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ABSTRACT: Sparse identification of nonlinear dynamics
(SINDy) is a recent nonlinear modeling technique that has
demonstrated superior performance in modeling complex time-
series data in the form of first-order ordinary differential equations
(ODEs), which are explicit and continuous in time. However, a
crucial step in the SINDy algorithm involves estimating the time
derivative of the states from the discrete, measured data. Therefore,
the presence of noise can greatly deteriorate the performance if it is
not carefully considered and accounted for. In this work, SINDy is
used with ensemble learning, where multiple models are identified
to improve the overall/final nonlinear model’s performance.
Specifically, in the SINDy algorithm, a fraction of the library
functions considered for the ODE model representation are randomly dropped out in each submodel to favor model sparsity and
stability at the possible risk of lowering the model accuracy. This trade-off is controlled by manipulating the fraction of the library
functions dropped out and the total number of models generated, both of which are considered as hyperparameters to be tuned in
the proposed algorithm. Data from open-loop simulations of a large-scale chemical plant are generated using the well-known high-
fidelity process simulator, Aspen Plus Dynamics, and corrupted with substantial sensor noise to be implemented in the newly
proposed algorithm, dropout-SINDy. The dropout-SINDy models obtained from training with the noisy data are then tested in
open-loop simulations to demonstrate accurate identification of the steady-state and reasonably close transient behavior under a
variety of initial conditions and manipulated input values. Finally, the constructed models are used in a Lyapunov-based model
predictive controller to control the large-scale Aspen process, meeting desired closed-loop stability and performance specifications.

1. INTRODUCTION
A significant amount of effort has been directed toward the
development of mathematical models that describe the
physical laws that govern various systems of relevance in
engineering and the physical sciences. Although this has
traditionally been achieved using mathematical and first-
principles frameworks, data-driven approaches have attracted
much attention in more recent endeavors. A large proportion
of these physical laws are in the form of ordinary differential
equations (ODEs) or partial differential equations (PDEs),
which are dynamical time-varying models. The Navier−Stokes
equations in the domain of fluid mechanics are an ubiquitous
model of this form that is widely used in applications in
chemical and mechanical engineering. Such time-series
predictive models are vital to the design of advanced model-
based control methodologies such as model predictive control
(MPC) and preemptive maintenance in industrial engineering
applications. In predictive maintenance, the health of process
equipment is modeled to minimize downtime and increase
manufacturing efficiency. An MPC uses a dynamic model to
estimate process variables over a finite prediction horizon to
calculate optimal control actions. Consequently, several recent

articles have focused on the building and integration of data-
based models in MPC, e.g., refs 1−13. The bank of data-driven
system identification algorithms is expansive, ranging from
traditional methods such as singular value decomposition14

and numerical algorithms for Subspace State Space System
Identification (N4SID)15 to more recent advances such as
auto-regressive models with exogenous inputs (ARX/
ARARX).16−18 However, due to the unprecedented increase
in computational capacity and algorithmic development over
the last two decades, machine learning (ML) has become a
popular option for modeling classical engineering systems due
to its efficiency in providing inferences on big data and
nonlinear behavior, both of which are characteristics of
industrial process systems. This advantage may be attributed
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to the many tunable hyperparameters in the structure of ML
models. In practical regression problems, some ML models
that are commonly used are support vector regression, deep
neural networks, and sparse identification (SINDy), among
others. In the present article, sparse identification, con-
ceptualized in ref 19, is further developed. While the original
intent of the SINDy method was to try to learn governing laws
from data as interpretable ODEs consistent with the physics,
e.g., refs 19 and 20, the use case of SINDy is not restricted to
learning governing laws from data and can be used to build
computationally-efficient, closed-form models for control.
Furthermore, the ODE models obtained from the SINDy
method may or may not be consistent with physical laws as
there is no guarantee that the search over the set of nonlinear
basis functions would lead to a dynamic model providing such
physical insight. In the present work, we employ the SINDy
method as a system identification method to build dynamic
models from noisy data using standard error metrics to
determine their goodness of fit. With respect to noise,
numerous efforts have been made to improve the sparse
identification in many aspects, as seen in refs 21−30, but most
of these endeavors consider noise-free data from theoretical
simulations. Hence, the practical challenge of handling the
inevitable measurement sensor noise present in industrial data
remains largely unresolved at the moment.

ML methods have mostly been pioneered in the field of
computer science, where either high-fidelity data is often
readily available or “noisy data” is used to refer to improper
labels in classification rather than regression problems. Hence,
many ML methods do not readily generalize to the case of
solving regression problems in the field of engineering
applications, where noise refers to numerical inaccuracies
that are inherent in measurement devices. Thus, the perform-
ance of ML methods may be unexpectedly poor when applied
to such regression problems and noisy data sets without
consideration of the type and magnitude of noise present. This
possible drawback was reconfirmed in ref 31, where machine
learning and common statistical techniques both performed
poorly without any data preprocessing, but yielded satisfactory
results following feature engineering. Hence, classical system
identification methods recognize this challenge and have
expanded the traditional methods to counteract the issue of
noise. For example, with respect to linear systems, extended
ARX/ARARX methods to the case of additive white noise in
input/output data were proposed in ref 32, principal
component analysis (PCA) was used in ref 33 to estimate
the noise term, subspace identification methods were applied
to closed-loop operational data in ref 34, and Gaussian white
noise in linear dynamical systems with the Kalman filter was
handled in refs 35 and 36. However, as linear approximations
may not perform adequately for nonlinear systems, methods
such as the extended Kalman filter and moving-horizon
estimation for the case of nonlinear systems were proposed
in ref 35. Nevertheless, many of the aforementioned methods
restrict the class of systems and distribution of noise that may
be present, constricting their widespread use in an industrial
setting. Consequently, the problem of nonlinear process
modeling using noisy time-series data from sensors remains
an open challenge for active researchers and control
practitioners in the field.

In the recent literature surrounding SINDy, the work on the
modeling front has been enumerated and was described in
detail in ref 37. This includes the use of an autoencoder and

Kalman filter to recover the denoised states,38 the use of the
total-variation regularized derivative, the application of a
smoother such as the Savitzky−Golay filter to prefilter the
data,39 updating rather than reidentifying new models upon the
availability of new data,40 the use of Laplace transforms to
rewrite ODE models using integral terms,41 the use of splines
as basis functions to estimate the parameters in the already
known dynamic model structure,42 the use of Duhamel’s
integral for mass-spring systems,43 exploiting spectral meth-
ods44,45 or Tikhonov regularization46 to estimate the
derivatives, the incorporation of weights in the least squares
algorithm,46 subsampling, and Bayesian regression,47 among
others. A common inadequacy identified in many of the
articles, e.g., refs 38 and 48, includes the addition of noise to
the derivatives after its computation rather than directly to the
noisy data. However, when using SINDy, a significant part of
the challenge of handling noisy data, perhaps the most, is the
estimation of the derivatives from noisy data.

Beyond noise, a second challenge where a gap existed in the
literature was the consideration of the sampling rate of the
data. Data in industrial process systems must be measured at
finite time intervals, known as the sampling time. This is an
inherent limitation of sensors and can be dependent on the
variable being measured. For example, a high-end thermo-
couple can measure the temperature every 0.01 s, while a gas
chromatograph can only yield interpretable results on the
composition of the substance every 15 min. The sampling time
is also a key factor affecting the accuracy of SINDy, as the
numerical estimation of the derivative is closely linked to the
spacing of the data points in the time domain. Several articles
that advanced sparse identification further used data sampled
at extremely small rates, such as 10−5 s, which is very rarely
found in industrial processes. The combination of noisy data
and larger sampling times introduces new challenges, where
existing methods failed. Therefore, the dual effect of Gaussian
noise and large sampling times on sparse-identified models was
studied in-depth and a novel algorithm that combined
subsampling from statistics with co-teaching from the neural
network context in was proposed in ref 37. Specifically,
subsampling refers to using a fraction of the data to identify a
model with the aim of eliminating outliers, while co-teaching
takes advantage of noise-free data obtained by simulating
simplified first-principles models that can be derived
theoretically. The resulting method significantly outperformed
the state of the art when sensor noise levels were very high.

However, first-principles models simplify the differential
equations, thereby providing an imperfect representation of the
real process. Industrial process systems may often be far too
complex with highly nonlinear behavior and input−output
interactions that are impossible to reasonably derive and
capture in such a simplified physics-based first-principles
model, leading to an exorbitant plant−model mismatch. While
the initial transient behavior of a first-principles model may
agree with the industrial process, often, the long-term
dynamics may deviate entirely, rendering the first-principles
model ineffective for long-term predictions. While certain
methods such as neural networks may only train the model to
predict the next sampling time i.e., capture short-term
dependencies, for a method like SINDy where the resulting
model is an ODE that must be integrable from a given initial
condition for sufficiently long while remaining within the close
agreement of the true trajectory, the method of co-teaching is
not applicable if the plant−model mismatch is too large in the
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long-term. This is especially relevant when the final steady-
state value itself is not the same between the two scenarios. In
such a case, both the long-term dynamics and the final steady-
state values of the first-principles model are unrepresentative of
the industrial process that is desired to be captured. Hence, the
goal of this article is to overcome the combined challenges of
modeling data that is (1) industrial, (2) highly noisy, and (3)
coarsely sampled using sparse identification with ensemble
learning. To obtain such a data set, a chemical process
simulator is used.

Chemical process simulators are a broad category of
software that are used widely in industry to design and
optimize processes by conducting reliable steady-state and
dynamic simulations. Their superiority over first-principles
simulations may be attributed to their built-in packages that
handle unit operations, thermodynamic properties, molecular
interactions, as well as other features.49 Chemical process
simulators can be broadly divided into equation-oriented and
sequential modular approaches such as EMSO software and
Aspen Plus, respectively.50 Moreover, Sharifzadeh investigated
the integration of process control systems within process
simulators since the two units share decisions and
information.51 Therefore, in this work, a large-scale chemical
process is designed in the high-fidelity process simulator,
Aspen Plus Dynamics, and then dynamically simulated to
generate time-series industrial data. The data set is then
corrupted with sufficiently high Gaussian white noise to
investigate the enhanced performance of sparse identification
with ensemble learning when standard sparse identification is
inadequate and yields unstable models. The remainder of this
manuscript is outlined as follows: in Section 2, the general class
of nonlinear process systems under consideration as well as the
theoretical background of stabilization, sparse identification,
and ensemble learning are presented in brief. In Section 3, the
development of SINDy with dropout to produce an ensemble
of models is explained. Finally, a large-scale chemical process is
used to assess the modeling and control performance of the
proposed algorithm in Section 4.

2. PRELIMINARIES
2.1. Notation. Given a vector x, its transpose and weighted

Euclidean norm are denoted by xT and |x|Q, respectively, where
Q is a positive definite matrix. LfV(x) is used to denote the
standard Lie derivative L V x f x( ) ( )f

V x
x
( ) . The “\” operator

denotes set subtraction such that \ { | }A B x x A x B,n .
A function f(·) belongs to class 1 if it is continuously
differentiable in its domain.
2.2. Class of Systems. We consider the general class of

continuous-time nonlinear systems of the form

= + =x F x u f x g x u x t x( , ) ( ) ( ) , ( )0 0 (1a)

= +y x w (1b)

where x n is the state vector, u m is the manipulated
input vector, y n is the discretely sampled vector of state
measurements, w n represents sensor noise, and f(·) and
g(·) are sufficiently smooth vector and matrix functions of
dimensions n × 1 and n × m, respectively. Without loss of
generality, throughout the article, the initial time t0 and the
initial condition f(0) are taken to be 0, the latter of which
implies that the origin is a steady state of the nominal system

of eqs 1a and 1b, i.e., (xs*, us*) = (0, 0), where xs* and us*
represent the steady-state and input vectors, respectively.
2.3. Stability Assumption. For the nominal system of eqs

1a and 1b under full state feedback consisting of noise-free
state measurements, it is assumed that a stabilizing control law

=u x( ) exists that can render the origin of the closed-
loop system of eqs 1a and 1b exponentially stable. Converse
Lyapunov theorems52−54 then imply that there exist a 1

control Lyapunov function, V(x), and four positive constants,
c1, c2, c3, c4, such that ∀x in an open neighborhood D around
the origin

| | | |c x V x c x( )1
2

2
2 (2a)

= | |V x
V x

x
F x x c x( )

( )
( , ( )) 3

2
(2b)

| |V x
x

c x
( )

4
(2c)

where V̇ represents the time derivative of the Lyapunov
function and F(x, Φ(x)) represents the nominal system of eqs
1a and 1b under a candidate controller Φ(x) such as the
universal Sontag control law.55 We first characterize a set of
states ϕu = {x ∈ n|V̇(x) = LfV + LgVu < −kV(x), u = Φ(x) ∈

, k > 0} ∪ {0} under the controller u = Φ(x) ∈ that
satisfies the conditions of eqs 2a−2c. Subsequently, we define
the closed-loop stability region Ωρ

56 for the nominal system of
eqs 1a and 1b to be a sublevel set of V inside ϕu, i.e., Ωρ ≔ {x
∈ ϕu|V(x) ≤ ρ}, where ρ > 0 and Ωρ ⊂ ϕu.
2.4. Sparse Identification. Sparse identification is a recent

breakthrough in nonlinear system identification that has been
shown to be effective in numerous examples from various
engineering disciplines.57−63 The goal of SINDy is to use only
discrete measurement data from a physical system to identify a
first-order ODE of the form

= +x f x g x u( ) ( ) (3)

where x n is the state vector of the sparse-identified model,
while f(̂·) and ĝ(·) are the vector fields that capture the
physical laws governing the system.

The key assumption in SINDy is that, for most physical
systems, the right-hand side of eq 3 contains only a few
nonlinear terms. Consequently, if a large bank of possible
nonlinear basis functions are considered for f ̂ and ĝ, only a few
terms will be active and will have nonzero premultiplying
coefficients associated with them. Since the space of the
candidate basis functions is then sparse, efficient convex
optimization algorithms can be used to calculate the
coefficients, which is the sparse identification problem. The
application of SINDy starts with sampling real-time data from
the process to be identified. This may be collected via sensors
from an open-loop experimental/industrial process or
generated from open-loop computer simulations using
theoretical models, either from first-principles or chemical
process simulators. The sampled data set is then arranged into
the compact data matrix X and the input matrix U
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X

x t x t x t

x t x t x t

x t x t x t

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

m m n m

1 1 2 1 1

1 2 2 2 2

1 2

µ

µ

µ (4a)

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

U

u t u t u t

u t u t u t

u t u t u t

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

r

r

m m r m

1 1 2 1 1

1 2 2 2 2

1 2

µ

µ

µ (4b)

where x t( )i and u t( )j represent the ith state measurement and
jth input measurement at the th sampling time, respectively,
with i = 1, ···, n, j = 1, ···, r, and = ··· m1, , , and Ẋ represents
the first-order time-derivative of X, which may be possible to
measure directly in some applications, but is otherwise
numerically estimated. Importantly, this step of obtaining Ẋ
is the key challenge when using noisy data for sparse
identification since, based on the approximation method,
numerical estimations of the derivative may not be stable when
using noisy data. From the data matrices X and U, a function
library Θ(X, U) is created, which contains p columns
corresponding to the p nonlinear basis functions considered
for the terms in f ̂ and ĝ. Given the universality of polynomials
and trigonometric functions in the field of engineering, an
example of a typical function library matrix when identifying
process systems is as follows

=
| | | | | | |

| | | | | | |

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
X U X X X U UX1( , ) sin( ) eP X 22

(5)

where XP2 concisely represents all possible quadratic non-
linearities

= [ ··· ··· ]X x x x x x x xP
n1

2
1 2 2

2
2 3

22 (6)

However, the preliminary basis set chosen can and should be
updated if required based on the performance and available
process structure knowledge. Each candidate basis function in
eq 5 associated with each variable or row of eq 3 is assigned a
coefficient, with all of the coefficients being stored in the
matrix ×p n, which is the output of the sparse
identification algorithm calculated by solving the following
equation

=X X U( , ) (7)

Popular methods for solving eq 7 include sequential thresh-
olded least squares (STLSQ) and sparse relaxed regularized
regression, the latter of which is based on the least absolute
shrinkage and selection operator (LASSO).64 In STLSQ, a
hard threshold called the sparsification knob λ is first specified,
after which all coefficients in Ξ smaller than λ are set to zero.
The resulting equation is then solved to yield Ξ. This
procedure is repeated until all nonzero coefficients converge.
The sparse nature of the matrix Ξ makes the iterations fast and
efficient. The final values of Ξ obtained are then used to
construct the continuous-time ODE

=x x u( ( , ))T T T T

where Θ(xT, uT) is not a matrix of data, but a column vector of
symbolic functions of x and u from the library of considered
functions.
Remark 1: The sparse identification-based modeling

approach is a technique to develop closed-form nonlinear,
first-order ODE models for process systems using time-series
measurement data. It should be viewed similarly to other
system identification techniques for developing dynamic
models from data. The central advantage of the sparse
identification modeling technique is the construction of a
closed-loop form nonlinear model that can be efficiently
numerically integrated when used in the context of MPC�
there is a significant computational efficiency advantage when a
closed-form model is used in MPC as opposed to recurrent
neural network models that are more computationally
demanding in both training and implementation phases. This
is the key reason for exploring the use of sparse identification
modeling in the context of MPC. In ref 65, for a similar process
system, i.e., CSTRs modeled via Aspen Plus Dynamics, it was
demonstrated that the average time to solve the optimization
problem in the MPC took 2.1161 min (127 s), while the
proposed dropout-SINDy-based MPC took an average of 42 s.
While the system in ref 65 is not identical to the one studied
here, the number of control actions to be computed by the
MPC and the computational power of the computer were very
similar, thereby expecting similar computational efficiency
results.
2.5. Ensemble Learning. To improve the performance of

machine learning models, one simple and intuitive practice is
the use of multiple models to make predictions, which is
known as ensemble learning. All of the models are identified
from the same data set, but the model structure differs from
one model in the ensemble to the next, which introduces
flexibility and allows for better generalization. Specifically,
ensemble learning potentially reduces the variance of the
algorithm without increasing the bias for individual models66

and also enables the accounting of uncertainty during the
model selection process.67 Ensemble learning algorithms are
broadly classified into two categories: homogeneous and
heterogeneous. In homogeneous ensembles, one base learning
method/algorithm is used multiple times on different, random
subsets of the entire data set to generate several models that
are slightly different due to the different data subsets used. The
concept is similar to subsampling. In contrast, heterogeneous
ensemble learning involves using a diverse array of machine
learning methods such as linear regression, artificial neural
networks, support vector regressors, XG Boost, etc. to improve
generalization and diversity within the ensemble. Whether the
ensemble is homogeneous or heterogeneous, the final output
of the model is taken as either a central tendency of all of the
models in the ensemble or selected by cross-validation.
Common central tendencies include the mean (bagging) or
median (bragging) of all of the model parameters/outputs.
2.6. Model Predictive Control Using Sparse Identi-

fication. To achieve closed-loop stability and performance, we
propose a Lyapunov-based model predictive control (LMPC)
scheme using the SINDy model, formulated as follows

=
+

L x t u t tmin ( ( ), ( ))d
u S t

t

( ) k

k N

(8a)

=x t F x t u ts. t. ( ) ( ( ), ( ))si (8b)
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[ +u t t t t( ) , , )k k N (8c)

=x t x t( ) ( )k k (8d)

\V x t u V x t x t x t( ( ), ) ( ( ), ( ( )), if ( )k k k ksi si

(8e)

[ +V x t t t t x t( ( )) , , ), if ( )k k N ksi si (8f)

where x̃, N, and S(Δ) in eq 8a denote the predicted state
trajectory, the number of sampling periods in the prediction
horizon, and the set of all piecewise constant functions with a
period of Δ, respectively; Fsi is the sparse-identified process
model; Φsi is a stabilizing control law that guarantees
exponentially stability of the origin of the closed-loop system
of eq 3; Ωρ̂ and Ωρdsi

denote the stability region for the closed-
loop sparse-identified system and the target region for the final
predicted state, respectively; and V̇ is the time-derivative of V,
the Lyapunov function, and is given by F x u( , )V x

x
( )

si . The
LMPC calculates u*(t), the optimal input sequence, over the
entire prediction horizon, i.e., t ∈ [tk, tk+N), and transmits the
first control action of the sequence u*(tk) to the actuator to be
implemented during the next sampling period Δ. Subse-
quently, the horizon of the LMPC is advanced by one sampling
period and resolved again at the next sampling period.

The goal of the optimization problem of eq 8 is to minimize
the objective function of eq 8a, which is equal to the integral of
L(x̃(t), u(t)), over the entire prediction horizon. Equation 8b
denotes the sparse-identified model that is utilized to predict
the closed-loop states over the prediction horizon while
varying the input u within the constraints set by eq 8c. The
initial condition of the states required by the SINDy model of
eq 8b is given by eq 8d, which is the state measurement at time
tk. For stability considerations, we further add the last two
constraints known as Lyapunov constraints. The first
constraint, given by eq 8e, guarantees that the state x(tk),
when outside the target region Ωρ dsi

, will move toward the
origin in every step. The proof for this, which relies on
bounded modeling errors or bounded disturbances and

Lipschitz properties, can be found in detail in ref 68. The
result of the proof is that, as long as the state starts from within
the stability region Ωρ, the state converges to Ωρ dsi

in a finite
number of sampling times without leaving the stability region.
The second constraint of eq 8f ensures that, once the state
enters the invariant set Ωρdsi

, it remains within this region for
the entire prediction horizon.

3. ENSEMBLE-BASED SPARSE IDENTIFICATION
Modeling systems using data from first-principles simulations
corrupted with sensor noise has been studied in ref 37.
However, the combined challenge of noise and industrial
process dynamics is found to be too challenging for basic
SINDy. Therefore, in this work, to overcome the challenge of
dealing with industrial noise, we employ a recent advancement
in SINDy, which uses homogeneous ensemble learning. As
described in Section 2.5, ensemble learning refers to the
identification of multiple models to improve the prediction.
However, in the context of sparse identification, the details
must be elucidated.

In sparse identification, as either the data set or the function
library may be used partially, two types of ensembles exist.
Ensemble learning can refer to the development of multiple
models using either random subsets of the data set with the
complete function library (i.e., subsampling) or random
subsets of functions from the candidate library with the
complete data set. It was demonstrated in ref 37 that the
former mode of ensemble learning does not improve
performance under high noise levels. Moreover, it was
observed in simulations that the models built using basic
SINDy or ensembles utilizing the full function library were
often unstable. This may be explained by the presence of too
many active nonzero functions in an ODE causing the resulting
ODE model to have inherently unstable dynamics. Therefore,
in this paper, we investigate the second mode of ensemble
learning, where the entire data set is used, but random
functions in the library are dropped out to further promote
sparsity and stability. Specifically, as shown in Algorithm 1,
nmodels models are identified, each time dropping out ndropout

Figure 1. Data flow diagram for model construction.
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functions from the candidate library, with each model
identification using the entire data set. For the ith iteration,
the function library of eq 5 may be of the form

=
| | | | |

| | | | |

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
X U X X X X1( , ) sin cos tani

(9)

where quadratic and cubic polynomials, as well as tanh terms
have been removed from the basis functions. The correspond-
ing Ξi will assign values of zero for the ndropout functions that
have been dropped out, and the STLSQ optimizer will find the
best ODE model that can be built using this reduced set of
basis functions by tuning the sparsification knob λ to minimize
the validation error. After constructing all nmodels models from
various subsets of library functions, the final model can be
designed by taking the median of all of the values of the model
coefficients for each function in the library. While an ensemble
may generally and commonly use the mean or median, in this
scenario, the median is recommended. If most models assigned
a zero value to a certain coefficient, it is highly likely that the
corresponding term is insignificant and should be ignored in
the model. Therefore, when using the median, if more than
half of the identified models have a zero coefficient for a term,
it is entirely ignored. In contrast, the mean will always return a
nonzero value even if only one of the models has a nonzero
coefficient for the term. As a result, using the mean to create an
ensemble will very likely reduce sparsity and promote
instability. Therefore, the final model is constructed using
the median in this work. Once the final model using the
median coefficient values is selected, the model is integrated
from the test set initial conditions, which is used to compute
the test set MSE and also plotted against time to visually
confirm stability as well as accuracy. The flow of data and
models throughout the algorithm is shown in Figure 1.

Remark 2: A more accurate yet computationally expensive
approach is to record the validation MSE for every submodel
during training. Finally, the submodel that yielded the
minimum MSE at its optimal value of λ can be selected as
the best model. However, in this work, the median was chosen
because of its simplicity and functionality.
Remark 3: It is important to emphasize that SINDy searches

over a “bank” of explicit nonlinearities (basis functions) by
solving an optimization problem with suitable penalties on
both the error between the values of the actual state and the
predicted model state and the number of nonzero pre-
multiplying coefficients of the nonlinear basis functions used to
construct the ODE model. If there is any physical insight on
the type of nonlinearities that the approach should consider,
this physical insight can be incorporated into the optimization
search (biasing, for example, the order with which the

nonlinearities are considered in the optimization search in an
approach similar to the ALAMO modeling technique69,70). But
if such a physical insight does not exist, then a model will be
constructed with the search procedure described above, and
then tested to determine if it is a suitable model (i.e., tested for
numerical stability, sensitivity to parameters, and predictive
ability with respect to validation data). It is important to note
here that there is no guarantee that the sparse identification
modeling approach will yield a nonlinear model whose
nonlinearities provide information about the underlying
physicochemical phenomena occurring in the process. If the
model is deemed unsatisfactory by the selected accuracy
criteria, then the optimization cost parameters should be
modified, and another model construction should be done.
From a control point of view, only a stable model that
accurately predicts the state evolution with time is needed, and
there is no need for the model used in the controller to provide
any physical insight (this is the case with any system
identification technique e.g., N4SID, MOESP, NARMAX).
Therefore, there is no requirement for prior knowledge of the
nonlinear dynamics in SINDy; if such information is available,
it can be used, but it is not needed to apply SINDy, just as it is
not needed for any other system identification technique. This
point will be further illustrated with an example in Section
4.2.1, where accurate models can be shown to be derived even
when not using “physically motivated” basis functions. The
advantages of SINDy models in control, such as computational
efficiency and explicit modeling of nonlinearities, remain
regardless of the availability of prior knowledge of the system
dynamics.
Remark 4: The Hammerstein−Wiener modeling framework

is another form of modeling that is often used to deal with
nonlinearities in process systems. In Hammerstein−Wiener
models, a linear dynamic element is followed by a static
nonlinear element that can be used to represent nonlinear
process behavior. The nonlinear elements considered in these
modeling approaches are usually polynomial nonlinearities,
and the resulting models are of discrete time. When
incorporated into MPC, these nonlinear models may lead to
improved closed-loop performance over MPC with linear
models.71,72 However, the polynomial basis functions used in
Hammerstein−Wiener models are already possible candidates
in the function library of sparse identification. Hence, the
SINDy method will yield models that are at least as
comprehensive as the Hammerstein−Wiener models, and
possibly better when the SINDy basis functions are chosen to
be more expansive than only polynomial terms.

4. APPLICATION TO A CHEMICAL PROCESS
MODELED IN ASPEN PLUS DYNAMICS

We evaluate the proposed dropout-SINDy algorithm with a
large-scale chemical process modeled using Aspen Plus
Dynamics V12. First, a dynamic model is constructed, which
is then used to generate a time-series data set through
extensive open-loop simulations for the purpose of training and
testing the SINDy model. The data generation is carried out
with a large range of inputs and initial conditions to cover a
wide area of the operating region. Subsequently, open- and
closed-loop simulations are conducted, and the results
presented.

We consider the reaction of ethylene (E) with benzene (B)
to form ethylbenzene (EB) in a perfectly mixed, nonisothermal
continuous stirred-tank reactor (CSTR) as shown in Figure 2.
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However, a side reaction that consumes ethylene (E) and
ethylbenzene (EB) to produce diethylbenzene also occurs
simultaneously. Both reactions are exothermic, irreversible, of
second-order, and are shown below

+C H C H C H (main)
k

2 4 6 6 8 10
1

(10a)

+C H C H C H
k

2 4 8 10 10 14
2

(10b)

where the desired reaction of eq 10a is annotated as “main”.
4.1. Dynamic Model Construction. In this paper, we

model the CSTR in steady-state and transient modes of
operation using Aspen Plus and Aspen Plus Dynamics V12,
respectively, both of which are high-fidelity chemical process
simulators. The dynamic model’s construction begins with the
design of the process under steady-state conditions using
Aspen Plus, where mass and energy balances are carried out.
Once it is ensured that the steady-state simulation converges,
Aspen Plus Dynamics is used to investigate the dynamic
performance of the model and implement the desired
controller during dynamic operation. The end-to-end
procedure to construct the steady-state and dynamic models
is presented below, with the resulting process flow diagram
(PFD) depicted in Figure 3.

1. Feed streams’ properties: The raw materials E and B are
fed to the CSTR at fixed molar flow rates of FE and FB,
respectively, with a fixed inlet temperature of Tin = 350
K. The feed flow rate of B is chosen to be equal to twice
the flow rate of E, despite the 1:1 stoichiometric ratio of

the reactants, to minimize the concentration of E in the
reactor, thereby suppressing the undesired side reaction.
The molar concentrations of ethylene, benzene, and
ethylbenzene are represented by CE, CB, and CEB,
respectively, while the temperature of the reactor is
denoted by T. Once converted to scaled deviation
variables from their steady-state values, the states CE, CB,
CEB, and T are denoted by x1, x2, x3, and x4, respectively.
Process parameter values are given in Table 1.

2. Pressure drop specifications: To create a functional
dynamic model, the simulation must allow for pressure
drops in the fluid flow throughout the process. This is
achieved using valves between every two pieces of
equipment, to allow the pressure to vary as the process
fluid flows through the equipment. When the pressure
drop is selected properly, the model correctly deduces
the direction of fluid flow, leading to zero errors during
the runtime of the simulation. On the contrary, a
pressure drop too low will trigger errors in the
simulation. The pressure drops in our model are 5 bar
and 2 bar for the feed valves (v1, v2) and product valve
(v3), respectively.

3. Reactor specifications: The CSTR is surrounded by a
cooling jacket through which liquid water at 298 K flows
with a mass flow rate of ṁcoolant. The initial temperature
and pressure inside the reactor are chosen to be 15 bar
and 400 K, respectively, but both values will be altered
by the built-in steady-state simulation during runtime.
Finally, once reactions in the reactor are specified, the
steady-state simulation is run.

4. Thermodynamic package and reactor geometry: We
used the predictive Soave−Redlich−Kwong (PSRK)
method to estimate the behavior of the phase equilibria.
The reactor geometry must also be specified before the
steady-state model can be exported to Aspen Plus
Dynamics. Therefore, the reactor is specified as a 10 m
long, vertical vessel with flat heads.

Figure 2. Continuous stirred-tank reactor with a cooling jacket.

Figure 3. Aspen Plus model process flow diagram of ethylbenzene production process.

Table 1. Parameter Values for Chemical Process Example

FE = 0.1 kmol/s FB = 0.2 kmol/s
k0,1 = 1.528 × 106 m3 kmol−1 h−1 k0,2 = 27 780 m3 kmol−1 h−1

E1 = 71 160 kJ/kmol E2 = 83 680 kJ/kmol
R = 8.314 kJ kmol−1 K−1 V = 60 m3

Tin = 350 K T0 = 400 K
ṁcoolant,ss = 77.9869 kg/s
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5. Pressure checking: Before exporting the steady-state
model to Aspen Plus Dynamics, the final step is to run
the model once more and perform pressure checking
using the built-in pressure checker in the Dynamic tab of
Aspen Plus. Once completed without errors, the model
is exported to Aspen Plus Dynamics.

6. Controller specifications: The level in the reactor is
maintained via a direct-acting level controller developed
after exporting the model to Aspen Plus Dynamics. The
level controller is set to the auto mode to ensure the
level is maintained at the desired setpoint throughout
the simulation.

7. Heat transfer option: Since the reactor is surrounded by
a jacket with liquid water at 298 K flowing through it,
the heating mode of the reactor is selected to be
“dynamic”, which will allow the user to specify the flow
rate of the cooling water to control the reactor
temperature. The logarithmic mean temperature differ-
ence (LMTD) or temperature approach is calculated
and fixed at 77.33 K. The input action affects the
temperature in an inverse direction, i.e., increasing the
coolant flow rate reduces the temperature and vice versa.

8. Initialization: After specifying the level-controller and
cooling jacket settings, a steady-state simulation is
completed to obtain the steady-state coolant flow rate
of the dynamical model, which is found to be ṁcoolant,ss =
77.9869 kg/s. Following initialization, the model is run
in dynamic mode one more time to check that the
model does not deviate from the steady state after
making the above specifications. This step finalizes the
dynamical process model shown in Figure 3.

The addition of noise to the model solutions to represent
realistic process state data will be discussed in detail in Section
4.2.
4.2. Data Generation and SINDy Model Develop-

ment. Extensive open-loop simulations are carried out with
the constructed Aspen Plus Dynamics model to generate
numerous trajectories of the states in the reactor, using a wide
range of initial conditions and input values. Due to the nature
of SINDy models, we generate three types of trajectories to
cover the various dynamics that need to be captured by the
model. In the first type of runs, a nonzero input u is first
applied to the system to drive the states from the origin to a
new steady state and subsequently removed (u = 0) to let the
state return to the origin without any input. Approximately half
of these types of runs were conducted very close to the origin
by applying small values of the manipulated input to induce
smaller deviations from the origin. This was carried out
because data-driven modeling is greatly affected by the quality
and diversity of the training data, and such models generally
underperform near the origin because of the lack of training
data at exactly the origin, unless data near the origin are
specifically generated. The second category of runs involved
applying a nonzero u to the system at the origin to drive it to a
new steady state and maintain the system at the new state. The
third type of runs involved separately applying two different
nonzero values of u to drive the states from the origin to two
different steady states successively. Such runs measure the
ability of the model to drive the state from an arbitrary state to
any desired state using the necessary input u and are therefore
critical to improving and evaluating the performance of the
model.

The range of inputs considered was between u = −37.9869
kg/s and u = 4.0131 kg/s. For each pair of initial conditions
and input, the Aspen Dynamical model is integrated using an
adaptive integration time-step, with the measurements
recorded every Δ = 0.01 h. A total of 25 trajectories of the
three types are generated. The simulation duration for the runs
is not fixed since the data generation is carried out until a
steady state has been reached, which varies between runs. The
number of data points per trajectory varies between 500 and
1500 points, corresponding to simulation run times of 5 and 15
h. The test run used for further demonstration is generated at
the lower limit of the range of u considered, i.e., with u =
−37.9869 kg/s. This is significantly outside the range of u
considered in training and will gauge the ability of the model to
capture the inherent dynamics of the system to predict the
behavior under a wide range of operating conditions.

As noted in the Section 1, the sampling rate of the data has a
significant impact on the accuracy of any system identification
method, including sparse identification. This is because
discrete sampling of any continuous-time system necessitates
loss of information. In general, smaller sampling times lead to
smaller loss of information and a more complete history of the
state and input trajectories, producing better models when
these data are used in a model identification procedure. In the
context of sparse identification, the smaller sampling times also
directly impact one of the most challenging steps, which is to
compute the estimate of the time derivative because a smaller
sampling time generally favors the finite-difference method.
Case studies and numerical examples in the pioneering
literature in the field of sparse identification such as ref 19
reflect the superior performance under such circumstances by
producing extremely accurate sparse-identified models using
data generated with sampling times of 10−4 or even 10−6.
However, as remarked in the Introduction section, this is
generally infeasible in chemical processes as there is no
instrumentation that can provide such high sampling rates in
general. Temperature, despite being one of the simplest and
fastest variables to measure, is still limited to a sampling period
of at least 0.01 s when using a high-end thermocouple. For
other variables such as concentrations, it is usually even longer
if using chromatography or other similar techniques. There-
fore, in this work, we use a sampling period of Δ = 0.01 s for all
our data generation. Given this practical sampling time, our
simulations demonstrate that the constructed models capture
well the process dynamic behavior and lead to very good
model predictive controller performance.

Once the data set is generated, data preprocessing is
conducted. Specifically, the 25 runs in the data are first split
into training and testing sets as follows: 21 trajectories are used
as the training set, and 4 runs are used for model testing. The
21 runs in the training set include the 3 validation runs used
for hyperparameter tuning. The data split, approximately 80%
for training and 20% for testing, is chosen due to the difficulty
of training models when using noisy data. Therefore, a larger
training/validation set can improve model performance. After
data partitioning, data normalization is performed on the data
set. The training and testing sets are scaled and normalized
only with respect to themselves to prevent data leakage. Three
scaling methods were investigated�the z-score scaler, Min-
Max scaler, and Max-Abs scaler. The z-score scaler scales the
data by subtracting the mean and dividing it by the standard
deviation. Mix-Max scalers scale all data points to be between
two user-defined limits, usually 0 and 1. Max-Abs scaling refers
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to dividing the data by the maximum absolute value of each
variable in the data set. After investigating the advantages,
disadvantages, and open-loop results of the three scaling
methods, the Max-Abs scaling was used because it out-
performed the other two methods. One possible reason is that
it preserves the sign of the deviation of the states from the
equilibrium point, which can affect the performance when
using explicit methods such as SINDy. For example, it is
known that the manipulated input ṁcoolant has an inverse effect
on temperature T. Therefore, in the subspace of scaled
variables, the sign of the coefficient associated with u in ẋ4
should have a negative sign in the ODE corresponding to the
physical system. When the data is scaled using Max-Abs scaler,
this property is conserved. However, the z-score and Min-Max
scalers do not conserve this property due to the subtraction
component of the scaling.

After preprocessing the data, Gaussian noise with the
distribution N ∼ (0, σ2) is added to corrupt the data and

simulate the effect of industrial sensor noise. In this work, a
noise level of 8% is used. The relationship between the noise
percentage and the standard deviation σ of the added noise is
defined as follows

= ×RMSE
Noise percentage

100 (11)

where root-mean-square error (RMSE) is the root-mean-
square error of the signal given by

=
×

= = x t

m n
RMSE

( )i
n

j
m

i j1 1
2

(12)

Since noise is added to the scaled variables, it is not necessary
to amplify the noise differently for each variable. The training
data set used for the dropout-SINDy procedure is shown in
Figure 4.

Figure 4. Training data set. Each line is one open-loop trajectory.
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In this work, the noise was added to the data after
preprocessing, i.e., centering and scaling. In an industrial
setting, the noise would be in the original states as measured,
before any centering or scaling. In this study, however, to
define the “noise level” as a fixed percentage as per eqs 11 and
12, it was necessary to appropriately scale either the noise or
the data when adding the two due to the orders of magnitude
of difference in the scales of the concentrations and
temperature. Due to the RMSE (eq 12) being used to define
the noise percentage, centering is required regardless of scaling.
This ensures xi in eq 12 is in terms of deviation from the steady
state and centered around zero, which ensures that the RMSE
is meaningful. With respect to scaling, both methods were
attempted: the first being centering and scaling the data and
then adding 8% noise, as defined in eqs 11 and 12, to the newly
scaled data set. This eliminates the need to scale the noise
because all of the xi values in eq 12 are already of a similar
order of magnitude, specifically between +1 and −1. In
contrast, the second method is to add scaled noise of 8% to
each variable. However, since x4 in eq 12 is now much larger
due to the data not being scaled by the maximum absolute
value of the deviation in temperature (14.961 K), the RMSE
increases by almost an order of magnitude as well, leading to
an extremely large variance from using eq 11. Therefore, the
concentrations (x1, x2, x3) are completely masked by noise and
become very similar to pure white noise, rendering the data
useless for modeling.

To counter this, the variance must be decreased by an order
of magnitude (by multiplying by 0.1) to keep the noise
amplitude at a realistic level, and each column of the noise data
is also multiplied by the maximum absolute value of the
respective column, to maintain the scaling between columns.
Doing so, the training data using the second method to add the
scaled noise into the original data is almost identical to Figure
4 once converted back to nondeviation form. This data set,
generated by the second method, after rescaling, when used in
the proposed algorithm following the procedure described in
the remainder of the manuscript, yielded results almost
identical to what will be presented with no visible differences
in the plots. Therefore, for the purposes of this work, there is
no practical difference whether the data is scaled and then
corrupted with a fixed percentage level of noise, or if noise of a
fixed percentage level is first generated and then scaled
appropriately to be added to each variable. In an industrial
setting, the noise would be present in the measured data, but in
a manner similar to how it was added in the second method
such that the noise is appropriately scaled for each variable.
This is because the resolution of the sensor would be designed
according to the range of values that will be measured by the
sensor. Hence, variables with generally smaller values will likely
use sensors that have smaller errors and variances.
Remark 5: The present work focuses on the effect of

Gaussian noise in the training data. Typically, non-Gaussian
noise is more difficult to mitigate in the modeling step as
shown in ref 11, where recurrent neural networks are shown to
satisfactorily deal with Gaussian noise but struggle with non-
Gaussian noise. In contrast, in ref 73, the author discusses how
even an identical, independently distributed or i.i.d. Gaussian
noise additive to the states can translate into correlated non-
Gaussian effective noise when being used in downstream
modeling algorithms, although the specific system studied was
different. A detailed study of the effect of additive non-

Gaussian noise to the training data is beyond the scope of this
work and will be addressed in a future work.

The noisy data is then used to obtain estimates of the
derivatives, which is one of the biggest challenges of using
SINDy on noisy data. It was demonstrated in ref 37 that the
best two methods for estimating the time-derivative in the
development of SINDy models are the smoothed finite
difference (SFD), where the Savitzky−Golay filter is used to
presmooth the data before using finite differences to compute
the derivatives, and the total-variation regularized derivative. In
this work, SFD was found to be the optimal derivative
estimator and was used in all simulations.

Next, the function library is created using the preprocessed,
noisy training data. For this system, the set of basis functions
chosen was a linear input term, monomials up to second order
for the concentrations, the hyperbolic tangent of the
temperature, an exponential term in temperature of the form

+
1

1 ex4 1 , as well as interactions between the six concentration

functions (3 of each order) and the two temperature terms.
Therefore, a total of 21 basis functions were considered. The
temperature terms were considered in the above forms because
of their large effect on the ODEs, the possibility of divergence
when added as linear or quadratic terms, and the general
understanding of chemical reaction engineering. Explicitly, the
terms considered in the function library were x1, x2, x3, x1

2, x2
2,

x3
2,

+
1

1 ex4 1 , tanh x4, u,
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1
4 1 ,
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4 1 ,
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1 ex
1
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4 1 ,
+
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2
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4 1 ,

+
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3
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4 1 , x1 tanh x4, x2 tanh x4, x3 tanh x4, x1
2 tanh x4, x2

2 tanh x4,

and x3
2 tanh x4. Using this set of basis functions, Algorithm 1 is

implemented in PySINDy,74,75 a Python Application Program-
ming Interface (API), to build the SINDy model. While
identifying each submodel, some of the listed basis functions
are dropped out before carrying out the optimization.
Remark 6: It is noted that the form of the temperature

terms is highly specific. This was necessary because the choice
of basis functions is critical to the performance of sparse
identification. A poor selection of basis functions will not yield
a sparse representation as such a representation may not exist.
In this case, as mentioned, the large effects of linear and/or
quadratic temperature terms on the ODE lead to unstable
models that could not be integrated without the solution
diverging. Hence, the general reaction engineering concept of
the absolute temperature appearing as a negative exponential
term was utilized to create the temperature basis function (x4).
The remaining six terms in x4 such as

+
x

1 ex
1

4 1 were obtained

when computing the interaction terms between concentrations
and temperatures since such interactions are found in most
material balance equations. This methodology would apply to
any general system in consideration. For example, if the system
in consideration was a four-tank system involving square root
nonlinearities, and we could not obtain satisfactory perform-
ance using polynomial and/or trigonometric basis functions,
the set of candidate basis functions would be expanded to
specifically include square root basis functions in the tank
heights since this relationship is well known. Doing so would
very likely improve the performance of the sparse identification
step by a significant margin.

In dropout-SINDy, three hyperparameters require to be
tuned: λ, the sparsification knob, ndropout, the number of library
functions to be zeroed for each submodel, and nmodels, the total
number of submodels to be identified. The value of λ was
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tuned via a coarse search using values between 0.1 and 10 in
steps of 0.1. Finer and/or wider ranges of λ did not improve
the performance any further. Therefore, a value of 1 was used
throughout the simulations. When ndropout is too small, too few
functions are dropped from the library to lead to a significant
change in the model. However, increasing ndropout too much
produces excessive sparsity, leading to poor and/or unstable
performance. Hence, a trade-off between model accuracy/
complexity and stability exists. The optimal value was found to
be ndropout = 7 from extensive simulations in the entire range of
ndropout ∈ [1, 21]. Finally, when nmodels is small, only a few
models are identified, which may not include the optimal
model. On the other hand, identifying too many models is
computationally expensive and also promotes instability. This
is possibly because a larger number of submodels become
unstable and/or inaccurate, which affects the median of the
coefficients. Therefore, extensive simulations are conducted to
obtain a value of nmodels = 10, which is found to produce the
best model with a short processing time. Due to the length of
the ODE models produced, a visualization of the coefficients
associated with each library function for each ODE model’s
right-hand side is provided in Figure 5.
Remark 7: If, instead of the median of the submodels, the

best of all of the submodels is selected as the final model as
mentioned in remark 2, it can be theorized that the overall

model accuracy will only improve as nmodels is increased,
although at a higher computational cost.

4.2.1. Corroboration between the Sparse-Identified Model
and Known CSTR Dynamics. Although the model shown in
Figure 5 may appear to contradict prior knowledge on CSTR
dynamics, this is a well-known limitation of any system
identification technique, not only limited to sparse identi-
fication. There are many factors that affect exactly what terms
are needed in a system identification method to minimize the
chosen error criterion. This is especially true for sparse
identification, where there are many basis functions. Based on
the comprehensive literature review, except for very simple
cases, there will often be a competing basis function (or subset
of basis functions) that has (or have) similar dynamics.

As a simple illustrative example, the family of systems, ẋ =
−xn, where n = 1, 2, 3 may be considered. The dynamics of this
family of systems are very similar in trend, i.e., they are similar
to a decaying exponential, with the speed of decay being the
primary difference. As n increases, the dynamics get slower.

If we attempt to identify the system, ẋ = −x2, using data in
the range of t ∈ [0, 1], sampled with the same sampling time as
used in the paper of Δ = 0.01, we obtain ẋ = −0.999x2, which
is very accurate. However, if we shorten the data range to t ∈
[0, 0.2], where the different systems in the family are quite
close in terms of dynamics, the identified model degrades to ẋ
= −0.111x − 0.783x2 − 0.107x3, which appears to be
inaccurate. However, a plot of this “inferior” model indicates
it is not as poor as it seems, and the maximum absolute error
and MSE of 0.006 and 9 × 10−6 both confirm this (in contrast,
x varies between 0.5 and 1 over the entire data set). One way
to improve the model, however, was found to be to decrease
the sampling time of the data to Δ = 0.001. This led to the x2

term beginning to dominate the right-hand side of the ODE
once more, proving that the loss of information from the
discrete sampling procedure also contributes to the model
attempting to capture the dynamics using other basis functions
in the candidate library.

A more relevant example is the identification of the system, ẋ
= −x3, in the same family of systems above. In this case, even
when using the entire range of t ∈ [0, 1], the identified model
is

= + +x x x x1.556 5.976 7.484 2.0652 3

First, once again, this model is very close to ẋ = −x3 as seen in
the maximum absolute error and MSE of 0.001 and 4 × 10−7.
However, we note the coefficient of x3 is positive and, in fact,
the coefficients associated with x and x2 are greater in
magnitude. A possible explanation can be that, due to the
range of x considered, the effect of increasing powers of x is
less as n increases. Hence, the negative x2 term, although not
present in the actual system or data used, is sufficient to
overpower the positive x and x3 terms and yield the correct
dynamics (because despite the positive x and x3 terms, the
graph is monotonically decreasing). From both of these case
studies, it is clear that the exact model obtained is highly
dependent on the region of data that is used in the sparse
identification procedure, the sampling time, as well as the value
of the variables in the basis functions. For the CSTR system,
even though the variable CA should be strongly associated with
the first ODE (ĊA), it is possible that the values of CA in the
scaled space are larger than other variables on average, leading
to smaller coefficients being associated with it. Alternately, as
seen in the example of ẋ = −x3 above, it is possible that otherFigure 5. Visualization of dropout-SINDy identified model.
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terms, such as CC tanh(T), have a dominant effect on the
dynamics because of the range of temperatures and CC in the
data set, which leads to it being a major term in every ODE.

The goal of sparse identification is to simply minimize the
objective function by optimizing the coefficients associated
with the basis functions, whereas the prior process knowledge
is incorporated into the choice of the basis functions
themselves rather than their coefficients. While placing more
constraints on the optimization to obtain a representation
closer to the known CSTR dynamics may be possible, that will
be a different method rather than sparse identification and is,
hence, out of the scope of this article.
Remark 8: The minimization problem of sparse identi-

fication can be solved using a number of different algorithms.
Besides STLSQ, specifically for minimizing the L0 norm in
sparse problems, greedy algorithms are also popular. Greedy
algorithms make the best possible choice at every step but may
not yield an overall optimal solution. Two highly popular and
established greedy algorithms are the orthogonal matching
pursuit (OMP) and its slightly improved yet more computa-
tionally costly variation, the orthogonal least squares (OLS).76

In the PySINDy package, a further improved version of OLS
known as Forward Regression Orthogonal Least Squares
(FROLS) has been implemented based on ref 77. FROLS
iteratively selects the most correlated function in the function
library, using as its selection criterion the normalized increase
in the explained output variance due to the addition of a given
function to the basis. Due to the greedy nature of the
algorithms, it is also simpler as there are no hyperparameters to
tune in the FROLS algorithm. However, the models obtained
for this system using FROLS were not stable and could not be

integrated without diverging to infinity. The documentation of
the PySINDy package has also demonstrated via extensive
simulations with a number of minimizing algorithms that both
OMP and FROLS are outperformed by a large margin by
STLSQ in the case of noisy data. While OMP and FROLS are
standard algorithms for solving the L0 minimization problem,
at least in the implementation available in PySINDy, they
perform poorly on noisy data in particular. A possible cause is
that greedy algorithms must select new terms by calculating
correlations with the target data, which is noisy. One other
algorithm available in PySINDy, which is frequently used, is
the sparse relaxed regularized regression or SR3 algorithm.
While it may be generally superior by formulation, in this case,
both STLSQ and SR3 yielded nearly identical models with the
same mean-square error values. Therefore, due to both the
accuracy and simplicity of STLSQ, it was the only algorithm
used in this work.
4.3. Open-Loop Simulation Results. The SINDy model

obtained using dropout-SINDy as described in Section 4.2 is
tested on the runs in the test set, which corresponds to open-
loop tests under a fixed input u. One test run is shown in
Figure 6. The SINDy model is observed to be able to correctly
predict the evolution of the state from the origin to a new
steady state under a nonzero input value of −8.9869 kg/s
between t = 0 h and t = 7.21 h. Once the system reaches the
first nonzero steady-state, from t = 7.21 h, a new input of
−2.9869 kg/s is applied until t = 15.1 h. In both halves of the
trajectory, it can be seen that the dynamics of the SINDy
model are slightly slower and do not reach the correct peak
values in deviation form. This is likely due to the denoising/
prefiltering step in the estimation of the time derivatives since

Figure 6. Time-varying profiles of the states for the open-loop simulation using Aspen Plus Dynamics (blue line) and the dropout-SINDy model
(orange line) with two nonzero input values of u1 = −8.9869 kg/s and u2 = −2.9869 kg/s applied over the intervals t1 ∈ (0, 7.21] and t1 ∈ (7.21,
15.1], respectively.
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the Savitzky−Golay filter has a complex mechanism to
compute the smoothed derivative including curve fitting and
differentiating it. However, the overall dynamics are captured
well and, most importantly, the steady states are accurately
predicted by the SINDy model. For the other test runs
described in Section 4.2, the plots showed similar trends in
terms of slower dynamics but correct identification of the final
steady states. To quantitatively measure the model accuracy,
the MSE of the four states for this run is calculated and shown
in Table 2. It is observed that the MSE for the concentrations

is on the order of 10−4, while the MSE for the temperature
prediction is 0.75. This is similar in magnitude to previous

results using more sophisticated neural network models in the
presence of industrial noise.10 As a final test, the SINDy model
is initiated from zero initial conditions (x0 = 0) under zero
input (u = 0) to verify that the state remains at the origin for
indefinite time under such conditions, which was found to be
the case. This final verification step is important to ensure that,
in the subsequent closed-loop implementation, the state can be
driven to the origin and maintained there without using any
more input u. The choice of data scaler/normalization used
also greatly affects the results of this test at the origin.
4.4. Closed-Loop Simulation Results. After ensuring the

quality of the dropout-SINDy model via open-loop testing, we
incorporate the model into the LMPC of eq 8 to conduct
closed-loop simulations. The control objective is to maintain
the state of the reactor at the steady state (CE, CB, CEB, T) =
(0.456, 4.09, 3.18 kmol/m3, 400 K) by manipulating the
coolant flow rate ṁcoolant. The objective function of the LMPC,
eq 8a, is considered to be as follows to ensure a value of zero at
the steady state itself under no-input conditions

= | | + | |L x u x u( , ) Q Q
2 2

1 2 (13)

Table 2. Open-Loop Prediction MSE Results for the Run
Shown in Figure 6

State MSE

CE 1.9 × 10−4

CB 2.7 × 10−4

CEB 1.6 × 10−4

T 0.75

Figure 7. State and input profiles for the CSTR in closed loop under no control (blue line), a P-controller (red line), and the LMPC utilizing the
dropout-SINDy model (black line) throughout the simulation period tp = 1.5 h.
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where Q1 and Q2 are weighting matrices that control the
contributions of the state and the input in the LMPC objective
function, respectively. Q1 is chosen to be the 4 × 4 identity
matrix, while Q2 = 2 × 10−6. As the optimization problem of eq
8 is nonlinear and nonconvex, we solve it every Δ = 0.01 h
using the numerical solver Ipopt78 with its Python module
PyIpopt. The lower bound for the LMPC is chosen to be a
stabilizing proportional or P-controller based on the error in
the temperature and with a controller gain of 100.

Figure 7 depicts the closed-loop state and input profiles for
the reactor operating without control action as well as under
two controllers�the stabilizing P-controller and the LMPC
using the dropout-SINDy model as the process model. From
the state profiles, it can be observed that the uncontrolled

states oscillate and do not reach close to the steady state within
the simulation period tp = 1.5 h. If the simulation is continued,
it is observed that the uncontrolled state returns to the steady
state after approximately 5 h, which was also observed in
Section 4.2. during data generation. In contrast, both
controllers are able to reduce the overshoot and, more
importantly, rapidly bring the state of the system back to the
origin, with the LMPC being significantly faster than the P-
controller, especially with respect to the temperature.
Specifically, the LMPC brings the states into the Ωρdsi

region
at t = 0.5 h in half the time compared to the P-controller,
which takes t = 1 h, and a tenth of the time taken in the
uncontrolled scenario.

Figure 8. LMPC performance metrics throughout the simulation period tp = 1.5 h.
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The closed-loop performance of the two controllers is
further compared in terms of the convergence of the states to
the origin as well as energy consumption over the simulation
duration. This is carried out using the LMPC objective
function as the metric since it accounts for the deviation in
both states and input in its evaluation. Mathematically, it can
be observed from eq 13 that a lower value of the objective
function indicates both faster convergence and lower energy
consumption i.e., lower coolant usage. Therefore, we compute
the integral of the objective function of the LMPC over the
entire closed-loop simulation period tp, ∫ t=0

tp L(x(τ), u(τ)) dτ,
for both controllers and also under open loop for comparison
purposes. The cost function time integral values are found to
be 429.9506 under open loop, 71.7027 under P-control, and
57.5497 under the LMPC. Therefore, it can be concluded from
the lower value of L that both controllers greatly improve the
convergence of the states, while the LMPC outperforms the P-
controller in terms of overall convergence.

Figure 8 shows the various performance metrics of the
LMPC throughout the simulation period. It is confirmed that
the Lyapunov function V decreases at every sampling time and
with a negative value of V̇. The constraint functions are
observed to be satisfied throughout the simulation duration,
implying the LMPC is able to find a value of the input that is at
least as effective as that calculated by the P-controller due to
the contractive constraint of eq 8e. The cost and objective
functions are also monotonously decreasing as expected. The
nonlinear optimization solver Ipopt returns a status of 0
corresponding to a successfully solved problem for most
(∼70%) of the simulation; however, in some instances (e.g.,
between t = 0.1 h and t = 0.2 h), a status of 2, corresponding to
an infeasible problem, is returned, in which case the LMPC
uses the input calculated by the stabilizing P-controller that is
selected as the lower bound in eq 8e, as also evidenced by the
input profiles shown in Figure 7.
Remark 9: Although the results of the non-model-based

control law Φsi (in this case, P-controller) may be improved by
considering integral and derivative control as well, this was
found to be unnecessary for this system. Due to the high gain
of the P-controller, there was no visible offset in the ultimate
values of the states, as seen in the state profiles in Figure 7.
Hence, no integral control was used. Since derivative control is
typically necessary for excessive oscillations,79 which were also
not observed in this case, a P-controller was deemed sufficient.
Most importantly, a stabilizing PID controller, even if found,
would be selected to be the lower bound of the control action
for the MPC, i.e., Φsi as given in eq 8e. The goal of the MPC is
to improve upon this input by solving the optimization
problem of eq 8. In the event that such an input is already the
optimal input and cannot be improved, the MPC uses this
input. Therefore, even if a superior PID controller can be
designed for this system, the MPC would improve upon it or
perform at least as well as the non-model-based controller.
There are other advantages, however, to using MPC, such as
accounting for all of the states instead of only the temperature
in the case of a MIMO system as the one studied, the MPC’s
ability to handle constraints, and also its stability guarantees
based on converse Lyapunov theorems.
Remark 10: While it is standard practice to compare the

performance of an MPC based on the proposed algorithm and
a first-principle model-based MPC, in this case study, this was
found to be impossible due to the complexity of the nonlinear
process model in Aspen Plus. The proposed algorithm is aimed

at solving such problems where no first-principles model is
readily available due to the extreme nonlinearities and
complexities. If such a first-principles model were available,
subsampling-based SINDy37 is a viable and possibly superior
algorithm. However, that requires the aid of a first-principles
model, which is not possible to be derived manually in this
scenario. Hence, such a comparison cannot be made in this
case study.

5. CONCLUSIONS
In this paper, sparse identification was combined with
ensemble learning to model and control a nonlinear chemical
process system using only noisy data from sensor measure-
ments. A high-fidelity chemical process simulator, Aspen Plus
Dynamics, was used to simulate a chemical reactor with
multiple reactions, which was used for data generation as well
as open- and closed-loop control demonstrations. In open-
loop, it was found that the dropout-SINDy model could
accurately predict the steady state of the system under an
arbitrary input starting from any initial condition within the
stability region. After confirming this, a dropout-SINDy-based
LMPC was applied in closed-loop control to the reactor in
Aspen Plus Dynamics. The LMPC depicted superior perform-
ance compared to the open-loop performance and a P-
controller in terms of faster convergence.
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