conditions of Eq. (8) are satisfied
under the controller u=®(x) eU as ¢y = {x e R" | V(x) = LV +
LeVu < —kV (x),u = ®(x) € U} U {0}, where k > 0, is characterized.
Then the closed-loop stability region €2, for the nonlinear slow
subsystem of Eq. (6) is defined as a level set of the Lyapunov func-
tion, which is inside ¢u: Qp :={x e ¢, | V(x) < p}, where p >0
and Q, C ¢y. Furthermore, the Lipschitz property of F(x, u) com-
bined with the bound on u implies that there exist positive con-
stants M, L, L’ such that the following inequalities hold Vx,x" € D,
YueU:

[F(x,u)] <M (10a)
|[F(x,u) —F(X',u)| <L|x —x/| (10b)
aV (x) wvE) ., <1 /

Ix F(x,u) — % FX,u)| <Ll|x—-x| (10c)
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3. Sparse identification model for the slow subsystem
3.1. Sparse identification

Sparse identification is a nonlinear system identification
method used to model dynamical systems. The application of spar-
sity methods to dynamic system modeling can be found in the re-
cent literature (Wang et al,, 2011; Schaeffer et al., 2013; Ozolin§
et al.,, 2013; Mackey et al., 2014; Brunton et al., 2014; Proctor et al.,
2014; Bai et al., 2015; Arnaldo et al., 2015). Sparse identification is
used to approximately reconstruct a continuous-time ODE of the
form,

x=f®) (11)

using only numerical data from the system without requiring
knowledge of the underlying physics of the process.

Sparse identification exploits the sparsity of the right-hand side
of Eq. (11) since f (X) contains very few nonzero terms in practi-
cal systems, rendering it sparse in a higher-dimensional space of
candidate nonlinear functions. The nonzero terms can then be cal-
culated using scalable convex methods. To carry out sparse identi-
fication, the open-loop process is simulated over a wide range of
initial conditions. From the resulting data, the slow state measure-
ments are sampled with a sufficiently small sampling period and
concatenated into a data matrix, X, of the form,

X:[xl Xy e xn] (12)

where each x; is a column of time-series data for state i for i =
1,..., n. The time-derivative of X, denoted by X, is estimated in
this work using second-order central finite differences since the
noise-free case is considered and since the sampling period is suf-
ficiently small. Subsequently, a function library, ®(X), is created
consisting of r nonlinear functions of the columns of X. The r func-
tions represent possible terms for f, the right-hand side of Eq. (6).
The goal of the sparse identification algorithm is to identify the ac-
tive terms in this library by taking advantage of sparsity. The aug-
mented library, ® (X), considered in this work is of the form,

L | | | | |
(13)

[ | | | | |
@(X)=|:1 X XP XPB  sinX cosX tanX tanhX

where, for example, X™ denotes all quadratic nonlinearities, given
by

XP=[x xixa o B xxs o X2 (14)

The above choice of candidate nonlinear functions was mo-
tivated by the fact that polynomials and trigonometric func-
tions form a basis for many practical systems as mentioned in
Brunton et al. (2016b).

Remark 2. As this is a novel method, only the noise-free case is
considered in this work. However, if the method is applied to noisy
data, the time-derivative X cannot be computed using regular finite
difference methods as such methods will amplify the noise present
and not yield meaningful values. Instead, the derivative approxima-
tion will require the application of more advanced techniques such
as the total-variation regularized derivative (Chartrand, 2011) or
smoothed finite difference, where the noisy data is first smoothed
out using a filter (such as the Savitzky-Golay filter) before calculat-
ing the finite differences (Savitzky and Golay, 1964).

In sparse identification, for each of the n slow states, we deter-
mine the r coefficients that pre-multiply the r candidate nonlinear
functions considered in the function library, ®(X). Denoting each
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corresponding coefficient vector by &, the n coefficient vectors can
be compactly written in matrix form as

E=[& & - & (15)

where each &; € R" is a sparse column vector of coefficients identi-
fying the nonzero terms in the dynamic model of the correspond-
ing slow state, x; = f;(x). Therefore, to determine E, we need to
solve the following equation:

X=0X)E (16)

In brief, Eq. (16) can be solved using a straightforward least-
squares routine after neglecting and zeroing all coefficients in &
that are smaller than a threshold, A. The least-squares problem as-

sociated with Eq. (16) can most generally be formulated as follows:

—~/
@

|, +2 (17)

E = argmin |X - O(X) &’
where E’ is a notational substitute for E, and the second term en-
forces sparsity of Z. Practically, we first define the matrix E” to be
the matrix E with all coefficients with magnitudes below A set to
zero, which is the practical implementation of the L; regularization
term in Eq. (17). Subsequently, we solve the following least-squares
problem

E = argmin X -©x) E””Z (18)

in each iteration using MATLAB’s built-in linear solver called with
A\b where A=X and b= ®(X) until the big/nonzero coefficients
(larger than A in each iteration) converge.

To find the Pareto optimal value of the parameter A that bal-
ances model complexity with accuracy, methods such as cross-
validation from machine learning may be utilized (Brunton et al.,
2016b). In this work, a broad sweep of A is first used to identify the
order of magnitude above which the model has too few nonzero
terms to capture the dynamics, resulting in large error values. Sub-
sequently, a narrower sweep in the relevant order of magnitude is
used to refine this value of A. Further refinement was not found to
be necessary as a wide range of values from the first refinement
yielded identical and optimal models. Once E is found, the overall
model is written as the continuous-time differential equation,

x=ET(OKE))T

where ©(x") is not a data matrix but a column vector of sym-
bolic functions of elements of x corresponding to the functions
considered in the function library. It is noted that the sampling
period of the discrete-time data used to carry out sparse iden-
tification affects the accuracy of the finite-difference estimate of
the time-derivative, which significantly affects the accuracy of the
continuous-time model identified by sparse identification.

3.2. Identifying a model for the slow subsystem

In this work, sparse identification (SI) is used to reconstruct the
slow dynamic model for the slow states. The following slow dy-
namic model is developed to approximate the slow subsystem of
Eq. (5).

X=FiRu) =R +8®u,  X(to) =xo (19)

where fA(A) and g(-) are sufficiently smooth vector and matrix func-
tions of dimensions n x 1 and n x g that approximately capture
the functions f(-) and g(-), respectively. Specifically, we first con-
struct the following slow dynamic model using the data set gen-
erated with various initial states and u = 0 (i.e., steady-state input
value):

x=f(®)
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Subsequently, we use the data set generated with various inputs
u € U and initial states to approximate the function g(x) associated
with the input u in the right-hand side of Eq. (6) as g(X) = ’“5&
where u # 0. Finally, the model performance is evaluated using un-
seen data in the testing data set, and is shown to achieve a good
representation of f (-) and g(-) with a desired accuracy.

Remark 3. An alternative method to find g(.) is to use a more ad-
vanced sparse identification algorithm that expands the function
library ®(X) to include input terms (i.e., ®(X, u)) (Brunton et al.,
2016a). However, due to the presence of feedback control in this
work, this method would require further development before im-
plementation, and the method described above was considered
sufficiently accurate.

4. Lyapunov-based MPC using SI models

This section proposes the design of a Lyapunov-based MPC
(LMPC) that incorporates the SI model to predict future slow
states, followed by a stability analysis of the closed-loop system
of Eq. (6) in the succeeding section. Specifically, the stability of
the nonlinear system of Eq. (6) under a Lyapunov-based controller
associated with the SI model of Eq. (19) is first analyzed. Subse-
quently, the SI model of Eq. (19) is incorporated into the design
of the LMPC under sample-and-hold implementation of the con-
trol action to drive the state of the closed-loop system to a small
neighborhood around the origin.

4.1. Lyapunov-based control using SI models

For the slow dynamics, it is assumed that there exists a stabi-
lizing control law u = ®;(x) € U such that the origin of the SI slow
subsystem of Eq. (19) is rendered asymptotically stable in an open
neighborhood ¢, around the origin in the sense that there exist a
¢! control Lyapunov function V (x) and four functions, d;, d,, d3, d,
of class K such that Vx € R™:

(D) = V60 = (1), (20)
V0 = L0k (x 0y0)) = a5 ). (200)
'a‘gix) SEAC) (200)

We first characterize the region qgu c R" in which the condi-
tions of Eq. (20) are satisfied under the controller u = ®;(x) € U.
Therefore, starting from inside dA)u, the sparse identified slow sub-
system of Eq. (19) can be rendered asymptotically stable under the
controller u = ®,;(x) € U. The closed-loop stability region of the
sparse identified slow subsystem of Eq. (19) is defined as a level
set of the Lyapunov function inside ¢u: Q4 :={x e ¢y | V(x) <
p}. p > 0. The assumptions of Eq. (8) and Eq. (20) are essentially
the stabilizability requirements of the first-principles slow model
of Eq. (6) and the sparse identified slow model of Eq. (19), respec-
tively.

Since the dataset for developing the sparse identified slow
model of Eq. (6) is obtained from open-loop simulations for x € 2,
and u € U, we have 2, < €2,. Additionally, there exist positive con-
stants M; and Lg; such that the following inequalities hold for all
XX €Qpand ueU:

|Fsi(x, u)| < Mg; (21a)
v (x v )
Ti )Fsi(x: u) — 8()( )Fsi(x/, u)| < Lg|x — X'l (21b)



E Abdullah, Z. Wu and P.D. Christofides

The following proposition demonstrates that the feedback con-
troller u = ®;(x) e U is able to stabilize the nominal slow subsys-
tem of Eq. (6) in the presence of model mismatch between the
nominal subsystem of Eq. (6) and the sparse identified slow model
of Eq. (19), provided that the modeling error is sufficiently small.

Proposition 1 (c.f. proposition 2 in Wu et al. (2019a)). Under
the assumption that the closed-loop sparse identified slow subsys-
tem of Eq. (19) is rendered asymptotically stable under the controller
u=dg(x) eUVxeQ,, if there exists a positive real number vm <
as(|x])/a4(|x|) that constrains the modeling error |v| = |F(x,u) —
Fi(x, u)| < vm, YueU and Vx € Qp, then the nominal closed-loop
system of Eq. (6) under u = ®4(x) € U is also asymptotically stable
Vxe Qﬁ

Proof. To prove that the nominal slow subsystem of Eq. (6) can be
rendered asymptotically stable Vx € ; under the controller based

on the sparse identified model of Eq. (19), we show that V based
on the state of the nominal slow subsystem of Eq. (6) can still be
rendered negative under u = ®(x) €U, V x € Q.

Based on Eq. (20b) and Eq. (20c), the time-derivative of V is
computed as follows:

Vo= TRk o)

T (Fi(x. @5(0) + F(x, @5i(0) = Fi(x. @5(x)) (22
—as(|x]) + da(]x]) (F (x, D5(x)) — Fi(x, Pi(x)))

=3 (|X]) + da (X)) vm

=
=

If vy is chosen to satisfy vy < ds3(|x])/d4(]x|), then it holds that
V < —d5(]x|]) < 0 where d3(|x|) = —ds(|x|) + d4(|X|)vm > 0. This is
possible because d3 and d, are known functions. For example, if
we choose @3 = as|x| and d4 = a4|x|, then vy = as/as. As a result,
the closed-loop state of the nominal slow subsystem of Eq. (6) con-
verges to the origin under u = @ (x) € U for all xg € 5. O

After incorporating the SI model of Eq. (19) in the LMPC design,
the control actions of the LMPC will be implemented in a sample-
and-hold fashion. Hence, the next two propositions demonstrate
the sample-and-hold properties of the Lyapunov-based controller
u = Oy (x). In particular, the following proposition derives an up-
per bound for the error between the slow states calculated by the
nominal slow subsystem of Eq. (6) and the slow states predicted
by the SI model of Eq. (19).

Proposition 2 (c.f. proposition 3 in Wu et al. (2019a)). For the non-
linear system x = F(x, u) of Eq. (6) and the SI model % = F;(X, u) of
Eq. (19) with the same initial condition xo = R € 2, there exist a
class K function fw(-) and a positive constant « such that the follow-
ing inequalities hold Vx,% € Q5:

X(®) = RO| = fulD) i= T = 1) (23a)

Vx) < VR +d4(a;7"(9)) Ix — K| + c|x — &2 (23b)

Proof. Denoting the error vector between the solutions of the sys-
tem x = F(x,u) and the SI model X = E;(X, u) by e(t) = x(t) — X(t),
the time-derivative of e(t) is obtained as follows:

le()] = [F(x.u) — (& u)]

< IFew) - FR )| + [F& 1) - iR w)] (24)
From Eg. (10b), Vx,% € Qp, it is derived that
|F(x,u) = F(R,u)| < Llx(t) —X()| (25)

Since the second term |F (X, u) — F; (X, u)| in Eq. (24) represents the
modeling error, it is bounded by |v| < vy for all R € ©2;. Hence,
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based on Eq. (25) and the bound on the modeling error, é(t) is

bounded as follows:

[e®)] < L|x(t) —X(E)| + vm
<Lle(t)| + vm

Based on the zero initial condition (i.e., e(0) = 0), the norm of the

error vector can be bounded as follows Vx(t), X(t) € ©25:

(26)

le(®)] = [x(®) — (O] < (e — 1) 27)

Subsequently, to derive Eq. (23b) for all x,X € Q4, we derive the

Taylor series expansion of V (x) around % as follows:
v (®)
dax

where k is a positive real number. Using Eq. (20a) and Eq. (20c¢), it
follows that

V(x) <V®) +as(a;" (9))1x — & + «|x — &I (29)
This completes the proof of Proposition 2. O

Vx) <V &) + |x— 8| +K|x =& (28)

The final proposition below proves that the closed-loop state of
the nominal slow subsystem of Eq. (6) remains bounded in 2, for
all times, and can be ultimately bounded in a small subset €2, .
containing the origin under the sample-and-hold implementation
of the Lyapunov-based controller u = &(x) € U.

Proposition 3. Consider the nominal slow subsystem of Eq. (6) un-
der the controller u = ®(X) e U that is designed to stabilize the SI
system of Eq. (19) and meets the conditions of Eq. (20). The controller
is implemented in a sample-and-hold fashion, ie., u(t) = ®4(X(t,)),
YVt e[ty tyyr), where ty 1 ==t + A. Let €5, € >0, A>0and p >
Pmin > Psi > Ps satisfy

- 63 (651 (,Os)) + LsilVIsiA = —6€ (303)

—a3(d," (ps)) + UMA < —€y (30b)
and

psi i=max{V(R(t + A)) | X(t) € Q. u e U} (31a)

Pmin = si + s (A7 (9)) fuw(A) + K (fuw(A))? (31b)

Then, for any x(t,) € 25\S2p,, there exists a class KL function Bx
and a class K function y such that the following inequality holds:
[X(®)] < Be(Ix(0)], ) + ¥ (Pmin) (32)
and the slow states x(t) of the nominal subsystem of Eq. (6) is
bounded in 2, for all times and ultimately bounded in 2. .
Proof. Part 1: Assuming x(ty) = X(t;) € $25\2p,, we first show that

V(%) is decreasing under the controller u(t) = D (x(ty)) eU for
t € [ty ty.1), where x(t) and X(t) denote the solutions of the nom-
inal slow subsystem of Eq. (6) and the SI subsystem of Eq. (19),
respectively. The time-derivative of V(%) along the trajectory X(t)
of the SI model of Eq. (19) for t € [ty t;,1) is computed as follows:

VRE) = PEOER(), By(R(E)))
= W), (R(5), Dy (R(5)))
+WEOIE(R(1), Dg(R(t)))
— W) E(R(6), D (R(1)))

(33)

Combining Eq. (20a) and Eq. (20b), the following inequality is de-
rived:

V@EO) = —s(d" (o) + TERRQRO. 9aR0) 5y

— WD F(R(5), D (R(0)))
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Using the Lipschitz condition of Eq. (21) and the fact that % € 2,
u e U, the upper bound of V(%(t)) is obtained Yt € [, tee1):

V@ED) = =050 (00) + Ll2(0) ~ £(20)| (35)
< - d; (ps)) + LiMg A

Hence, if Eq. (30a) is satisfied, the following inequality holds
V)?(tk) € Qﬁ\st’ Vte [tk'tk+1):

V@) < —€ (36)

Integrating the above differential equation with respect to time
over t € [ty, ty,1), it is derived that V (R(t;)) < V(X(t)) — €sA. We
have shown thus far that for all X(t;) € ©;\Q;, the closed-loop
state of the SI slow subsystem of Eq. (19) is bounded inside the
closed-loop stability region €2, for all times and moves towards
the origin under the controller u = ®;(X) € U when implemented
in a sample-and-hold fashion.

We note, however, that Eq. (36) may fail to hold when x(t;) =
R(ty) € Qp,, which would imply that the state may exit 2, within
one sampling period. Hence, we design another region €2, accord-
ing to Eq. (31a), which ensures that the closed-loop state X(t) of
the SI model does not leave 2, for all t € [ty t, 1), ueU and
R(ty) € Qp, within one sampling period. If the state %(t,, ) leaves
Qp, Eq. (36) is satisfied again at t =t ¢, reactivating the con-
troller u = ®;(x(ty,1)) and driving the state towards €2, over the
next sampling period. As a result, it is shown that the state con-
verges to 2, for the closed-loop SI subsystem of Eq. (19) for all
% € Q. In Part 2, we show that the closed-loop state of the nom-
inal slow subsystem of Eq. (6) can also be bounded in €2 for all
times and ultimately bounded in a small neighborhood around the
origin under the sample-and-hold implementation of the controller
u= CDSI‘(X) eU.

Part 2: Repeating the analysis performed for the SI subsystem
of Eq. (19), we first assume x(t) = R(ty) € 2\, and compute
the time-derivative of V(x) for the nominal slow subsystem of
Eq. (6) (i.e., x = F(x,u)) as follows:

V() = DEDE(x(r), Dy(x(t)))
= WOEDF(x(ty), Py(X(t))
+ VO E (x(t), Dy (x(6)))
— WD (x(gy.), Dy (X(£)))

(37)

From Eq. (22), WF(X(Q),CDS,-(X(II()))5—53(x(tk)) holds
for all erﬁ\st where d3(-) was defined at the end
of Proposition 1. Using Eq. (8a) and the Lipschitz defini-
tion in Eq. (10), the following inequality is obtained for

V(x(1), Vt €[ty ti 1) and Vx(t,) € 25\ Qp,:

V) = -a5(d;" (00) + LU (x(t), g (x(t)))

— IEDF (x(t). Dy (X(8)) (38)
< —d3(a;" (ps)) + L'[x(t) — x(t) |
< —a3(a;" (p)) +LMA

Consequently, if Eq. (30b) is satisfied, the following inequality
holds VX(tk) € Qﬁ\Q)Os’ Vte [tkv tk+l):

Vx®) < —ew (39)

Integrating the above differential equation with respect to time
between any two points in [t;, t;, 1), it is derived for all x(t;) €
Qﬁ\st:

V(x(tie1)) < V(x(t) — ewA (40)

V() = VX)),V € [t i) (41)
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Therefore, the state of the closed-loop system of Eq. (6) remains
in Q4 for all times. Furthermore, it follows that the controller
u = ®,(x) is still able to drive the state of the nominal slow sub-
system of Eq. (6) towards the origin within every sampling period.
Moreover, if x(t;) € Qp,, it was already shown in Part 1 that the
state of the SI model of Eq. (19) is maintained in €2, for one sam-
pling period. Considering the bounded modeling error between the
state of the SI model of Eq. (19) and the state of the nominal slow
subsystem of Eq. (6) given by Eq. (30a), there exists a compact set
Qpi D Qp; that satisfies Eq. (31b) such that the state of the nom-
inal slow subsystem of Eq. (6) remains within €2, . during one
sampling period if the state of the SI model of Eq. (19) is bounded
in Q.. If the state x(t) enters 2, .\, we have shown that
Eq. (41) holds, and thus, the state will be driven towards the ori-
gin again under u = ®,;(x) during the next sampling period, ulti-
mately bounding the closed-loop slow subsystem in €2, .. There-
fore, based on the continuity of the Lyapunov function V, there ex-
ist a class K£ function Bx and a class K function y such that if
Xo € 4, then x(t) € 25, Vt > to and

[x(®)] = Bx(1X(0)[. ) + ¥ (Pmin) (42)
O

4.2. Lyapunov-based MPC (LMPC) formulation

The LMPC is based on the Lyapunov-based controller ®;(x).
The controller ®g;(x) is used to define a stability constraint for
the LMPC controller. This ensures that the LMPC controller inherits
the stability and robustness properties of the Lyapunov-based con-
troller ®,;(x). The LMPC controller is given by the following opti-
mization problem:

7 =min A L. u()) de (43a)
st X(t) = Fy(R(t), u(t)) (43b)
u(t) eU, Yt e [ty tien) (43¢)
£(te) = x(t) (43d)
V(x(6). u) < V(x(t), D (x(t), if X(6) € 25\ 2y, (43e)
V(R(t)) < psiv Yt €t tien), if x(6) € Qp, (43f)

where % denotes the predicted trajectory of the slow states, S(A)
is the set of piece-wise constant functions with period A, and N
is the number of sampling periods within the prediction horizon.
V(x,u) denotes 3‘5§X) (Fi(x,u)). Let u=u*(t), t € [ty, t,n) denote
the optimal input trajectory calculated by the LMPC over the en-
tire prediction horizon. It is noted that only the first control action
of the computed sequence, u*(t;), which corresponds to the first
sampling period of the prediction horizon, is applied over the first
sampling period, and the LMPC is resolved at the next sampling
time.

In the optimization problem of Eq. (43), the objective function
of Eq. (43a) is equal to the integral of L(X(t),u(t)) over the en-
tire prediction horizon. The constraint of Eq. (43b) is the approx-
imate slow model of Eq. (19) that is used to predict the slow
states of the closed-loop slow subsystem. Eq. (43c) specifies the
input constraints to be applied over the entire prediction horizon.
Eq. (43d) defines the initial condition X(t,) of Eq. (43b), which is
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Fig. 1. A continuous-stirred tank reactor with jacket.
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Fig. 2. Plot of the constant residual term in Eq. (58) as a function of the total sim-
ulation duration t; used for data generation.

the slow state measurement at t = t;. The first Lyapunov constraint
of Eq. (43e) guarantees that the closed-loop state moves towards
the origin if x(t;) € ;\Q2p,;. However, if x(t,) enters Qp;, the
states predicted by the approximate slow model of Eq. (43b) will
be maintained in €, over the entire prediction horizon.

5. Closed-loop stability analysis

The closed-loop stability of the singularly perturbed system of
Eq. (1) under the LMPC of Eq. (43) is established in the following
theorem under appropriate conditions.

Theorem 1. Consider the system of Eq. (1) in closed-loop with u*
computed by the LMPC of Eq. (43) based on the Lyapunov-based con-
troller ®;(x) that satisfies the conditions of Eq. (20). Let Assumptions
1 and 2 and the conditions of Propositions 1-3 hold. Then there exist
functions By, By of class KL, a pair of positive real numbers (8, d) and
Je* > 0 such that if max{|x(0)|, |y(0)|} <& and € € (0, €*], then
Vit >0,

Ix(®O)] = Be(IX(0)].£) + ¥ (omin) +d (44)

y©l < B, (vl £) +d (45)
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Fig. 4. Comparison of the slow state as computed by the first-principles slow sub-
system (solid line) of Eq. (52) and predicted by the SI slow subsystem (dashed line)
of Eq. (59) with u = 0.
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Fig. 5. State-space trajectories for the CSTR in closed-loop under the LMPC utilizing
the SI slow model for a range of initial conditions. Each line represents a trajectory
from an initial condition marked by a colored dot of the corresponding color. The
black dot is the origin.
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Fig. 6. State profiles for the CSTR in closed-loop under the LMPC utilizing the SI slow model for a range of initial conditions, each line representing a trajectory from a

different initial condition.

—— FP SI

........ NO input

Ty =Ty (K)

Fig. 7. State-space profiles for the CSTR in closed-loop under the LMPC utilizing the
first-principles model (blue line) and the SI slow model (orange line) and in open-
loop with u = 0 (black line). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Proof. The closed-loop system takes the following form after sub-
stituting the optimal control action u* into Eq. (1).

X=fi(x,z,u* €) (46a)

€z2=fr(x,2,€) (46b)
By setting € = 0, we have

X = fi1(x,z,u*,0) (47a)

0=f(x,z,0) (47b)

Since Eq. (47b) has a unique, isolated solution zg = fz (x), fol-
lowing Eq. (4), Eq. (47) can be written in the following form:

X=fi(x, f(x),u*,0) (48)

When x(t) € 2;\Qp,;, the constraint of Eq. (43e) requires that
the Lyapunov function value decrease at least at the rate un-
der u = &g (x). As a result, the time-derivative of Lyapunov func-
tion V under u = u* is rendered negative. Based on the results in
Proposition 3, the state of the slow subsystem of Eq. (46a) will ap-
proach the origin and enter €2, within finite sampling steps pro-
vided that the modeling error is sufficiently small. After x(t;) en-
ters Q,, the constraint of Eq. (43f) maintains the predicted state

within €, afterwards. Since the modeling error and sampling pe-
riod are sufficiently small, we have shown in Proposition 3 that the
true state of Eq. (46a) can be bounded in 2, . , which is a slightly
larger set containing £2,,;. Therefore, for any initial state xo € 25,
LMPC ensures that the state x(t) of the closed-loop slow subsys-
tem of Eq. (46a) is bounded in €2, for all times, and satisfies the
bound of Eq. (32) in Proposition 3.

Subsequently, by letting t = é y=z— fz (x) and € =0, we ob-
tain the closed-loop fast subsystem:
Y o B +y.0) (49)

Note that the origin of the closed-loop system of Eq. (49) is as-
sumed to be globally asymptotically stable such that Eq. (7) holds
for any y(0) € RP in Assumption 2. Therefore, the closed-loop sys-
tem of Eq. (46) satisfies all the assumptions for Theorem 1 in
Christofides and Teel (1996), which implies that there exist class
KL functions By(-) and By(-), positive real numbers (8, d), and
€* > 0 such that if max{|x(0)|, |y(0)|} < 8 and € € (0, €*], then, the
slow and fast system states are bounded by Egs. (44) and (45). O

6. Application to a chemical process example
6.1. Process description

We demonstrate the application of the LMPC of Eq. (43) based
on the sparse-identified slow subsystem using a chemical process
example. We consider a perfectly-mixed, non-isothermal CSTR as
shown in Fig. 1.

A single, endothermic, irreversible reaction of the form,

AKXB (50)

occurs in the CSTR. The concentration of reactant A in the reac-
tor is denoted by Cs. Assuming the vessel has a constant holdup,
the volume of the liquid in the reactor is represented by V. The
temperature of the reactor contents is denoted by T;. The feed to
the reactor contains pure species A with molar concentration Cag,
at a flow rate F, and temperature Tpg. Owing to the endothermic
reaction taking place in the reactor, energy must be provided to
the reactor via a jacket. The heating jacket has a volume V; with
heat transfer fluid at an inlet temperature of Tj, being added to it
at a flow rate Fj. The reactor contents and the heat transfer fluid
have constant densities of o, and p;, respectively, and have con-
stant heat capacities of ¢y m and ¢, ;, respectively. AH, denotes the
enthalpy of the reaction, U represents the heat transfer coefficient,
and A; is the heat transfer contact area between the reactor and
the jacket. The rate constant k in Eq. (50) is assumed to be of the
form,

k = ko exp (%) (51)
r

where kg, R, and E denote the pre-exponential constant, ideal gas
constant, and activation energy of the reaction, respectively. Under



F. Abdullah, Z. Wu and P.D. Christofides

Computers and Chemical Engineering 153 (2021) 107411

—~ 1.0 30 40
g — FP — FP — FP
% -=-= Sl N === Sl < N |
E ----- No input O I T No input . olt No input
~ 0.5 Ei: =
% 10
S | -‘
| & &
L e 0 0
o 0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Time (hr)

Time (hr)

Time (hr)

Fig. 8. State profiles for the CSTR in closed-loop under the LMPC utilizing the first-principles model (blue line) and the SI slow model (orange line) and in open-loop with
u = 0 (black line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Input profiles for the CSTR in closed-loop under the LMPC utilizing the first-
principles model (blue line) and the SI slow model (orange line). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Table 1

Parameter values for chemical process example.

V, = 1.0m?
V; = 0.08m3
Ar = 6.0m3
U = 1000.0kcalh~'m—2K~!
R = 1.987kcal kmol 'K
AH, = 5.4 x 10*kcal mol™
cpm = 0.231kcal kg 'K~
¢p,j = 0.200kcal kg™' K-
Cag.s = 3.75kmol m—3

L = 274.4K

ko = 3.36 x 10°h~!
E=8.0x 10°kcal kg™’
Tao = 310.0K

Tjo = 357.5K

pm = 900.0kg m—3

pj = 800.0kg m—3

F =3.0m3>h-!

F, = 20.0m*h-"

Cas = 2.54kmol m—3
T;s = 303.3K

is =

these modeling assumptions, the dynamic equations governing the
behavior of the reactor are given by the following material and en-
ergy balances:

Ve Sk = (Cho — Cp) — ko PR (52)
dT; (-AHY), ¢ UA,
Vi~ = F(Tao — Ty) + ——koe BRI CoV, + T, —T,
rar = o =T omCom 0 AV ,ome,m( i—T)
(53)
dr; UA,
Vige =FiTo = 1) - 5o (T~ T) (54)

with the process parameters’ values given in Table 1.
While we may define € =V;/V; to rewrite Eq. (54) in the stan-
dard singularly perturbed form, in which case both temperatures

7.5
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Fig. 10. Cost function of LMPC for the CSTR in closed-loop under the LMPC utiliz-
ing the first-principles model (blue line) and the SI slow model (orange line). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

have fast dynamics relative to the concentration dynamics, this can
also be deduced from the data generation outlined in the next sub-
section.

The initial operating point of the CSTR is its steady-
state (Cas, Trs, Tjs) = (2.54kmol m—3, 274.4K,303.3K) and Cpgs =
3.75kmolm~3. The manipulated input variable is the feed con-
centration of reactant A, represented by the deviation variable
ACag = Cag — Cap.s and bounded as per | ACpg| < 3.5kmolm~3. Con-
sequently, the states and manipulated input of the closed-loop sys-
tem in deviation form are represented by

X = CA - CA,S (55)
and
u= ACAO (56)

respectively. Hence, the origin of the state-space, given by
(x%,ut) = (0,0), is the equilibrium point of the system.

It is desired to apply the SI-based LMPC of Eq. (43) to maintain
the operation of the CSTR at the equilibrium point (Ca, Tr.s, Tjs)
by manipulating the feed concentration ACaqg. For the simulation
of the ODE system of Egs. (52) to (54), the explicit Euler method
is used to numerically integrate the equations with an integra-
tion time step of h. = 0.1seconds. Since the optimization problem
in the LMPC of Eq. (43) is nonlinear, it is solved using Pylpopt,
the python interface of the IPOPT software package (Wachter and
Biegler, 2006), with a sampling period of A = 10seconds.
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Fig. 11. Iteration time of each MPC step for prediction horizon lengths of N =16
(blue line) and N = 17 (orange line) when the LMPC utilizes the first-principles pro-
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Fig. 12. Iteration time of each MPC step for prediction horizon lengths of N =23
(blue line) and N = 24 (orange line) when the LMPC utilizes the sparse-identified
slow model, where the black dotted line represents the sampling time A =10 s.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

6.2. Data generation and model development

To design the LMPC of Eq. (43), the slow subsystem must be
first reconstructed as an ODE to be incorporated as the process
model. To identify the slow subsystem using data, a range of 10
different initial conditions are chosen with Ca(0) taking values
between Omol m~—3 and 9.0mol m~3 in intervals of 1.0mol m=3,
T-(0) taking values between 280 K and 370 K in intervals of 10
K, and T;(0) varying between 300 K and 390 K in intervals of 10
K. The system of differential equations described by Eqs. (52) to
(54) is numerically integrated for each set of initial conditions from
the initial time of 0.0 hr to 1.0 hr with a step size of 1 x 10~6
hr to simulate the experimental/industrial process. The generated
data is then sampled with a sampling period larger than the step
size to simulate data collection via sensors and measuring instru-
ments. This sampling is conducted with a sampling period of 0.005
hr since any larger sampling period leads to inaccurate estimates of
the time-derivative, causing the sparse identification algorithm to
fail for this system. The sampled data from the 10 runs is finally

10
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Fig. 13. Input profiles for the CSTR in closed-loop under the LMPC utilizing the
first-principles model with N = 16 (blue line) and the SI slow model with N =24
(orange line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

combined into the data matrix, X. A plot of X and/or the gradient
of X versus time clearly indicates that both temperature variables,
Tr and Tj, are the fast states, while Cy is the only slow state in this
system. Examples of such plots can be found in Figures. 7, 8 and
6 in the simulation results (Section 6.3). Therefore, we only con-
struct a model for the concentration C, using sparse identification,
as it is the slow subsystem.

The sparse identification algorithm was applied to the concen-
tration data from the open-loop simulations. Ten iterations were
completed, and the nonzero coefficients were confirmed to have
converged within five iterations. The coefficient threshold A was
fine-tuned to a value of 2.0 to yield the following slow model,

dCp

dt

However, Eq. (57) needed to be converted to deviation variables
and the input accounted for. Hence, using Eq. (55), Eq. (57) was
written as

dx

dt

In Eq. (58), the constant term, 0.11901, was due to numerical inac-
curacies resulting from modeling via sparse identification and the
lack of data near the origin of the system in deviation variables
(which corresponds to data near the steady-state of the original
system). The data generation was carried out over a 1-hour simula-
tion duration, within which the system did not reach very close to
its steady-state. However, the simulation length can be increased
beyond 1 h to increase the amount of data near the steady-state,
which would improve model performance near the origin. The
value of this constant residual term in Eq. (58) was found to mono-
tonically decrease with increasing simulation length for the data
generation step as shown in Fig. 2. If the data generation is carried
out over a simulation length of 20 hours, the value of the resid-
ual term reduces to 0.00562783. The optimal sparse identification
model built from data generated over an infinitely long simulation
would not contain the constant term. Furthermore, we know that
the origin is an equilibrium point for the system in deviation vari-
ables. Therefore, the constant term in Eq. (58) was neglected. Addi-
tionally, the input term must be present in the closed-loop model.
The procedure outlined in Section 3.2 was used to calculate g(x),
which was approximately between 3 and 4. Comparing this result
to the first-principles model, where the term corresponding to the
manipulated input was known to be 3u, g(x) is taken to be equal

—9.93101 — 3.85957C, (57)

=9.93101 — 3.85957(x + Cp5) = 0.11901 — 3.85957x (58)
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to 3. Hence, the sparse-identified slow subsystem was identified as

dx
det
While the above procedure required partial knowledge of the
first-principles model of the process, the stability results of
Section 5 merely assumed an input-affine model as given in
Eq. (19). Hence, we could alternatively add a manipulated input
term of u rather than 3u to Eq. (59), and the stability results would
hold, while the simulation results would scale accordingly. Further-
more, the coefficient associated with u could also be found more
accurately using steady-state data for different input sequences
and initial conditions. Henceforth, Eq. (59) will be referred to as
the SI slow subsystem or SI slow model for the CSTR system.
After the model identification, the Lyapunov functions for the
nominal slow subsystem and the SI slow subsystem are chosen
to be identical ie, V(x) =V(x) =0.01x%. The region &y where
V < —kV under the controller u = ®(x) € U is analyzed in Fig. 3.
The range x € [-2, 2] is considered because the steady-state con-
centration is 2.54kmolm=3, and concentrations may not be neg-
ative. As the Lyapunov function in this case is a quadratic func-
tion, its level sets are represented by intervals in x. Hence, the
closed-loop stability region €2, for the reactor system described
by the SI slow subsystem is represented by the largest level set

of V in <13u. From Fig. 3, it is observed that V < —kV is satisfied
for the entire range of x. Therefore, the closed-loop stability region
2, is also characterized as the entire range of x € [-2,2]. Con-
sidering |x| < 0.05 to be sufficiently close to the origin, a value of
2.5 x 1075 was calculated for pg. The cost function in Eq. (43a) is
chosen to be L(x, u) = leél + |u|f22 where Q; = 10 and Q;, = 1, such
that L achieves its minimum at the origin of the closed-loop sys-
tem.

= —3.85957x + 3u (59)

6.3. Simulation results

First, simulations are conducted for the closed-loop system un-
der the MPC using the nominal slow subsystem and the SI slow
subsystem as the process model of Eq. (43b), separately. While,
in practice, if solely data is available, only the sparse identifica-
tion approach can be used, the nominal slow subsystem is used
to represent the experimental process. Hence, the LMPC utilizing
the nominal slow subsystem yields the ideal performance that an
LMPC with a data-driven process model can achieve and be com-
pared against. Fig. 4 shows that the open-loop state trajectory
of the slow state predicted by the sparse-identified concentration
model of Eq. (59) with u=0 is in close agreement with the first-
principles concentration model of Eq. (52), for a fixed time interval
and the same initial condition of xg = 1 € €. As a result, it can be
concluded that the sparse-identified model of Eq. (59) can be con-
sidered a satisfactory approximation of the first-principles process

1

model of Eq. (52). Consequently, the sparse-identified slow model
of Eq. (59) is used as the process model in the LMPC of Eq. (43).

Figures. 5 and 6 depict the closed-loop states of the CSTR for
a range of initial conditions xo € €25 under the LMPC utilizing the
SI slow model. It is observed that the states converge to a small
neighborhood containing the origin, €2, . , for all initial conditions
studied. Therefore, the LMPC with the SI slow model can be con-
sidered adequate to stabilize the CSTR system due to the suffi-
ciently small modeling error.

The closed-loop states and manipulated input profiles of the
CSTR system of Egs. (52) to (54) under the LMPC are shown
in Figs. 7, 8 and 9. Figure 7 compares the state trajectories for
the closed-loop system from an initial condition of (Cy —Cas. Tr —
T, Tj = Tjs) = (1kmol m—3, 30K, 40K) when the different process
models are used in the controller. An MPC prediction horizon
length of N =5 is chosen for both cases. In both simulations, it
is observed that the state trajectory is driven to €2, . under the
controller faster than in the open-loop scenario without a con-
troller. Analyzing the time-varying states more closely as shown in
Fig. 8, it is demonstrated that the evolution of the states is nearly
identical for both the nominal slow model and the SI slow model.
Fig. 9 shows the manipulated input profiles for the closed-loop sys-
tem, which are observed to be within the range of permissible u.
The results of Figs. 7, 8, 9 were also reproduced for other initial
conditions, implying the LMPC incorporating the SI slow model is
able to stabilize the CSTR system and drive the states to the ori-
gin nearly as efficiently as the LMPC utilizing the nominal slow
model. Furthermore, when the integral of the cost function of the
LMPC fttio L(x(t),u(t)) dr is calculated over the simulation period
tp = 1hr, it is obtained that L = 330.2 and L = 330.0 for the LMPC
utilizing the first-principles model and the SI slow model, respec-
tively. The negligible difference indicates that the closed-loop per-
formance under both models is similar with respect to energy as
well as speed of convergence to the origin. The value of the cost J
over the simulation period of 1 hr is shown in Fig. 10, indicating
that there is no significant difference in the states and manipulated
inputs computed by the LMPC using either process model.

6.4. Effect of process model selection on computational time and
maximum allowable prediction horizon length

The choice of the process model for the LMPC has a significant
effect on the total as well as per iteration computational time of
the MPC, directly limiting the maximum prediction horizon length
that can be implemented. Due to the increased complexity of the
first-principles process model, the computational time required to
solve the LMPC optimization problem for the LMPC incorporating
the first-principles slow model is higher for any given prediction
horizon length. Consequently, the longest prediction horizon that
can be implemented in the controller is lower for the LMPC with
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Table 2
Maximum allowable prediction horizon length and corresponding integral of cost
function over simulation period tj.

LMPC Process Model Max allowable N Integral of Cost Function

16
24

243.8
2259

First-principles slow model
Sparse-identified slow model

the first-principles model, leading to a higher total of the integral
of the LMPC cost function over the simulation period.

Figs. 11 and 12 depict the iteration time required for each
of the 360 LMPC steps overs the entire simulation period of
3600 s with a sampling period A of 10 s for the LMPC un-
der the first-principles model and the SI slow model, respectively,
while using the initial conditions, (Ca —Cas, Tr — Trs, Tj — Tj) =
(1kmol m~3, 30K, 40K). Practically, since the optimization problem
is solved in every sampling period A, the computational time for
a single iteration cannot exceed A. As A is chosen to be 10 s in
this application, for a feasible N, no iteration time can exceed 10 s.
From Fig. 11, it is observed that, for the LMPC utilizing the first-
principles slow model, the maximum allowable prediction horizon
length is N = 16. Numerically, it is confirmed that, in this case,
the longest iteration times when N =16 and N =17 are 9.59 s
and 10.85 s, respectively. In contrast, for the LMPC with the SI
slow model, the maximum allowable prediction horizon length is
N =24 as seen in Fig. 12. For this controller, the longest iteration
times for prediction horizon lengths of N =24 and N = 25 were
calculated to be 9.83 s and 13.6 s, respectively. Finally, the time-
integral of the LMPC cost function f:ﬁo L(x(t),u(t)) dr is calcu-
lated over the simulation period t, = 1hr for the controller utiliz-
ing the first-principles model with N = 16 and the controller incor-
porating the SI slow model with N = 24. It is found that the costs
are L =243.8 and L =225.9 for the first-principles model-based
controller and Sl-based controller, respectively. This implies that
the LMPC based on the SI slow model, when maximizing the pre-
diction horizon length to N = 24, outperforms the LMPC based on
the first-principles slow model with its prediction horizon length
maximized at N = 16, in terms of lower energy and faster conver-
gence to the origin. This fact can also be observed from the state
and input profiles, shown in Figs. 14 and 13, respectively. The LMPC
based on the SI slow model takes more aggressive control action in
the earlier MPC steps as seen in Fig. 13, causing the state to con-
verge slightly faster to the origin as depicted in Fig. 14. The maxi-
mum allowable prediction horizon lengths and their corresponding
costs are summarized in Table 2.

7. Conclusion

This article focused on the design of a Lyapunov-based MPC
for a class of nonlinear singularly perturbed systems using only
measurement data from processes. In singularly perturbed systems,
due to the presence of time-scale multiplicities, a direct applica-
tion of MPC without accounting for the evolution of the states
in different time scales can lead to closed-loop performance de-
terioration or even closed-loop instability due to controller ill-
conditioning. Hence, we proposed a method to first separate the
slow and fast variables in the system and then design the MPC
based on the reduced-order slow subsystem. Furthermore, due
to the lack of a first-principles model in most practical appli-
cations, our method used only sampled experimental/industrial
simulation data to reconstruct the reduced slow subsystem via a
machine-learning method known as sparse identification. Subse-
quently, the theory was developed by deriving sufficient conditions
for closed-loop stability under sample-and-hold implementation.
Finally, the proposed LMPC design was applied to a non-isothermal
reactor that exhibited time-scale separation. It was observed that
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the controllers yielded nearly identical performance for the same
controller parameters. However, the LMPC based on the sparse-
identified slow subsystem could implement superior controller pa-
rameters, such as a longer prediction horizon, due to its reduced
complexity and, hence, lower computational time. As a result, the
SI based LMPC outperformed the LMPC utilizing the first-principles
model when the superior parameters were used for the former
controller, demonstrating the practicality and benefits of designing
MPC by reconstructing the reduced slow subsystem from measure-
ment data.
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