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a b s t r a c t

This study introduces a sparse identification-based model predictive control (MPC) fra-

mework that incorporates on-line updates of the sparse-identified model to account for 

nonlinear dynamics and model uncertainty in process systems. The methodology in-

volves obtaining a nonlinear first-order ordinary differential equation model using sparse 

identification for nonlinear dynamics (SINDy), which is integrated into two control 

schemes: Lyapunov-based MPC (LMPC) for achieving steady-state operation and 

Lyapunov-based economic MPC (LEMPC) for achieving both closed-loop stability and op-

timal economic performance. To improve prediction accuracy, an on-line model update 

scheme is proposed for the SINDy models. Specifically, an error-trigger mechanism that 

utilizes prediction errors and then uses the most recent process data to update the 

parameters of the SINDy model in real-time is designed. By incorporating the error-trig-

gered on-line model updates in the SINDy-based LMPC and LEMPC, the dynamic perfor-

mance of the process is enhanced, ensuring closed-loop stability, optimality, and smooth 

control actions. Following theoretical results on the boundedness of the closed-loop states 

and detailed discussions on the selection criteria for parameters of the error-triggered 

SINDy update scheme, the effectiveness of the proposed methodology is demonstrated 

through a chemical process example with time-varying disturbances under the LEMPC 

framework.

© 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved. 

1. Introduction

Advanced process control techniques, such as model pre-
dictive control (MPC) play a crucial role in industrial appli-
cations and can leverage the recent and ongoing revolution 
in data-driven approaches in the science and engineering 
ecosystem. MPC is widely used due to its ability to handle 
strongly nonlinear processes with constraints, which are 
challenging for traditional linear control methods (Garcia 
et al., 1989; Mayne, 2014). MPC offers advantages such as 

straightforward tuning, control of systems with time delays 
and instability, incorporation of known constraints and 
multiple operating conditions, compensation for dead time, 
and flexibility in defining control objectives. However, a 
major drawback is the requirement for a suitable model to 
predict the future states in the real-time calculations, which 
can be costly and time-consuming to develop for large-scale, 
complex nonlinear processes using existing system identifi-
cation or model reduction techniques (Brunton and Noack, 
2015). The quality of process models is influenced by various 
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factors such as parameter estimation, model uncertainty, 
assumptions made during model development, dimension-
ality, model structure, and computational complexity for 
real-time implementation (Ge and Wang, 2004; Ge 
et al., 2007).

To combat the difficulty of developing process models for 
large-scale or poorly understood processes, over the last 
decade, there has been a paradigm shift from first-principles 
modeling to data-driven modeling. Machine learning tech-
niques are a subset of data-driven modeling techniques that 
have seen increasing application in modeling chemical pro-
cesses when traditional first-principle models are not avail-
able. For instance, in previous works (Wu et al., 2019a,b), 
recurrent neural networks were utilized to construct data- 
driven models for nonlinear processes, which were subse-
quently integrated into Lyapunov-based model predictive 
control (MPC) to ensure stability and performance. Although 
machine learning algorithms have demonstrated continuous 
success in modeling complex systems in the large-data limit 
due to their large number of hyperparameters and degrees of 
freedom of the model, their black-box nature can hinder 
their advancement to deployment in practical engineering 
systems, even more so in safety-sensitive fields such as 
chemical plants (Wu and Christofides, 2021). Such models are 
also usually strongly restricted to the domain of training 
data, and it is highly inadvisable to use such models for ex-
trapolating the dynamics of the remainder of the state space. 
To better capture the physics of systems, several works fo-
cused on symbolic regression, which was a successful di-
rection but computationally intractable for large-scale 
systems. Hence, this idea was developed further with the 
concept of compressive sensing (Ozolinš et al., 2013; 2014)
into a relatively modern technique known as sparse identi-
fication for nonlinear dynamics (SINDy). Since its inception, 
SINDy has been applied to a broad range of systems (Proctor 
et al., 2014; Bai et al., 2015). In the field of process systems 
engineering, the goal of using SINDy for building process 
models is that SINDy enables the direct identification of 
models of explicit and closed-form nonlinear first-order or-
dinary differential equations (ODEs) from data. These iden-
tified equations can be readily incorporated into 
optimization problems, including MPC. The computational 
cost of integrating these explicit ODE models is typically low, 
particularly when the models are well-conditioned, thanks to 
the availability of efficient differential equation solvers that 
use well-established integration algorithms such as 4th/5th 
order Runge-Kutta methods.

In the recent literature, SINDy has been implemented 
successfully to develop models in chemical engineering, 
such as the identification of reaction networks (Hoffmann 
et al., 2019) and the development of reduced-order models 
for controlling hydraulic fracturing processes (Narasingam 
and Kwon, 2018) and nonlinear reactors (Abdullah et al., 
2021a, 2021b). The practical challenge of handling noise in 
sensor measurements when using SINDy was also addressed 
in Abdullah et al. (2022a, 2022b), where subsampling, co- 
teaching, and ensemble learning were used to build accurate 
SINDy models that captured the original nonlinear system 
from noisy data sets. Despite the successes in initial model 
building using SINDy, in practical applications, process 
models undergo changes over time due to various factors, 
including external influences (such as aging equipment, 
disturbances, and deployment of new operational tech-
nology) and internal factors (such as equipment fouling or 

catalyst deactivation). As a result, the SINDy model trained 
on past normal operations may not accurately predict pro-
cess states in the presence of disturbances. To address this 
challenge, researchers have explored adaptive, robust, and 
event-triggered control approaches within both classical 
(first-principles) modeling and data-driven modeling tech-
niques like SINDy to mitigate the impact of model un-
certainty.

Bhadriraju et al. (2020) proposed the operable adaptive 
sparse identification of systems (OASIS) framework where 
multiple SINDy models are constructed for the various regions 
of the state-space using single, short trajectories. However, 
due to the low data usage per model, the SINDy models were 
localized and could not extrapolate the entire state-space. 
Hence, a feedforward neural network was used to switch be-
tween the SINDy models based on partial state measurements 
and estimation of the remaining states via a Kalman filter. The 
authors demonstrated the effectiveness of the OASIS approach 
by building 100 different SINDy models for various sections of 
the operating region with relatively small data sets of single 
trajectories with 100 data points sampled every 0.01 hr. How-
ever, there was no update of the SINDy models themselves in 
real-time. Stanković et al. (2020) modified the original for-
mulation of SINDy to handle output measurements and ac-
tuation in addition to state measurements and also proposed 
highly specific library terms that are relevant for power sys-
tems, demonstrating the superior performance of the pro-
posed SINDy algorithm on synchronous generator models. In 
Sarić et al. (2020), the authors further combined SINDy with the 
manifold boundary approximation method to build models 
specifically favoring the identification of power systems and 
conducting their stability analyses. Specifically, the proposed 
algorithm had low data requirements and was ideal for up-
dating models in real-time subject to changing dynamics, and 
this aspect was demonstrated via model reduction using lim-
ited data when applied to a number of synchronous generator 
models. However, much of the work was highly tailored to 
power systems, especially large power systems and their 
transient stability analysis. The structured online learning 
method was proposed in Farsi and Liu (2020) where a quadratic 
value function was used to yield equations that were a more 
general form of the linear quadratic regulator with certain 
advantages and improvements when operating at unstable 
steady states in a pendulum example. Due to the quadratic 
formulation, the parameters of the value function could be 
analytically computed with a low computational cost, while 
SINDy was used for the model identification part. However, the 
focus of Farsi and Liu (2020) was on the real-time update of the 
value function rather than the SINDy models. Similarly to 
Stanković et al. (2020), SINDy was generalized in Wang et al. 
(2022) to handle multi-input multi-output (MIMO) systems to 
model system outputs to sensor measurements, i.e., instead of 
obtaining ODEs in the states, the system output is obtained as 
functions of the state dynamics. Subsequently, a Kalman filter 
was used not to estimate the states but rather the model 
coefficients and update them in real-time using sensor mea-
surements at every sampling time. Through two standard 
nonlinear examples, it was shown that this generalized SINDy 
with the Kalman filter approach could obtain better models 
than building a pure SINDy model using the sequential thre-
sholded least-squares solver with similar or less amount 
of data.

The concept of real-time updates of SINDy models was 
first proposed in Quade et al. (2018), where a method for re- 
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identification was introduced, allowing for the updating of 
model coefficients or the addition/removal of terms, or any 
combination thereof, as needed. The re-identification pro-
cess was triggered by a noticeable deviation between the 
local Lyapunov exponent and the prediction horizon esti-
mate, although the definition of “prediction horizon” in 
their study differs from its usage in the current manuscript. 
Although the findings of Quade et al. (2018) were mostly 
limited to the modeling context with no closed-loop data 
usage in the model updates, the methodology was recently 
adapted in Manzoor et al. (2022) in the modeling of ducted 
fan aerial vehicles (DFAVs) for closed-loop control under 
MPC. Specifically, an offline model was first built using deep 
physical knowledge of DFAVs, and the model parameters 
were then updated based on the proposed paradigm of 
Quade et al. (2018), using the same Lyapunov exponent- 
based trigger for the model update. The proposed metho-
dology was shown to be able to control DFAVs, which are 
highly challenging to model due to their complex flow 
distribution, under the various cases and disturbances 
considered such as wind turbulence, which is of practical 
concern in such a setting. Although real-time update of 
SINDy models was also studied in Bhadriraju et al. (2019), 
the goal was not to update the SINDy model to process 
changes but rather to build the process model itself for an 
unchanging process step-by-step, improving the model 
with newer data as it becomes available. Hence, the work of 
Bhadriraju et al. (2019) can be considered an alternative to 
model building when there is no large data set from nu-
merous simulations to build a high-fidelity SINDy model 
offline before deploying the controller. Finally, most re-
cently, an MPC framework using SINDy models with up-
dates to handle changing process conditions was 
investigated in Huang et al. (2023). The focus of the work 
was on model updates in the face of entirely unknown or 
first appearance process conditions and the operation of 
processes with multiple operating conditions. The discrete- 
time formulation of SINDy with actuation was used, and 
the greedy algorithm known as orthogonal matching pur-
suit was used to efficiently calculate only the matrix of 
changes to the model coefficients. During the model tran-
sition/update period, an elastic feedback correction method 
was used as a stopgap solution. The proposed error-trig-
gered adaptive sparse identification for predictive control 
(ETASI4PC) method showed significant improvement over 
the state-of-the-art methods including SINDy without 
model updates as well as the aforementioned OASIS ap-
proach in the presence of large disturbances in the feed 
flow rate of a chemical reactor system. We note that the 
ETASI4PC method is a promising methodology for updating 
SINDy models in real-time in tracking MPC. At the moment, 
based on our survey of the literature, the operation of 
Lyapunov-based model predictive controllers, both Lya-
punov-based tracking MPC (LMPC) and Lyapunov-based 
economic MPC (LEMPC) under SINDy models that are up-
dated in real-time has not been investigated, which is the 
subject of the current manuscript. While a tracking MPC 
drives the state of a system to a desired set-point, economic 
MPC, a recent model-based control strategy, optimizes 
time-varying operation by considering future process 
states, economic objectives, and feedback. It incorporates 
economic factors and constraints to achieve improved 
process efficiency and desired closed-loop response char-
acteristics. The potential benefits of economic MPC make it 

an attractive choice for industrial applications, as high-
lighted in studies such as Amrit et al. (2011); Huang et al. 
(2011); Heidarinejad et al. (2012); Ellis et al. (2014).

The rest of this manuscript is organized as follows: in 
Section 2, the notations, the class of nonlinear systems 
considered, and stability assumptions are provided. Section 3
provides a brief review of sparse identification and its im-
plementation, followed by the design of Lyapunov-based 
tracking and economic MPCs using SINDy models as the 
predictive model. In Section 4, the error-triggering me-
chanism is introduced, the details of the SINDy model update 
procedure are given, the implementation strategy for adap-
tive SINDy models in LMPC and LEMPC is delineated, and 
rigorous closed-loop stability analyses are conducted for the 
two types of MPCs. Finally, a chemical reactor example is 
used in Section 5 to demonstrate the performance of the 
proposed adaptive SINDy-MPC methodology.

2. Preliminaries

2.1. Notation

If x is a vector, we denote its transpose as x⊤ and its weighted 
Euclidean norm as x Q , where Q is a positive definite matrix. 

The standard Lie derivative LfV(x) is defined as f x( )V x
x
( ) . The 

operator “\” represents set subtraction, such that A\B is the 
set of elements x nx that belong to A but not to B. A 
function f( ⋅ ) is said to belong to the class C 1 if it is con-
tinuously differentiable within its domain. A class K func-
tion is defined as a continuous function α: [0, a) → [0, ∞ ) that 
is strictly increasing and takes the value of zero only when it 
is evaluated at zero.

2.2. Class of systems

We examine a broad category of continuous-time nonlinear 
systems, characterized by the equation,

= + + =x F x u w f x g x u h x w x t x( , , ) ( ) ( ) ( ) , ( )0 0 (1) 

where x nx denotes the state vector, u nu represents the 
manipulated input vector, and w ∈ W is the disturbance 
vector with { }W w w w w, 0n

m mw . The func-
tions f( ⋅ ), g( ⋅ ), and h( ⋅ ) are suitably smooth vector and 
matrix functions, respectively, with dimensions nx × 1, nx 

× nu, and nx × nw. Without loss of generality, we assume that 
the initial time t0 and initial condition f(0) are both equal to 
zero in this manuscript. Consequently, the steady-state of 
the nominal system of Eq. (1) is at the origin, specifically 
denoted as (xs*, us*) = (0, 0). Here, xs* and us* represent the 
steady-state state and input vectors, respectively.

2.3. Stabilization via control Lyapunov function

Assuming noise-free state measurements and full state 
feedback for the nominal system described in Eq. (1), it is 
postulated that a stabilizing control law u = Φ(x) ∈ U exists, 
capable of exponentially stabilizing the origin of the closed- 
loop system mentioned in Eq. (1). According to converse 
Lyapunov theorems (Massera, 1956; Lin et al., 1996; 
Christofides and El-Farra, 2005), this implies the existence of 
a C 1 control Lyapunov function V(x), along with four positive 
constants c1, c2, c3, c4, satisfying the conditions,

c x V x c x( ) ,1
2

2
2 (2a) 
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=V x
V x

x
F x x c x( )

( )
( , ( ), 0) ,3

2
(2b) 

V x
x

c x
( )

4
(2c) 

for all x in an open neighborhood D around the origin. In 
Eq. (2), V represents the time-derivative of the Lyapunov 
function, and F(x, Φ(x), 0) represents the nominal system 
from Eq. (1) under a candidate controller Φ(x), such as the 
universal Sontag control law (Lin and Sontag, 1991). Our first 
objective is to define a set of states ϕu, expressed as follows:

= = + <

= >

{
}

x V x L V L Vu kV x u

x U k

( ) ( ),

( ) , 0 {0}

u
n

f gx

under the controller u = Φ(x) ∈ U, that satisfies the conditions 
described in Eq. (2). Subsequently, we define the closed-loop 
stability region Ωρ (Khalil, 2002) for the nominal system pre-
sented in Eq. (1) as a sublevel set of V within ϕu, denoted as Ωρ 

≔ {x ∈ ϕu∣V(x)≤ ρ}, where ρ  >  0 and Ωρ ⊂ ϕu. Furthermore, from 
the Lipschitz continuity property of F(x, u, w) and the given 
bounds on u, it can be deduced that there exist positive 
constants Nw, Lx, Lx, Lw, and Lw such that the following in-
equalities are satisfied for all x x D, , u ∈ U, and w ∈ W:

F x u w M( , , ) (3a) 

+F x u w F x u L x x L w( , , ) ( , , 0) x w (3b) 

+V x
x

F x u w
V x

x
F x u L x x L w

( )
( , , )

( )
( , , 0) x w

(3c) 

3. Lyapunov-based MPC using sparse 
identification

In this section, the details of the sparse identification pro-
blem and its solution are provided, followed by the for-
mulation of LMPC and LEMPC that utilize the SINDy model to 
predict the future states. Furthermore, closed-loop stability 
for the nonlinear system of Eq. (1) is discussed under the 
proposed LMPC and LEMPC.

3.1. Sparse identification

Sparse identification, a recent advancement in nonlinear 
system identification, has demonstrated its effectiveness in 
various engineering disciplines through numerous examples 
(Wang et al., 2011; Schaeffer et al., 2013; Ozolinš et al., 2013; 
Mackey et al., 2014; Brunton et al., 2014; Proctor et al., 2014; 
Bai et al., 2015). The objective of the Sparse Identification of 
Nonlinear Dynamics (SINDy) approach is to utilize discrete 
measurement data from a physical system to identify a first- 
order ordinary differential equation (ODE) of the fol-
lowing form:

= +x f x g x uˆ ˆ ( ˆ ) ˆ ( ˆ ) (4) 

where x̂ nx represents the state vector of the model ob-

tained through sparse identification, while f̂ ( ) and ĝ( ) are 
the vector fields that capture the underlying physical laws 
governing the system. We emphasize that the goal of using 
SINDy in this work is as a system identification tool, and the 
correct underlying physics need not necessarily be obtained 
exactly for the SINDy model to be accurate.

The fundamental assumption underlying SINDy is that 
the right-hand side of Eq. (4) typically comprises only a small 
number of nonlinear terms. As a result, when considering a 

large pool of potential nonlinear basis functions for f̂ and ĝ, 
only a few terms will be active, with non-zero coefficients 
associated with them. This sparsity property of the candidate 
basis functions allows for efficient computation of the coef-
ficients using convex optimization algorithms.

The application of SINDy begins with acquiring real-time 
data from the system of interest. This data can be collected 
through sensors in experimental or industrial setups, or 
generated from computer simulations based on theoretical 
models, such as first-principles or chemical process simula-
tors. The collected data is then organized into two compact 
matrices: the data matrix X and the input matrix U,

=X

x t x t x t

x t x t x t

x t x t x t

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

m m n m

1 1 2 1 1

1 2 2 2 2

1 2

x

x

x (5a) 

=U

u t u t u t

u t u t u t

u t u t u t

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

m m n m

1 1 2 1 1

1 2 2 2 2

1 2

u

u

u (5b) 

where xi(tℓ) represents the ith state measurement at the ℓth 

sampling time, while uj(tℓ) denotes the jth input measure-
ment at the ℓth sampling time. The indices i, j, and ℓ take 
values i = 1, …, nx, j = 1, …, nu, and ℓ = 1, …, m, respectively. 
The derivative of X, denoted as X, is either directly measured 
or numerically estimated when direct measurement is not 
possible.

From the data matrices X and U, a function library matrix 
Θ(X, U) is constructed, containing p columns representing the 

nonlinear basis functions considered for the terms in f̂ and ĝ. 
While polynomials and trigonometric functions are com-
monly used in engineering applications due to their uni-
versality, the basis set can be adapted based on performance 
and available knowledge of the system’s structure. An ex-
ample of a function library matrix that may be used as a 
starting point for system identification is as follows:

=X U X X X U UX1( , ) ln sin( ) eX 2

(6) 

Each candidate basis function associated with a variable or 
row in Eq. (4) is assigned a coefficient, and these coefficients 
are stored in the matrix ×p nx. The sparse identification 
algorithm solves the equation,

=X X U( , ) (7) 

to calculate the coefficients, Ξ. A popular method for solving 
this equation is the sequential thresholded least squares 
(STLSQ), where a threshold value known as the sparsification 
knob λ is specified, and coefficients in Ξ below λ are set to 
zero. Specifically, the least-squares problem associated with 
Eq. (7) can be formulated in the following general form:

= +X X Uarg min ( , ) 2 1
(8) 

where is a notational substitute for Ξ, and the second term 
is an L1 regularization term that enforces sparsity of Ξ. To 
implement the above step, we start by defining the matrix Ξ″ 
to be the matrix with all coefficients with magnitudes 
below λ set to zero, which is the practical implementation of 
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the L1 regularization term in Eq. (8). Subsequently, the pro-
blem is reduced to the form,

= X X Uarg min ( , ) 2
(9) 

which can be solved using, for example, MATLAB’s built-in 
linear solver called with A\b where =A X and b = Θ(X, U). 
Eq. (9) is solved repeatedly until the large/nonzero coeffi-
cients (greater than λ in each iteration) converge. Due to the 
efficiency of linear solvers as well as the sparse structure of 
Θ, the coefficients converge rapidly in this step. The STLSQ 
method is used in the current manuscript due to not only its 
efficiency but also simplicity, as described above, which fa-
cilitates the necessary modifications required for real-time 
model updates.

Finally, the calculated coefficient values in Ξ are then 
used to construct the continuous-time ordinary differential 
equation

=x x u( ( , )) (10) 

where Θ(x⊤, u⊤) is not a matrix of data but a column vector of 
symbolic functions derived from the library of considered 
functions.

3.1.1. Solving for individual variables
The least-squares problem of Eq. (9) can also be solved not for 
the entire system but for a single variable of interest if only 
specific ODEs are required. From a programming perspective, 
it is identical whether the original full problem of Eq. (9) is 
solved to obtain all nx ODEs in one computation or whether nx 

problems are solved in a loop to identify the nx ODEs. If Eq. (9)
is solved individually for a variable we first define rows and 
columns of the relevant matrices as follows:

=X x x x[ ]n1 2 (11a) 

= [ ]p1 2 (11b) 

= [ ]n1 2 (11c) 

=

p

1

2

(11d) 

where xi
m and i

p are the columns of x and Ξ, re-
spectively, for i = 1, …, nx. The columns of Θ are denoted by 

j
m, while the rows of Ξ are represented by j

nx, for 

j = 1, …, p. Using these notations, for the ith variable, the 
sparse identification problem of Eq. (7) is of the form,

=x X U( , )i i (12) 

and the corresponding least-squares problem of Eq. (9) is

= x X Uarg min ( , )i i i 2

i (13) 

where ξi represents the coefficients in front of each library 
function for the ith variable, and i is the notational sub-
stitute for the vector ξi with all coefficients with magnitudes 
below λ set to zero. Solving the minimization of Eq. (13) for 
i = 1, …, nx is identical to solving the full-state problem of 
Eq. (9) but more advantageous in terms of formulation when 
performing partial SINDy modeling, i.e., model updates in 
real-time, as will be discussed in Section 4.2.

3.1.2. Scaling of library functions
In the case where the values of the functions in the library 
Θ(X, U) vary by orders of magnitudes for a data set, it may 
very likely be necessary to scale the library columns appro-
priately to yield a well-conditioned least-squares problem 
with a reasonable conditional number of Θ(X, U). When 
scaling the function library by a vector p, the sparse 
identification problem becomes

= =X X U
X U

( , )
( , )

scaled
scaled

(14) 

where Θscaled is the scaled library matrix with its ith column 
divided by the ith entry of Λ for i = 1, …, p. Similarly, Ξscaled is 
the scaled coefficient matrix where each of its rows has been 
multiplied by the corresponding scalar entry of Λ. The STLSQ 
iteration step of Eq. (9) must now use the scaled library and 
coefficient matrices, i.e.,

= X X Uarg min ( , )scaled scaled scaled 2
scaled (15) 

Since Ξscaled is used in the STLSQ step, the threshold λ does 
not need to be scaled as all the entries of the scaled matrix 
Ξscaled are already of similar orders of magnitudes. At the end 
of the STLSQ algorithm, once Ξscaled has been calculated, the 
original Ξ can be recovered by dividing every row of Ξscaled by 
the corresponding value in the scaling vector Λ.

3.2. Lyapunov-based control using SINDy models

In this section, we outline the formulation of Lyapunov- 
based Model Predictive Control (LMPC) and Lyapunov-based 
Economic Model Predictive Control (LEMPC) utilizing SINDy 
models for future state prediction. Initially, a SINDy model is 
constructed to approximate the nonlinear dynamics of the 
system described by Eq. (1) within the operating region Ωρ 

using data obtained from extensive open-loop simulations. 
Subsequently, LMPC and LEMPC are developed by leveraging 
SINDy models to ensure closed-loop stability for the non-
linear system represented by Eq. (1).

In this study, we update the SINDy model given by Eq. (10)
to capture the nonlinear dynamics of the system described 
by Eq. (1) in the presence of time-varying bounded dis-
turbances (i.e., ∣w(t)∣≤wm). Each SINDy model, denoted as 
F x u( , )si

i with i = 1, 2, …, NT, is updated using real-time data of 
closed-loop state trajectories and control actions. Here, NT 

represents the total number of obtained SINDy models. We 
assume the existence of a set of stabilizing feedback con-
trollers =u x U( )si

i that can render the origin of the SINDy 

models F x u( , )si
i , with i = 1, 2, …, NT, of Eq. (10) exponentially 

stable within an open neighborhood D̂ around the origin. 
Consequently, a C 1 control Lyapunov function V xˆ ( ) exists, 

satisfying the following inequalities for all x within D̂:

c x V x c xˆ ˆ ( ) ˆ ,i i
1

2
2

2 (16a) 

V x
x

F x x c x
ˆ ( )

( , ( )) ˆ ,si
i

si
i i

3
2

(16b) 

V x
x

c x
ˆ ( )

ˆ i
4

(16c) 

where ĉi
1, ĉi

2, ĉi
3, and ĉ i

4 are positive constants, with 
i = 1, 2, . . . , NT. For simplicity, we will omit the superscript i in 
the symbols used to represent the SINDy models and 
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controllers that satisfy Eq. (16) in the subsequent discussions. 
Similar to the approach used to characterize the closed-loop 
stability region Ωρ for the nonlinear system described by Eq. 
(1), we begin by characterizing a region denoted as 

= < =x V x c x u x Uˆ { ˆ ( ) ˆ , ( ) } {0}u
n

si3
2 , from 

which the origin of the SINDy model given by Eq. (10) can be 
rendered exponentially stable under the controller 
u = Φsi(x) ∈ U.

The closed-loop stability region for the SINDy model given 
by Eq. (10) is defined as a level set of the Lyapunov function 
within ˆ

u: x V x{ ˆ ˆ ( ) ˆ}uˆ , where >ˆ 0. It should 
be noted that ˆ since the data set used to develop the 
SINDy model in Eq. (10) is generated from open-loop simu-
lations with x ∈ Ωρ and u ∈ U. Additionally, there exist posi-
tive constants Msi and Lsi such that the following inequalities 
hold for all x x, ˆ and u ∈ U:

F x u M( , )si si (17a) 

V x
x

F x u
V x

x
F x u L x x

ˆ ( )
( , )

ˆ ( )
( , )si si si

(17b) 

Consider the existence of a bounded modeling error be-
tween the nominal system described by Eq. (1) and the SINDy 
model given by Eq. (10) (i.e., ∣ν∣ = ∣F(x, u, 0) − Fsi(x, u)∣≤ νm, νm 

>  0). The following proposition demonstrates that the feed-
back controller u = Φsi(x) ∈ U can stabilize the nominal system 
of Eq. (1) if the modeling error is sufficiently small.
Proposition 1. Under the assumption that the origin of the 
closed-loop SINDy model described by Eq. (10) is rendered 
exponentially stable under the controller u = Φsi(x) ∈ U for all 
x ˆ, if there exists a positive real number < c cˆ ˆ3 4 that 
constrains the modeling error ∣ν∣ = ∣F(x, u, 0) − Fsi(x, u)∣≤ Γ∣x∣≤ νm 

for all x ˆ and u ∈ U, then the origin of the nominal 
closed-loop system described by Eq. (1) under u = Φsi(x) ∈ U is 
also exponentially stable for all x ˆ.

Proof. To establish the exponential stability of the nominal 
system described by Eq. (1) under the controller based on the 
sparse-identified model from Eq. (10), we aim to demonstrate 
that the derivative of V̂ , which corresponds to the state of the 
nominal system, can be rendered negative for all x within the 
set ˆ under u = Φsi(x) ∈ U. By utilizing Eqs. (16b) and (16c), we 

can compute the time-derivative of V̂ as follows:

=

= +

+
+

V
V x

x
F x x

V x

x
F x x F x x F x x

c x c x F x x F x x

c x c x

ˆ
ˆ ( )

( , ( ), 0)

ˆ ( )
( ( , ( )) ( , ( ), 0) ( , ( )))

ˆ ˆ ( ( , ( ), 0) ( , ( )))

ˆ ˆ

si

si si si si si

si si si

m

3
2

4

3
2

4
2 (18) 

By appropriately selecting νm, such that < c cˆ ˆm 3 4, we can 

ensure that V c xˆ ˜ 03
2 , where = + >c c c˜ ˆ ˆ 0m3 3 4 . This 

implies that the closed-loop state of the nominal system 
converges to the origin under u = Φsi(x) ∈ U for all x0 ˆ. □.

Upon integrating the SINDy model represented by Eq. (10)
into the Lyapunov-based MPC designs, the control actions of 
the LMPC and LEMPC will be implemented using a sample- 
and-hold approach. Consequently, the subsequent proposi-
tions aim to establish the sample-and-hold characteristics of 
the Lyapunov-based controller u = Φsi(x). Specifically, the 
next proposition derives an upper bound for the discrepancy 
between the states computed by the nominal system defined 

in Eq. (1) and the states predicted by the SINDy model given 
by Eq. (10).
Proposition 2. (c.f. proposition 3 in Wu et al. (2019a)) For the 
nonlinear system described by =x F x u w( , , ) in Eq. (1) and the 

SINDy model given by =x F x uˆ ( ˆ , )si in Eq. (10), assuming the 
same initial condition =x x̂0 0 ˆ, there exists a class K
function fw( ⋅ ) and a positive constant κ such that the 
following inequalities hold for all x and x̂ within ˆ .

+
x t x t f t

L w
L

( ) ˆ ( ) ( ) (e 1)w
w m m

x

L tx

(19a) 

+ +V x V x
c

c
x x x xˆ ( ) ˆ ( ˆ )

ˆ ˆ

ˆ
ˆ ˆ

4

1

2

(19b) 

Proof. Let us denote the error vector between the solutions of 
the system =x F x u w( , , ) and the SINDy model =x F x uˆ ( ˆ , )si as 

=e t x t x t( ) ( ) ˆ ( ). By taking the time derivative of e(t), we 
obtain:

=
+

e t F x u w F x u

F x u w F x u F x u F x u

( ) ( , , ) ( ˆ , )

( , , ) ( ˆ , , 0) ( ˆ , , 0) ( ˆ , )
si

si (20) 

Using the Lipschitz condition from Eq. (3b), we have:

+
+

F x u w F x u L x t x t L w t

L x t x t L w

( , , ) ( ˆ , , 0) ( ) ˆ ( ) ( )

( ) ˆ ( )
x w

x w m (21) 

The second term F x u F x u( ˆ , , 0) ( ˆ , )si in Eq. (20) represents 
the modeling error, which is bounded by ∣ν∣≤ νm for all x̂ ˆ. 
Hence, combining Eq. (21) and the bound on the modeling 
error, we can bound e t( ) as follows:

+ +
+ +

e t L x t x t L w

L e t L w

( ) ( ) ˆ ( )

( )
x w m m

w m m (22) 

With the zero initial condition (e(0) = 0), we can bound the 
norm of the error vector for all x t x t( ), ˆ ( ) ˆ and w(t)≤wm:

= + ( )e t x t x t
L w

L
( ) ( ) ˆ ( ) e 1w m m

x

L tx

(23) 

Next, to derive Eq. (19b) for all x x, ˆ ˆ, we expand V xˆ ( )
using a Taylor series expansion around x̂:

+ +V x V x
V x

x
x x x xˆ ( ) ˆ ( ˆ )

ˆ ( ˆ )
ˆ ˆ 2

(24) 

where κ is a positive real number. Using Eqs. (16a) and (16c), 
we can simplify Eq. (24) as follows:

+V x V x
c

c
x x x xˆ ( ) ˆ ( ˆ )

ˆ ˆ

ˆ
ˆ ˆ

4

1

2

(25) 

This completes the proof of proposition 2. □.

3.2.1. LMPC using SINDy models
The formulation of a Lyapunov-based model predictive 
controller (LMPC) using a SINDy model can be expressed as 
follows (Abdullah et al., 2021b):

J = +
L x t u t tmin ( ˜ ( ), ( )) d

u S t

t

( ) k

k N

(26a) 

=x t F x t u ts.t. ˜ ( ) ( ˜ ( ), ( ))si (26b) 

+u t U t t t( ) , [ , )k k N (26c) 

=x t x t˜ ( ) ( )k k (26d) 
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V x t u V x t x t x tˆ ( ( ), ) ˆ ( ( ), ( ( ))), if ( ) \k k si k k ˆ si (26e) 

+V x t t t t x tˆ ( ˜ ( )) , [ , ), if ( )si k k N k si (26 f) 

where x̃ represents the predicted state trajectory. The set S 
(Δ) consists of piecewise constant functions with period Δ. N 
denotes the number of sampling periods in the prediction 

horizon. The term V x uˆ ( , ) denotes F x u( , )V x
x si

ˆ ( ) . The optimal 
input trajectory computed by the LMPC, denoted as u* (t), is 
calculated over the entire prediction horizon t ∈ [tk, , tk+N). 
The control action computed for the first sampling period of 
the prediction horizon, u* (tk), is applied during that period, 
and the LMPC is resolved at the next sampling time.

In the optimization problem defined by Eq. (26), the ob-
jective function in Eq. (26a) represents the integral of 
L x t u t( ˜ ( ), ( )) over the prediction horizon. The constraint spe-
cified in Eq. (26b) describes the sparse-identified model of 
Eq. (10) used for state prediction in the closed-loop system. 
Eq. (26c) defines the input constraints applied throughout the 
prediction horizon, and Eq. (26d) defines the initial condition 
x t˜ ( )k based on the state measurement at t = tk. The constraint 
expressed in Eq. (26e) ensures that, if x t( ) \k ˆ si, the 
closed-loop state will move towards the origin. However, 
once x(tk) enters si, the states predicted by the SINDy model 
from Eq. (26b) will remain within si for the entire prediction 
horizon.

The proposition below demonstrates that the closed-loop 
state of the nominal system described in Eq. (1) remains 
bounded within the region ˆ for all times and can ultimately 
be bounded in a smaller subset min that includes the origin. 
This result is obtained under the sample-and-hold im-
plementation of the Lyapunov-based controller u = Φsi(x) ∈ U.
Proposition 3. Consider the system described by Eq. (1) under 
the controller =u x U( ˆ )si . The controller is designed to 
stabilize the SINDy system represented by Eq. (10) and 
satisfies the conditions stated in Eq. (16). The controller 
operates in a sample-and-hold fashion, where 

=u t x t t( ) ( ˆ ( ))si k within the interval [tk, tk+1), with tk+1 

≔ tk + Δ. Let ϵs, ϵw, Δ, and ˆ be positive values, and assume 

min , ρsi, and ρs satisfy the following conditions:

+c
c

L M
ˆ
ˆ s si si s
3

2 (27a) 

+ +c
c

L M L w˜
ˆ s x w m w
3

2 (27b) 

and

+{ }V x t x t u Umax ˆ ( ˆ ( )) ˆ ( ) ,si s (28a) 

+ +
c

c
f f

ˆ ˆ

ˆ
( ) ( ( ))si w wmin

4

1

2

(28b) 

Then, the following inequality holds for any x t( ) \k ˆ s:

+V x t V x t t t tˆ ( ( )) ˆ ( ( )), [ , )k k k 1 (29) 

and the state x(t) of the nonlinear system of Eq. (1) is bounded 
in ˆ for all times and ultimately bounded in min .

Proof. Part 1: Let’s assume that =x t x t( ) ˆ ( ) \k k ˆ s. We will 
now demonstrate that, under the controller u(t) = Φsi(x 
(tk)) ∈ U, the value of V xˆ ( ˆ ) decreases for t ∈ [tk, tk+1), where x 
(t) and x tˆ ( ) represent the solutions of the nonlinear system 
described by Eq. (1) in the presence of bounded disturbances  

and the SINDy system described by Eq. (10), respectively. We 
obtain the time-derivative of V xˆ ( ˆ ) along the trajectory x tˆ ( ) of 
the SINDy model within the interval t ∈ [tk, tk+1) as follows:

=

=

+

V x t
V x t

x
F x t x t

V x t
x

F x t x t

V x t
x

F x t x t

V x t
x

F x t x t

ˆ ( ˆ ( ))
ˆ ( ˆ ( ))

ˆ
( ˆ ( ), ( ˆ ( )))

ˆ ( ˆ ( ))
ˆ

( ˆ ( ), ( ˆ ( )))

ˆ ( ˆ ( ))
ˆ

( ˆ ( ), ( ˆ ( )))

ˆ ( ˆ ( ))
ˆ

( ˆ ( ), ( ˆ ( )))

si si k

k
si k si k

si si k

k
si k si k (30) 

Using the inequalities of Eqs. (16a) and (16b),

+V x t
c
c

V x t
x

F x t x t

V x t
x

F x t x t

ˆ ( ˆ ( ))
ˆ
ˆ

ˆ ( ˆ ( ))
ˆ

( ˆ ( ), ( ˆ ( )))

ˆ ( ˆ ( ))
ˆ

( ˆ ( ), ( ˆ ( )))

s si si k

k
si k si k

3

2

(31) 

Utilizing the Lipschitz condition stated in Eq. (17) and 
considering the fact that x̂ ˆ and u ∈ U, we can 

determine the upper bound of V x tˆ ( ˆ ( )) for all +t t t[ , )k k 1 as 
follows:

+

+

V x t L x t x t

L M

ˆ ( ˆ ( )) ˆ ( ) ˆ ( )c
c s si k

c
c s si si

ˆ
ˆ

ˆ
ˆ

3

2

3

2 (32) 

Hence, when Eq. (27a) is fulfilled, the subsequent inequality 
is valid for any x tˆ ( ) \k ˆ s and +t t t[ , )k k 1 :

V x tˆ ( ˆ ( )) s (33) 

By integrating the aforementioned equation over t ∈ [tk, tk+1), 
we can conclude that +V x t V x t( ˆ ( )) ( ˆ ( ))k k s1 . Hence, we 
have established that, for all x tˆ ( ) \k ˆ s, the state of the 
closed-loop SINDy system described by Eq. (10) remains 
bounded within the closed-loop stability region ˆ at all 
times and converges towards the origin when the controller 

=u x U( ˆ )si is implemented in a sample-and-hold manner. 
However, it should be noted that Eq. (33) may not hold 

when =x t x t( ) ˆ ( )k k s. This implies that the state may exit 
the region s within a single sampling period. To address 
this, we design si based on Eq. (28a) to ensure that the 
closed-loop state x tˆ ( ) of the SINDy model remains within si

for all t ∈ [tk, tk+1), u ∈ U, and x tˆ ( )k s during a sampling 
period. If the state +x tˆ ( )k 1 exits s, the controller u = Φsi(x(tk 

+1)) will guide the state back towards s in the subsequent 
sampling period, as Eq. (33) is satisfied again at t = tk+1. Con-
sequently, we have demonstrated the convergence of the 
state to si for the closed-loop SINDy system described by 
Eq. (10) for all initial states x̂0 ˆ. The next step is to es-
tablish that the closed-loop state of the actual nonlinear 
system governed by Eq. (1) can be bounded within ˆ for all 
times and ultimately bounded within a small neighborhood 
around the origin when the controller u = Φsi(x) ∈ U is im-
plemented using the sample-and-hold technique. 

Part 2: Building upon the previous analysis of the SINDy 
system represented by Eq. (10), we now consider the non-
linear system described by Eq. (1) with =x t x t( ) ˆ ( ) \k k ˆ s. 

We derive the time-derivative of V xˆ ( ) for this nonlinear 
system, taking into account the presence of bounded dis-
turbances w (with ∣w∣≤wm), as shown below:
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=

=

+

V x t
V x t

x
F x t x t w

V x t
x

F x t x t

V x t
x

F x t x t w

V x t
x

F x t x t

ˆ ( ( ))
ˆ ( ( ))

( ( ), ( ( )), )

ˆ ( ( ))
( ( ), ( ( )), 0)

ˆ ( ( ))
( ( ), ( ( )), )

ˆ ( ( ))
( ( ), ( ( )), 0)

si k

k
k si k

si k

k
k si k (34) 

By referring to Eq. (19), we have 

F x t x t c x t( ( ), ( ( )), 0) ˜ ( )V x t
x k si k k

ˆ ( ( ))
3

2k for all x \ˆ s. Uti-
lizing Eq. (16a) and the Lipschitz condition stated in Eq. (17), 

we can derive the following inequality for V x tˆ ( ( )) within the 
time interval t ∈ [tk, tk+1), given that x t( ) \k ˆ s:

+

+ +

+ +

V x t
c
c

V x t
x

F x t x t w

V x t
x

F x t x t

c
c

L x t x t L w

c
c

L M L w

ˆ ( ( )) ˜
ˆ

ˆ ( ( ))
( ( ), ( ( )), )

ˆ ( ( ))
( ( ), ( ( )), 0)

˜
ˆ

( ) ( )

˜
ˆ

s si k

k
k si k

s x k w

s x w m

3

2

3

2

3

2 (35) 

If the condition stated in Eq. (27b) is fulfilled, we can establish 
the following inequality for all x t( ) \k ˆ s and t ∈ [tk, tk+1):

V x tˆ ( ( )) w (36) 

From the inequality in Eq. (36), we can conclude that Eq. (29)
holds, ensuring that the state of the closed-loop system de-
scribed by Eq. (1) remains within the region ˆ for all times. 
Furthermore, this implies that the controller u = Φsi(x) is 
capable of driving the state of the actual nonlinear system 
given by Eq. (1) towards the origin within each sampling 
period. 

In addition to the above, if the initial state x(tk) belongs to 
the set s, we have already demonstrated in Part 1 that the 
state of the SINDy model described by Eq. (10) remains within 
the region si within one sampling period. Taking into ac-
count the bounded error between the SINDy model state and 
the actual nonlinear system state, as indicated by Eq. (19a), 
we can define a compact set min such that si min , 
satisfying the condition stated in Eq. (28b). This guarantees 
that the state of the actual nonlinear system does not exit 

min during a sampling period if the state of the SINDy 
model remains bounded within si. If the state x(t) enters the 
set \ smin , we have shown that Eq. (36) holds, and thus, 
the state will be driven towards the origin again during the 
next sampling period under the controller u = Φsi(x). 

By establishing the above arguments, we have completed 
the proof of proposition 3, demonstrating that for any initial 
state =x x̂0 0 ˆ, the closed-loop state trajectories of the 
nonlinear system described by Eq. (1) remain within the re-
gion ˆ and ultimately become bounded within min , pro-
vided that the assumptions of proposition 3 are satisfied. □.

The aforementioned stability region, the various 
Lyapunov level sets and an example of a closed-loop state 
trajectory under the LMPC are depicted in Fig. 1.

3.2.2. LEMPC using SINDy models
The Lyapunov-based economic model predictive control 
(LEMPC) approach utilizing a SINDy model is designed to 
dynamically optimize the economic benefits of a process 
while ensuring that the closed-loop state remains within a 

specified stability region at all times (Wu and Christofides, 
2019). The LEMPC can be formulated as the following opti-
mization problem:

J = +
l x t u t tmax ( ˜ ( ), ( )) d

u S t

t
e

( ) k

k N

(37a) 

=x t F x t u ts.t. ˜ ( ) ( ˜ ( ), ( ))si (37b) 

+u t U t t t( ) , [ , )k k N (37c) 

=x t x t˜ ( ) ( )k k (37d) 

+V x t t t t x tˆ ( ˜ ( )) ˆ , [ , ), if ( )e k k N k ˆe (37e) 

V x t u V x t x t x tˆ ( ( ), ) ˆ ( ( ), ( ( ))), if ( ) \k k si k k ˆ ˆe (37 f) 

The notation used in Eq. (37) follows that of Eq. (26). The 
optimization problem presented in Eq. (37) aims to maximize 
the time integral of the stage cost function, denoted as 
l x t u t( ˜ ( ), ( ))e , over the prediction horizon. The prediction 
model described in Eq. (37b) and the initial condition given in 
Eq. (37d) are the same as those used in the LMPC formulation 
of Eq. (26). The constraint stated in Eq. (37e) ensures that the 
predicted closed-loop states remain within the region ˆe
over the prediction horizon when the initial state x(tk) is in-
side this region. However, if x(tk) enters the region \ˆ ˆe, the 
contractive constraint expressed in Eq. (37f) drives the state 
towards the origin during the next sampling period, ulti-
mately causing the state to enter ˆe within a finite number 
of sampling periods.
Proposition 4. Consider the system described by Eq. (1)
subject to the controller =u x U( ˆ )si . This controller 
satisfies the conditions specified in Eq. (16) and is 
implemented using a sample-and-hold approach, meaning 
that = +u t x t t t t( ) ( ˆ ( )) [ , )si k k k 1 , where tk+1 ≔ tk + Δ. 
Further, let ϵw and ϵs be positive values, and let Δ be a 
positive time interval. Consider also that > > >ˆ ˆ 0e s , 
satisfying the conditions given by the following equations:

+c
c

L M
ˆ
ˆ s si si s
3

2 (38a) 

+ +c
c

L M L w˜
ˆ s x w m w
3

2 (38b) 

> +{ }V x t x t u U w Wˆ max ˆ ( ˆ ( )) ˆ ( ) , ,e k k s (38c) 

Fig. 1 – A diagram illustrating the sets ˆ
u, ˆ, min , si, and 

s in concentric ellipses, from outermost to innermost. The 

LMPC control strategy of Eq. (26) guides the closed-loop 
state towards the origin and ensures that it eventually 
remains bounded within min for any initial state x0 ˆ.
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In that case, for any x t( ) \k ˆ s, the following 
inequalities hold:

+V x t V x t t t tˆ ( ˆ ( )) ˆ ( ˆ ( )), [ , )k k k 1 (39a) 

+V x t V x t t t tˆ ( ( )) ˆ ( ( )), [ , )k k k 1 (39b) 

Proof. In order to demonstrate the decreasing value of V̂
along the trajectory x tˆ ( ) of the SINDy model described by Eq. 
(10) over the interval t ∈ [tk, tk+1), we evaluate the time 
derivative of V xˆ ( ˆ ) with respect to x tˆ ( ) as follows:

=

=

+

V x t
V x t

x
F x t x t

V x t
x

F x t x t

V x t
x

F x t x t

V x t
x

F x t x t

ˆ ( ˆ ( ))
ˆ ( ˆ ( ))

ˆ
( ˆ ( ), ( ˆ ( )))

ˆ ( ˆ ( ))
ˆ

( ˆ ( ), ( ˆ ( )))

ˆ ( ˆ ( ))
ˆ

( ˆ ( ), ( ˆ ( )))

ˆ ( ˆ ( ))
ˆ

( ˆ ( ), ( ˆ ( )))

si si k

k
si k si k

si si k

k
si k si k (40) 

By exploiting the Lyapunov constraints of Eqs. (16a) and (16b)
and the Lipschitz condition of Eq. (17), we obtain the 
following inequalities:

+

+

V x t F x t x t

F x t x t

L M

ˆ ( ˆ ( )) ( ˆ ( ), ( ˆ ( )))

( ˆ ( ), ( ˆ ( )))

c
c s

V x t
x si si k

V x t
x si k si k

c
c s si si

ˆ
ˆ

ˆ ( ˆ ( ))

ˆ

ˆ ( ˆ ( ))
ˆ

ˆ
ˆ

k

3

2

3

2 (41) 

Hence, if the condition of Eq. (38a) is satisfied, we have 

V x tˆ ( ˆ ( )) s for all x tˆ ( ) \k ˆ s and t ∈ [tk, tk+1). Integrating 

the above inequality leads to V x t V x tˆ ( ˆ ( )) ˆ ( ˆ ( ))k s, for all 
x tˆ ( ) \k ˆ s and t ∈ [tk, tk+1) (referred to as Eq. (39a)). 

To establish the inequality V x t V x tˆ ( ( )) ˆ ( ( ))k for all 

t ∈ [tk, tk+1), we derive the time-derivative of V xˆ ( ) for the 
nonlinear system described by Eq. (1) (where =x F x u w( , , )) in 
the presence of bounded disturbances (i.e., ∣w(t)∣≤wm) as 
follows:

=

=

+

V x t F x t x t w

F x t x t

F x t x t w

F x t x t

ˆ ( ( )) ( ( ), ( ( )), )

( ( ), ( ( )), 0)

( ( ), ( ( )), )

( ( ), ( ( )), 0)

V x t
x si k

V x t
x k si k

V x t
x si k

V x t
x k si k

ˆ ( ( ))

ˆ ( ( ))

ˆ ( ( ))

ˆ ( ( ))

k

k
(42) 

By utilizing Eq. (19), which states that 

F x t x t c x t( ( ), ( ( )), 0) ˜ ( )V x t
x k si k k

ˆ ( ( ))
3

2k holds for all x ˆ, we 

can derive the following inequality for all x t( ) \k ˆ s and 
t ∈ [tk, tk+1) using Eq. (16a) and the Lipschitz condition given 
by Eq. (17):

+ +

+ +

V x t L x t x t L w

L M L w

ˆ ( ( )) ( ) ( )c
c s x k w

c
c s x w m

˜
ˆ

˜
ˆ

3

2

3

2 (43) 

Therefore, if the condition of Eq. (38b) is satisfied, we can 
derive the following inequality x t( ) \k ˆ s and 
∀ t ∈ [tk, tk+1):

V x tˆ ( ( )) w (44) 

Likewise, this implies that V x t V x tˆ ( ( )) ˆ ( ( ))k w holds for 
all x t( ) \k ˆ s and t ∈ [tk, tk+1). Hence, if x t( ) \k ˆ s, the 
state of the nonlinear system described by Eq. (1) will enter 

s within a finite number of sampling periods. Moreover, if 

x t( )k s, where Eqs. (43) and (44) do not hold, Eq. (38c)
ensures that the state will not exit ˆe within one sampling 
period for any u ∈ U and w ∈ W. If the state x(tk+1) exits s but 
remains within ˆe, then at the subsequent sampling period 
t ∈ [tk+1, tk+2), Eq. (44) is satisfied again, causing the state to be 
driven toward the origin. Consequently, the state of the 
nonlinear system given by Eq. (1) remains bounded within ˆ

at all times. □.

4. Error-triggered online update of SINDy 
models

In this section, we apply the LMPC the LEMPC methods de-
scribed by Eq. (26) and Eq. (37), respectively, to the nonlinear 
system of Eq. (1) in the presence of bounded disturbances 
(i.e., ∣w(t)∣≤wm) that grows due to changes in the dynamics of 
the nonlinear system of Eq. (1), potentially leading to in-
stability in the closed-loop system. To mitigate the impact of 
disturbances, we update SINDy models through online 
learning to capture the nonlinear dynamics of the system 
described by Eq. (1) while accounting for the influence of 
disturbances w(t). The subsequent subsections introduce the 
error-triggering mechanism employed for updating the 
SINDy models to ensure ∣w(t)∣≤wm for all time.

4.1. Error-triggering mechanism

In this subsection, we develop an event-triggering me-
chanism based on the errors between predicted states and 
measured states to update the SINDy model for all x ˆ. 
This mechanism is referred to as the error-triggered on-line 
SINDy update throughout the manuscript. Specifically, fol-
lowing the error-triggering mechanism proposed in Alanqar 
et al. (2017), we introduce a moving horizon error metric 
denoted as ed(tk), which indicates the prediction accuracy of 
the SINDy model at time t = tk.

=
= =

e t
x t x t

x t
( )

( ) ( )

( )
d k

r

N

j

n
p j k r j k r

j k r0 1

,w x

(45) 

where the quantity Nw represents the number of sampling 
periods prior to tk that contribute to the estimation of the 
prediction error. At each sampling period between tk Nw and 
tk, xj(tk−r) captures the historical measurements of the pro-
cess states, where r ranges from 0 to Nw. Similarly, xp,j(tk−r) 
represents the predictions of the past states of the system 
obtained from the SINDy model. The moving horizon error 
detector triggers a model update if/when the error metric ed 

surpasses a predefined threshold ed,T, i.e., the following 
condition:

>e t e( )d k d T, (46) 

Determining the parameters for this error-triggered ap-
proach involves defining the number of input and output 
data points Nd that should be retained for model update 
when it is triggered, the length Nw of the moving horizon 
used to calculate the error metric ed, and the threshold ed,T 

that dictates when a model update should be initiated.
The following strategy is proposed for the selection of the 

parameter, . 

• Nd: The SINDy algorithm is highly dependent on the 
amount of dynamic information present in a data set ra-
ther than simply its size. While the initial SINDy model 
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must be developed with a large data set consisting of 
many open-loop experiments/simulations, the model up-
date procedure must use a much smaller number of data 
points to update the coefficients because, firstly, the up-
dates must occur relatively soon after the disturbance 
takes effect and, secondly, the model is only being up-
dated rather than being identified. Hence, the amount of 
data required for the initial offline model building proce-
dure has no impact on the amount of data required to 
efficiently update the model in real-time. The actual 
amount of data will depend also on the sampling period 
since a smaller sampling period can yield a large volume 
of data within a short period of data acquisition. In sum-
mary, the value of Nd is highly process-specific, and some 
insights will be provided in the application section. We 
note, however, that even if Nd is relatively large for a cer-
tain process (or region of a process), one approach to mi-
tigate process deterioration during the time between the 
error-triggering and the SINDy model update is to use a 
linear data-driven model as a stopgap solution (Kaiser 
et al., 2018).

• Nw: The selection of the appropriate value for Nw in the 
calculation of ed requires finding a balance. On one hand, 
Nw should be sufficiently long to ensure that common 
disturbances during normal operation do not significantly 
impact ed, which could lead to unnecessary triggering of 
errors. On the other hand, Nw should not be longer than 
necessary to avoid unnecessary data storage and proces-
sing. One approach to determine Nw is by evaluating the 
value of ed(tk) at each sampling period for a set of input/ 
output data collected during typical process operation. 
This evaluation is performed in closed-loop under the 
SINDy-based MPC, focusing on the region of operation 
where the initial SINDy model was developed and vali-
dated. By repeating this calculation for different values of 
Nw, it becomes possible to observe the range of minimum 
and maximum values of ed. If Nw is small, the minimum 
and maximum values of ed may differ significantly since 
any disturbance or measurement noise within the moving 
horizon has a considerable impact on ed. However, as Nw 

increases, the influence of disturbances and measurement 
noise becomes less significant. At some point, the 
minimum and maximum values of ed are expected to 
stabilize, indicating that further increases in Nw have 
minimal effect. In such a case, the smallest value of Nw for 
which the minimum and maximum values of ed reach 
their approximate final value can be selected for use in Eq. 
(45). It is important to note that the value of Nw for a given 
process depends on the statistical properties of w(t) and its 
influence on the system. Therefore, careful consideration 
of these factors is necessary when determining the ap-
propriate value of Nw.

• ed,T: The determination of the threshold value ed,T is per-
formed offline, taking into account the chosen value of Nw. 
The goal is to set a threshold that avoids triggering model 
updates in the presence of measurement noise, small 
constant disturbances, and time-varying disturbances 
that still result in reasonably accurate predictions using 
the current model. One approach to achieve this is by 
analyzing the statistical properties of ed using a set of 
closed-loop input/output data corresponding to normal 
process operation within the region where the initial 
SINDy model was developed and validated. For example, 
the maximum value of ed can be calculated using the 

selected value of Nw. The threshold can then be set to be a 
reasonable percentage higher than this maximum value of 
ed observed in the normal operating data. This approach 
ensures that the threshold includes disturbances and 
measurement noise that regularly affect the system. 
Alternatively, other statistical measures could be used, 
such as setting ed,T to be several standard deviations above 
the mean value of ed calculated from the normal operating 
data. The choice of the appropriate measure depends on 
the specific system being analyzed. It is important to note 
that, even in the absence of disturbances or measurement 
noise, ed may have a non-zero value if the SINDy model 
captured the dynamics of the system using a different set 
of basis functions than the actual nonlinearities of the 
process in consideration. If the exact basis functions and 
coefficients were correctly identified by the SINDy model, 
however, ed can be expected to be very close to zero.

From a practical perspective, due to the continuous, online 
monitoring of the process performance, even if some para-
meters are not chosen optimally from the beginning, they can 
be adjusted based on the incoming data, and the lack of ex-
plicit formulae to determine the aforementioned parameters 
is not a limitation of the adaptive SINDy framework.
Remark 1. While Eq. (45) assumes full-state feedback, if only 
output measurements are available, the SINDy modeling 
framework itself can be modified to obtain not the state 
derivative but the output measurements as functions of the 
states, i.e., y = f(x, u), where y are the output measurements. 
Such an approach has been proposed in Wang et al. (2022)
under the name of generalized SINDy. Hence, using output 
measurements as the target variables and nonlinear 
functions of the states and manipulated inputs as the 
library functions, once relationships are obtained for the 
output measurements, the predicted output measurements 
can be used to compute the error metric in Eq. (45) instead.

4.2. SINDy model update procedure

Once the SINDy model update is triggered by the mechan-
isms of Section 4, the model update is carried out using the 
last Nd data points. The details of the update procedure are 
discussed in this subsection.

It is assumed that the structure of the original SINDy 
model obtained offline does not change due to the presence 
of disturbances or changes in the process. This is a practical 
assumption since many changes such as catalyst deactiva-
tion or fluctuations in feed flow rates would not add or re-
move terms from the process model but simply alter the 
terms, specifically the coefficients associated with the re-
spective terms. Hence, the problem of updating SINDy 
models in real-time can be reduced to re-identifying a subset 
of the coefficients in the matrix Ξ. In doing so, however, the 
remaining coefficients must remain at their original values.

For real-time model updates of q out of p coefficients for 
each variable, the matrices Θ(X, U) and Ξ must be split into 
the part that will remain unchanged and the part that will be 
re-identified as follows:

= =[ ], [ ]fixed update fixed update (47) 

where ×m p q
fixed

( ) and ×m q
update contain the m × 1 

columns of Θ that are fixed and that are updated, respec-
tively. Similarly, ×p q n

fixed
( ) x and ×q n

update x contain 
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the corresponding 1 × nx rows of Ξ. The sparse identification 
problem then becomes

= = +X fixed fixed update update (48) 

which can be reformulated into the form,

=X fixed fixed update update (49) 

In Eq. (49), the left-hand side is a matrix that can be eval-
uated using the fixed part of the current SINDy model, and 
Θupdate in the right-hand side of Eq. (49) is also known. 
Therefore, STLSQ can be used to solve for the only unknown 
in Eq. (49), which is Ξupdate, using the same procedure as 
described in Section 3.1. Specifically, the least-squares for-
mulation now solves for Ξupdate as follows:

= Xarg minupdate fixed fixed update update 2
update (50) 

In the above formulation, the notations use the full ma-
trices for the parts of Ξ, which is done for simplicity. 
However, the same library terms do not need to be fixed 
between the different variables/ODEs. Since the STLSQ al-
gorithm solves for the coefficients of each state variable se-
quentially in a loop, the different terms to be updated can be 
easily incorporated into the solution. Specifically, instead of 
altering the same q library function coefficients for every 
variables, let the ith variable update qi coefficients in its ODE 
right-hand side (i = 1, …, nx). In this case, the least-squares 
problem associated with the partial SINDy update for the ith 

variable is expressed as follows:

=xi i i i i,fixed ,fixed ,update ,update (51) 

For example, consider a system where the first and third li-
brary functions are to be updated for the first variable (q1 = 2) 
but only the second library function for the second variable 
(q2 = 1). In this case, the least-squares problems to be solved 
for identifying the updated SINDy coefficients for the ODEs 
modeling the dynamics of the first two variables would be

=x [ ] [ ]p

p

1 2 4 5

2,1

4,1

5,1

,1

1 3

1,1

3,1

(52) 

and

=x [ ] [ ]p

p

2 1 3 4 5

1,2

3,2

4,2

5,2

,2

2 2,2

(53) 

respectively, where ξi,j denotes the ith row of the jth column of 
Ξ. Solving Eq. (52) will yield the updated values of ξ1,1 and ξ3,1, 
while solving Eq. (53) outputs the updated scalar, ξ2,2. In this 
manner, any number and choice of library functions’ coeffi-
cients can be updated using the partial re-identification al-
gorithm described in this subsection.

4.3. Implementation strategy for error-triggered on-line 
model identification

After determining the values of Nd, Nw, and ed,T using the 
methodology described in the previous section, the 

implementation strategy for the proposed error-triggered on- 
line model identification is as follows: 

1. An initial SINDy model that captures the nonlinear pro-
cess behavior in the operating region is developed using 
data from extensive open-loop simulations. This model is 
used to design the model predictive controller.

2. The system is operated under the MPC that is designed 
based on the current SINDy model. During operation, Nd 

values of input/output data are collected and stored for 
potential future model identification. At tNw, the moving 
horizon error detector is activated to compute ed(tk).

3. When the current SINDy model becomes inadequate in 
capturing the dynamics of the process (due to factors such 
as plant variations or changes in the operating region), the 
value of ed(tk) will rise. Once ed(tk) surpasses the threshold 
ed,T, the latest set of Nd input and output data values 
(collected up until time tk) are employed for on-line model 
update. This newly updated SINDy model then replaces 
the current SINDy model and is utilized as the process 
model in the MPC.

4. Steps 2 and 3 are repeated as process operation continues.

4.4. Stability analysis of error-triggered feedback systems

In this section, we use the propositions developed in Section 
3.2.1 and 3.2.2 to develop closed-loop stability results for the 
nonlinear system of Eq. (1) under the Lyapunov-based con-
trollers.

4.4.1. Stability analysis for Lyapunov-based tracking MPC
Based on the LMPC formulation given by Eq. (26), the fol-
lowing theorem establishes that the LMPC optimization 
problem can be solved with recursive feasibility, ensuring 
closed-loop stability of the nonlinear system described by 
Eq. (1) when implementing the optimal control actions 
computed by LMPC using a sample-and-hold strategy (i.e., 

=u t x t( ) ( ˆ ( ))si k , ∀ t ∈ [tk, tk+1), where tk+1 ≔ tk + Δ and Δ is the 
sampling period).
Theorem 1. Consider the closed-loop system of Eq. (1) under 
the LMPC of Eq. (26) with on-line updates of the SINDy model. 
Let Δ  >  0, ϵw >  0 and > >ˆ smin satisfy Eq. (27) and Eq. (28). 
Then, given any initial state x0 ˆ, if the conditions of 
proposition 2 and proposition 3 are satisfied, and if the SINDy 
model is updated following the implementation strategy in 
this section with the triggering event of Eq. 46, then it is 
guaranteed that the LMPC of Eq. (26) has a feasible solution 
and that under the LMPC of Eq. (26), x t t( ) , 0ˆ , and 

V x tlim ˆ ( ( ))
t

min for the closed-loop system of Eq. (1).

Proof. We will demonstrate that the optimization problem 
described by Eq. (26) is recursively feasible for all x ˆ. 
Specifically, if at time t = tk the state x(tk) satisfies 
x t( ) \k ˆ si, the control action u(t) = Φsi(x(tk)) ∈ U, for 
t ∈ [tk, tk+1), obtained based on the state measurement x(tk), 
satisfies both the input constraint defined in Eq. (26c) and the 
Lyapunov-based constraint given by Eq. (26e). Moreover, if 
x t( )k si, the control actions computed using Φsi(x(tk+i)) for 
i = 0, 1, …, N − 1 satisfy the input constraint in Eq. (26c) as well 
as the Lyapunov-based constraint specified in Eq. (26f). This 
result is derived from proposition 3, which shows that the 
predicted states by the SINDy model defined in Eq. (26b)
remain within si when subjected to the controller Φsi(x). 

760 Chemical Engineering Research and Design 196 (2023) 750–769  



Consequently, for any initial state x0 ˆ, the LMPC 
optimization problem of Eq. (26) can be solved with 
recursive feasibility if the condition x t( ) ˆ holds for all 
time instances. 

We will now demonstrate that for any initial state x0 ˆ, 
the state of the closed-loop system described by Eq. (1) re-
mains bounded within ˆ for all time and ultimately con-
verges to a small neighborhood around the origin, denoted as 

min and defined by Eq. (28b), under the LMPC controller 
specified by Eq. (26). Let’s consider the case where at time 
t = tk, the state x(tk) satisfies x t( ) \k ˆ si. In this situation, 
the constraint defined by Eq. (26e) is activated, ensuring that 
the control action u is selected to decrease the value of V xˆ ( ˆ )
based on the predicted states provided by the SINDy model 
described by Eq. (26b) over the next sampling period. Ad-
ditionally, according to Eq. (36), if the constraint of Eq. (26e) is 

satisfied, it follows that V xˆ ( ) w for t ∈ [tk, tk+1) after ap-
plying the control action u* (tk) to the nonlinear system de-
fined by Eq. (1). Therefore, the value of V xˆ ( ) based on the 
state of the actual nonlinear system given by Eq. (1) de-
creases within the next sampling period, implying that the 
closed-loop state can be driven into si within a finite 
number of sampling steps. 

Once the state enters si, the constraint specified by 
Eq. (26f) is activated to ensure that the predicted states of the 
SINDy model in Eq. (26b) remain within si throughout the 
prediction horizon. Due to the existence of a mismatch be-
tween the SINDy model described by Eq. (26b) and the non-
linear system represented by Eq. (1), the state of the 
nonlinear system may exit si when subject to the con-
straint defined by Eq. (26f). However, by characterizing a re-
gion min that satisfies Eq. (28b), proposition 3 guarantees 
that if the predicted state by the SINDy model remains 
within si, then the state x(t) of the nonlinear system, for all 
t ∈ [tk, tk+1), will remain bounded within min . Consequently, 
at the next sampling step t = tk+1, if the state x(tk+1) is still 
bounded within si, the constraint defined by Eq. (26f) en-
sures that the predicted state x̂ of the SINDy model in Eq. 
(26b) remains within si, guaranteeing that the actual state x 
of the nonlinear system described by Eq. (1) stays 
within min . 

However, if x(tk+1) belongs to \ simin , similar to the 
proof provided for the case when x t( ) \k ˆ si, the con-
straint specified by Eq. (26e) is activated to drive the state 
towards the origin. This completes the proof that the states 
of the closed-loop system described by Eq. (1) remain 
bounded within ˆ and converge to min for any initial 
state x0 ˆ. 

We note that the theorem establishes that the closed-loop 
stability of the nonlinear system described by Eq. (1) is 
achieved through the implementation of the LMPC controller 
given by Eq. (26). This controller is designed based on the 
SINDy model represented by Eq. (10) and incorporates SINDy- 
based constraints. 

It is important to note that the closed-loop state of the 
nonlinear system, as described by Eq. (1), can be driven to a 
small neighborhood around the origin. This is possible be-
cause the constraints defined by the LMPC controller in 
Eq. (26) ensure the decrease of V̂ during each sampling 
period, accounting for various factors such as model mis-
match (including the modeling error ν between the system in 
Eq. (1) and the SINDy model in Eq. (10)), the implementation 
of control actions using a sample-and-hold approach, and 
the presence of bounded disturbances w(t) in Eq. (1). In other 

words, closed-loop stability can be maintained under the 
LMPC controller described by Eq. (26) if the modeling error ν, 
the sampling period Δ, and the disturbance bound wm are 
sufficiently small. This requirement ensures the satisfaction 
of proposition 2 and proposition 3. 

However, the values of νm and wm are generally not known 
as there is no formula to calculate them. Hence, if νm and wm 

are not chosen to be sufficiently large and the process is 
subject to changes such that the modeling error ∣ν∣ exceeds 
νm and large enough disturbances such that the disturbance 
∣w∣ exceeds wm, the condition of Eq. (28b) to quantify min

may not hold, and the closed-loop state may exit min . 
However, the goal of the error-triggering update of SINDy 
models is to mitigate the model mismatch such that, even if 
the process changes and ∣ν∣ increases, by choosing the value 
of ed,T conservatively, the error-triggering and model update 
procedure is rapidly carried out to reduce ∣ν∣ once again such 
that it never exceeds νm. In this way, the conditions of pro-
position 3 are met and the proof provided in this theorem 
hold. Hence, under the sample-and-hold implementation of 
the LMPC with real-time SINDy model updates, the closed- 
loop state of the nonlinear system of Eq. (1) remains bounded 
in ˆ and ultimately converges to min . □.

4.4.2. Stability analysis for lyapunov-based economic MPC
Theorem 2. We examine the closed-loop system described by 
Eq. (1) when using the sample-and-hold implementation of 
the LEMPC of Eq. (37) with the stabilizing controller Φsi(x) that 
fulfills Eq. (16). We consider parameters Δ  >  0, ϵw >  0, and 

> >ˆ ˆ 0e that satisfy Eq. (38) along with the inequality,

c

c
f fˆ ˆ

ˆ ˆ

ˆ
( ) ( ( ))e w w

4

1

2

(54) 

Assuming x0 belongs to ˆ and the conditions stated in 
Proposition 2 and Proposition 4 are fulfilled, it is guaranteed 
that a feasible solution exists for the optimization problem 
presented in Eq. (37). Furthermore, the closed-loop state x(t) 
remains bounded within the closed-loop stability region ˆ

for all time t ≥ 0.

Proof. We will first establish the recursive feasibility of the 
optimization problem presented in Eq. (37) x ˆ. 
Specifically, if x(tk) is within ˆe, the control actions Φsi(x(tk 

+i)), where i = 0, 1, …, N − 1, satisfy both the input constraint of 
Eq. (37c) and the Lyapunov-based constraint of Eq. (37e). This 
is due to the fact that Eq. (39a) dictates that the states 
predicted by the SINDy model described in Eq. (37b) remain 
inside ˆe under the controller Φsi(x). 

Furthermore, if x(tk) falls within \ˆ ˆe, the control action 
u(t) = Φsi(x(tk)) ∈ U, for t ∈ [tk, tk+1), satisfies both the input 
constraint defined in Eq. (37c) and the Lyapunov-based con-
straint outlined in Eq. (37f). This ensures that the state can be 
driven towards the origin during the subsequent sampling 
period. As a result, the stabilizing controller u = Φsi(x) ∈ U 
provides a feasible solution that adheres to all the con-
straints of the LEMPC optimization problem stated in Eq. (37) 
if x(t) remains within ˆ for all time instances. 

We will now establish that for x0 ˆ, the state of the 
closed-loop system described in Eq. (1) remains bounded 
within ˆ for all time instances. Specifically, if x(tk) falls 
within ˆe, the predicted states x tˆ ( ) obtained from the SINDy 
model presented in Eq. (37b) are guaranteed to stay within 

ˆe by adhering to the constraint specified in Eq. (37e). Based 
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on Proposition 2, we can conclude that the actual state x(t), 
where t ∈ [tk, tk+1), of the nonlinear system outlined in Eq. (1)
is bounded by the following inequality:

+ +

+ +

V x V x x x x x

V x f f

ˆ ( ) ˆ ( ˆ ) ˆ ˆ

ˆ ( ˆ ) ( ) ( ( ))

c

c

c

c w w

ˆ ˆ

ˆ
2

ˆ ˆ

ˆ
2

4

1

4

1 (55) 

Hence, if we choose ˆe as a level set of V̂ that satisfies the 
condition in Eq. (54), it guarantees that V(x) based on the 
actual state x(t) remains bounded within ˆ for all t ∈ [tk, tk+1). 
However, in the case where x(tk) lies within \ˆ ˆe, the con-
straint stated in Eq. (37f) becomes active. Consequently, the 
control action u acts to decrease the value of V xˆ ( ˆ ) based on 
the states predicted by the RNN model described in Eq. (37b)
within the next sampling period. 

From Eq. (39b) in proposition 4, it follows that the value of 
V̂ also decreases along the state trajectory of the actual 
nonlinear system described in Eq. (1) over t ∈ [tk, tk+1). Thus, 
we can conclude that for any initial condition within ˆ, the 
closed-loop state of the system represented by Eq. (1) re-
mains bounded within tˆ when subjected to the LEMPC 
of Eq. (37). □.

Remark 2. We note that the condition of Eq. (54), which 
dictates the size of the level set ê, includes the class K
function fw( ⋅ ), which factors in the uncertainties from the 
modeling error and the disturbances, ν and w, respectively. 
Since the bounds on the modeling error and disturbance, νm 

and wm are not estimable for a general system, if the process 
disturbance or plant-model mismatch is large and exceed the 
aforementioned bounds, the size of the level set ê may be 
reduced, which can lead to lower economic benefits of the 
LEMPC. However, ed,T is chosen conservatively such that the 
SINDy model of Eq. (37b) is updated as soon as the error- 
triggering condition of Eq. (46) is violated, such that the 
modeling error ∣ν∣ is kept low throughout the operation 
under the LEMPC based on theorem 2.

5. Application of error-triggered on-line 
model update to plant variations: application to a 
chemical process example

In this section, we present the application of the proposed 
error-triggered on-line model identification procedure to 
control a benchmark chemical reactor. The reactor experi-
ences plant model changes, specifically catalyst deactivation. 
The system under consideration is a non-isothermal con-
tinuous stirred tank reactor (CSTR) involved in the catalytic 
conversion of reactant species A to product B (A → B). The 
reactor operates with an inlet concentration of A denoted by 
CA0, an inlet temperature of T0, and a feed volumetric flow 
rate of F. A heating jacket is employed in the CSTR to supply 
or remove heat at a rate of Q.

The dynamics of the CSTR are governed by material and 
energy balance equations given as follows:
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where CA represents the concentration of reactant A in the 
reactor, V is the volume of the reacting liquid, T is the 

temperature of the reactor, and Q is the heat input rate. The 
concentration of reactant A in the feed is denoted as CA0. The 
feed temperature and volumetric flow rate are T0 and F, re-
spectively. The reacting liquid has a constant density of ρL 

and a heat capacity of Cp. Parameters ΔH, k0, E, and R corre-
spond to the enthalpy of reaction, pre-exponential constant, 
activation energy, and ideal gas constant, respectively. The 
values of the process parameters are provided in Table 1.

When the values of Table 1 are substituted into Eq. (56), 
the CSTR system can be written as

=C
t

C C C
d
d

5 5 8.46 10 eA
A A T A0

6 6013.95 2
(57a) 

= + +T
t

T C Q
d
d

1500 5 4.21 10 e 0.00433T A
8 6013.95 2

(57b) 

We investigate the operation of the CSTR under LEMPC at 
an unstable steady-state characterized by (CAs, Ts) 
= (1.95 kmol/m3, 402 K) and ( )C QA s0s = (4 kmol/m3, 0 kJ/h). 
The manipulated inputs in this system are the inlet con-
centration of species A and the heat input rate, denoted as 
deviation variables =C C CA A A0 0 0s and ΔQ = Q − Qs, re-
spectively. These manipulated inputs have the following 
bounds: ∣ΔCA0∣≤ 3.5kmol∕m3 and ∣ΔQ∣≤ 5 × 105 kJ∕h. Hence, the 
states and inputs of the closed-loop system are represented 
as x⊤ = [CA − CAs T − Ts] and u⊤ = [ΔCA0 ΔQ], respectively. The 
equilibrium point of the system is located at the origin of the 
state-space, denoted as (xs*, us*) = (0, 0). In this study, we 
consider the model variations caused by catalyst deactiva-
tion during the operation of the CSTR described by Eq. (56). 
This deactivation leads to a reduction in the reaction pre- 
exponential factor k0 within the constraint range of 0  <  k0 

<  8.46 × 106 m3. kmol−1h−1.
The control Lyapunov function V(x) = x⊤Px is designed, 

where the positive definite matrix P is given as:

=P 1060 22
22 0.52 (58) 

Using this Lyapunov function, the closed-loop stability re-
gion Ωρ for the CSTR can be defined as a level set of the 
Lyapunov function, where =ˆ 368 within the region ϕu. By 
employing the controller u = Φ(x) ∈ U, the origin can be ren-
dered exponentially stable inside this stability region.

To numerically simulate the dynamical model described 
by Eq. (56), we utilize the explicit Euler method with a time 
step of hc = 10−4 h. The nonlinear optimization problem of the 
LEMPC formulation in Eq. (37) is solved using the Python 
module of the IPOPT software package (Wächter and Biegler, 
2006), specifically the PyIpopt module. The sampling period 
for the optimization problem is set to Δ = 10−2 h.

The main goal of the LEMPC is to maximize the profit-
ability of the CSTR process described by Eq. (56) by 

Table 1 – Parameter values for chemical process 
example. 

F = 5.0 m3∕h V = 1.0 m3

k0  

= 8.46e6 m3.kmol−1.h−1
E = 5.0e4 kJ/kmol

R = 8.314 kJ.kmol−1. K−1 ρL = 1000.0 kg/m3

ΔHr = −1.15e4 kJ/kmol T0 = 300.0 K
Q = 0 kJ/h CA0 = 4 kmol/m3

CAs = 1.95 kmol/m3 Ts = 402 K
Cp = 0.231 kJ.kg−1. K−1
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manipulating the inlet concentration ΔCA0 and the heat 
input rate ΔQ. It aims to ensure that the closed-loop state 
trajectories remain within the stability region ˆ at all times 
under LEMPC. The objective function of the LEMPC is de-
signed to optimize the production rate of product B, given by:

=l x u k C( ˜ , ) ee
E RT

A0
2 (59) 

In addition, the LEMPC employs a material constraint, spe-
cified in Eq. (60), to maintain the average reactant material 
within an operating period tp at its steady-state value CA0s. 
This means that the averaged reactant material deviation, 
denoted as u1, should equal zero:

=
t

u
1

( ) d 0 kmol m
p

t

0
1

3p

(60) 

By incorporating this material constraint, the LEMPC ensures 
that the average reactant material supplied during the op-
erating period aligns with the steady-state value, facilitating 
stable and controlled production while maximizing the 
overall profitability of the CSTR process.

5.1. Data generation and SINDy model development

We follow the first type of data generation and model 
building process described in Abdullah and Christofides 
(2023). Specifically, we numerically integrate the system of 
Eq. (56) with an integration time step of hc = 10−4 h and a 
sampling period of Δ = 10−2 h. 1000 different initial conditions 
are selected randomly with CA ∈ [0.2, 3.7] kmol∕m3 and 
T ∈ [327,477] K, while the inputs are taken to be step func-
tions with amplitudes CA0 ∈ [0.5, 7.5] kmol∕m3 and 
Q ∈ [ − 500, 500] MJ∕h. We note that, although the trajectories 
settled at the stable steady-states, since the dynamics of the 
reactor are independent of the specific steady-states, the 
model development did not suffer. Due to the large variation 
of the states when settling at other steady-states, however, 
finite-difference estimates of the time-derivative X can be 
poor when the temperature, for example, goes as low as 1 K 
or as high as 1000 K, despite the initial conditions and desired 
steady-state being extremely far from these states. Hence, 
only trajectories where the temperature never dropped 
below 300 K nor rose above 500 K were retained, which 
yielded 53 trajectories.

The function library for SINDy is chosen to be

=

C T C Q

C C T C Q C C

( , , , )

[1 e e e ]

A A

A A A T A T A T

0

2
0

6020 6020 2 6020

(61) 

The choice for the basis functions is a central problem in 
SINDy modeling. Due to the presence of nonlinear reaction 
terms, especially Arrhenius dependence of the temperature 
and unknown reaction order with respect to reactant A, we 
consider monomial terms in CA up to second order and a 
negative exponential term of the reciprocal of the tempera-
ture as well as all possible interactions of these two types of 
terms. For the input variables, since they often impact the 
dynamics of the system linearly, we use linear CA0 and Q 
terms in the basis functions to start with. The choice of 
− 6020 as the numerator of the fraction in the exponential 
term (dependent on the activation energy), denoted by γ, is 
motivated by first conducting a coarse search of values be-
tween − 7000 and 0 in steps of 1000. For each value of γ, the 
maximum absolute error (MAE) of the validation set is 

calculated for both CA and T. The results are shown in Fig. 2. 
As can be seen, the error is very high for larger values of γ and 
decreases sharply at around − 6000, rising again below − 6000. 
For even lower values of γ  <  − 7000, the models were found to 
be unstable and, hence, could not be integrated and did not 
yield an MAE against the validation set. Subsequently, a finer 
search is conducted in the vicinity of γ = − 6000. Specifically, 
values of γ between − 6500 and − 5500 are chosen in steps of 
20, yielding 100 values to assess. Similarly, the MAE for both 
states are recorded for each value of γ and plotted in Fig. 3, 
which clearly indicates γ = − 6020 is the optimal value for this 
system. For comparison, the exact value of γ is − 6013.95, as 
seen in Eq. (57). When using steps of 20, the closest value of γ 
in the trial set is − 6020, which is currently identified via the 
above procedure. An even finer search could be conducted to 
find γ = − 6014 if using steps of 1 in the vicinity of − 6020. 
However, due to the risk of overfitting and for practical 
considerations, especially for larger systems as detailed in 
Abdullah and Christofides (2023), the value of − 6020 is con-
sidered adequate for this work and is selected as the basis 
function.

Fig. 2 – Validation error as a function of γ for a coarse search 
of γ ∈ [ − 7000, 0].

Fig. 3 – Validation error as a function of γ for a fine search of 
γ ∈ [ − 6500, − 5500].
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For this system, it is imperative to scale the columns of 
Θ(X, U) to account for the multiple orders of magnitude of 
difference between the values of different columns. For in-
stance, the Q column is on the order of magnitude of 105 

while the final three columns of Θ(X, U), corresponding to the 
exponential terms, are on the order of magnitude of 
10−6–10−7. We scale every column of Θ by its L2 norm.

Using the above choice of candidate basis functions and 
library column normalization, we conduct a similar coarse- 
to-fine search to tune the sparsification knob λ. The first step 
is to conduct a coarse search, which is done for λ ∈ [0,500] in 
steps of 5. For each value of λ, the maximum MAE for both 
states are plotted in Fig. 4. As can be seen, for λ  >  450, all 
terms of the CA ODE are zeroed, leading to an exponential 
increase in error, which remains constant thereafter. The 
lowest error is found to be at the lower values of λ, specifi-
cally below values of approximately 100. Conducting a finer 
search for λ ∈ [0,100] in steps of 1 and recording not only the 
MAE in both states but also the number of terms in the 

model, we obtain Fig. 5. It can be seen that the MAE for both 
states is consistently low throughout the entire range. 
However, the lowest number of terms in the model is at 
λ = 72. While a lower value of λ corresponding to a less par-
simonious model with lower MAE can be used, in sparse 
identification, the balance between parsimony and accuracy 
is important to consider. Hence, since the error does not 
significantly decrease when λ is reduced further, the model 
corresponding to λ = 72 is taken as the optimal SINDy model 
for the CSTR system of Eq. (56) that balances the model 
sparsity with accuracy.

The final SINDy model obtained using the 53 open-loop 
trajectories using the above procedure is as follows:

=C
t

C C C
d
d

5.045 5.049 8.647 10 eA
A A T A0

6 6013.95 2
(62a) 

= + +T
t

T C Q
d
d

1511.647 5.038 4.300 10 e 0.00436T A
8 6020 2
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where, compared to the first-principles model of Eq. (57), 
every term has been correctly identified, and all coefficients 
except the pre-exponential constants have been identified 
accurately with an error below 1%. As for the pre-exponential 
constants, since the exponential term in the basis function is 

e T
6020

rather than e T
6013.95

, the pre-exponential constants are 
slightly larger for the SINDy model, possibly to “compensate 
for” the more negative exponential term reducing the values 
of the exponential terms themselves. Therefore, as a result, 
the final model is extremely accurate as can be seen in the 
maximum absolute errors in CA and T, which are 
0.00632612 kmol/m3 and 0.320559 K, respectively.
Remark 3. The accuracy of the SINDy model obtained is 
most strongly dependent on the data generation and the 
choice of candidate library functions. Both of these were 
investigated in-depth in Abdullah and Christofides (2023), 
Specifically, with respect to data generation, based on 
three different types of data generation methods studied 
in Abdullah and Christofides (2023), open-loop step tests in 
the vicinity of the steady-state of interest were found to be 
the most appropriate type of data generation for SINDy 
modeling, which is why the 53 trajectories near the steady- 
state, (CAs, Ts) = (1.95kmol∕m3, 402 K), were used for model 
building in this work. Regarding the choice of library 
functions, two more general frameworks for more 
complex or larger-scale systems were proposed in 
Abdullah and Christofides (2023). One effective method 
was found to be non-dimensionalization, which is a 
standard practice in engineering modeling. When all 
variables were scaled to similar orders of magnitudes, it 
was easier to identify the exact (dimensionless) model 
since the sensitivity of the library functions was reduced. 
In contrast, the most general framework proposed was to 
use polynomial terms in deviation variables since any 
nonlinearity can be expanded using Taylor expansion to 
the desired level of generalization using polynomials of a 
certain order. While the exact ODE model will not be 
recovered using this approach, from a modeling and 
control perspective, since only an accurate process model 
for the operating region is required, this approach is 
sufficient in terms of both accuracy and computation, 
possibly faster in terms of computation than the previous 
approach.

Fig. 4 – Validation error as a function of λ for a coarse search 
of λ ∈ [0,500] with zoomed-in subplot for λ ∈ [0,100].

Fig. 5 – Validation error as a function of λ for a fine search of 
λ ∈ [0,100].

764 Chemical Engineering Research and Design 196 (2023) 750–769  



5.2. Closed-loop simulation results

5.2.1. Model assessment before plant disturbances
Using the chemical process example, we aim to illustrate the 
error-triggered on-line model update procedure in the pre-
sence of plant variations. However, before addressing the 
effect of catalyst deactivation, we first demonstrate that the 
initial SINDy model performs just as well as the first-princi-
ples model when there is no catalyst deactivation or dis-
turbances. To compare their performance, we designed two 
LEMPC schemes, both following the structure of Eq. (37). One 
scheme utilized the exact first-principles model from Eq. (57)
as the process model, while the other scheme employed the 
SINDy model from Eq. (62). Both LEMPC schemes employed 
the cost function defined in Eq. (59), the additional material 
constraint of Eq. (60), the upper and lower bounds on u1 and 
u2 described earlier, and the same Lyapunov-based controller 
and stability region.

For all simulations in this example, the LEMPC designs 
had a prediction horizon of N = 5, a sampling period of 
Δ = 0.01 h, and an operating period of 20 sampling periods (tp 

= 0.2 h). The first-principles LEMPC and the SINDy-based 
LEMPC were both applied to the CSTR model described by Eq. 
(56). The reactor was initialized at the unstable steady-state 
(CAs, Ts) = (1.95 kmol∕m3, 402 K), and closed-loop simulations 
were conducted for 20 operating periods for each case. The 
resulting closed-loop trajectories for the CSTR under both 
LEMPC schemes are depicted in Figs. 6 and 7. The average 
yield of the first-principles LEMPC over twenty operating 
periods was 62.29, compared to 62.06 for the SINDy-based 
LEMPC. The agreement between the trajectories for most of 
the simulation duration and nearly identical yields obtained 
from the first-principles and SINDy-based LEMPCs further 
illustrates that the initial SINDy model adequately captures 
the process behavior in the absence of plant variations. It is 
worth noting that the periodic nature of the trajectories 
aligns with prior literature, which has reported that time- 
varying operation can be economically advantageous for 
certain processes (e.g., Bailey, 1973; Silveston, 1987).

5.2.2. LEMPC performance in the presence of plant 
disturbances
Next, we investigate the effect of catalyst deactivation on the 
LEMPC performance using either process model. Specifically, 
the value of the pre-exponential constant k0 in Eq. (56) is 
reduced by 20% of its original value from 8.46 × 106 m3 kmol−1 

h−1 to 6.77 × 106 m3 kmol−1 h−1 after five operating periods (at 
t = 1 h). As a result, the CSTR system of Eq. (57) is altered to
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where the affected coefficients are boldfaced. In the re-
mainder of the simulations, the material constraint of Eq. 
(60) is relaxed for the second half of the total simulation 
duration, from t = 2 h to t = 4 h, to allow a usage of u1 that is 
10 kmol/m3 greater than its steady-state value per operating 
period. This is to allow the LEMPC to find control actions that 
optimize the average yield further and provide a larger space 
of control actions for the LEMPC to highlight any possible 
differences between the LEMPCs with and without SINDy 
model updates. Hence, the material constraint now takes 
the form,
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t
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To effectively monitor the prediction error for the SINDy 
model in the presence of catalyst deactivation, a moving 
horizon error detector, as described in Section 4.1, was im-
plemented early in the process operation. The detector was 
activated after collecting a sufficient amount of input/output 
data points, specifically Nw prior data points. At each sam-
pling time, the detector calculated the value of ed to assess 
whether it is necessary to trigger an update of the SINDy 
model.

The moving horizon error detector calculates the relative 
prediction error in the concentration of A and the reactor 
temperature. These errors are evaluated over the past 15 

Fig. 6 – State-space trajectories of the CSTR without catalyst 
deactivation under an LEMPC based on the first-principles 
model and an LEMPC based on the initial SINDy model.

Fig. 7 – State and input trajectories of the CSTR without 
catalyst deactivation under an LEMPC based on the first- 
principles model and an LEMPC based on the initial SINDy 
model. The grey dashed lines represent the upper and 
lower bound for the inputs.
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sampling periods (i.e., Nw = 15) and the current sampling 
time using the equation,

= +
=

e t
x t x t

x t

x t x t

x t
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where the states from 15 sampling periods prior are used to 
initialize the integration of the current SINDy model over a 
duration of 15 sampling periods to calculate xp,1 and xp,2 over 
the entire window of Nw = 15 (single initialization). For Nw 

= 15, it was observed that significant discrepancies between 
the plant and the original SINDy model were marked by the 
value of ed exceeding 2 (i.e., ed,T = 2). Therefore, this threshold 
value was chosen to initiate model updates. The determi-
nation of Nw = 15 and ed,T = 2 were as per the guidelines 
presented in Section 4.1. Specifically, if Nw = 10 (too low), the 
gap between the error values during normal operation and 
post-deactivation was not consistently large enough, and the 
error of the post-deactivated ed trajectory without the model 
update periodically dipped very low, as shown in Fig. 8. 
Hence, if, for example, ed,T was still maintained at a value of 2 
while Nw = 10, the post-deactivated ed trajectory would often 
dip below 2. While this would still be possible to resolve by 
slightly reducing ed,T to, for example, 1.25, this would be too 
finely tuned and not easily generalized. In contrast, at Nw 

= 15, there is a large and consistent gap between the error 
trajectories with and without model updates throughout the 
simulation duration, with ed = 2 = ed,T being a clear indicator 
of model performance. The gap can be further increased and 
the detection made even more robust by further increasing 
Nw. For example, Nw = 20 with ed,T = 3 is also a valid and 
possibly even more robust choice of error detection. How-
ever, as Nw is increased, the amount of data required to be 
kept in storage as well as the length of time the SINDy 
models need to be integrated also increases. Due to the 
longer data collection, the time elapsed before the error is 
triggered and the new dynamics are detected, may also in-
crease as the error will accumulate at a slower pace. There-
fore, for computational considerations, we chose Nw = 15 
with ed,T = 2 as a reasonable trade-off that ensures error de-
tection as well as reduces computational burden. Higher 
values of the window length Nw have been used with higher 
ed,T, however, with success. For example, for the same CSTR 
system, in Wu et al. (2020), a relatively high error threshold of 
ed,T = 15 was used, which indicates the window length Nw 

must also have been quite large, such that normal process 
operation with an accurate process model could accumulate 
an error of up to 15 within Nw sampling periods, while, in our 
work, with Nw = 15, even under the altered process condi-
tions with the old SINDy model used to carry out predictions, 

the error reached a maximum value of only 9 over the three 
hours of deactivated process run time.

When an on-line model update is triggered, a few pre- 
selected terms in the SINDy model are updated using the 
most recent input/output data. The coefficients to be up-
dated are selected based on knowledge of the process op-
eration or different subsets of the coefficients can be updated 
on a trial-and-error basis until the error is reduced to a value 
below ed,T. In this case, since catalyst deactivation is a ubi-
quitous phenomenon in catalytic reactors, both ODE coeffi-
cients corresponding to the nonlinear reaction terms are 
chosen as candidates to be updated. There may be feed dis-
turbances or other types of process changes as well. Hence, 
we also consider the coefficient corresponding to the reactor 
temperature T for both ODEs as coefficients subject to 
change. Hence, out of 18 coefficients (9 per ODE), 4 coeffi-
cients are updated using the model update procedure de-
scribed in Section 4.2.

As for the input/output data used for the model update, 
although an immediate update is ideal if possible, this 
cannot be conducted since sufficient data from the new op-
erating conditions must be present for the model update to 
succeed. On the other hand, letting the process run for an 
extended duration with the old model while the error re-
mains high is undesirable as the LEMPC performance will 
likely deteriorate with time. Hence, the amount of data used 
to update the model should be the minimum amount re-
quired to accurately update the model using post-deactiva-
tion data, which will vary from one process to the other (e.g., 
5000 data samples were used to update the same CSTR pro-
cess in Bhadriraju et al. (2019), while 200 data samples were 
required to re-identify new linear empirical models in 
Alanqar et al. (2017)). For the reaction studied in this work, 
the input/output data to update the SINDy model is the state 
and input data of the current operating period in which the 
moving horizon error detector was triggered, which would 
correspond to Nd = 20. However, using the entire operating 
period of input/output data yielded poor results. Upon fur-
ther investigation, the cause was found to be the minimum/ 
maximum values of u1 used at the beginning and end of each 
operating period, leading to very large changes in the states, 
which produce accordingly large errors in the estimates of 
the time-derivative, X. Hence, the first and last two data 
points (two due to the use of second-order finite-differences) 
of the operating period are omitted from the model update 
algorithm. For this process, it is found that the use of a single 
operating period without the endpoints is sufficient to up-
date the four coefficients of the SINDy model chosen to be 
updated. Since the catalyst deactivation, error-triggering, 

Fig. 8 – Value of error metric ed using the detector of Eq. (65) over the simulation duration for various values of Nw with and 
without SINDy model updates. The dashed red line corresponds to ed,T = 2.
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and model update all occur during the sixth operating period, 
a detailed illustration of the model update procedure is 
shown in Fig. 9.

The LEMPC updates the SINDy process model at the end of 
the sixth operating period to reflect the catalyst deactivation 
and continues to operate for the remainder of the 4 h of si-
mulation duration. The moving horizon error detector is 
used to monitor the modeling error throughout the process, 
and the value of ed over the simulation duration is shown in 
Fig. 10. It can be observed that the error ed exceeds the pre- 
determined threshold of ed,T = 2 at t = 1.08 h, during the sixth 
operating period, and then rapidly decreases below the 
threshold at t = 1.2 h following the SINDy model update. On 
the other hand, the value of ed calculated with the initial 
SINDy model (without update) continues to remain above ed,t 

for the remainder of the simulation, indicating that the initial 
SINDy model cannot very accurately predict the process 
states once the catalyst is deactivated. Since Fig. 10 spans the 
entire simulation duration, and the exact details may be 
difficult to observe, a closer look at the sixth operating 
period, where all the changes occur, was provided in Fig. 9.

The closed-loop state and input trajectories for the 
LEMPCs with and without SINDy model updates are shown in 
Fig. 11 and Fig. 12, which depict the state-space and time- 
varying trajectories, respectively. From Fig. 11, it is observed 
that the closed-loop state quickly approaches the boundary 
of the stability region ˆ by using maximal input actions 
early on in the trajectory and continues to remain as close as 
possible to the boundary representing the highest possible 
temperature and lowest possible concentration of A, as this 
combination maximizes the production of B in the process. 
The closed-loop state is always maintained within the 

stability region ˆ for 99% of the simulation duration under 
both LEMPC. The manipulated input profiles indicate, as ex-
pected, the cyclic use of u1, i.e., at the beginning of each 
operating period, the LEMPC uses the maximum value of 
ΔCA0 allowed to maximize production of B, while reducing 
the consumption of the reactant at the end of each period to 
meet the material constraint. For the second half of the si-
mulation, however, due to the relaxation of the material 
constraint as per Eq. (64), the sum of u1 per operating period 
is equal to 10, which is why the initial period of maximum u1 

consumption is observed to be greater than the minimal 
consumption at the end of the last 10 operating periods.

Finally, the total economic benefits achieved over the 20 
operating periods are calculated for three scenarios: the 
SINDy-based LEMPC without on-line updates, SINDy-based 
LEMPC with the on-line update, and steady-state operation 

Fig. 9 – Details of the error detection and model update 
procedure occurring in the sixth operating period from 
t = 1.0 h to t = 1.2 h.

Fig. 10 – Value of error metric ed using the detector of Eq. 
(65) and the integrated LEMPC design with error-triggered 
on-line model updates at each sampling time (the time axis 
starts from when there is sufficient data to begin calculating 
ed, i.e., after Nw = 15 data points are collected).

Fig. 11 – State trajectories for the closed-loop CSTR under 
the LEMPC of Eq. (37) with and without the online update of 
the SINDy model for the initial condition (0, 0). They grey 
ellipse represents the stability region ˆ.

Fig. 12 – State and manipulated input profiles for the initial 
condition (0, 0) under the LEMPC of Eq. (37) with and 
without the online update of the SINDy, respectively. The 
grey dashed lines represent the upper and lower bound for 
the inputs.
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where the system of Eq. (56) is operated at (CAs, Ts) for the 
entire duration. The economic benefits are evaluated using 
the equation,

=L l x u t( , ) dE
t

e
0

5 f

(66) 

The closed-loop system under LEMPC with and without 
SINDy model updates achieves LE = 63.45 and LE = 63.72, re-
spectively, within the four-hour period, while the steady- 
state operation yields LE = 34.79. This comparison demon-
strates that time-varying operation of the system of Eq. (56)
under the LEMPC of Eq. (37) with or without on-line updating 
of SINDy models results in much higher economic benefits of 
82% compared to steady-state operation. The economic 
benefits of the LEMPC with model updates are also 0.42% 
higher than the benefits of the LEMPC without model up-
dates. Although the difference is small in this specific sce-
nario, this is highly dependent on both the system as well as 
the model fidelity. For the same CSTR system modeled using 
RNN models, it was demonstrated in Wu et al. (2020) that a 
large improvement is possible if the performance of the in-
itial process model deteriorates severely after disturbances 
are introduced to the system. In our work, however, possibly 
since the model structure and coefficients were closely 
identified in the initial SINDy model, the performance dete-
rioration of the LEMPC even without model updates was not 
sufficiently high to allow the LEMPC with model updates to 
improve upon. To investigate this, the CSTR was also simu-
lated under an LEMPC using the first-principles model of Eq. 
(56) but with the relaxed material constraint of Eq. (64) and 
the process model updated immediately upon deactivation 
(i.e., at t = 1 h, not t = 1.2 h). Practically, the first-principles 
model, the exact moment of catalyst deactivation, and the 
exact percentage of catalyst deactivation are unknown. 
However, this is a hypothetical best-case scenario that 
should yield the highest possible economic benefits possible 
for this CSTR specification since the LEMPC process model 
“sees” the exact change immediately upon its occurrence. 
The economic benefits of this case was found to be LE = 63.53. 
Since the value is actually lower than LE for the LEMPC with 
SINDy, it can be inferred that all three LEMPC perform nearly 
identically and the minor improvements are more likely due 
to numerical issues or due to a very small number of sam-
pling periods being significantly different from each other. 
Hence, the reason for the small, possible improvement of the 
LEMPC with SINDy model updates can be contributed to the 
LEMPC performance in general being upper-bounded by 
other factors due to the specific process, parameters, model 
structure, and initial SINDy model fidelity of this study.
Remark 4. In this work, a Lyapunov-based tracking MPC 
using a SINDy model to drive the process to a steady-state 
was not presented because the development of the SINDy 
model and its real-time adaptation is similar to the case of 
economic MPC and would not add any new methodological 
and/or implementation insights.

6. Conclusions

This study introduces a novel approach for on-line updates 
of nonlinear ODE models obtained using sparse identification 
to embed into a model predictive controller (MPC) for non-
linear process systems. The proposed methodology in-
corporates an error-triggering mechanism through a moving 

horizon error detector, which evaluates the relative predic-
tion error within a specified horizon. When the prediction 
error surpasses a predefined threshold, the error-triggering 
mechanism is activated and the most recent yet sufficient 
input/output data is used to update specific coefficients of 
the SINDy model using an efficient algorithm. The results 
showcase the capability of the proposed approach to improve 
state predictions crucial for MPC in the presence of plant 
variations. A chemical process example under the frame-
work of Lyapunov-based empirical model predictive control 
is employed to illustrate the effectiveness and implementa-
tion of real-time updates for the SINDy models. It was de-
monstrated that a small amount of real-time data could 
accurately update the SINDy model to adjust to the dis-
turbances, greatly reducing thereby the model prediction 
error when monitoring the process via the moving horizon 
error detector. A slight improvement of the economic bene-
fits was also observed when the SINDy model in the LEMPC 
was updated in real-time, compared to the SINDy-based 
LEMPC without model updates, although the improvement 
was limited by the catalyst deactivation and other com-
pounding factors.
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