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a b s t r a c t 

In this paper, a novel algorithm based on sparse identification, subsampling and co-teaching is developed 

to mitigate the problems of highly noisy data from sensor measurements in modeling of nonlinear sys- 

tems. Specifically, sparse identification is combined with subsampling, a method where a fraction of the 

data set is randomly sampled and used for model identification, as well as co-teaching, a method that 

mixes noise-free data from first-principles simulations with the noisy measurements to provide a mixed 

data set that is less corrupted with noise for model training. The proposed method is bench-marked 

against sparse identification without subsampling as well as subsampling but without co-teaching using 

two examples, a predator-prey system and a chemical process, both of which are modeled as nonlinear 

systems of ordinary differential equations. It was shown that the proposed method yields better models 

in terms of prediction accuracy in the presence of high noise levels. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Historically, a key focus of research in the fields of science 

nd engineering has been the discovery of physical laws in the 

orm of governing equations. In recent years, however, the focus 

as shifted to data-driven discovery of these laws. These funda- 

ental laws are often in the form of dynamical models i.e., ordi- 

ary differential equations (ODE) or partial differential equations 

PDE) in time. Examples include the Maxwell equations from elec- 

romagnetism, Boltzmann equation from thermodynamics, Navier- 

tokes equations from momentum transfer, Black-Scholes equation 

rom finance, and predator-prey equations from biology ( Zhang and 

in, 2018 ). In other words, the laws are discovered as time-series 

redictive models, which are a necessary building block in many 

ngineering applications, from predictive maintenance in indus- 

rial engineering to advanced control systems such as model pre- 

ictive control (MPC) that are widely found in chemical process 

ystems. MPC requires a dynamical model to predict the states 

nd/or outputs of the process over a prediction horizon. As a re- 

ult, considerable work on data-driven modeling can be found in 

he context of MPC ( Abdullah et al., 2021a; 2021b; Aggelogiannaki 

nd Sarimveis, 2008; Al Seyab and Cao, 2008; Aumi et al., 2013; 
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haffart and Ricardez-Sandoval, 2018; Garg and Mhaskar, 2018; Xie 

t al., 2015; Zeng et al., 2010; Wu et al., 2021a; 2021b ). Some of the

ata-driven system identification methods developed and investi- 

ated in the recent literature include singular value decomposi- 

ion ( Moore, 1986 ), Numerical algorithms for Subspace State Space 

ystem Identification (N4SID) ( Van Overschee and De Moor, 1994 ), 

nd auto-regressive models with exogenous inputs (ARX/ARARX) 

 Huusom et al., 2012; Menezes and Barreto, 2008; Siegelmann 

t al., 1997 ). Due to the exponential increase in computational 

ower over the past decade, machine learning methods, a sub- 

et of data-driven modeling methods, have produced remarkable 

esults when utilized to their fullest extents due to their ability 

o capture complex, interacting nonlinearities by tuning numer- 

us hyper-parameters ( Ali et al., 2015; Kosmatopoulos et al., 1995; 

rischler and D’Eleuterio, 2016; Wong et al., 2018 ). Machine learn- 

ng methods are a broad class of data-driven modeling methods 

ncluding linear regression, support vector machines, deep neural 

etworks, sparse identification, etc. ( Brunton et al., 2016 ). The pri- 

ary method investigated and improved in this article is sparse 

dentification. While sparse identification has already been devel- 

ped in many facets ( Mangan et al., 2016a; Dam et al., 2017; Scha- 

ffer et al., 2018; Tran and Ward, 2017; Kaiser et al., 2018; Mangan 

t al., 2019; Boninsegna et al., 2018; Schaeffer et al., 2020; Loiseau 

nd Brunton, 2018; Zhang and Schaeffer, 2019 ), the aspect of noisy 

ata remains largely a challenge for the method. 

https://doi.org/10.1016/j.compchemeng.2021.107628
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107628&domain=pdf
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.compchemeng.2021.107628
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Since machine learning methods have mostly been developed 

n the domain of computer science, they often either assume the 

vailability of high-fidelity data or use the term “noisy data” to 

efer to mislabels in classification problems rather than numeri- 

al inaccuracies in regression problems ( Han et al., 2018 ). Hence, 

he reported accuracy and success of these methods stem from 

pplication of the algorithms to standard, clean data sets. How- 

ver, in the field of engineering, particularly chemical engineer- 

ng, the availability of noise-free data remains a challenge. Most 

ngineering systems contain at least sensor and measurement 

oise, if not disturbances. Consequently, when machine learn- 

ng methods are applied to noisy data from process engineer- 

ng systems, the results may be unexpectedly inferior. To miti- 

ate the subpar performance of traditional system identification 

ethods when using noisy data, a significant amount of effort 

urfaces when the recent literature is reviewed. Examples include 

he extension of the ARX and ARARX methods to input/output 

ata with additive white noise ( Diversi et al., 2010 ), estima- 

ion of the noise term using methods involving principal com- 

onent analysis ( Wu et al., 2015 ), applying subspace identifica- 

ion methods to closed-loop operation data ( Juricek et al., 1998 ), 

nd the Kalman filter for linear dynamical systems with Gaus- 

ian white noise ( Patwardhan et al., 2012; Yeo and Melnyk, 2019 ). 

or nonlinear systems, methods investigated in the literature in- 

lude the extended Kalman filter and moving horizon estimation 

 Patwardhan et al., 2012 ). However, the methods described incor- 

orate numerous assumptions regarding the structure of the sys- 

em and noise distribution, limiting their applicability to industry 

 Patwardhan et al., 2012 ). As a result, the field of data-driven pro-

ess modeling for dynamical systems using noisy sensor data re- 

uires further innovation and improvement to be implemented in 

ractice. 

Although the initial paper, Brunton et al. (2016) remarked 

hat the total-variation regularized derivative is robust to noise, 

 deeper investigation into the levels of noise as well as the 

ata generation and sampling details reveals that the claim can- 

ot be broadened to every case, or even many practical cases. 

nder high levels of noise, the calculation of the model param- 

ters in sparse identification suffers greatly. This is due to the 

ynamics possibly being sparse only in a non-orthonormal basis, 

uch as monomials, or due to the sampling of the variables fol- 

owing the system dynamics instead of being random or experi- 

entally designed, which can lead to ill-conditioning measurement 

ata matrices ( Hadigol and Doostan, 2018 ). Due to these two is- 

ues in the measurement data matrix, the matrix may generally 

iolate the incoherence property ( Bruckstein et al., 2009; Doostan 

nd Owhadi, 2011; Hampton and Doostan, 2015b ) or the restricted 

sometry property ( Candès, 2008; Rauhut and Ward, 2012; Peng 

t al., 2016 ) in the underdetermined problem, or not satisfy the 

ncoherence property ( Cohen et al., 2013; Hampton and Doostan, 

015a ) in the overdetermined problem. Therefore, a number of in- 

estigations have been carried out to explicitly detail the impact 

f noise on sparse identification, and several extensions have been 

roposed to the original sparse identification algorithm to account 

or noise and other practical concerns. In Nguyen et al. (2020) , the 

ssues of both noise and irregularly sampled data are addressed 

y using an assimilation step with an autoencoder or ensemble 

alman filter before the model-identification step to use recov- 

red states in the identification step. Partially available data and 

oise have also been investigated in Didonna et al. (2019) , al- 

hough the noise levels considered are relatively low with a signal- 

o-noise ratio (SNR) of 22.33. In de Silva et al. (2020) , the dis-

repancy between the true governing equations and the sparse- 

dentified models due to noise is addressed by exploiting group 

parsity, where partial knowledge of the underlying physics is used 

o group terms together and ensure all or none of the terms ap- 
2 
ear in the model. de Silva et al. (2020) used a smoothed finite- 

ifference approach using the Savitzky-Golay filter, as will be used 

n this paper, and deeply studied the effect of most of the pa- 

ameters and possible variables in the derivative estimation step. 

e Silva et al. (2020) provides the highest level of detail regarding 

he numerical differentiation procedure used in this paper. In sum- 

ary, it was shown that smoothing the data generally improves 

erformance, changing the type of finite-difference or smoothing 

eakly affect the results at sufficiently high noise levels, and that 

he default window used in the filter is appropriate for highly 

oisy data. These results further demonstrate the necessity to de- 

elop novel methods to extend sparse identification to the case 

f highly noisy data. Quade et al. (2018) proves that when sparse 

dentification is used to update an existing model in real-time by 

sing only new data as it becomes available, the algorithm is less 

usceptible to noise than re-identifying a new model. The focus 

f Quade et al. (2018) was on real-time model updates, which are 

ighly applicable to many practical problems. Hence, the first and 

erhaps most important step of identifying a model from the bulk 

f the raw data collected did not include any noise. Hence, the 

erivative estimation was carried out using a simple first-order for- 

ard finite-difference routine, which causes no significant inaccu- 

acies or even numerical instabilities. However, the effect of noise 

as studied in the sense that noise was added to the new data 

s it becomes available, which were used to update the model in 

eal-time. However, as shown in their results, the amount of new 

ata collected to update a model is much less than the amount of 

otal data used to initially identify an accurate model. Furthermore, 

n this step, the noise was added directly to the derivative rather 

han using the forward finite-difference scheme used in the main 

ata set. Due to these two factors, it is ambiguous what the effect 

f the new noisy data would be if a finite-difference method was 

sed to compute the derivatives, or if the original data itself was 

orrupted with noise. Leylaz et al. (2021) uses an “algebraic op- 

ration”, specifically Laplace transforms and inverse Laplace trans- 

orms, to reformulate the ODE model using integral terms, which 

itigates noise in successive operations. In Lin et al. (2021) , the 

omputation of the second derivative in mass-spring systems is 

voided by using the Duhamel’s integral, while further de-noising 

s proposed by means of the RKHS (Reproducing Kernel Hilbert 

pace)-based non-parametric de-noise method. Sparse identifica- 

ion has also been assisted by the manifold boundary approxima- 

ion method in Sari ́c et al. (2021) to extend it to power systems, 

hich involve differential algebraic equations (DAE), stiff ODEs, 

nd low measurement noise. Although the application was to PDEs 

ather than ODEs, Schaeffer (2017) studied a large number of ex- 

mple systems using sparse identification and employed spectral 

ethods/filtering ( Hesthaven et al., 2007 ) to estimate the deriva- 

ives. 

To deal with implicit ODEs as well as noise, sparse identi- 

cation was extended in Mangan et al. (2016b) . However, the 

ethod suffered from an explosive increase in the sensitiv- 

ty to noise. This was subsequently addressed and improved in 

aheman et al. (2020) via parallel processing and multiple opti- 

ization algorithms, making the new method, SINDy-PI, orders of 

agnitude more robust to noise than before. However, from the 

ase studies in Kaheman et al. (2020) , the improved method still 

ailed at noise levels above variances of 10 −4 , which is very low 

or practical purposes. Furthermore, as the method is implicit, the 

erivative terms and their interactions must all be included in the 

unction library for this method, which can greatly expand the 

unction space. Hence, even more caution is required in building 

he library when using SINDy-PI. While the increase in computa- 

ional expense is offset by parallel processing, the additional in- 

rastructure required for parallelization might not be available in 

any applications. 
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Two papers, Cortiella et al. (2021) and Zhang and Lin (2021) , 

ave pioneered the application of sparse identification to noisy 

ata. In the first, Cortiella et al. (2021) modified the orig- 

nal L 1 -regularized sequential least squares algorithm from 

runton et al. (2016) by instead using a reweighted L 1 -regularized 

equential least squares algorithm for the optimization and the 

econd-order Tikhonov regularization for the derivative approx- 

mation. The regularization parameter was determined using a 

areto curve. The other paper, Zhang and Lin (2021) , proposed 

 subsampling-based threshold sparse Bayesian regression or 

ubTSBR, where a fraction of the entire data set is randomly sub- 

ampled a number of times and the best model selected using a 

odel-selection criterion. 

In all of the papers mentioned above, with the exception of 

wo, the derivatives were calculated either using the ODE in 

he data generation step with noise subsequently added to it, 

r the derivatives were estimated using numerical methods from 

he exact data generated and noise was added to both the data 

nd computed derivatives afterwards. The only exceptions were 

chaeffer (2017) and Cortiella et al. (2021) . In Schaeffer (2017) , 

xcept the final example, the remaining examples were also car- 

ied out with noise being added directly to the derivatives rather 

han the data sets themselves. However, in the final example, 

t was noted that the underlying assumption of such an esti- 

ation methodology is that the derivatives themselves are more 

orrupted by the noise than the original data, which restricted 

he scope of application of the method. Therefore, attempting to 

dentify the governing PDEs with only noisy data and estimat- 

ng derivatives from the data was attempted. It was demonstrated 

hat, even with presmoothing and spectral filtering, the method 

orked until a noise level of 50% and failed at 100%, the lat- 

er of which is the low level of noise considered in this work. 

n Cortiella et al. (2021) , despite using Tikhonov regularization 

nd reweighted L 1 -regularized sequential least squares, the authors 

howed that the errors in both the derivative approximation and 

he solution increase rapidly in orders of magnitude when the 

oise level increases beyond σ = 10 −2 , which is also very small 

or all practical purposes. Moreover, their main results for all their 

tudies are based on data with a SNR of approximately 60. Further- 

ore, all the papers considered only zero-mean Gaussian white 

oise. To the best of our knowledge, in the context of sparse iden- 

ification, the direct impact of noisy industrial data on the deriva- 

ive computation as well as non-Gaussian noise have not been 

tudied in detail. The method used to approximate the derivatives, 

s well as the optimizer that is used with the derivative approx- 

mator are crucial hyperparameters that require in-depth analysis 

s will be seen in Section 4 . 

Beyond the domain of sparse identification, another recent 

ethod to prevent overfitting in the presence of high noise in 

easured data that has received significant attention, developed 

rimarily in the context of neural networks, is co-teaching, where 

oise-free data from first-principles simulations is used to as- 

ist the training process ( Wu et al., 2021a; 2021b ). The method 

roposed in this work combines both subsampling ( Zhang and 

in, 2021 ) and co-teaching ( Wu et al., 2021a; 2021b ) with sparse

dentification to deal with even higher levels of noise than was 

reviously possible to handle. 

The rest of this manuscript is organized as follows: in Section 2 , 

he class of nonlinear systems considered and the basic methods 

ombined for the implementation of the proposed novel method 

re reviewed in brief. In Section 3 , the novel method combining 

parse identification with subsampling and co-teaching is intro- 

uced and described in detail. In Section 4 , the proposed method is 

pplied to a predator-prey example and a chemical reactor exam- 

le to demonstrate its effectiveness, and the conclusions are sum- 

arized in Section 5 . 
S

3 
. Preliminaries 

.1. Class of systems 

The class of continuous-time nonlinear systems considered in 

his work can be written in the form, 

˙ 
 (t) = f (x (t)) , x (t 0 ) = x 0 (1a) 

 = x + w (1b) 

here x ∈ R 

n is the state vector, y ∈ R 

n is the vector of sampled

easurements of the states, w ∈ R 

n is the sensor noise, and the 

nknown vector function f (·) is the process model representing 

he inherent physical laws constraining the system. Without loss 

f generality, the initial time t 0 is taken to be 0 throughout the 

rticle. 

.2. Sparse identification 

Sparse identification is a relatively new method for identifying 

onlinear systems based on data. It has been effectively deployed 

n a wide range of engineering systems of relevance ( Wang et al., 

011; Schaeffer et al., 2013; Ozolinš et al., 2013; Mackey et al., 

014; Brunton et al., 2014; Proctor et al., 2014; Bai et al., 2015 ).

rovided with only sensor measurements from a system of the 

orm of Eq. (1) , sparse identification aims to reconstruct the sys- 

em as a first-order differential equation of the form, 

˙ ˆ 
 = 

ˆ f ( ̂  x ) (2) 

here ˆ x ∈ R 

n is the vector of state of the sparse-identified model 
ˆ f (·) . 

The central idea of sparse identification is to consider many 

ossible nonlinear terms for the right-hand side of Eq. (2) , ˆ f , and 

ubsequently identify the few active terms in 

ˆ f . This apparent sim- 

lification stems from the fact that physical systems in practice 

nly contain a small number of nonzero terms when consider- 

ng a large set of terms i.e., candidate basis functions. Hence, the 

pace of all nonlinear basis functions considered is sparse, and ef- 

cient algorithms may be used to compute the pre-multiplying co- 

fficients. To carry out sparse identification we first sample and 

ollect a set of measurements of the states x 1 , x 2 , . . . , x n at times

 1 , t 2 , . . . , t m 

from open-loop simulations and concatenate them 

nto the data matrix X , 

 = 

⎡ 

⎢ ⎢ ⎣ 

x 1 ( t 1 ) x 2 ( t 1 ) · · · x n ( t 1 ) 
x 1 ( t 2 ) x 2 ( t 2 ) · · · x n ( t 2 ) 

. . . 
. . . 

. . . 
. . . 

x 1 ( t m 

) x 2 ( t m 

) · · · x n ( t m 

) 

⎤ 

⎥ ⎥ ⎦ 

(3) 

here x i (t j ) denotes the measurement of state i at the j-th sam- 

ling time with i = 1 , . . . , n and j = 1 , . . . , m . The time-derivative

f X is represented by ˙ X and is a required quantity in the sparse 

dentification procedure. However, in the presence of measurement 

oise, the estimation of the derivative is a challenge. Although 

ome methods to robustly approximate the derivative are detailed 

n Brunton et al. (2016) , particularly the total-variation regularized 

erivative from Rudin et al. (1992) ; Chartrand (2011) , the results 

n this paper disagree in terms of its robustness and show that 

 smoothed finite difference can often yield better results. After 

cquiring X and 

˙ X , we build a function library, �(X ) , containing 

p candidate nonlinear functions of X corresponding to the p ba- 

is functions that may be active or inactive in the right-hand side 

f the ODE, ˆ f . The sparse identification technique leverages spar- 

ity to identify the active terms in this library, �. The augmented 

ibrary, �(X ) , is optimized like a hyperparameter in this paper. 

pecifically, it is constructed using either only monomials up to 
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hird-order including interaction terms or a combination of mono- 

ials, their interactions, and the four common trigonometric func- 

ions: sin, cos, tan , and tanh . Hence, the latter library containing all

ossible terms is of the form, 

(4) 

n Eq. (4) , X P 2 represents all quadratic nonlinearities: 

 

P 2 = 

[
x 2 1 x 1 x 2 · · · x 2 2 x 2 x 3 · · · x 2 n 

]
(5) 

he aforementioned choice of candidate basis functions is rooted in 

he observation that polynomials and trigonometric functions can 

e found in the natural laws governing many known physical sys- 

ems ( Brunton et al., 2016 ). 

The objective of the sparse identification algorithm is to find 

he p coefficients that pre-multiply the p nonlinear basis functions 

onsidered in �(X ) for each state x i . Each x i is associated with a

orresponding sparse vector of coefficients, ξi ∈ R 

p , that character- 

ze the nonzero terms in the respective ODE, ˙ x i = f i (x ) . Hence, n

uch coefficient vectors must be computed. In matrix notation, the 

uantity to be found is 

= 

[
ξ1 ξ2 · · · ξn 

]
(6) 

herefore, to determine the matrix �, the following equation 

eeds to be solved: 

˙ 
 = �(X )� (7) 

quation (7) is solved using sequential least-squares by zeroing all 

oefficients in � that are smaller than a threshold λ, known as the 

parsification knob, and repeatedly solving the resulting equation 

ith zeroed terms until the non-zero coefficients converge. Due 

o the sparse structure of �, convergence of the iterative step is 

apid. Once � is calculated, the overall model can be written as 

he continuous-time differential equation, 

˙ 
 = �� (�(x � )) � 

here �(x � ) is a column vector of symbolic functions of x from 

he function library, and x � denotes the transpose of x . 

.3. Subsampling 

Subsampling is a statistical technique where a subset of the en- 

ire data set is randomly selected for analysis instead of the entire 

ata set. While the method is typically employed to estimate sta- 

istical metrics ( Efron and Stein, 1981 ) or speed up an algorithm 

 Rudy et al., 2017 ), the objective of subsampling in this paper is to

ncrease the modeling accuracy in the presence of high levels of 

ensor noise. Specifically, in regression, when the number of data 

oints, m , is more than the number of unknown weights, as is the 

ase in most practical problems, the regression might be carried 

ut with only a subset of the entire data set to estimate the re-

ression parameters. This may be considered because a fraction 

f the data points are corrupted by high noise levels or are out- 

iers. Traditional regression methods like least squares use the en- 

ire data set by making the smoothing assumption, which states 

hat the larger proportion of low-noise or “good” values will suf- 

ciently smooth out any large noise in the data set. However, in 

ractice, this assumption may not hold in the presence of either 

ery high noise or consistently high noise throughout the data set 

s the fraction of “good” data points is inadequate to compensate 

he noise in these cases. The idea behind subsampling is to miti- 

ate the problem of data points with large noise by randomly sub- 

ampling to eliminate them before carrying out the regression or 

odel identification step. 
4 
.4. Co-teaching 

Co-teaching is a technique that improves the accuracy of a 

achine learning method by utilizing noise-free data sets from 

rst-principles models and simulations of a physical process. Co- 

eaching originated in the field of classification problems, par- 

icularly image classification, where neural networks are abun- 

antly used to classify images into user-defined categories. How- 

ver, a fraction of the images can be miscategorized, which dras- 

ically reduces the data quality and, consequently, neural net- 

ork accuracy if used without accounting for the mislabeled data 

amples. Such mislabels are termed “noisy labels” in machine 

earning. 

Although the co-teaching method has primarily been developed 

n the context of classification problems and deep neural networks, 

here is nascent research into extending this method to regression 

roblems using long short-term memory (LSTM) networks ( Wu 

t al., 2021a; 2021b ). Specifically, in Wu et al. (2021b) , co-teaching 

as compared to a Monte-Carlo dropout LSTM network, which is 

n advanced form of the standard dropout neural network where 

eights are randomly omitted during the training process to im- 

rove generalization and minimize overfitting. Dropout layers may 

e considered as a regularization term in the context of neural 

etworks. Carrying out regression on a subsampled fraction of a 

ata set repeatedly is analogous to a standard dropout neural net- 

ork where the omission of the weights occurs only in the train- 

ng and not the testing phase. In contrast to dropout neural net- 

orks and subsampling, the key proposition of co-teaching is that 

he loss function value is significantly lower for noise-free data as 

ompared to noisy data. Therefore, mixing any proportion of noise- 

ree data with measured noisy data can guide the model training 

rocess to be more robust to noise and overfitting. This assertion 

as proven in Wu et al. (2021b) , where the co-teaching LSTM out- 

erformed even the Monte-Carlo dropout LSTM in terms of lower 

pen-loop mean-square error as well as computational time (with- 

ut parallel processing in either case). 

. Subsampling-based sparse identification with co-teaching 

In this paper, the original sparse identification method is im- 

roved by combining it with subsampling and co-teaching as de- 

cribed in Section 2 . The proposed method, Sparse Identification 

ith Subsampling and Co-teaching (SISC), aims to mitigate the 

roblem of highly noisy measurement data. When the measured 

ata is either too noisy or consistently noisy, subsampling alone 

ay not be sufficient as it will merely randomly choose the least 

oisy data in the subsamples, which can still be heavily corrupted 

y noise in this case, or a very large number of subsamples may 

e required to successfully isolate a relatively low-noise subsample, 

hich can lead to an excessive computational expense. Therefore, 

n this paper, we also add noise-free data into each subsample to 

urther improve the identification procedure. 

In SISC ( Algorithm 1 ), a subset of the total data set is randomly

elected and mixed with noise-free data from first-principles sim- 

lations. The mixed data subset is used to estimate the model pa- 

ameters. The resulting model is then evaluated using a model- 

election criterion. After repeating the above steps for each sub- 

ample, the best model is selected to be the model with the lowest 

alue of the model-selection criterion. Specifically, the algorithm 

s initiated with three user-defined parameters: the subsampling 

raction p ∈ (0 , 1) , the noise-free subsampling fraction q ∈ (0 , 1) ,

nd the number of times L ≥ 1 to subsample and identify a model. 

or each of the L subsamples, a fraction containing p × m randomly 

elected data points from the original data set is mixed with q × m 

andomly selected data points from the noise-free data set. The re- 

ulting data submatrix for subsample i , where i = 1 , 2 , . . . , L , is of
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Algorithm 1: Sparse Identification with Subsampling and Co- 

teaching (SISC). 

Input : X, �, p, q, L 

Output : �

compute exact ˙ X of noise-free data using first-principles ODE 

model; 

compute estimate of ˙ X of noisy data using SFD or TVRD; 

for i ← 1 to L do 

randomly sample p fraction of industrial (noisy) data and 

its estimated derivative; 

randomly sample q fraction of first-principles simulation 

(noise-free) data and its exact derivative; 

mix and concatenate the data into X i and 

˙ X i ; 

calculate function library �(X i ) using only polynomial 

functions or a combination of polynomial and 

trignonometric functions; 

solve ˙ X i = �(X i )�i using STLSQ or SR3 with different 

values of λ to get �i ; 

with calculated �i , integrate ODE and compute AIC; 

end 

Let final R = arg min i { AIC i } ; 
Let � = �R . 
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he form 

 i = 

⎡ 

⎢ ⎢ ⎣ 

x 1 ( t 1 ) x 2 ( t 1 ) · · · x n ( t 1 ) 
x 1 ( t 2 ) x 2 ( t 2 ) · · · x n ( t 2 ) 

. . . 
. . . 

. . . 
. . . 

x 1 ( t p×m + q ×m 

) x 2 ( t p×m + q ×m 

) · · · x n ( t p×m + q ×m 

) 

⎤ 

⎥ ⎥ ⎦ 

(8) 

he equation to be solved for each subsample is, instead of Eq. (7) ,

˙ 
 i = �(X i )�i (9) 

here �i is the coefficient matrix that needs to be computed. Each 

omputed �i yields an ODE model, 

˙ 
 = �� 

i (�(x � )) � (10) 

hich is simulated and evaluated using the model-selection cri- 

erion against a portion of the data that is reserved for valida- 

ion. In this work, the Akaike Information Criterion (AIC) is used as 

he model-selection criterion since it is calculated using not only 

he mean-squared error (MSE) but also the number of terms in 

he model, promoting sparsity by penalizing models with a higher 

umber of terms. The AIC is defined in Mangan et al. (2017) as 

SE = 

1 

m 

m ∑ 

i =1 

(
x (t i ) − ˆ x (t i ) 

)2 
(11) 

IC = m log MSE +2 L 0 (12) 

here L 0 is the 0-th norm, which is equal to the number of non-

ero terms in the sparse-identified model. 

The hyperparameters to be tuned in the algorithm include the 

unction library to be constructed, the method chosen to compute 

he derivative from noisy data, the optimizer, and the value of 

he sparsification knob λ. The function library contains either only 

olynomial functions or both polynomial and trignonometric func- 

ions. The derivatives are approximated using either the total vari- 

tion regularized derivative (TVRD) or smoothed finite-difference 

SFD) after presmoothing with the Savitzky-Golay filter. The opti- 

ization is carried out using sequential thresholded least squares 

STLSQ) or SR3, which is an enhancement of the least absolute 

hrinkage and selection operator (LASSO) ( Zheng et al., 2019 ). To 

nd a suitable value of λ, values of 0.1, 0.2, and 0.3 were tested. A
5 
etailed justification for the choices of λ is given in Section 4.2.1 . 

nce all the hyperparameters have been tuned, a model is selected 

ased on the AIC value of the validation set. Finally, out of the L 

odels obtained from L subsamples after tuning all hyperparame- 

ers, the sparse-identified model with the lowest value of the AIC 

s taken to be the optimal model. The flow of the data through the 

lgorithm is depicted in Fig. 1 . 

emark 1. Both of the derivative approximation algorithms utilize 

ertain parameters that may be tuned as well. For the Savitzky- 

olay filter in SFD, the default values of a window length of 11 

nd cubic polynomials for curve-fitting were retained as they were 

atisfactory. For the TVRD, the regularization term was set to 0.001 

nstead of the default 0.01 and the maximum number of itera- 

ions with increased to 10 0 0 to ensure convergence. Further tuning 

as infeasible due to the large number of hyperparameters to be 

rained in the main algorithm. 

emark 2. It is noted that, due to the issues of noise and sparse 

dentification, some works have attempted to find alternatives to 

xplanatory dynamical modeling instead. Such methods include 

lack-box modeling using Runge-Kutta time-steppers embedding 

eural networks to account for nonlinearities ( Fablet et al., 2018; 

onzález-García et al., 1998; Raissi et al., 2018; Rudy et al., 2019 ). 

t is noted that these papers propose alternative methods to non- 

inear dynamical modeling rather than developing sparse iden- 

ification further. Consequently, their techniques of dealing with 

oisy data as well as the results obtained in this context cannot 

e directly inferred to sparse identification, where noisy data di- 

ectly and heavily affects the derivative estimation. For example, 

n Raissi et al. (2018) , neural network function approximators are 

sed in combination with classical linear multi-step time-stepping 

chemes (such as Runge-Kutta) to identify the nonlinear dynamic 

onstraints in the right-hand-side of an ODE model, similar to the 

roblem to be solved in sparse identification. However, when the 

ffect of specifically the noise on the results is analyzed, the pat- 

ern is initially unexpected. As the noise level in the input data 

s increased, the results become more accurate and then less ac- 

urate. This was explained by neural networks, in particular, ben- 

fiting from small noise levels in the input, which work as reg- 

larization. At even higher noise levels, however, the results de- 

eriorate due to the model not being able to disambiguate the 

oisy dynamics from the ground truth. Clearly, this is not the 

ase for sparse identification and most system identification meth- 

ds, where overfitting is not a common issue to the extent that 

ata needs to be intentionally corrupted with noise to increase a 

odel’s generalization capabilities. Rudy et al. (2019) presents a 

imilar but slightly more advanced work, where the data is de- 

omposed into separate true dynamics and noisy dynamics, each 

f which are separately modeled and predicted when forecasting. 

he modeling is similar to Raissi et al. (2018) in terms of com- 

ining neural networks with time-stepping schemes, although con- 

traints are added, making the overall problem more complex. The 

ffect of noise and general pitfalls of neural networks are discussed 

ear the end of their work, where, for example, the point is made 

hat a neural network is, at its core, an interpolation technique. 

ence, their proposed methods work best with systems where 

he dynamics evolve on an attractor, especially if it can be sam- 

led with a small sampling time. The generated models also pre- 

ict the trajectories to remain on the attractor for long simulation 

urations. If their method is used to integrate from new initial 

onditions or further from the attractor, the models may be in- 

ufficient. This is particularly important in the context of control, 

here they suggest collecting dynamic, transient data further from 

he attractor as perturbations and actuators must be considered. 

chaeffer and McCalla (2017) reformulates the ODE model using 

ntegral terms, which can be approximated using piecewise con- 
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Fig. 1. Data flow diagram. 
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rather than chemical engineering. 
tant quadrature, and the resulting equations efficiently solved us- 

ng the Douglas-Rachford algorithm. However, Schaeffer and Mc- 

alla (2017) mostly restricts its candidate functions for the model 

o polynomial terms and further notes that their method works 

etter on fact and/or chaotic manifolds rather than slower, equi- 

ibrium behavior, which is more relevant in chemical process sys- 

ems. A recent, novel method that has shown promise, especially 

hen the data is corrupted by high noise or outliers, is en- 

ropic regression ( AlMomani et al., 2020 ). We remark that these 

ethods may be used instead of or in combination with our 

ethod. 

emark 3. While the focus of this work is the modeling of non- 

inear dynamical systems, the ultimate objective is to incorpo- 

ate the developed models into model predictive control (MPC) 

s the process model, which will be explored in a future work. 

eal-time optimization has been studied in several recent papers. 

hang et al. (2019) incorporated feedforward neural networks and 

rst-principles process models into real-time optimization RTO and 

PC. In the event of an increase in energy prices or in the pres-

nce of a large error in the feed concentration, it was shown 

hat the performance of the controller with RTO outperforms the 
6 
ne without RTO. In Wu et al. (2020) , a recurrent neural net- 

ork (RNN) was used as the process model for a Lyapunov-based 

odel predictive controller (LMPC) and a Lyapunov-based eco- 

omic model predictive controller (LEMPC). The RNN model was 

pdated in real-time based on event-triggers and/or error-triggers, 

hich improved closed-loop performance in terms of stability, op- 

imality, and smoothness of control actions. Hence, the extension 

f our proposed modeling approach to include both real-time op- 

imization and model predictive control can be investigated in 

 future work after first extending it to solely model predictive 

ontrol. 

emark 4. The proposed method is applicable to any dynamic sys- 

em where data is obtained as time-series measurements. This in- 

ludes most chemical processes and plant data. The method would 

ot be directly applicable to data that are in other formats and 

tructures such as images. An example is the sequence of moving 

igits from the Modified National Institute of Standards and Tech- 

ology (MNIST) database, also known as the moving MNIST data 

et, where digits are moving. However, such data sets are mostly 

elevant in other disciplines of engineering and computer science 
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. Applications 

In this work, the effect of Gaussian white noise w ∼ N (0 , σ 2 )

n the sensor measurement y in Eq. (1) is analyzed. Specifically, 

he predictive ability of the model developed using SISC is bench- 

arked against the original sparse identification (SI) method as 

ell as sparse identification with subsampling without co-teaching 

SIS). First, the details of the demonstration procedure are out- 

ined. Subsequently, the two examples, a predator-prey system and 

 chemical reactor example, are individually studied. 

.1. Data generation, sampling, and noise generation 

The data generation procedure for both examples consists of 

rst integrating the corresponding system of ODEs using 50 dif- 

erent initial conditions over a wide range of values to maximize 

overage of the operating region of interest. The integration is car- 

ied out using the explicit Euler method with an integration time 

tep of h c = 10 −4 , while the sampling time � varies between the 

xamples. This yields the noise-free or clean data set. 

For both examples, four levels of noise are considered in this 

tudy. Noise levels 1 (very low), 2 (low), 3 (medium), and 4 

high) refer to white Gaussian noise with standard deviations σ1 = 

 . 02 , σ2 = 0 . 1 , σ3 = 0 . 2 and σ4 = 0 . 3 , respectively. For each level,

hite Gaussian noise is generated and amplified as necessary to 

ccount for any disparate scales of variables, and then added to 

he clean data set to generate the noisy data set. 

Once the 50 different state trajectories are obtained from the 

pen-loop simulations described above, the data set is split into 

0% training, 20% validation, and 20% testing data, respectively. 

he train-validation-test split of 60-20-20 used is highly subjec- 

ive, and many variations exist. Other common choices include 50- 

5-25, 70-15-15, and 80-10-10. There is no “right ratio” and trade- 

ffs exist. If the training proportion is increased, the model is able 

o use more data and possibly generalize better. A larger valida- 

ion set provides greater confidence in the model selection process, 

hile a larger test set produces a better assessment of the ability 

f the model to generalize to new, unseen data. The 4 combina- 

ions suggested above attempt to balance these three objectives. 

owever, as mentioned, these are not rigid rules and should be ad- 

usted as required. For example, if data is scarce due to expensive 

xperimental trials required to collect data, as is the case in sev- 

ral chemical processes, the smaller data set may warrant a larger 

raining set to maximize the model performance. In this scenario, 

he validation data set can be reduced and a k-fold cross-validation 

echnique may be used instead of information criteria. In fact, due 

o the lower number of data, the most expensive yet accurate val- 

dation technique, leave-one-out-cross-validation (LOOCV) can be 

sed even though it is rarely used in practice for larger data sets 

ue to the computational expense. For this scenario, an 80-10-10 

cheme may be preferable. If the data set is extremely large, how- 

ver, the preferred scheme may be 50-25-25 since there is suffi- 

ient data for training even with only 50% of the data being used. 

oreover, as the training process is likely to be the most compu- 

ationally expensive step, a smaller data set for training may also 

roduce models faster. This strategy is common in training neu- 

al networks, where “minibatches” are used rather than the entire 

raining data set. 

For the base case with no subsampling, the entire training set is 

sed for sparse identification to generate a single model following 

yperparameters tuning. For both subsampling methods, the num- 

er of subsamples L is taken to be 5 in order to keep the com-

utational burden reasonable. Furthermore, the total subsampling 

raction, which is equal to p for the SIS case and p + q for the

ISC case, remains the same for both the SIS and SISC cases when 

ompared. This is to ensure that both methods use the same to- 
7 
al number of data points for training but only differ in the na- 

ure of the subsample used. The total subsampling fraction is as- 

igned with the values of 0.2, 0.4, 0.6, and 0.8. The p : q ratio is

aken to be 4:1 throughout this paper as the goal is to demon- 

trate that only a small fraction of noise-free data is sufficient to 

mprove the performance when the SI and SIS methods fail. For 

xample, a total subsampling fraction of 0.2 indicates p = . 2 for 

IS and p = . 16 , q = 0 . 04 for SISC. Hence, for the SIS case, 20% of

he training data set will be subsampled L = 5 times and a sparse- 

dentified model will be trained for each subsample. For the SISC 

ase, each of L = 5 times, 16% of the noisy training data set will

e subsampled and then mixed with 4% of the noise-free training 

ata set to yield a subsample that contains the same number of 

ata points as the SIS method. Once the subsamples are extracted, 

 model is identified with sparse identification for each by tuning 

he hyperparameters and the best model based on the AIC is iso- 

ated. 

emark 5. The sampling time in the data generation step greatly 

ffects the results of any model identification method because in- 

ormation is inevitably lost in the sampling step. A smaller sam- 

ling time will generally yield better results due to the more ac- 

urate derivative computations and a more comprehensive history 

f the trajectory of the state over the simulation duration. How- 

ver, a very small sampling time such as 10 −4 or 10 −6 may be in-

easible in practice. Hence, even if such a sampling time produces 

xtremely accurate models, the variables, especially in a chemical 

rocess, can rarely be measured with such short sampling periods 

etween each measurement. Hence, the values of the sampling pe- 

iod in this paper are of the order of 10 −2 , which balances prac-

icality with accuracy. This constitutes another limitation of past 

tudies that primarily focus on high-fidelity data with impractically 

mall sampling times to identify models with a very high accuracy 

hat may not be immediately transferable to process engineering. 

emark 6. Apart from the sampling time and range of initial con- 

itions chosen, the amount of data generated is also dependent 

n the simulation duration t f . In case of a system with a steady- 

tate solution, the simulation duration should be long enough 

or the system to reach the steady-state, ensuring that the same 

teady-state is reached for every initial condition. However, once 

he steady-state is reached, continuing the simulation for much 

onger is redundant as there are no new dynamics to be captured. 

nstead, focus can be shifted to regions of the trajectories with 

igher information density such as those with higher gradients and 

aster dynamics. For example, in the case of multiscale systems, 

hampion et al. (2019) suggests burst sampling—a sampling tech- 

ique where the sampling time is as short as possible in the re- 

ion of change of the fast subsystem before it converges to a slow 

anifold, and is much larger for the rest of the simulation dura- 

ion since the dynamics of the slow subsystem can be captured 

ith significantly fewer data points. Advanced sampling techniques 

uch as burst sampling reduce the amount of data storage as well 

s computational burden and must be considered when generat- 

ng data from simulations instead of following a simple, iterative 

rocedure for data collection. 

emark 7. It is difficult to quantify the amount of data collec- 

ion required to obtain an accurate model in a general manner 

hat is applicable to all systems. However, when investigating the 

ata structure required and attempting to train models for vari- 

us patterns of generated data, it was observed from extensive 

imulations and trials that the dynamics covered over the dura- 

ion of the simulation were key to identifying an accurate model 

s opposed to merely the amount of data itself or even the sam- 

ling time. Hence, a very short period of data collection with an 

xtremely small, possibly physically infeasible, sampling time can 
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Table 1 

Test set MSE for the predator-prey system. 

σ No subsampling SIS SISC 

0.02 0.00596 0.00018 0.00021 

0.1 0.15925 0.05550 0.03851 

0.2 0.34151 0.08472 0.07614 

0.3 0.95057 1.70773 0.35808 
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ield a very high number of data-points but will likely yield a 

oor model. Instead, a larger simulation period with a larger sam- 

ling time where a fewer total number of data points are collected 

ill yield a superior model. Therefore, the emphasis should be not 

n the amount of data but rather the dynamics captured over the 

ange of time of data collection. Once sufficient dynamic informa- 

ion is captured in the entire data set, the aforementioned rules of 

etermining the train-validation-test split can be used. 

emark 8. The primary reason that some parameters such as the 

p : q ratio were fixed as constants instead of tuning by treating as 

 hyperparameter was due to the large number of hyperparameters 

o be tuned in this system, and because it was sufficient to demon- 

trate the results for a low noise-free fraction as this implies that 

he results will generally improve when the noise-free fraction is 

ncreased. 

.2. Example 1: Predator-Prey model 

The predator-prey system consists of two first-order differential 

quations describing the dynamics of two species: a predator and 

 prey. The equations take the form, 

˙ 
 1 = a 1 x 1 − a 2 x 1 x 2 (13a) 

˙ 
 2 = a 3 x 1 x 2 − a 4 x 2 (13b) 

here x 1 and x 2 are the population (numbers) of the prey and 

he predator, respectively, with parameters a i ∈ R , a i > 0 for i =
 , 2 , 3 , 4 . In this paper, the specific system considered is 

˙ 
 1 = 0 . 5 x 1 − 1 . 5 x 1 x 2 (14a) 

˙ 
 2 = x 1 x 2 − 0 . 5 x 2 (14b) 

The objective is to reconstruct Eq. (14) from noisy data using 

he methods described in the previous section. 

For data generation, using 40 out of 50 initial conditions be- 

ween 0.01 and 2.0 for each variable, the system of Eq. (14) is in-

egrated using a time step of h c = 10 −4 from t 0 = 0 to t f = 20 and

ampled with � = 0 . 2 for a total of 100 data points per trajectory.

his yields a total of 40 0 0 data points to be split into training and

alidation sets. For the testing set, the remaining 10 initial condi- 

ions are integrated identically as for the training/validation sets 

xcept t f is increased to 30. The goal of extending the simula- 

ion period for the testing set beyond the training/validation sets 

s to gauge the extrapolating capacity of the model since one sup- 

osed advantage of reconstructing dynamical models as opposed 

o black-box models is the ability to extrapolate beyond the train- 

ng data. 

Fig. 2 shows the results of this system when the various model 

dentification methods are employed. The various identified mod- 

ls are used to predict the states forward in time using the 10 

nitial conditions from the testing set and compared to the orig- 

nal testing data generated in the data generation step. The re- 

ults were similar for both variables but more pronounced in x 1 . 

o evaluate the results numerically, the mean-squared error (MSE) 

s also calculated between the original data and each predicted tra- 

ectory over the entire testing period. The MSE are summarized in 

able 1 . At the lowest noise level ( σ = 0 . 02 ), the base case achieves

 low test set MSE, and accurately models the system as seen 

n Fig. 2 . However, further improvement is observed when sub- 

ampling with or without co-teaching, with the order of magni- 

ude of the MSE being one order lower than the base case. Al- 

hough it appears that the SISC method performed slightly infe- 

ior to SIS, both MSE are extremely small, and the difference be- 

ween the two MSEs, 0.0 0 018 and 0.0 0 021, is negligible in this

ontext, especially as also observed in Figs. 2 and 3 . As the noise
8 
evel is increased to low ( σ = 0 . 1 ) and even medium ( σ = 0 . 2 ) lev-

ls, the results do not change significantly, except all the errors are 

ow higher. At the highest noise level ( σ = 0 . 3 ), the base case de-

eriorates significantly, overpredicting during most of the simula- 

ion period. Subsampling without co-teaching is not sufficient, and 

ields even poorer results than the base case in this example. In 

ontrast, mixing in only 20% of noise-free data to each subsam- 

le was sufficient to improve the model with a much lower MSE 

han the runs with no subsampling or co-teaching. Although spe- 

ific time instances might have poor results in the case of SISC as 

ell, this is not across most of the simulation period, and the re- 

ults are generally much more accurate, especially as also proven 

y the lower MSE. It is noted that the test set MSE values are gen-

rally small, and hence, even the percent decreases in the test set 

SE between the SIS and SISC cases are more significant than it 

ppears, which confirms the large improvement in accuracy. 

When the total subsampling fraction is increased from 0.2 to 

.4, 0.6, and 0.8, it is observed that the test set MSE usually de- 

reases in this example. However, the difference between the MSE 

rom the SIS and SISC methods also begins to decrease. This indi- 

ates that subsampling alone without co-teaching can be a large 

ource of improvement in some (but not all) examples. However, 

here are two concerns to address if such a strategy is adopted. 

irstly, the SISC method, when using only 40% of the data ( p + q =
 . 4 ), surpasses the accuracy of the SIS method under all values of

p that are used, even p = . 8 where double the amount of data is

eing used to identify a model. Secondly, as the proportion used 

or subsampling increases, the computational expense increases. 

ence, the SISC method outperforms the SIS method in the sense 

hat it uses smaller subsamples to identify a model with a lower 

or even equal) MSE. 

.2.1. Justification of coarse search for λ
The most important hyperparameter in the sparse identification 

lgorithm is the sparsification knob λ due to its impact on the 

odel as well as the continuous nature of the parameter. It may 

e considered analogous to the learning rate in neural networks 

n these aspects. Therefore, it is typically tuned using either a fine 

earch or a coarse-to-fine search. In this work, however, only 3 val- 

es were tested. To ensure the coarse search for the optimal λ did 

ot invalidate the results, an investigation into the effect of λ on 

he results was carried out. 

To study the effect of λ only, since the best optimizer, derivative 

pproximator, and function library have already been determined, 

hese parameters can be fixed at their optimal selections and only 

can be varied. This yields the best possible model that can be 

chieved by finely tuning λ while all other parameters have al- 

eady been optimized. The results for σ = 0 . 1 are shown in Fig. 4 .

 number of observations can be made from Fig. 4 . 

1. Values of λ above 1.0 zero too many terms, possibly all terms, 

leading to very high errors, with the error remaining constant 

until λ = 4 . 0 . Therefore, it is sufficient to only consider values 

of λ between 0 and 1. 

2. For values of λ below 1.0, smaller values generally yield lower 

values for both the AIC and the MSE. However, large differences, 

particular in orders of magnitude, occur at intervals of approxi- 

mately 0.1. Hence, a few small values of λ space 0.1 units apart 
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Fig. 2. Comparison of original noisy data (grey dots) with results from sparse identification without any subsampling (blue line), subsampling without co-teaching with 

p = . 2 (green line), and subsampling with co-teaching and p = . 16 , q = 0 . 04 (red line) for the quantity x 1 in the predator-prey system. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Comparison of original noisy data (grey dots) with results from sparse identification without any subsampling (blue line), subsampling without co-teaching with 

p = . 2 (green line), and subsampling with co-teaching and p = . 16 , q = 0 . 04 (red line) for the quantity x 2 in the predator-prey system. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Training set AIC and test set MSE for various λ ∈ [0 , 4] for the base case with no subsampling and σ = 0 . 1 . 

 

can yield a model very close to the best model possible and is 

sufficient for demonstration and comparison purposes. 

3. At the noise level considered in this investigation of σ = 0 . 1 ,

our optimal model was found to use the SR3 optimizer with 

the TVRD for derivative approximation and only a polynomial 

library. The best λ from our coarse search was 0.2. The final 

training AIC and test set MSE were -2617.451 and 0.15925, re- 

spectively. 

4. In contrast, the best λ from the fine search is 0.03, which gives 

training AIC and test set MSE of -2973.28 and 0.09942, respec- 

tively. The decrease in the metrics from the optimal model from 

the coarse search is not very large. Moreover, the best λ from 
11 
the fine search was only 0.03, requiring a grid spacing of 0.01 

or smaller when searching for λ. The optimal model from the 

coarse search, however, has a relatively wide range of values 

over which the same model is obtained. Hence, a larger step 

can be used when searching for λ. 

5. Due to the small differences in the metrics between the two 

optimal models in Fig. 4 , it is possible that the optimal mod- 

els would be reversed if the penalty on the number of terms 

were to be increased because the model from the coarse search 

only has 6 terms, while the model from the fine search con- 

sists of 15 terms. Specifically, in Eq. (12) , the first term ac- 

counts for the model-fit or accuracy by using the MSE while 
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Table 2 

Test set MSE for the predator-prey system using coarse and fine searches for λ in the 

No subsampling case. 

σ No subsampling (coarse) No subsampling (fine) SIS SISC 

0.02 0.00596 0.00596 0.00018 0.00021 

0.1 0.15925 0.09942 0.05550 0.03851 

0.2 0.34151 0.61213 0.08472 0.07614 

0.3 0.95057 0.92768 1.70773 0.35808 

Fig. 5. A continuous-stirred tank reactor with a heating coil. 
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the second term penalizes the number of terms in the sparse- 

identified model. The pre-multiplier of “2” taken in Eq. (12) can 

be increased to penalize the number of terms more heavily and 

compromise on the accuracy. In fact, if the pre-multiplier on 

the number of terms is larger than 41.54, the model identified 

from the coarse search remains as the optimal model. Hence, 

a more elaborate scheme to select a search method for λ can 

take into consideration the balance between sparsity and accu- 

racy. If a more sparse and less complex model is desired at the 

expense of some loss of accuracy, a coarse search may be pre- 

ferred. If accuracy is crucial, a coarse-to-fine search may be the 

fastest method since a coarse search will determine the region 

for the fine search and reduce the number of computations re- 

quired. In the case study of Fig. 4 , a coarse search can reveal

that values of λ below 0.5 require a finer search. 

6. Finally, even the optimal model from the fine search for the 

base case is inferior in terms of the test set MSE to both the 

subsampling cases. Hence, even if the subsampling cases used 

a finer search for λ to yield a superior model, it would only in- 

crease the differences in performance. The key findings of this 

work are the clear, qualitative improvements between the three 

different methods rather than the exact quantitative improve- 

ment from one model to another. 

7. As seen in Table 2 , at the lowest noise level, the models 

produced by the two searches were identical. This is likely 

due to the optimal model being almost the exact model re- 

quired to be found in both cases. Hence, a finer search is not 

required. 
12 
8. From Table 2 , at the higher noise levels, which are the highlight 

of this work, it is observed that there is either an insignificant 

improvement in performance or no improvement at all. There- 

fore, in this work, a finer search for λ was omitted due to both 

the extremely heavy computational expense of optimizing such 

a continuous hyperparameter as well as the insignificant im- 

provements that can be achieved from such an effort. 

.3. Example 2: CSTR 

A chemical process example with noisy sensor data is consid- 

red. In particular, a single irreversible second-order exothermic 

eaction that converts a reactant A to a product B (A → B) takes 

lace in a perfectly mixed non-isothermal continuous stirred tank 

eactor (CSTR) as shown in Fig. 5 described by the following set of 

DEs: 

d C A 
d t 

= 

F 

V 

(C A 0 − C A ) − k 0 e 
− E 

RT C 2 A (15a) 

d T 

d t 
= 

F 

V 

(T 0 − T ) + 

−�H 

ρL C p 
k 0 e 

− E 
RT C 2 A + 

Q 

ρL C p V 

(15b) 

The states are the reactant concentration C A and temperature T 

nside the reactor. The inlet contains pure reactant A with concen- 

ration C A 0 and temperature T 0 at a flow rate F . A heating jacket 

urrounding the CSTR provides/removes energy at a rate Q to ad- 

ust the temperature. The fluid in the reactor is assumed to have 

 constant density of ρL with heat capacity C p . The enthalpy of re- 

ction, Arrhenius constant, activation energy of reaction, and the 
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Fig. 6. Comparison of original noisy data (grey dots) with results from sparse identification without any subsampling (blue line), subsampling without co-teaching with 

p = . 2 (green line), and subsampling with co-teaching and p = . 16 , q = 0 . 04 (red line) for the concentration C A of the CSTR system. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Comparison of original noisy data (grey dots) with results from sparse identification without any subsampling (blue line), subsampling without co-teaching with 

p = . 2 (green line), and subsampling with co-teaching and p = . 16 , q = 0 . 04 (red line) for the temperature T of the CSTR system. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 3 

Parameter values for chemical process example. 

F = 5 . 0 m 

3 / h V = 1 . 0 m 

3 

k 0 = 8 . 46 × 10 6 m 

3 kmol 
−1 

h 
−1 

E = 5 . 0 × 10 4 kJ/kmol 

R = 8 . 314 kJ kmol 
−1 

K −1 ρL = 10 0 0 . 0 kg/m 

3 

�H r = −1 . 15 × 10 4 kJ / kmol T 0 = 300 . 0 K 

Q = 0 kW C A 0 = 4 kmol/m 

3 

C p = 0 . 231 kJ kg 
−1 

K −1 

Table 4 

Test set MSE for the CSTR system for four noise levels. 

σ No subsampling SIS SISC 

0.02 0.01113 0.01059 0.01102 

0.1 0.10510 0.09922 0.10370 

0.2 0.49837 0.40037 0.36283 

0.3 0.98210 1.89607 0.77613 
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deal gas constant in appropriate units are denoted by �H, k 0 , E, 

nd R , respectively. Process parameter values are given in Table 3 . 

he total subsampling fractions considered in this example were 

.3, 0.4, 0.6, and 0.8 since 0.2 caused numerical issues. 

The data generation for this process is carried out in a man- 

er to ensure all 50 trajectories converge to the same steady-state. 

n particular, the initial concentration C A (0) is assigned values be- 

ween 0.01mol/m 

3 and 10mol/m 

3 , while the initial temperature 

 (0) takes values between 290K to 320K. With each initial condi- 

ion, the system of Eq. (15) is numerically integrated with explicit 

uler with a step size of 10 −4 hr from 0.0hr to 2.0hr and then sam-

led every 0.05hr to generate the clean data set for this process. In 

his example, all data generation was carried out until t f = 2 . 0 hr . 

fter extensively tuning the hyperparameters, it was found that the 

parse relaxed regularized regression (SR3) optimizer ( Zheng et al., 

019 ) was consistently the superior optimizer for this system. The 

unction library that yielded the optimal results was the library 

ith only polynomial terms. In general, when selecting the func- 

ion library, it is advisable to start with a small, less complex li- 

rary, such as a polynomial library, and including trigonometric or 

ther terms only when necessary. 

The results for this system are plotted in Figs. 6 and 7 while 

he MSE are given in Table 4 . It is observed that, at the lowest two

oise levels of σ = 0 . 02 or 0.1, both methods satisfactorily capture 

he dynamics of the CSTR system, with small improvements from 

he base case to the SIS case and from the SIS case to the SISC case.

owever, as these differences are only noticeable when analyzing 

ither Fig. 6 or Table 4 very closely, they are not significant. At 

he medium noise level of σ = 0 . 2 , the differences become notice-

ble in some of the test trajectories. It is observed in Fig. 6 that

he SIS prediction marginally outperforms the base case, but the 

ISC model significantly performs better than the SIS model, espe- 

ially in the intervals t ∈ (6 , 10) ∪ (12 , 14) . The MSE also decreases

y roughly 20% from the base case to the SIS case and a further 

0% between the SIS case and the SISC case. The largest differences, 

owever, are seen at the highest level of noise i.e., σ = 0 . 3 . In this

ase, the SIS model actually fails to capture the dynamics com- 

letely and performs worse than the base case with almost twice 

he value of the MSE. In contrast, the SISC model outperforms the 

ase case even using only 20% of the data in each subsample. There 

s a significant 21% drop in the MSE as seen from Table 4 . How-

ver, the difference can also be observed in Fig. 7 , particularly in 

 1 , which is the plotted variable, most strongly between t = 8 and

 = 10 . 

In this example, as the total subsampling fraction is increased, 

here does not appear to be a consistent trend in the results. In 

act, the results remain very similar for all the values of p and q 
15 
ested. Therefore, it may be desirable to use lower values of the 

ubsampling fraction and only increase it as required. 

.4. Advantages of explicit methods 

The data generation in this paper is done via integrating the 

rdinary differential equation systems of the case studies consid- 

red in time using the Runge-Kutta numerical integration method 

ith an integration time-step of h c = 10 −4 . As this is an explicit 

umerical integration method, the calculation time is on the order 

f milliseconds. To be precise, for the 50 total trajectories that the 

ystem is integrated along from the 50 initial conditions, the total 

ime is around 0.1 seconds and 0.13 seconds for the predator-prey 

nd CSTR systems, respectively. 

The integration of the identified models is also on the same or- 

er: 0.1/50 or 0.13/50 seconds for a trajectory. The computational 

ime for the 10 test trajectories was calculated and multiplied by 

 to make a fairer comparison to the times required for the first- 

rinciples system. The results had a wider range from 0.170 sec- 

nds to 0.482 seconds, with an average of 0.266 seconds. Two 

oints must be emphasized here. Firstly, these times are slightly 

igher than those of the first-principles model data generation. 

his can be due to the higher complexity of the models. However, 

ome of the models had the same number of terms as the first- 

rinciples model, with coefficients also very close to the original 

ystem. This was usually seen in the lower noise levels where a 

ear-exact reconstruction was possible. These models should have 

equired the same time to integrate as the first-principles models. 

herefore, the reason for the higher times can be attributed to (a) 

he integration for the sparse-identified models being carried out 

y the PySINDy package’s internal ODE integration function rather 

han Python’s ODE solvers, and (b) some of the models in some of 

he subsamples might not be numerically stable, contributing to a 

arge increase in the maximum and average values reported above. 

he most important fact to note, however, is that these times, es- 

ecially for one trajectory, are still all below one second, and this 

apid prediction is a key advantage of using ODE models with ex- 

licit nonlinearities in system identification as opposed to ODEs 

ith neural network function approximators for the nonlinear ba- 

is functions, which is as a possibility if the identified model with 

he explicit functions is not accurate enough (not the case in our 

tudies) at the expense of increasing computational burden. 

Lastly, although the above range and average of integration 

imes for the sparse-identified models are calculated from only the 

ase (no subsampling) case of the predator-prey system, the re- 

ults generalize to both of the other cases and also the CSTR sys- 

em. This is because, once the ODE is identified, the data or pro- 

edure used to identify the ODE is irrelevant. Hence, even though 

he model identification step is more complex and time-consuming 

or the subsampling scenarios, once identified, the model is inte- 

rated using the same Runge-Kutta methods with the same step 

izes. Moreover, there was no clear correlation between the num- 

er of terms in the identified ODE model and the integration time 

equired, as long as the system was not unstable and did not di- 

erge. Hence, the times reported above can be extended to all the 

parse-identified models considered in this paper. 

. Conclusion 

In this work, a novel algorithm was devised to build dynamical 

odels that capture nonlinear process dynamics given only highly 

oisy sensor data. The noise was assumed to follow a white Gaus- 

ian distribution with different variances. A predator-prey model 

nd a chemical process were used to demonstrate the performance 

nd applicability of the new algorithm. It was shown that the basic 

parse identification algorithm was inadequate in identifying the 
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odel in the presence of high noise in the data, particularly above 

 variance of 0.01 for normalized data. However, when the sub- 

ampling technique was introduced, without co-teaching, by ran- 

omly subsampling to leave out the more noisy data in some it- 

rations, it could identify the dynamics satisfactorily up to a noise 

ariance of 0.04. Finally, the proposed algorithm combining sub- 

ampling with co-teaching, where the original data is subsam- 

led but also mixed with some noise-free data from first-principles 

odel simulations was used. Using the third algorithm, the per- 

ormance improved slightly in the presence of noise with variance 

p to 0.04. However, at the highest noise level studied, which was 

haracterized by a variance of 0.09, both the base case and the 

ubsampling without co-teaching failed and could not identify the 

odels using the extremely noisy data. The subsampling with co- 

eaching could accurately identify the models in this case, even 

hen only 20% of the subsamples consisted of noise-free data gen- 

rated from first-principles model simulations. The performance 

as evaluated based on plots of the outputs as well as the mean 

quared error (MSE) on the testing data sets. The results were qual- 

tatively similar in both systems investigated, with more accurate 

odels predicting the testing data set more accurately and yield- 

ng lower MSE values. 
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