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A B S T R A C T

This paper discusses recent developments in the data-based modeling and control of nonlinear chemical
process systems using sparse identification of nonlinear dynamics (SINDy). SINDy is a recent nonlinear system
identification technique that uses only measurement data to identify model dynamical systems in the form of
first-order nonlinear differential equations. In this work, the challenges of handling time-scale multiplicities
and noisy sensor data when using SINDy are addressed. Specifically, a brief overview of novel methods devised
to overcome these challenges are described, along with modeling guidelines for using the proposed techniques
for process systems. When applied to two-time-scale systems, to overcome model stiffness, which leads to ill-
conditioned controllers, a reduced-order modeling approach is proposed where SINDy is used to model the slow
dynamics, and nonlinear principal component analysis is used to algebraically ‘‘slave’’ the fast states to the slow
states. The resulting model can then be used in a Lyapunov-based model predictive controller with guaranteed
closed-loop stability provided the separation of fast and slow dynamics is sufficiently large. To handle high
levels of sensor noise, SINDy is combined with subsampling and co-teaching to improve modeling accuracy.
The challenges of modeling and controlling large-scale systems using noisy industrial data are then addressed
by using ensemble learning with SINDy. After summarizing the advances, a nonlinear chemical process is used
to provide an end-to-end demonstration of process modeling using sparse identification with guidelines for
chemical engineering practitioners. Finally, several future research directions for the incorporation of SINDy
into process systems engineering are proposed.
1. Introduction

A central objective of scientific and engineering research is the
derivation of the laws governing physical systems in the form of
equations. With the explosion in data and computational power over
the last two decades, the construction of these equations empirically
from data has become more tractable than deriving physics-based
first-principles models, especially for highly complex systems, and is
gaining momentum in the literature. For many physical systems, the
laws governing their dynamics take the form of ordinary differen-
tial equations (ODE) or partial differential equations (PDE) with time
and/or space as independent variables. Common examples include the
Boltzmann equation in thermodynamics and the Navier–Stokes equa-
tions in fluid dynamics (Zhang and Lin, 2018). The development of
such time-varying predictive models is often a prerequisite for other
objectives in a plant/system engineering context, such as predictive
maintenance in operations engineering and advanced control system
design in any closed-loop system with strict product requirements.
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In chemical process systems, model predictive control (MPC) is an
advanced control system that has been implemented and accepted
widely in the industry (Holkar and Waghmare, 2010). As the name
suggests, MPC uses a dynamical model such as an ODE to predict the
process states (outputs) over a user-defined prediction horizon to be
able to take the optimal control action based on anticipated possible
future trajectories. A large body of literature on data-driven modeling
in MPC can be found in Aggelogiannaki and Sarimveis (2008). Two of
the most common, classical system identification algorithms include the
singular value decomposition (Moore, 1986) and Numerical algorithms
for Subspace State Space System Identification (N4SID) (Van Overschee
and De Moor, 1994). However, machine learning (ML) methods, a
type of data-driven modeling with numerous parameters and tunable
hyper-parameters, have demonstrated highly accurate results when
applied to complex systems with multiple interacting nonlinearities
due to their high degree of freedom. Some examples of ML meth-
ods include support vector regressors, extreme gradient boosting, and,
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particularly of interest in recent years, artificial neural networks. For
example, in Wu et al. (2019a,b), recurrent neural networks were used
to model nonlinear processes, and subsequent closed-loop stability
results under recurrent neural network-based model predictive control
were derived. Autoencoders, which are feedforward neural networks
(FNN) that replicate the input at their output, have been the subject
of several studies. While linear autoencoders correspond exactly to
PCA, Kramer (1991) proposed the use of nonlinear autoencoders, which
use nonlinear activation functions, as a form of nonlinear PCA. Au-
toencoders, particularly undercomplete autoencoders, are a powerful
tool for dimensionality reduction due to the enforced reduction of the
dimension in the intermediate or hidden layers of the network. Tsay
and Baldea (2020) used undercomplete autoencoders to carry out
nonlinear dimensionality reduction and build reduced-order models
for integrated scheduling and control of chemical process operations.
When the system identification and optimal scheduling computations
were conducted in the latent variables with reduced dimensionality,
it was found that the computational efficiency as well as the level of
dynamic information provided were improved. In Schulze et al. (2022),
Koopman theory was used to derive a Wiener-type formulation for han-
dling multiple-input multiple-output (MIMO) input-affine dynamical
systems. Specifically, reduced-order surrogate models were developed
by combining autoencoders with linear dynamic blocks. The models
were hypothesized to be particularly useful in control applications due
to the high accuracy and dimensionality reduction capabilities of the
proposed Wiener-type Koopman models. The integration of a Gaussian
process model with MPC was proposed in Likar and Kocijan (2007)
and applied to a gas–liquid separation process. The simple model
structure of the Gaussian process model and, more importantly, the
statistical information such as the prediction uncertainty provided by
such a model were found to be desirable qualities for control-centric
applications.

A potential drawback of traditional ML models has been their black-
box nature, which limits their applicability and adoption in process
systems engineering. Therefore, the field of hybrid modeling, some-
times referred to as ‘‘gray-box’’ modeling, which aims to combine a
priori first-principles knowledge or domain expertise with black-box
approaches such as ML models to improve both the accuracy and
interpretability of the overall model, has recently attracted significant
attention. Bikmukhametov and Jäschke (2020) outlines a number of ap-
proaches to incorporating physics into data-driven modeling including
but not limited to:

(1) feature engineering, which refers to domain experts selecting
and/or creating physically meaningful features from the data set
obtained from sensors rather than using the raw measurements
directly,

(2) residual modeling, which refers to building an ML model to
model the residual between the known first-principles model and
sensor measurements in order to build a model that captures the
plant-model mismatch, and

(3) linear meta-model of models, where the solutions from multiple
sub-models, which correspond to various parts of the overall
system and are obtained using feature engineering, are combined
into a linear meta-model by taking a weighted linear combina-
tion of all the models to represent the overall system accurately
once the weights are tuned.

Alhajeri et al. (2021) investigated the use of FNNs to build state
estimators in the absence of full-state feedback. Specifically, an FNN
was used to model the nonlinear terms in the dynamics such as those
corresponding to chemical reactions. In Alhajeri et al. (2022a,b), the
links between layers of a recurrent neural network (RNN) were dis-
connected (i.e., corresponding weights zeroed) based on the process
structure, leading to the elimination of erroneous model predictions
and improved overall model accuracy. Sansana et al. (2021) provides a
2

detailed overview of hybrid modeling and its evolution over the last
three decades since it became a subject of interest in the scientific
community. Sansana et al. (2021) reports that the a priori knowledge
to be incorporated into hybrid modeling has typically been in the form
of equations, and other forms of data/information such as plant floor
experience and process flow sheets have not been investigated exhaus-
tively. It was also found that data-driven modeling has typically been
used to enhance previously known or derived mechanistic models, but
the reverse, i.e., using mechanistic models to improve or constrain data-
driven models, is largely unexplored. In the field of process monitoring
and fault diagnostics, in particular, Sansana et al. (2021) highlighted
the benefit of knowledge of causality that can be inferred via hybrid
modeling.

The area of surrogate modeling in process systems engineering
has, in parallel with the above directions, increased in research in-
tensity. McBride and Sundmacher (2019) provides a comprehensive
overview of advances in surrogate modeling in chemical engineering
over the past three decades. A primary reason for the surge of interest
in surrogate models is the increasing complexity of modern, highly
accurate models used to simulate or model the nonlinear processes,
scheduling problems, and complex thermodynamics that are ubiqui-
tous in chemical engineering. Despite their increasing accuracy, such
models encounter a number of challenges in downstream optimization
and control applications. Due to the model complexity, the computa-
tional expense in terms of both processing power and time required
to evaluate such models is exorbitantly large in many cases. While
single function evaluations may be feasible in a practical setting, if
the models are to be embedded into an optimization problem, such
as set-point optimization or closed-loop control under an MPC, the
computational demand becomes prohibitive due to the large number
of function evaluations (typically hundreds or thousands) required to
find such solutions. This is further complicated by black-box models
since no simplification, such as omission of a term or otherwise, may
be performed to find a compromise between model complexity and
accuracy. If the type of model used is noisy or has discontinuities, this
further complicates the problem, especially since, in this case, finite-
differences cannot be used to estimate derivatives, which are crucial
in optimization. To overcome these challenges, mathematically simpler
models known as surrogate models have been proposed to approximate
the input/output relationship of the complex models using much fewer
model parameters and with much lower computational costs.

Although surrogate models can be used to approximate more com-
plex models, another approach is to start with simpler model structures
to model the desired system of interest and only add complexity as
required. While methods such as N4SID and MOESP have been widely
used over the past decades with varying degrees of success depending
on the application and severity of the nonlinearities present, sparse
identification for nonlinear dynamical systems (SINDy) is a recent
method that aims to identify nonlinear ODEs directly from data, which
are explicit and in closed-form, allowing them to be directly incor-
porated into MPC or any other optimization problem. Due to the
availability of efficient differential equation solvers, the computational
cost of integrating such models is generally low, especially if the mod-
els are well-conditioned. In the field of chemical engineering, SINDy
has been used to identify reaction networks (Hoffmann et al., 2019)
and to build reduced-order models for modeling and controlling a
hydraulic fracturing process (Narasingam and Kwon, 2018). Despite
the application of SINDy to several chemical process examples in the
literature, a number of specific issues encountered in the modeling
and control of chemical processes and plants remain to be addressed
adequately, based on our review of the literature. Therefore, this paper
provides a unified summary of recent advancements and novel exten-
sions to SINDy to overcome numerous challenges that are encountered
when applying SINDy to the domain of chemical engineering. Besides
providing general guidance with respect to basis functions and numer-
ical concerns, more specifically, the difficulties of modeling multiscale
systems, noisy sensor data, and industrial processes are discussed.

In this manuscript, we apply SINDy to model and control three types

of process systems:
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(1) processes with time-scale multiplicities,
(2) simulated processes with high levels of sensor noise, and
(3) large-scale processes corrupted with high levels of industrial

noise.

Each category of systems has associated challenges and are addressed
using different improvements upon the original SINDy algorithm, the
details of which will be discussed in the respective section. We note
that, although SINDy was introduced with the intent of identifying the
governing physical laws as closed-form differential equations consistent
with known physics of the system of interest, the application of SINDy
is not limited to such cases. As the product of SINDy is a closed-form
ODE model with explicit nonlinearities, the resulting model can be
directly incorporated into an MPC for efficient computations. There-
fore, in this work, we use SINDy as a system identification algorithm
with the ultimate goal of building dynamical models for controllers.
The rest of this manuscript is outlined as follows: in Section 2, the
general class of nonlinear process systems under consideration is de-
scribed. Section 3 details the SINDy algorithm along with general
guidelines and tuning considerations for building SINDy models, and
its formulation in a model predictive controller. In Section 4, the
challenges of two-time-scale systems are discussed, while Sections 5
and 6 address the challenges of noisy data for simulated processes
and large-scale industrial processes, respectively. A detailed, end-to-
end practical demonsration of applying SINDy to a highly nonlinear
chemical process is given in Section 7. Finally, Section 8 provides a
number of research directions for furthering the application of SINDy
for process modeling and control.

2. Class of nonlinear process systems

We consider the class of nonlinear process systems described by the
following first-order ODE:

̇ (𝑡) = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 +𝑤, 𝑥(𝑡0) = 𝑥0 (1)

where 𝑥 ∈ R𝑛 is the state vector, 𝑢 ∈ R𝑟 is the manipulated input
vector, and 𝑤 ∈ R𝑛 is the noise vector. The unknown vector and matrix
functions 𝑓 ∈ R𝑛 and 𝑔 ∈ R𝑛×𝑟, respectively, constitute the process

odel representing the inherent physical laws constraining the system
nd are assumed to be locally Lipschitz vector and matrix functions of
heir arguments with 𝑓 (0) = 0. The manipulated input is constricted
o be in 𝑟 nonempty convex sets defined as 𝑖 ⊆ R, 𝑖 = 1,… , 𝑟.

The sensor noise 𝑤 is assumed to be bounded within the set 𝑊 ∶=
𝑤 ∈ R𝑛 ∶ ‖𝑤‖2 ≤ 𝜃, 𝜃 > 0. The class of systems of the form of Eq. (1)
is further restricted to the family of stabilizable nonlinear systems,
i.e., there exist a sufficiently smooth control Lyapunov function 𝑉 (𝑥)
and a control law 𝛷(𝑥) = [𝛷1(𝑥)⋯𝛷𝑟(𝑥)]⊤ that renders the nominal
(𝑤 ≡ 0) closed-loop system of Eq. (1) asymptotically stable under
𝑢 = 𝛷(𝑥). The stability region 𝛺𝜌 is defined as the largest level set of
𝑉 where �̇� is rendered negative. Without loss of generality, the initial
time 𝑡0 is taken to be 0 throughout the article.

3. Methodology: Sparse identification of nonlinear dynamics

3.1. Overview of the sparse identification method

Based on sparse regression and compressive sensing, sparse identi-
fication of nonlinear dynamics (SINDy) is a novel method in the field
of system identification (Bai et al., 2015; Brunton et al., 2016) and has
been applied to a diverse array of engineering problems (Bhadriraju
et al., 2020). The aim of SINDy is to use only input/output data from
a system to represent the dynamics in the form of the nominal system
of Eq. (1),

̇̂𝑥(𝑡) = 𝑓 (�̂�) + �̂�(�̂�)𝑢 (2)
3

where �̂� ∈ R𝑛 is the state vector of the sparse-identified model, and
𝑓 and �̂� are the model parameters that capture the physical laws
overning the system.

Since most physical systems contain only a few terms in the right-
and side of Eq. (2), if a large number of nonlinear basis functions
re considered as possible terms in 𝑓 and �̂�, the space of all candidate

functions considered is rendered sparse. Hence, SINDy aims to identify
the small number of active functions in 𝑓 and �̂� using algorithms
that leverage sparsity. We first obtain a discrete set of full-state mea-
surements from open-loop simulations or experiments and concatenate
them into a data matrix 𝑋 and an input matrix 𝑈 ,

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1
(

𝑡1
)

𝑥2
(

𝑡1
)

⋯ 𝑥𝑛
(

𝑡1
)

𝑥1
(

𝑡2
)

𝑥2
(

𝑡2
)
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(
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)

⋮ ⋮ ⋱ ⋮
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(
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)
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⎥
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⎥

⎥

⎥

⎦

(3a)

𝑈 =
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⎥

⎥
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(3b)

where 𝑥𝑖(𝑡𝓁) and 𝑢𝑗 (𝑡𝓁) represent the measurement of the 𝑖th state and
𝑗th input at the 𝓁th sampling time, respectively, where 𝑖 = 1,… , 𝑛,
𝑗 = 1,… , 𝑟, and 𝓁 = 1,… , 𝑚. �̇�, the time-derivative of 𝑋, is a required
matrix in the sparse identification algorithm and is either measured if
possible (e.g., velocity) or otherwise estimated from 𝑋. Subsequently,
a function library 𝛩(𝑋,𝑈 ) is constructed with 𝑠 nonlinear functions of
𝑋 and 𝑈 . These 𝑠 functions are the candidate nonlinear functions that
may be zero or nonzero in the right-hand side of Eq. (2). The sparse
identification algorithm exploits sparsity to calculate the coefficients
associated with the terms in the library, 𝛩. Given the universality of
mononomials, polynomials, and trigonometric functions in engineering
systems (Brunton et al., 2016), they are often selected as the initial
library in 𝛩. An example of an augmented library is

𝛩(𝑋,𝑈 ) =
⎡

⎢

⎢

⎣

𝟏 𝑋 sin(𝑋) e𝑋 𝑈 𝑈𝑋2
⎤

⎥

⎥

⎦

(4)

The goal of sparse identification is to find each of the 𝑠 coefficients
associated with the 𝑠 nonlinear functions considered in 𝛩 for each row
of Eq. (2). Each state 𝑥𝑖 corresponds to a sparse vector of coefficients,
𝜉𝑖 ∈ R𝑠, that represent the nonzero terms in 𝑓𝑖 and �̂�𝑖 in the respective
ODE, ̇̂𝑥𝑖 = 𝑓𝑖(�̂�𝑖) + �̂�𝑖(�̂�𝑖)𝑢. Consequently, there are 𝑛 such coefficient
vectors that must be calculated. In matrix notation, the unknown
quantity is

𝛯 =
[

𝜉1 𝜉2 ⋯ 𝜉𝑛
]

(5)

which is found by solving the following equation:

�̇� = 𝛩(𝑋,𝑈 )𝛯 (6)

Eq. (6) may be solved using standard least-squares after reformulating
the problem as such by setting all coefficients in 𝛯 below a certain
threshold 𝜆 to zero. Specifically, the least-squares problem takes the
form,

𝛯 = arg min
𝛯′

‖

‖

�̇� − 𝛩(𝑋,𝑈 )𝛯′
‖

‖2 + 𝜆 ‖
‖

𝛯′
‖

‖1 (7)

where the first term maximizes the fidelity of the model to the data,
while the second term is an 𝐿1 regularization term that ensures sparsity
of 𝛯. In Eq. (7), 𝛯′ is a notational substitute for 𝛯. To solve Eq. (7),
the least-squares problem is written in the following form, which may
be solved using a standard solver for a linear system of equations:

𝛯 = arg min ‖

‖

�̇� − 𝛩(𝑋,𝑈 )𝛯′′
‖

‖2 (8)

𝛯′′
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where the matrix 𝛯′′ is 𝛯′ with all coefficients having an absolute value
below 𝜆 set to zero. Eq. (8) is repeatedly solved until convergence of
the non-zero coefficients. The iterations typically converge rapidly due
to the sparse structure of 𝛯. An alternate algorithm to solve Eq. (6) is
known as Sparse Relaxed Regularized Regression (SR3), which is based
on the well-known LASSO operator (Zheng et al., 2019). After finding
𝛯 using either method, the identified model can be formulated as the
continuous-time differential equation,

̇ = 𝛯⊤(𝛩(𝑥⊤, 𝑢⊤))⊤

where 𝛩(𝑥⊤, 𝑢⊤) is a column vector containing symbolic functions of 𝑥
and 𝑢 from the chosen function library, and 𝑥⊤ represents the transpose
of 𝑥.

3.2. Data generation and SINDy modeling considerations

When applying SINDy to an engineering problem, a number of
factors affect the results and must be carefully considered before and
during the construction of a SINDy model.

3.2.1. Data generation
Data for system identification methods is typically obtained from

either open-loop simulations or open-loop experiments. The sampling
period used to record the data, the variation of system inputs and
outputs considered for data generation, and the distribution of the
data set are some of the properties that affect the amount of dynamic
information contained in the data set and, as a result, the model quality.

Firstly, as information is lost when continuous data is sampled into
discrete data, a higher sampling rate (lower sampling period) generally
leads to better system identification for any method including SINDy,
especially since SINDy requires estimates of the time-derivative of the
states using finite differences or some variant thereof. However, it is
important to consider practical limitations in terms of sampling. While
an extremely small sampling period of 10−5 units may produce a data
set with high information density, from which derivative estimations
can likely be made very accurately, leading to the identification of
better models, such a high sampling rate is typically not possible
to achieve in a chemical process application or even in many other
engineering disciplines. Instead, the sampling period should be chosen
to be as small as reasonably possible, which would also be desirable in
practice. Manufacturer specifications of the relevant type of sensors for
process variables may be used as a lower bound on the sampling period
for simulations-based studies.

Secondly, the dynamic information captured in a data set is de-
pendent on the initial conditions chosen, the input signal variation,
and the total simulation duration. The chosen combinations of initial
conditions and input variables must cover as much of the operating
region of interest as possible, and the simulation should be run until
it reaches the desired steady-state of operation, in order to maximize
the dynamic information captured in the data set. In contrast, if the
data collection is carried out using a narrow range of initial conditions
and/or inputs, or if a large part of the trajectories are zero values at
the steady-state due to excessive run time, the data set may be large
but contain little dynamic information to build an adequate model
from. Furthermore, based on our studies, SINDy modeling works best
with longer trajectories, even if from fewer initial conditions, rather
than an exponential number of extremely small trajectories from many
random initial conditions. The open-loop runs, whether experimental or
simulations-based, should also reflect the various types of actions that
are relevant in a control setting. For example, a number of trajectories
should use a nonzero input to drive the system to various regions of
the state space, which will assist the model in identifying the input dy-
namics. However, a few runs should also initiate the system away from
the steady-state and let the states approach the steady-state under no
control action, provided that the steady-state of interest is a stable one.
4

If the data set is generated following the above best practices, it should t
yield an independent and identically distributed (i.i.d.) data set with
maximum dynamic information and the least redundancy/repetition.

Lastly, when dealing with a specific type of a system, any unique
characteristics of the system that may hinder or facilitate data gener-
ation and quality should be considered. For example, since the goal is
to capture as much dynamic information as possible and not collect
redundant data over a large period of the simulation with constant val-
ues for all variables (i.e., after the system reaches a steady state), when
dealing with multiscale systems, techniques such as ‘‘burst sampling’’
have been proposed in Champion et al. (2019). Burst sampling refers
to the use of a short sampling time in regions with higher gradients
and faster dynamics, such as the fast transient of the fast subsystem(s)
of a multiscale system, while reducing the sampling rate once the
fast states converge to the slow manifold. Such advanced sampling
strategies greatly reduce data storage requirements, and allow the user
to retain only the most informative bits of data to be used for modeling
and control. Such advanced data acquisition strategies should be used
instead of mere iterative procedures. On the other hand, if the system
operates at or near an unstable steady-state, integrating the system
for extended periods of time may lead to the states diverging (if the
system does not have another steady-state that is stable), which will
cause errors during run time and hinder the data generation. Hence,
for unstable operating points, it is desirable to use multiple shorter
trajectories. Such facilitation and difficulties of data generation must
be considered on a case-to-case basis for the system being studied.

3.2.2. Data preprocessing
In any machine learning (ML) application, it is essential to pre-

process the data before training a model. The two preprocessing steps
required to apply SINDy are the train/test split and the normalization
of the data set.

With respect to the split, the data set must first be split into the
training and test sets. Most of the training data set is used to regress the
model coefficients, while a small fraction of the training set is reserved
as the validation set, which is used to tune the hyper-parameters. Once
the optimal set of hyper-parameters is found, the model is finalized on
the entire training data with the selected hyper-parameters. The final
model is then bench-marked against the unseen data, which is the test
set, also referred to as open-loop tests in control applications. The train–
validation–test split ratio is arbitrary to an extent, although general
rules and best practices exist. The training set should generally be the
largest because the model performance is mostly related to the training
data set, which is used to find the model parameters, while the test set
is only used to gauge the model accuracy post-training. In fact, as long
as the data set is i.i.d., increasing the size of the training set will always
lead to an improvement of the model accuracy. The train–validation–
test proportions are also determined by the application. For example,
for methods with a large number of hyper-parameters to tune, such
as neural networks, where usually large volumes of data are usually
available, it may be more valuable to have a larger validation set, e.g., a
50-25-25 train–validation–test split. On the other hand, for SINDy,
since there is only one key hyper-parameter to tune, a larger training
set may be warranted, such as a 60-20-20 or 70-15-15 split. When the
data set poses additional challenges such as noise, it may warrant an
80-10-10 split, since training noisy data is often a difficult task and
requires significant amounts of data, especially if any smoothing or
other, additional preprocessing steps are required.

A number of methods exist to normalize, i.e., center and scale the
data set. Three common methods for normalization are the 𝑧-score
caler, Min-Max scaler, and Max-Abs scaler, of which the first two
ethods both center and scale the data, while the Max-Abs scaler only

cales it. Specifically, the 𝑧-score scaler first centers the data set to its
ean value by subtracting the mean, and then scales the data set to
ave unit variance by dividing by the standard deviation. The Min-Max
caler divides each number by the range of the data after subtracting

he minimum value of the data set and then adds the minimum value
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back to the scaled number in order to transform all data points to values
between a lower and upper limit, usually 0 and 1, respectively. The
Max-Abs scaler only scales the data to be between ±1 by dividing the
data set by its maximum absolute value, without any subtraction or
centering. While the methods are described for a single variable, for the
multivariate case, the above operations are independently carried out
on each variable or column of the data set. For chemical processes, as
the process inputs and outputs are often written in deviation form from
their steady-state values, further centering may not be as crucial; all
variables will attain a value of zero at the steady-state. However, due to
the large differences in the orders of magnitudes between the variables,
such as between concentrations and temperatures, scaling the data set
is necessary in most cases. When using SINDy, where the sign of the
coefficients associated with certain terms can contain information on
the process dynamics (e.g., an increase in the input heating rate should
lead to an increase in the temperature), methods that scale without
centering such as the Max-Abs scaler can be a reasonable starting point
when deciding on a normalization method, as was also observed in
some of our results.

3.2.3. Hyper-parameter tuning
In the basic SINDy algorithm, the model structure and accuracy are

simultaneously controlled and balanced by a single hyper-parameter,
𝜆. Therefore, tuning it is essential and usually carried out via a fine
search or coarse-to-fine search. The latter is computationally efficient
and used in this work. A coarse-to-fine search can be justified by the
fact that, for appropriately scaled data, for most systems, no nonzero
terms will remain in the SINDy model for large values of 𝜆, such as
𝜆 that is an order of magnitude greater than the scaled data set. In
contrast, extremely small values of 𝜆 will yield dense models that are
prone to instability as well as redundant in the basis functions. Hence,
a coarse search can be used to bound the region where a finer search
can be carried out to identify the optimal model that yields the lowest
loss or error metric. Fig. 1 demonstrates how this process can be used to
select the optimal model (corresponding to the orange point) through
a very fine search or even models very close to the optimal in terms of
accuracy by a much coarser search (corresponding to the green region).
As expected, it can be observed that values of 𝜆 > 1.0 zero all terms in
the SINDy model, leading to a constant error for all such 𝜆. At the lower
extreme of values of 𝜆, the model is no longer sparse, and some terms
that may even lead to an unstable model can start to have nonzero
coefficients, in which case the MSE rapidly increases even beyond the
case of all the terms being zero. This is especially the case since Fig. 1
is based on the work in Abdullah et al. (2022a), where the case of noisy
data is considered.

The basis functions chosen for the candidate library are another
central element of the SINDy method, which may be treated similarly as
a hyper-parameter, in the sense that it is not entirely arbitrary and may
require addition/removal of basis functions as necessary. Expanding
it without computational considerations is not recommended as the
overall optimization problem will then suffer from the curse of dimen-
sionality, while also rendering the model more prone to instabilities due
to dense model structures. Therefore, if there is any physical insight on
the type of nonlinearities that are potentially relevant to the system
of interest, this physical insight should be incorporated into the opti-
mization search (e.g., biasing the order with which the nonlinearities
are considered in the optimization search in an approach similar to the
ALAMO modeling technique (Wilson and Sahinidis, 2017)). For chem-
ical processes with nonlinear reaction terms, a common consideration
may be to include exponential terms involving the temperature as the
Arrhenius rate law is widely used in deriving mass and energy balances
for reactors.

For estimating the time-derivative �̇� in the right-hand side of
Eq. (6), which is typically unavailable from sensor measurements, the
ideal method to be used depends on the nature of the data set. For clean
5

data, any finite difference-based approach such as forward, backward, o
or centered finite difference is usually adequate and will eventually
yield similar results for the model coefficients at the end of the SINDy
algorithm. However, if the data is noisy, finite differences are unstable
even at low noise levels. Hence, methods robust to noise such as the
total variation regularized derivative (TVRD) and the smoothed finite-
difference (SFD) have been proposed (Brunton et al., 2016). TVRD is
based on the total-variation regularization, which has been widely used
in image processing applications. In TVRD, the derivative is computed
as the minimizer of a functional using gradient descent. In contrast,
in SFD, the data set is first presmoothed using a filter, which may be
a low-pass filter or the Savitzky-Golay filter, and finite-differences are
then computed from the resulting, smoothed data set. As no gradient
descent is involved, computationally, it is generally faster than TVRD.
However, when both methods were used in Abdullah et al. (2022b),
each method yielded some of the final, optimal models for the various
cases studied, making them both reasonable choices to test.

3.3. Incorporation of SINDy within MPC

Model predictive control is an advanced control methodology that
utilizes a model of the process to predict the states/output over a
prediction horizon to compute the optimal control actions by solving
an online optimization problem. The formulation of a Lyapunov-based
model predictive controller (LMPC) that uses a sparse-identified ODE,
𝐹𝑠𝑖(⋅), as the process model is presented below:

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
(�̃�(𝑡), 𝑢(𝑡)) d𝑡 (9a)

.t. ̇̃𝑥(𝑡) = 𝐹𝑠𝑖(�̃�(𝑡), 𝑢(𝑡)) (9b)

�̃�(𝑡𝑘) = 𝑥(𝑡𝑘) (9c)

𝑢(𝑡) ∈  , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (9d)
̇̂𝑉 (𝑥(𝑡𝑘), 𝑢) ≤

̇̂𝑉
(

𝑥(𝑡𝑘), 𝛷𝑠𝑖(𝑥(𝑡𝑘))
)

, if 𝑥(𝑡𝑘) ∈ 𝛺�̂�∖𝛺𝜌𝑠𝑖 (9e)

𝑉 (�̃�(𝑡)) ≤ 𝜌𝑠𝑖, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if 𝑥(𝑡𝑘) ∈ 𝛺𝜌𝑠𝑖 (9f)

here �̃� is the predicted state trajectory, 𝑆(𝛥) represents the set of
iece-wise constant functions with a period of 𝛥, and 𝑁 is the number
f sampling periods within each prediction horizon. ̇̂𝑉 (𝑥, 𝑢) is the
ime-derivative of the Lyapunov function and is equal to 𝜕𝑉 (𝑥)

𝜕𝑥 𝐹𝑠𝑖(𝑥, 𝑢).
𝑢 = 𝑢∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) denotes the optimal input sequence over the
rediction horizon, which is provided by the optimizer. The LMPC
pplies only the first value in 𝑢∗(𝑡𝑘) over the next sampling period
∈ [𝑡𝑘, 𝑡𝑘+1), and solves the optimization again at the next sampling

ime 𝑡𝑘+1.
In the MPC formulation, Eq. (9a) is the objective function to be

inimized and is chosen to be equal to the integral of (�̃�(𝑡), 𝑢(𝑡)) over
he prediction horizon. A typical cost function that achieves a value
f zero at the steady-state in the absence of manipulated input action,
hile simultaneously weighing the deviation in both state and input

rom the origin is the quadratic stage cost, which is often used in LMPC
nd is formulated as follows:

(�̃�(𝑡), 𝑢(𝑡)) = 𝑥⊤𝑄1𝑥 + 𝑢⊤𝑄2𝑢 (10)

q. (9b) describes the sparse-identified model that is used to predict the
losed-loop states over the prediction horizon starting from the initial
ondition of Eq. (9c) while 𝑢 is varied within the constraints defined
y Eq. (9d). The last two constraints of Eq. (9e) based on the Lyapunov
unction, 𝑉 = 𝑥⊤𝑃𝑥, guarantee that the closed-loop state either moves
owards the origin at the next sampling time if the state is outside 𝛺𝜌𝑠𝑖
r is contained within 𝛺𝜌𝑠𝑖 for the entire prediction horizon once the
tate enters 𝛺𝜌𝑠𝑖 .

The generally nonlinear, non-convex optimization problem of
q. (9) is solved at every sampling period, and the first entry of the
ptimal 𝑢∗ calculated is sent to the actuator, following which the

ptimization is re-solved at the next sampling period using the new
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Fig. 1. Values of two error metrics, the Akaike Information Criterion (AIC) and the mean-squared error, as functions of 𝜆 for model selection.
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tate measurement. The optimization is solved using the numerical
olver Ipopt (Wächter and Biegler, 2006) with its Python front-end
amed PyIpopt. For the contractive constraint of Eq. (9e), the universal
ontag control law (Lin and Sontag, 1991) or a well-tuned, stabilizing
roportional-only controller may be used. It is important to note that
he matrices 𝑃 , 𝑄1, and 𝑄2 must be tuned for the LMPC to achieve
he best results, and poorly tuned weight matrices may lead to the
olver not converging to a solution within the sampling period or the
aximum allowed number of iterations.

. Reduced-order modeling for two-time-scale systems

Time-scale separation is a common phenomenon found in chem-
cal processes such as distillation columns and catalytic continuous
tirred-tank reactors (CSTRs) (Chang and Aluko, 1984). If the time-
cale separation is not accounted for in a standard nonlinear feedback
ontroller, the controller may be ill-conditioned or even unstable in
losed-loop (Kokotović et al., 1999). Due to the distinct slow and fast
ynamics in such systems, the process will be represented by stiff
DEs in time when using SINDy without any modification. Such stiff
DEs, when integrated with an explicit integration method such as

orward Euler, require a very small integration step size to prevent
ivergence and yield sufficiently accurate solutions. Hence, Abdullah
t al. (2021a) used the mathematical framework of singular pertur-
6

ations to propose the decomposition of the original two-time-scale O
ystem into two lower-order subsystems, each separately modeling the
low and fast dynamics of the original multiscale system. Specifically,
ollowing a short transient period, the fast states converge to a slow
anifold and can be algebraically related to the slow states using
onlinear functional representations. In Abdullah et al. (2021a), we
pplied nonlinear principal component analysis (NLPCA) developed
y Dong and McAvoy (1996) to capture the nonlinear relationship
etween the slow and fast states, while using sparse identification to
erive well-conditioned, reduced-order ODE models for only the slow
tates that could then be integrated with much larger integration time
teps due to their numerical stability. Once the slow states are predicted
ith the ODE model, it is possible to use NLPCA to algebraically predict

he fast states without any integration.
Nonlinear principal component analysis is a nonlinear extension of

rincipal component analysis (PCA). PCA is a commonly used dimen-
ionality reduction technique that finds a linear mapping between a
igher-dimensional space (of the data) and a lower-dimensional space
ith minimal loss of information by minimizing the squared sum
f orthogonal distances between the data points and a straight line.
LPCA attempts to generalize this to the nonlinear case in two steps:

irst, a 1-D curve that passes through the ‘‘middle’’ of the data points
nown as the ‘‘principal curve’’ is found; second, the principal curve is
arametrized in terms of distance of each point along the curve by using
feedforward neural network with nonlinear activation functions.
verall, to make a prediction of the state of the two-time-scale system,
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Fig. 2. Demonstration of the evolution of NLPCA based on PCA and its relation to nonlinear regression.
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he measurement of the slow states at the current sampling time is
assed to an explicit integrator (such as a Runge–Kutta scheme) that
ntegrates the sparse-identified model to predict the slow states over the
rediction horizon, which are then sent to the FNN to yield a prediction
f the fast states.

Two-time-scale systems can be written in the form,

�̇�𝑠 = 𝑓𝑠(𝑥𝑠, 𝑥𝑓 , 𝑢, 𝜖) (11a)

�̇�𝑓 = 𝑓𝑓 (𝑥𝑠, 𝑥𝑓 , 𝑢, 𝜖) (11b)

here 𝑥𝑠 ∈ R𝑛𝑠 and 𝑥𝑓 ∈ R𝑛𝑓 denote the slow and fast states, respec-
ively, with 𝑛𝑠 + 𝑛𝑓 = 𝑛. 𝜖 is a small positive parameter that represents
he ratio of slow to fast dynamics of the original system. By making
tandard assumptions from the singular perturbation framework, the
low subsystem of Eq. (11a) can be rewritten in the form required for
parse identification,

̇̂
𝑠 = 𝐹𝑠𝑖(�̂�𝑠, 𝑢) ∶= 𝑓 (�̂�𝑠) + �̂�(�̂�𝑠)𝑢, �̂�𝑠(𝑡0) = 𝑥𝑠0 (12)

here 𝐹𝑠𝑖 is the sparse-identified slow subsystem.
In the first step of NLPCA, we capture the unidimensional principle

urve in the 𝑛-dimensional state space to find the nonlinear algebraic
elationship between the slow and fast states as shown in Fig. 2. The
urve, denoted by (𝜇) is parametrized in terms of the ordered arc-
ength along the curve, 𝜇. If �̄� ∈ R𝑛 is the full-state vector, we can
efine the projection index 𝜇 ∶ R𝑛 → R as:

 (�̄�) = sup
𝜇∈R

{𝜇 ∶ ‖�̄� − (𝜇)‖ = inf
𝜇′∈R

‖

‖

�̄� − (𝜇′)‖
‖

} (13)

with 𝜇′ being a notational substitute for 𝜇. Based on the above defini-
tion and denoting the expectation of a random variable by E, the curve
can be defined as:

E
(

�̄�|𝜇 (�̄�) = 𝜇
)

= (𝜇) (14)

here the expectation operator is approximated using a combination
f scatter-plot smoothing and locally weighted regression when only
iscrete time-series data is available. Since the output of the first step
f NLPCA, the principal curve, is a non-queryable model, an FNN is
sed to capture the identified principal curve.

With respect to the structure of the FNN, it is necessary to use
t least one hidden layer with a sigmoid activation function, 𝜎(𝑥) =

−𝑥
7

∕(1 + e ), to exploit the universal approximation property of neural t
etworks (Hornik et al., 1990; Hornik, 1991). To improve the network
apability, a two-hidden-layer FNN was used in this work, as depicted
n Fig. 3. The learning rate, which is the most influential hyper-
arameter, requires careful tuning to obtain the optimal FNN model
n the second step of NLPCA.

An LMPC that uses Eq. (12) as the process model of Eq. (9b) may
e constructed. Such an LMPC will predict the slow states of the two-
ime-scale system and optimize the cost function based on the predicted
low states. Due to the coupled nature of the states, it is sufficient to
tabilize the slow states to guarantee asymptotic stability for the entire
ystem. However, if computational resources are available, the FNN
ay be used to predict the fast states, and the LMPC can then account

or the full-state of the system. In Abdullah et al. (2021b), only the slow
ubsystem was used to ensure the LMPC optimization can be solved
ithin every sampling period.

The primary advantage of the reduced-order model in LMPC is
hat the lower computational cost of the SINDy model inference, with
early zero loss in model accuracy, directly impacts the difficulty of
he optimization required to be solved by the LMPC. Hence, the LMPC
ased on the reduced-order SINDy model can use a longer prediction
orizon, which has the potential to improve closed-loop performance in
erms of faster convergence to the origin and a lower total cost function
ver the simulation duration, the former of which is demonstrated most
learly in the concentration profile in Fig. 4, which is based on the work
n Abdullah et al. (2021b).

. Subsampling and co-teaching in the presence of high sensor
oise

A key step in the sparse identification procedure is the estima-
ion of the time-derivatives of the states when it cannot be measured
irectly, as is the case in most process systems. From a survey of
he literature, since the conceptualization of SINDy in Brunton et al.
2016), several advancements in the algorithm have been proposed
o handle noisy data. However, most articles that investigate the ef-
ect of noise on SINDy add noise to the pre-computed derivatives
from clean data) and/or use very low levels of noise that can be
asily smoothened. One example is the SINDy-PI algorithm proposed
y Mangan et al. (2016) and improved by Kaheman et al. (2020).
hrough case studies, Kaheman et al. (2020) demonstrated that even
he improved algorithm could only handle noise with a maximum
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Fig. 3. Structure of the neural network used for NLPCA-SI.
Fig. 4. Concentration (state) profile for a CSTR in closed-loop under the LMPC utilizing the first-principles (FP) model with 𝑁 = 16 (blue line) and the SINDy slow model with
𝑁 = 24 (orange line).
variance of 10−4, which is very small in the context of process systems.
Although a number of works can be found that focus on alternate
approaches to build dynamical models in the presence of noise, such as
Runge–Kutta time-steppers with embedded neural networks to handle
the nonlinear elements (González-García et al., 1998; Fablet et al.,
2018; Raissi et al., 2018; Rudy et al., 2019), these are alternatives
to SINDy rather than improvements upon the original SINDy method.
As a result, the methods to assist the modeling of noisy data as well
as the subsequent results are largely different from SINDy and its
extensions. For example, the unexpected results of Raissi et al. (2018)
when using Runge–Kutta time-steppers were later explained using well-
known characteristics of neural networks. More advanced time-steppers
8

such as the work of Rudy et al. (2019) also emphasize their limitations
when integrating the models from new initial conditions or attempting
to capture dynamics away from a steady state, both of which are
relevant in control-centric applications. While a detailed discussion of
the comprehensive literature can be found in Abdullah et al. (2022b),
in summary, one paper proposed an improvement upon the SINDy
algorithm in the presence of moderate noise that demonstrated promise
and could be developed further. This method, proposed by Zhang
and Lin (2021), termed subsampling-based threshold sparse Bayesian
regression (SubTSBR), involved randomly subsampling a fraction of
the entire data set multiple times and selecting the best model by
using a model-selection criterion. The issue of noisy data has also been
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Fig. 5. Data flow diagram of subsampling with co-teaching for noisy data.
studied in the field of computer science, where fitting a neural network
to noisy data often leads to the neural network overfitting the data
and capturing the noisy pattern instead. A recent technique proposed
to overcome this challenge is co-teaching, where a simplified first-
principles process model is used to generate noise-free training data to
assist the model training step by reducing overfitting. In this section, we
propose a novel extension to SINDy by combining it with subsampling
and co-teaching to handle highly noisy sensor data.

Subsampling is a classical statistical technique where a fraction of
the total number of samples in a data set are randomly extracted and
analyzed to estimate statistical parameters (Efron and Stein, 1981) or
speed up algorithms (Rudy et al., 2017). However, subsampling can
also be used to instead improve the modeling accuracy of SINDy when
the data set is highly noisy. This is because common regression methods
such as least squares utilize the complete data set by assuming that only
a small fraction of the data samples are highly noisy or outliers. As a
result, if the entire data set is used, the higher percentage of ‘‘good’’
data samples should smooth the large noise present in the data set.
However, this assumption breaks down if the noise is either very high
or uniformly present throughout the data set. In such a case, there are
insufficient ‘‘good’’ data samples to smooth out the noise from the very
highly corrupted data samples. In the context of SINDy, subsampling
refers to selecting random fractions of the data set multiple times in
order to sample only the less noisy data points for carrying out the
sparse regression. The key requirement for subsampling is that the
number of unknown weights to be estimated in the SINDy procedure
have to be fewer than the number of total data samples available
9

(i.e., the problem has to be overdetermined), which is the case for
most practical data sets. Although as a standalone improvement, sub-
sampling greatly improves the performance of SINDy under moderate
noise levels, it is insufficient at higher noise levels, where co-teaching
becomes incumbent.

Co-teaching is a method that has been used in the field of computer
science, primarily in image recognition, where neural networks are
trained to categorize images into pre-defined classes. However, often,
a small proportion of the images in the training data set may be misla-
beled, greatly deteriorating the performance of the neural network. As
manually relabeling vast amounts of images is not feasible, the method
of co-teaching was proposed wherein newly generated noise-free data
is fed during model training to reduce the impact of the noisy data. The
concept has recently been extended to regression problems, specifically
the modeling of dynamical systems using long short-term memory
(LSTM) networks (Wu et al., 2021a,b). The central idea of co-teaching,
which was highlighted in Wu et al. (2021b), is that neural networks fit
simpler patterns in the early iterations of model training, which implies
that noise-free data will yield low values of the loss function, while
noisy data will tend to produce high loss function values. Therefore,
the training can be made more robust to noise and overfitting if the
noisy data is augmented with a nonzero proportion of noise-free data
from simulations of simplified, approximate first-principle models that
can be derived for the complex, original nonlinear system.

Improving the sparse identification algorithm with both subsam-
pling and co-teaching enables it to tackle consistently noisy data sets
where subsampling alone is insufficient. This is because subsampling
only subsamples, in the best case scenario, the least noisy data points,
which are still too noisy to yield an adequate model. In the proposed

method, first, a random subset of the entire data set 𝑋noisy and its
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corresponding �̇�noisy are sampled, which are then mixed with noise-free
ata generated from approximate first-principles models of the process,
FP and �̇�FP. The resulting mixed data set is used to solve for the
nknown weights of the 𝑠 terms in the SINDy function library. Once
model is identified, a model-selection criterion is used to evaluate

he model performance. Three parameters must be specified in the
lgorithm: 𝑝 ∈ (0, 1) or the subsampling fraction, 𝑞 ∈ (0, 1) or the noise-
ree subsampling fraction, and 𝐿 ≥ 1, which is the number of times to
ndependently subsample and identify a SINDy model. The algorithm
andomly subsamples and mixes 𝑝 × 𝑚 data points from the noisy data

set with 𝑞 × 𝑚 data points from the noise-free data set to produce the
data and derivative submatrices, 𝑋𝑖 and �̇�𝑖, respectively, for subsample
𝑖 with 𝑖 = 1, 2,… , 𝐿. 𝑈𝑖 are the corresponding (𝑝 + 𝑞) × 𝑚 points from
the input matrix 𝑈 . The sparse regression equation to be solved is then

�̇�𝑖 = 𝛩(𝑋𝑖, 𝑈𝑖)𝛯𝑖 (15)

where 𝛯𝑖 are the coefficients associated with each library function that
is identified using the data subset {𝑋𝑖, �̇�𝑖, 𝑈𝑖}. Once 𝛯𝑖 is determined
and, therefore, the 𝑖th ODE model is found, the process is repeated 𝐿
times until all 𝐿 models are found, following which the model selection
criterion is used to extract the optimal model. An example of a model
selection criterion that balances the error with the model sparsity,
which is crucial for SINDy, is the Akaike Information Criterion given
by the expression,

MSE = 1
𝑚

𝑚
∑

𝑗=1

(

𝑥(𝑡𝑗 ) − �̂�(𝑡𝑗 )
)2 (16)

AIC = 𝑚 logMSE+2𝐿0 (17)

here MSE is the mean-squared error, and 𝐿0 denotes the zeroth norm,
hich is equal to the number of nonzero terms in the sparse-identified
odel.

The hyper-parameters unique to the subsampling with co-teaching
lgorithm, besides the ones described in Section 3.2.3, are the values
f 𝑝, 𝑞, and 𝐿. It should be noted that the goal is to capture the
riginal noisy data rather than the noise-free data from first-principles
imulations. Hence, the fraction 𝑞 should generally be small, while
can be any real number between 0 and 1 as long as both metrics

atisfy 𝑝 + 𝑞 ≤ 1. While increasing 𝐿 will generally improve the model
erformance because a larger number of sub-models are identified
or the optimal model to be chosen from, the computational costs of
ncreasing 𝐿 must be considered. Fig. 5 shows the flow of the data
hroughout the algorithm.

Open-loop modeling results for a CSTR system are shown in Fig. 6,
here the base SINDy model is observed to deteriorate in performance
t the level of noise considered (Gaussian noise with a standard de-
iation of 𝜎𝑇 = 4K in the temperature). Subsampling, even by itself,
reatly improves the SINDy model performance, while subsampling
ith co-teaching further improves the performance. The improvement
sing co-teaching is most significant at the highest levels of noise
onsidered (Gaussian noise with a standard deviation of 𝜎𝑇 = 6K for
he temperature) since models constructed using only subsampling even
iverged in some cases (Abdullah et al., 2022b). Visually, the models
an be assessed in terms of how close the model predictions are to
he data as well as whether the states evolve in the correct direction.
lthough this is difficult to do for the entire simulation domain at the
igher levels of noise, analyzing specific time domains in Fig. 6 can
eveal differences between the models. In Fig. 6, in the ranges 𝑡 ∈
2, 4] ∪ [14, 16], the base SINDy model clearly deteriorates and deviates
rom the other models and the data, which is mostly concentrated much
igher, near the steady-state, indicating the poor performance of the
ase SINDy model in these regions. The models using subsampling with
nd without co-teaching can be further differentiated in the regions
∈ [6, 10]∪[12, 14], where the subsampling-only model predicts smaller
10

eviations from the steady-state, but the data deviates further from
Table 1
Test set MSE for the CSTR system for four noise levels.
𝜎𝑇 (K) Base Only

subsampling
Subsampling +
Co-teaching

0.4 0.01113 0.01059 0.01102
2 0.10510 0.09922 0.10370
4 0.49837 0.40037 0.36283
6 0.98210 1.89607 0.77613

the steady-state than predicted by either subsampling-based model.
Therefore, the co-teaching-based subsampling model is closer to the
data than the subsampling-only model in these ranges where the states
deviate further from the steady-state. However, especially when deal-
ing with noisy data, the modeling performance is best characterized
quantitatively in terms of the MSE, which are shown in Table 1.
The MSE for subsampling with co-teaching is consistently the lowest
across all noise levels except the lowest noise level, where all methods
show very similar MSE and the differences are insignificant because
of the superior performance of the models from all three methods.
At higher noise levels, the differences become more significant, with
the subsampling-only based model even diverging when 𝜎𝑇 = 6K.
At low to moderate noise levels, however, the MSE of the models
using subsampling, whether with co-teaching or not are very similar.
Therefore, co-teaching should be used once the model performance
from using only subsampling deteriorates.

6. Ensembled-based dropout-SINDy to model highly noisy indus-
trial data sets

While subsampling with co-teaching is a viable option to tackle
the issue of high sensor noise in the data measurements, the primary
drawback of co-teaching is its requirement for a first-principles process
model that is at least similar to the original system with respect to
the dynamics and the steady-state values. However, in the case of
industrial data, the dynamics may be far too complex for any theo-
retically derived ODE to adequately capture the system. Therefore, for
the case of dealing with high levels of industrial noise, a new direction
and improvement on SINDy is proposed, which is a form of ensemble
learning that we term ‘‘dropout-SINDy’’.

Ensemble learning refers to the use of multiple models in place
of one model. Homogeneous ensemble learning involves the use of
the multiple models of the same type, while heterogeneous ensemble
learning strategies use a combination of different types of models to
improve the predictive performance. In this work, only homogeneous
ensemble learning is considered. However, in the context of SINDy,
even the terminology, ‘‘homogeneous ensemble learning’’, can refer
to two distinct methods: either the data set can be subsampled to
produce multiple models with the same underlying model structure,
or multiple models with varying function libraries may be built using
the same data set. The subsampling method described in Section 5 is an
example of the former, but it was shown in Abdullah et al. (2022b) that
subsampling, by itself, cannot improve the SINDy algorithm under high
noise levels. In contrast, for the case of industrial noise, the proposed
dropout-SINDy method uses only a fraction of the function library 𝛩 to
identify each submodel. Hence, multiple models can be identified, each
with a random subset of the library. Similarly to co-teaching, this can
reduce the impact of noisy data and, additionally, improve the stability
properties of the SINDy models because a large number of nonzero
terms (a dense coefficient matrix 𝛯) can often lead to instabilities. The
sparse regression equation to be solved for dropout-SINDy is similar
to Eq. (15), but the state, input, and derivative data sets remain as
𝑋, 𝑈 and �̇�, respectively, while only the library 𝛩𝑖 and coefficients
𝛯𝑖 are varied between the 𝑛models models in the ensemble, where 𝑖 =
1, 2,… , 𝑛models:

�̇� = 𝛩 (𝑋,𝑈 )𝛯 (18)
𝑖 𝑖
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Fig. 6. Comparison of original noisy data (gray dots) with results from sparse identification without any subsampling (blue line), subsampling without co-teaching with 𝑝 = 0.2
green line), and subsampling with co-teaching and 𝑝 = 0.16, 𝑞 = 0.04 (red line) for the temperature 𝑇 of a CSTR system.
q. (18) is solved using a different subset of the computed library 𝛩𝑖
ach time to find the corresponding set of model coefficients for the
onzeroed terms, 𝛯𝑖. In each 𝛩𝑖, 𝑛dropout library functions are randomly
ropped out, with the corresponding entries in 𝛯𝑖 also being zeroed
efore solving Eq. (18). Once all the sub-models are found, the final
odel must be selected from the 𝛯1,… , 𝛯𝑛models . In this case, although

he mean, median, and mode are all possible methods to find the central
endency of all the 𝛯𝑖, the mean is likely to yield dense models because
ven one nonzero value for a certain coefficient in any one of the sub-
odels will cause the coefficient to be nonzero. In contrast, the median

nd mode do not suffer from this. However, the mode may not be useful
ince even two sub-models with a zero coefficient for a library term
ill lead to the term being zeroed if none of the other nonzero values
re repeated exactly equally, leading to excessive sparsity. Hence, the
edian is determined to be the most reasonable measure of central

endency for dropout-SINDy.
The number of functions of the candidate library to be omitted in

ach model, 𝑛dropout, as well as the number of models, 𝑛models, must
e tuned when building a dropout-SINDy model. A very small value of
dropout implies that the sub-models in the ensemble are very similar
o the base SINDy model without any dropout, negating most if not all
erformance gains of the proposed method. But if 𝑛dropout is too large,
xcessive sparsity will lead to models that lack the complexity required
o capture the dynamics. Similarly, a small value of 𝑛models may lead
o the optimal model not being identified as the search is conducted
ver a smaller set, but increasing 𝑛models also increases computational
osts and might even promote instability if the median of the model
oefficients is shifted by a larger proportion of poor models. Hence,
his balance between computational cost, model improvement, model
omplexity, and stability must be considered when tuning 𝑛models and
dropout when using dropout-SINDy. The data flow throughout the
lgorithm is outlined in Fig. 7.

In this section, ‘‘industrial’’ data refers not to an experimental data
et but data generated from a chemical process simulated in the high-
idelity chemical process simulator, Aspen Plus Dynamics, which is

widely used simulator in the chemical sector that has been used
11

o build steady-state and dynamic simulations of chemical processes
Table 2
Parameter values for nonisothermal CSTR example.
𝐹 = 5.0m3∕h 𝑉 = 1.0m3

𝑘0 = 8.46 × 106 m3 kmol−1 h−1 𝐸 = 5.0 × 104 kJ∕kmol
𝑅 = 8.314 kJ kmol−1 K−1 𝜌𝐿 = 1000.0 kg∕m3

𝛥𝐻𝑟 = −1.15 × 104 kJ∕kmol 𝑇0 = 300K
𝐶𝐴0𝑠 = 4 kmol∕m3 𝑄𝑠 = 0MJ∕h
𝐶𝐴𝑠

= 1.95 kmol∕m3 𝑇𝑠 = 402K
𝐶𝑝 = 0.231 kJ kg−1 K−1

to aid chemical engineers in process design and optimization. Chem-
ical process simulators have several advantages over first-principles
models as they contain numerous built-in packages to handle most
common unit operations, thermodynamic properties, molecular inter-
actions, etc., which result in significantly more accurate models that
more closely represent the plant process dynamics. In Abdullah et al.
(2022a), Aspen Plus Dynamics was used to build the process flow
diagram shown in Fig. 8, which was then used for both data generation
as well as closed-loop simulations in order to imitate the industrial
process.

When using the basic SINDy algorithm to model the highly noisy
industrial data from Aspen Plus Dynamics, it is found that basic SINDy
is unable to model the dynamics or even correctly predict the final
steady-state of the open-loop system, the latter of which greatly af-
fects the performance of a controller. However, when dropout-SINDy
is used on the industrial data set, it is able to capture most of the
dynamics and correctly predict the final steady-state values of the
states. When an MPC is designed with the dropout-SINDy model, it
can be demonstrated to achieve closed-loop stability and converge
to the steady-state faster and with less energy and overshoot than a
corresponding proportional-controller as shown in Fig. 9.

7. Demonstration of the use of SINDy to model a nonlinear chem-
ical process

In this section, the modeling of a highly nonlinear CSTR
operating at an unstable steady-state using SINDy is considered.
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Fig. 7. Data flow diagram of Dropout-SINDy for noisy, industrial data.
Fig. 8. Aspen Plus model process flow diagram of an ethylbenzene production process.
Fig. 9. State and input profiles for a CSTR in closed-loop under no control (blue line), a P-controller (red line), and the LMPC utilizing the dropout-SINDy model (black line)

throughout the simulation period 𝑡𝑝 = 1.5 h.
Specifically, a perfectly mixed, nonisothermal CSTR where an irre-
versible, exothermic reaction with second-order kinetics, A

𝑘
⟶ B, takes

place is studied. The rate constant of the reaction, 𝑘, is not assumed
to be constant and, instead, an Arrhenius relation of the following
form is used to determine the rate constant as a function of the Kelvin
temperature, 𝑇 :

𝑘 = 𝑘 e−
𝐸
𝑅𝑇 (19)
12

0

where 𝑘0, 𝐸, and 𝑅 represent the pre-exponential constant, activa-
tion energy of the reaction, and the ideal gas constant, respectively.
Using material and energy balances, the differential equation model
describing the CSTR dynamics is derived as follows:

d𝐶𝐴
d𝑡

= 𝐹
𝑉
(𝐶𝐴0 − 𝐶𝐴) − 𝑘0e

− 𝐸
𝑅𝑇 𝐶2

𝐴 (20a)

d𝑇 = 𝐹 (𝑇0 − 𝑇 ) + −𝛥𝐻 𝑘0e
− 𝐸

𝑅𝑇 𝐶2
𝐴 + 103𝑄 (20b)
d𝑡 𝑉 𝜌𝐿𝐶𝑝 𝜌𝐿𝐶𝑝𝑉
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Fig. 10. Three types of data generation for the nonisothermal CSTR operating at an unstable steady-state.
where 𝐶𝐴, 𝑉 , and 𝑇 denote the concentration of reactant A in the
eactor, the volume of the reacting liquid inside the reactor, and the
ime-varying absolute temperature of the reactor. The concentration
f species A in the inlet stream, the inlet temperature, and the volu-
etric flow rate fed to the reactor are represented by 𝐶𝐴0, 𝑇0, and 𝐹 ,

respectively. A heating jacket supplies/removes heat to/from the CSTR
at a rate of 𝑄. The density and heat capacity of the reacting liquid
are assumed to have constant values of 𝜌𝐿 and 𝐶𝑝, respectively, while
𝛥𝐻 denotes the enthalpy of the reaction. The values of the process
parameters are provided in Table 2. With the values from Table 2
substituted into Eq. (20), the exact ODE model to be identified using
SINDy can be found to be
d𝐶𝐴
d𝑡

= 5𝐶𝐴0 − 5𝐶𝐴 − 8.46 × 106e−
6013.95236949723

𝑇 𝐶2
𝐴 (21a)

d𝑇
d𝑡

= 1500 − 5𝑇 + 4.211688 × 108e−
6013.95236949723

𝑇 𝐶2
𝐴 + 4.3𝑄 (21b)

he objective is to build a SINDy model for the CSTR system of Eq. (20),
deally for the entire state-space or at least a large region of the
tate-space around the desired operating point, which is the unstable
teady-state, (𝐶𝐴𝑠

, 𝑇𝑠) = (1.95 kmol∕m3, 402K). The factors that most
ignificantly impact the quality of the SINDy model for this system were
ound to be the data generation and the candidate library of basis func-
ions considered for 𝛩(𝑋,𝑈 ), both of which are discussed in detail over
he next two subsections. To compare models quantitatively, for the
ake of brevity, rather than reporting every model obtained from each
ata generation method or candidate library considered, in the rest of
his section, the maximum absolute error in the Kelvin temperature will
ften be reported because the errors in the temperature are larger in
erms of absolute value and intuitively understood.

emark 1. Due to the explicit nature of SINDy models, once the
DE models are obtained from SINDy, incorporating them into an
PC is generally straightforward. The challenge of SINDy-based MPC,

owever, lies in the modeling rather than MPC implementation, as
pposed to entirely black-box approaches such as recurrent neural
etworks and other deep learning models, which can approximate prac-
ically any input/output data if provided with sufficient data and tuned
horoughly, but can encounter computational and technical challenges
hen implemented in closed-loop MPC. Hence, this section focuses

olely on the modeling of the nonlinear CSTR, since past works (Ab-
ullah et al., 2021b, 2022b) have already demonstrated the application
f SINDy models in MPC with open- and closed-loop simulation results
or a diverse array of systems. The goal of this section is to familiarize
he reader with the intricacies of building SINDy models in a chemical
ngineering paradigm.

.1. Data generation

For system identification, the data set used to identify the system is
13

crucial element. Hence, the data generation must be carried out in a
practical method while also providing sufficient dynamic information
for an algorithm to capture. Therefore, all simulations of Eq. (20) were
carried out using an integration step size of ℎ𝑐 = 10−4 h and sampled
every 𝛥 = 0.01 h (36 s), which is a reasonable sampling period for such
a chemical process. The simulations were carried out for a duration of
𝑡𝑓 = 1 h since most trajectories reached a steady-state within 1 h of
simulation duration.

Due to the various ways that one may generate or obtain data for
this system, three types of data generation were carried out, and each
data set was then used to attempt to build SINDy models. Represen-
tative trajectories for each data set are shown in Fig. 10. The types of
data generation and their advantages/disadvantages are summarized as
follows:

1. Method: Open-loop step tests are carried out using numerous,
random initial conditions and input signals until a steady-state
is reached.

• 1000 such trajectories were generated in this data set.
• Initial conditions were randomly selected with the follow-

ing restrictions on the initial states: 𝐶𝐴 ∈ [0.2, 3.7] kmol∕m3

and 𝑇 ∈ [327, 477] K
• Input signals were randomly generated with the following

restrictions on the inputs: 𝐶𝐴0 ∈ [0.5, 7.5] kmol∕m3 and
𝑄 ∈ [−500, 500] MJ∕h

• This is a standard method of data generation within chem-
ical engineering in simulations-based applications as well
as experimental practices. As an established method, data
generation via this method is easily conducted, a wide
area of the state space can be covered by exciting the
input signals as desired, and a large amount of dynamic
information is present in the data set.

• Due to the operating region being the unstable steady-
state, the trajectories, being in open-loop, will settle at
the stable steady-states. However, this was not found to
deteriorate the performance, likely because the dynamics
of the reactor itself are independent of the region.

• As the states may achieve extreme values when the in-
put signals are varied too widely (such as temperatures
as high as 1000 K or as low as 1 K for certain exces-
sively large/small values of 𝑄), the best practice is to
limit the range of input signals when using this method
of data generation. This is particularly important when
using finite-differences to estimate �̇�, which is the only
estimation method available in a practical setting. It was
found that when data generated indiscriminately including
trajectories that settle at 1000 K or 1 K were included
in the training data set, i.e., all 1000 trajectories were
used in training, SINDy had difficulties identifying the
correct model if the derivatives were estimated with finite-
differences. If the exact derivatives were provided (which
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Fig. 11. State-space profiles for open-loop simulation using the first-principles model of Eq. (20) and the SINDy model obtained using type 1 data generation, respectively, for
various sets of inputs and initial conditions (marked as solid dots) 𝑥0 in the vicinity of the desired operating point.
Fig. 12. State-space profiles for open-loop simulation using the first-principles model of Eq. (20) and the SINDy model obtained using type 2 data generation, respectively, for
various sets of inputs, starting from the steady-state.
would not be available in most chemical engineering ap-
plications), then SINDy was able to identify the model
correctly. Upon further analysis of the derivatives at the
regions of the fastest dynamics, it was found that the states
changed very abruptly within the sampling period of 𝛥 =
0.01 h, causing numerical instabilities in the derivative
estimation. Hence, providing the exact derivatives resolved
the issue. As expected, the issue was also resolved if the
data was sampled ten times as frequently, i.e., with 𝛥 =
0.001 h. However, using all the 1000 trajectories is not nec-
essary to capture the dynamics of this system, as described
next.

• When the data set was truncated to only retain trajectories
that never exceeded a temperature or 500 K or dropped
below 300 K, i.e. 𝑇 ∈ [300, 500] K ∀ 𝑡, in order to only
select trajectories close to the desired steady-state, 53 out
of the initial 1000 trajectories were retained. However,
SINDy was able to identify the best model with these 53
14
trajectories, producing a model with a maximum absolute
error in the temperature of only 0.5 K. A few represen-
tative open-loop simulations (i.e., the test set) for the
first-principles model and this sparse-identified model are
shown in Fig. 11, demonstrating close agreement through-
out the region of state-space. Hence, it can be concluded
that 53 trajectories contain sufficient dynamic information
to build a highly accurate SINDy model, and there is no ne-
cessity to use all 1000 trajectories, which introduce faster
and more complex dynamics in certain regions, which
eventually require a finer sampling to be practically useful.

2. Method: Open-loop step tests are carried out with the system
initiated from the desired steady-state and excited using various
input signals only until the desired level set, 𝛺�̂�, or operating
region is excited.

• 1000 such trajectories were generated in this data set.
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• The initial condition was fixed to be the unstable steady-
state, (𝐶𝐴, 𝑇 ) = (𝐶𝐴𝑠

, 𝑇𝑠) = (1.95 kmol∕m3, 402K)
• Input signals were randomly generated with the following

restrictions on the inputs: 𝐶𝐴0 ∈ [0.5, 7.5] kmol∕m3 and
𝑄 ∈ [−500, 500] MJ∕h

• As data is generated only within the operating region of
interest, an advantage is that almost the entire region of
the state-space that is of interest can be captured via a large
number of simulations.

• Due to the unstable nature of the steady-state, one disad-
vantage is that a very large number of the 1000 trajectories
in the data set are incomplete and too short to provide suf-
ficient dynamic information, especially for SINDy, which
generally performs better with longer trajectories rather
than short bursts of trajectories. Out of the 1000 trajec-
tories, only 14 trajectories are able to be simulated until
𝑡𝑓 = 1 h. Since second-order finite-differences are used for
the gradient approximation in our work as well as due to
the internal mechanisms of the integrator used, at least 4
data points are required to be able to use a trajectory for
model identification. Only 381 of the 1000 trajectories had
at least 4 data points and could be used to build a SINDy
model. However, the data set of 381 trajectories did not
contain enough dynamic information, producing a SINDy
model with a maximum temperature prediction error of
10.4 K. However, if the size of the data set was increased
to 2000 trajectories, 807 trajectories with at least 4 data
points remained, which then produced a highly accurate
SINDy model with a maximum temperature prediction
error of 0.6 K.

• State-space profiles for some open-loop simulations are
shown in Fig. 12 for the first-principles model and the iden-
tified SINDy model, showing close agreement throughout.

3. Method: Closed-loop simulations are carried out under a
proportional-only controller with the state initialized from vari-
ous initial conditions.

• Two data sets were used to attempt to build a SINDy
model using this method of data generation, one data set
with 121 trajectories, spanning an 11 × 11 grid for 𝑥0
in the state-space, while the second data set consisted of
961 trajectories, covering a 31 × 31 grid for 𝑥0 in the
state-space.

• Initial conditions were selected within the grid, 𝐶𝐴 × 𝑇 =
[0.2, 3.7] kmol∕m3 × [327, 477] K with each range uni-
formly spaced into 10 or 30 intervals with 11 or 31 points,
respectively.

• Input signals were calculated using the equation for a
proportional controller, 𝑄 = −1000(𝑇 − 𝑇𝑠), where 1000
represents the controller gain, and 𝐶𝐴0 was fixed at its
steady-state value of 𝐶𝐴0𝑠 = 4 kmol∕m3.

• A purported advantage of this method of data generation
is that, due to the presence of the controller, the state
can be driven to the desired unstable steady-state from
any initial condition, providing dynamic information for
trajectories from any point in the state-space up to the
unstable steady-state.

• The models obtained using this data set could very accu-
rately predict the derivatives within the test set, i.e., the
right-hand side of the model evaluates to the correct value
of the derivative of the test set trajectories. However, all
the simulations diverged from the steady-state after a short
period at the initial stages of the simulation duration. This
phenomenon was also observed in Brunton et al. (2016)
15

with the glycolytic oscillator model and attributed to the
identification of wrong basis terms for some of the vari-
ables. In the models obtained for Eq. (20) using SINDy
with the data set generated using closed-loop simulations,
the heat input rate, 𝑄, erroneously appeared with a rel-
atively large coefficient in the first ODE representing �̇�𝐴,
which may be the cause of the divergence. While further
analyses may allow such data to be used for SINDy model
identification, based on our current results, this method of
data generation was not found to produce accurate SINDy
models.

Based on the above analysis, the first method of data generation was
found to be the optimal method of data generation when using SINDy.
Since the optimal results were obtained with limited trajectories that
were able to be integrated to 𝑡𝑓 and also stayed relatively close to
the steady-state of interest, the best method of data generation for this
system, based on the above analysis, seems to be conduct a modest
number of step tests near the desired region. However, the second
method can also be used if a much larger data set is used and caution
is taken to only use trajectories with at least 4 data points when
using a second-order finite-difference method for estimating the time-
derivative of the states. The use of closed-loop data to identify SINDy
models was not found to yield satisfactory results, and further analyses
should be carried out in the future to assess the viability of such data
for SINDy modeling of chemical processes.

7.2. Candidate library of basis functions

Since its inception, multiple studies have reported the central role of
the candidate library, 𝛩, in the SINDy algorithm (Brunton et al., 2016;
Kaheman et al., 2020). In Brunton et al. (2016), for example, a standard
benchmark problem for system identification, the glycolytic oscillator
model, could only be partially identified, i.e., the dynamics of only
four out of the seven states could be correctly identified. The reason
was attributed to the presence of rational functions in the right-hand
sides of the ODEs corresponding to the remaining three states, which
were not considered in the polynomial basis set used. Hence, choosing
the correct basis functions is critical to the success of SINDy. For the
remainder of the section, the data set used to study the effect of the
candidate library is the data set generated using the first type of data
generation described in Section 7.1 (53 trajectories from open-loop step
tests).

In the absence of any a priori knowledge, the nonisothermal CSTR
of Eq. (20) is a particularly challenging system to obtain the correct
basis for and, hence, model. This is primarily due to the fact that,
by design, SINDy can only regress the pre-multiplying coefficients for
each basis function, which appear linearly in the right-hand side of
the ODE. The basis functions themselves must be selected and the 𝛩
calculated before carrying out the regression step for identifying the
pre-multiplying coefficients by solving Eq. (8). Since the activation
energy is generally unknown, the exponential term must be carefully
selected. For the set of parameters chosen, from Eq. (21), it can be
observed that the numerator of the argument of the exponential term
is −6013.95236949723. Due to the extreme dissimilarity between e−

1
𝑇

and e−
6013.95236949723

𝑇 , using the former exponential term as a basis func-
ion will not yield an accurate SINDy model. The dynamics of the
− 6013.95236949723

𝑇 term cannot be captured by any linear multiple of e−
1
𝑇 .

However, choosing large numbers over a wide range is also inadvisable
since only a narrow range of the exponent can yield an accurate model
with a maximum absolute error in the temperature below 1 K as shown
in Fig. 13. While it may be possible to tune the exponent in this particu-
lar case by conducting a fine search for the exponent over a wide range
with shortly spaced intervals of approximately 10 units, this is generally
intractable when the exponent is even larger in magnitude (increasing
the required search region) or if there are multiple reactions, in which

case tuning each exponent term using a multidimensional grid search
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Fig. 13. Validation error as a function of the numerator of the argument of the exponential function in the candidate library for the original data set, (𝐶𝐴 , 𝑇 ).
w
T

at such a high resolution becomes prohibitively expensive. Therefore,
two approaches are proposed to overcome this challenge, both of which
are shown to yield accurate SINDy models.

Remark 2. This challenge has been overcome in some past studies
by assuming that the activation energy is known a priori, and the
exact term, e−

6013.95236949723
𝑇 , is included in the candidate library, largely

implifying the modeling problem (e.g., Bhadriraju et al., 2019, 2020).
n other studies using SINDy to model reaction networks, the objective
as to identify the reactions rather than investigate any temperature
ependence (Hoffmann et al., 2019). Hence, the specific challenge
f obtaining an appropriate basis for SINDy to model nonisothermal
eactors is considered here.

.2.1. Non-dimensionalization of the temperature
The first approach we consider is non-dimensionalizing the tem-

erature by scaling it by a reference temperature, 𝑇ref. We consider,
for simplicity and without loss of generality, 𝑇ref = 𝑇𝑠, and define the
new dimensionless temperature as �̄� = 𝑇 ∕𝑇𝑠. Hence, the ODE system
of Eq. (20), after the appropriate substitutions, takes the form,
d𝐶𝐴
d𝑡

= 𝐹
𝑉
(𝐶𝐴0 − 𝐶𝐴) − 𝑘0e

𝛾
�̄� 𝐶2

𝐴 (22a)

d�̄�
d𝑡

= 𝐹
𝑉

(

𝑇0
𝑇𝑠

− �̄�
)

+ −𝛥𝐻
𝜌𝐿𝐶𝑝𝑇𝑠

𝑘0e
𝛾
�̄� 𝐶2

𝐴 + 103𝑄
𝜌𝐿𝐶𝑝𝑉 𝑇𝑠

(22b)

where 𝛾 = −𝐸∕𝑅𝑇𝑠. For the set of process parameters and reference
temperature chosen, 𝛾 = −14.96. Due to the much smaller value of 𝛾
nd the lower sensitivity of 𝛾, it is possible to conduct a fine search
or a value of 𝛾 that produces an accurate SINDy model. The maximum
bsolute errors in the variables for the validation set for 𝛾 ∈ [−20, 0] are

shown in Fig. 14. A value of 𝛾 = −15 yields the highly accurate model,

d𝐶𝐴
d𝑡

= 5.051𝐶𝐴0 − 5.058𝐶𝐴 − 8.8 × 106e−
15
�̄� 𝐶2

𝐴 (23a)

d�̄�
d𝑡

= 3.768 − 5.046�̄� + 1.09 × 106e−
15
�̄� 𝐶2

𝐴 + 0.011𝑄 (23b)

here every coefficient is within 5% of the true values. There are
wo further advantages of non-dimensionalization in this case. Firstly,
hen multiple reactions are present, in many practical cases, since the

eference temperature is similar to the specific process temperatures,
16
all the 𝛾 will often be approximately of the same order of magnitude or
ithin an order of magnitude difference (e.g., Alanqar et al., 2017a).
herefore, a ‘‘mean’’ or representative value of the 𝛾 values of all the

reactions will produce an accurate SINDy model, owing to the greatly
reduced sensitivity of the basis functions to 𝛾. Secondly, even if the
(nearly) exact value of 𝛾 = −15 is not found using the search methodol-
ogy described, simply using every integer value of 𝛾 ∈ [−20,−10] to
create 11 basis functions also yields an accurate (but dense) SINDy
model with a maximum absolute error in the temperature of 0.4 K.
In contrast, in the original variables, if multiple basis functions, for
example, the set 𝛾 ∈ {−7000,−6000,−5000,−4000,−3000,−2000,−1000}
is chosen to be in the candidate library, the results are poor due to the
large dissimilarities between successive basis functions as noted previ-
ously. We reiterate that the goal of using SINDy in this work is not to
capture the underlying ODE but to use SINDy as a system identification
method. Although the original system was nearly reproduced when 𝛾 =
−15 was correctly identified, this need not be the case to apply SINDy,
especially when the models will subsequently be used for model-based
feedback control. Hence, the ‘‘bruteforce’’ approach of using all 11 basis
functions with 𝛾 ∈ [−20,−10] is considered a satisfactory model as well.
This latter approach may also handle multiple reactions more easily
since it is likely that the correct value of 𝛾 for each reaction is captured
in the candidate library.

Remark 3. To apply non-dimensionalization to the system when
applying SINDy, the only change that must be made is that the tem-
perature data must be scaled by 𝑇𝑠 before providing the data set to
the SINDy algorithm. Since finite-differences are used to estimate the
time-derivative, �̇�, the derivative estimates will scale accordingly once
the data set itself is scaled.

7.2.2. Higher-order Taylor series approximation
A possibly more general approach that can handle any value of the

activation energy or any number of reactions is to express the expo-
nential term using its Taylor series expansion such that the activation
energy appears as a pre-multiplier, which can then be regressed using
SINDy. As SINDy is a nonlinear method, any order of the Taylor series
can be retained. If multiple reactions are present, the pre-multiplier
should account for all the reactions since the temperature variable is
independent of the activation energy, and all the approximated terms
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Fig. 14. Validation error as a function of 𝛾 for the data set with dimensionless temperature, (𝐶𝐴 , �̄� ).
can be summed to yield one final pre-multiplying coefficient value for
each term of the Taylor expansion.

Due to the length of the models involving Taylor expansion, only
error metrics and discussions are provided for this method. When
the candidate library includes up to 5th-order terms of the Taylor
expansion, i.e., (𝑇 − 402)5, an accurate SINDy model with a maximum
absolute error in the temperature of 0.4 K is obtained, with open-loop
test results nearly identical to Fig. 11. When the sparse-identified model
is compared to the original ODE of Eq. (21) with parameters substituted
in and the exponential term replaced by 5th-order Taylor series, it is
found that the SINDy model neglects terms above third-order, which
are of the order of 10−8 and 10−6 for 𝐶𝐴 and 𝑇 , respectively, in
the actual equation (i.e., when a 5th-order Taylor expansion of the
exponential term is used in the first-principles system of Eq. (21)).
As for terms up to third-order, the SINDy model correctly identifies
all terms for 𝐶𝐴 and identifies the terms in 𝑇 correctly as well, but
also identifies a few erroneous terms such as linear 𝐶𝐴 and 𝐶𝐴0 terms.
However, the contribution of the extra terms are extremely minor and
do not affect the accuracy, as seen in the extremely low maximum
absolute error.

Remark 4. While this method may be reminiscent of linearization of
a nonlinear ODE, there are two key differences. Firstly, a nonlinear
higher-order Taylor expansion is used to approximate the exponen-
tial function rather than a linear approximation. This greatly affects
the region of accurate model predictions compared to a linearized
model. When the open-loop tests shown in Fig. 12 were repeated with
the linear state-space model obtained for this system in Wu et al.
(2019b) using N4SID, all trajectories were found to diverge, while
Fig. 12 demonstrates the high accuracy of the nonlinear SINDy model.
Secondly, only the exponential term in the Arrhenius relationship is
approximated using the Taylor expansion, but the remaining terms
in the ODE model and candidate library remain in their original,
nonlinear forms. Hence, all other nonlinear terms can still be identified
exactly without any approximation, while model linearization includes
17

linearizing even such polynomial and trigonometric terms.
7.3. Summary of data generation and candidate library guidelines and final
steps to build the SINDy model

Based on extensive results from using the various types of data
generation and basis functions considered, the following points can be
summarized:

1. Open-loop step tests were found to be the optimal method of
data generation for obtaining a SINDy model for the system
studied, although short bursts within the desired stability region
can yield a good model if a sufficient number of trajectories with
at least 4 data points are obtained.

2. Data from closed-loop simulations did not yield an accurate
model for the system studied.

3. A sampling period of 𝛥 = 0.01 h or 36 seconds is sufficient for
obtaining an accurate SINDy model as long as enough dynamic
information is captured via open-loop tests with a large number
of input signals.

4. Due to the sensitivity of the argument of the exponential term,
−𝐸∕𝑅 or 𝛾, the exponential basis term should be selected care-
fully.

• Specifically, if a priori knowledge of the reaction (such
as an estimate of the activation energy) is available, the
system may be modeled directly without any modifications
as long as the correct values of the activation energy are
used to build the candidate library.

• In the event that the no a priori knowledge is available, the
system should be either non-dimensionalized with respect
to temperature or a higher-order Taylor series used to
approximate the exponential terms.

5. Non-dimensionalization of the temperature has potential to re-
produce the exact system.

6. Using Taylor series approximations of the exponential term can
yield highly accurate SINDy models, but their performance is
expected to deteriorate when sufficiently far from the point of
expansion. However, since a nonlinear, higher-order approxima-
tion is used, the region where the model performs accurately
will be significantly larger than any model obtained from a
linearization of the original system, and likely large enough for

any practical application.
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Once the data set and method of handling the exponential term are
finalized based on the aforementioned guidelines, the SINDy model is
obtained by using the PySINDy package in Python (de Silva et al., 2020;
Kaptanoglu et al., 2022). Specifically, the data set is loaded into Python
and split into an 70%/10%/20% training/validation/test set. The time-
derivative of the states, �̇�, is estimated using second-order central finite
differences (except the first and last points, which use second-order
forward and backward finite differences, respectively). The optimizer
is chosen to be the sequential thresholded least squares described
in Brunton et al. (2016), with 𝜆 tuned via a coarse search to a value
of 5.0, although similar results were obtained for the SR3 optimizer
as well. The candidate library, for both the non-dimensionalization
and Taylor series approaches, was chosen to include up to second-
order polynomial terms for the concentration 𝐶𝐴, the bias term, and
linear input terms. The remaining terms for the non-dimensionalization
method included a linear temperature term, the exponential term with
𝛾 = −15, and interaction terms between the polynomial 𝐶𝐴 terms
nd the exponential term. Specifically, the candidate library for the
on-dimensionalization approach takes the following form:

(𝐶𝐴, �̄� , 𝐶𝐴0, 𝑄)

= [1 𝐶𝐴 𝐶2
𝐴 �̄� 𝐶𝐴0 𝑄 e−

15
�̄� 𝐶𝐴e

− 15
�̄� 𝐶2

𝐴e
− 15

�̄� ] (24)

For the Taylor series approach, the only change is that the exponential
term is replaced with (𝑇 − 402), (𝑇 − 402)2, …, (𝑇 − 402)5. Hence, the
last three functions and the �̄� function in Eq. (24) are replaced by 15
terms (five exponential approximation terms and ten interaction terms
with 𝐶𝐴), producing a library of 20 functions. Once all of the above
selections are made, the SINDy model can be obtained by calling the
model fitting method in PySINDy. The SINDy model of Eq. (23), for
example, is obtained by using the first type of data generation (53
open-loop step tests) and the candidate library of Eq. (24).

8. Future directions

8.1. Neural network basis functions

For highly complex systems, it may be possible that the initially
chosen nonlinear basis functions do not produce adequate results,
but no prior knowledge is available to intelligently expand the func-
tion library. Moreover, adding random, additional nonlinear candidate
functions may fail to improve the SINDy model performance if the
functions added are completely dissimilar to the relevant functions
that are required to model the system. An example is the challenge of
the exponential basis term encountered and discussed in Section 7.2
with the nonisothermal CSTR example. In such cases, one option is
to add more powerful and general function approximators such as
feedforward neural networks, which are well-known for their universal
approximation property, which dictates that they can approximate any
static nonlinear function if they are designed with enough neurons
and at least one sigmoidal hidden layer (Hornik et al., 1990; Hornik,
1991). Such hybrid models consisting of partly first-principles/ODE
models and partly data-based black-box models are increasingly being
used (Porru et al., 2000; Oliveira, 2003; von Stosch et al., 2014;
Zendehboudi et al., 2018; Bangi and Kwon, 2020; Lee et al., 2020).
Specifically, hybrid models involving ODE models and FNNs have been
successfully applied to state estimation problems in the recent work
of Alhajeri et al. (2021). Therefore, a similar approach may be proposed
for SINDy, where the right-hand side of the SINDy model of Eq. (2) may
be modified to

̇̂ (𝑡) = 𝑓 (�̂�) + �̂�(�̂�)𝑢 + FNN(𝑥, 𝑢) (25)

here FNN denotes a feedforward neural network model that can
apture any nonlinearities not modeled by the function library. One
dvantage of such a model, as opposed to a purely FNN model for the
ight-hand side of Eq. (25), may include reduced computational time
18
ue to the requirement of simpler models with fewer parameters, since
nly a fraction of the model must be captured by an FNN. Moreover,
eural network training generally requires large volumes of data with
ide variation and coverage of the operating region, which may be
ifficult to obtain in an experimental or plant setting. In contrast, when
nly a fraction of the overall model requires an FNN to be modeled, the
ata acquisition may be eased as well.

Once a model of the form of Eq. (25) is identified, if possible,
onverting the FNN part of the SINDy model back to symbolic functions
ill greatly improve the model inference time as explicit nonlinearities
re computationally desirable. Such advances have already been initi-
ted in recent papers on modeling biological systems (Rackauckas et al.,
020).

.2. Real-time model updates

In the presence of disturbances or changes in process behavior
ue to, for example, catalyst deactivation or feed stream disruptions,
he process model in a model-based controller such as MPC must
e updated in real-time to reflect the changes. Much of the research
n model re-identification is concentrated on the mathematical de-
ails of the algorithms used for the model update, such as recur-
ive least-squares or recursive singular value decomposition (Moonen
t al., 1989; Lovera et al., 2000; Mercere et al., 2004) rather than
eveloping a rigorous framework for the triggering of the model re-
dentification procedure. Research on the triggering procedure include
rror-triggered as well as event-triggered model re-identification (Alan-
ar et al., 2017a,b; Wu et al., 2020), but mostly use first-principles
rocess models. In the context of SINDy, Quade et al. (2018) proposed a
odel re-identification procedure, where the SINDy model coefficients

ould be updated or terms could be added or deleted as required. The
rigger for re-identification was a significant divergence between the
ocal Lyapunov exponent and the prediction horizon estimate (although
he definition of ‘‘prediction horizon’’ in Quade et al. (2018) differs
rom its usage in this manuscript). However, the results of Quade
t al. (2018) were only in the context of modeling. Hence, a future
irection for research in sparse identification would be to consider
eal-time updates to a data-based SINDy model based on the error- or
vent-triggering mechanism of Wu et al. (2020).

. Conclusions

In this paper, we have provided an overview of several recent ad-
ancements in the sparse identification for nonlinear dynamics (SINDy)
ethod to overcome the challenges of modeling and controlling two-

ime-scale systems and noisy data. The methods considered included
ombining SINDy with nonlinear principal component analysis, feedfor-
ard neural networks, subsampling, co-teaching, and ensemble learn-

ng. The novel methods were described in detail, and best practices,
uning guidelines, as well as common pitfalls to avoid, for their suc-
essful application in process systems engineering were provided for
ontrol practitioners. To demonstrate their effectiveness, results from
pplying the proposed algorithms to chemical processes were pro-
ided. Subsequently, SINDy was used to model a nonlinear chemical
rocess to provide a demonstration of its application as well as to
ighlight specific challenges faced when applying SINDy in process
ystems engineering. Finally, a number of future research directions
ere outlined.
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