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Achieving operational safety of chemical processes while operating them in an economically-optimal manner is a matter
of great importance. Our recent work integrated process safety with process control by incorporating safety-based con-
straints within model predictive control (MPC) design; however, the safety-based MPC was developed with a central-
ized architecture, with the result that computation time limitations within a sampling period may reduce the
effectiveness of such a controller design for promoting process safety. To address this potential practical limitation of
the safety-based control design, in this work, we propose the integration of a distributed model predictive control archi-
tecture with Lyapunov-based economic model predictive control (LEMPC) formulated with safety-based constraints. We
consider both iterative and sequential distributed control architectures, and the partitioning of inputs between the vari-
ous optimization problems in the distributed structure based on their impact on process operational safety. Moreover,
sufficient conditions that ensure feasibility and closed-loop stability of the iterative and sequential safety distributed
LEMPC designs are given. A comparison between the proposed safety distributed EMPC controllers and the safety cen-
tralized EMPC is demonstrated via a chemical process example. VC 2017 American Institute of Chemical Engineers
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Introduction

The chemical process industries have experienced stagger-

ing profit losses due to accidents; for example, it was reported

that the 20 accidents that caused the largest property damage

losses in the hydrocarbon industry from 1974 to 2015 cost

over $15 billion, with the total accumulated value of the 100

largest losses at more than $33 billion (estimates in 2015 dol-

lars16). It is clear from these numbers that it is necessary to

improve process safety from both the ethical perspective of

saving lives and property, and also from an economics stand-

point. Chemical process safety can be addressed through pro-

cess design decisions; for instance, designing the process to be

inherently safe in terms of its chemistry and physics.19,20

Inherently safer designs are achieved through four primary

principles: minimize (reduce the quantity of hazardous sub-

stances used and stored by a process), substitute (utilize less

hazardous process chemistries), moderate (dilute chemicals or

change operating conditions), and simplify (choose designs

with less complexity and less potential to create hazardous
conditions when faults or errors occur).2 In addition, control
and safety system design decisions (e.g., adding sensors for
critical process variables that trigger an alarm when a mea-
surement outside of the desired range is obtained12) are used
to promote process safety. The traditional approach to prevent-
ing unsafe situations assumes that accidents have a root cause,
rather than viewing them as a property of a system.5 Recent
works have called for a systems approach to process safety
where past catastrophic incidents are studied from a systems
engineering perspective to better design and control such sys-
tems in the future.17,18

Motivated by a systems-based, control-inspired approach to
thinking about safety where a relationship exists between safe-
ty and model-based control,17 our prior work proposed an
EMPC design that includes explicit constraints on process
safety.10 The proposed safety-based controller shrinks the
region of process operation to a smaller level set of operation
termed a safety level set when a safety logic unit determines
that certain regions of state-space might introduce process
safety issues. The proposed control technique was designed in
a centralized fashion where all the decision variables are
solved together in one optimization problem. For a relatively
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small process (e.g., one unit), the centralized safety-based
EMPC formulation in Ref. 10 may be capable of computing
an optimal solution that meets the safety-based constraints
within a reasonable time frame. However, for large-scale non-
linear process systems, which are the common case in indus-
try, the computational burden of solving a centralized EMPC
design with potentially tens or hundreds of optimization varia-
bles increases. Hence, the ability of the centralized EMPC to
enhance process safety for such high-dimensional nonlinear
processes may decrease due to the computation time limita-
tions within a sampling period. Alternatively, a model predic-
tive control (MPC) scheme that overcomes this computational
burden of solving a centralized EMPC design is a distributed
model predictive control architecture.11,13,15,26 Several
research works7–9 have shown the computation time benefits
of the distributed MPC architecture over the centralized MPC
while maintaining closed-loop stability and recursive feasibili-
ty. Distributed designs also can be beneficial from the perspec-
tive of fault-tolerance,11 which is another safety consideration.
A recent research work developed two different distributed
economic model predictive controller (DEMPC) schemes that
reduce the computation time of a centralized EMPC scheme
while maintaining similar closed-loop performance.14 Howev-
er, these two schemes lack the ability to drive the state of the
closed-loop system to a safe region of operation because their
formulations do not include safety-based constraints. To date,
no work on incorporating safety-based constraints within a
DEMPC has been completed.

In this work, we design two different DEMPC architectures,

namely, a sequential DEMPC architecture and an iterative

DEMPC architecture, for nonlinear systems via Lyapunov-

based techniques that incorporate safety-based constraints. A

discussion on how to group the inputs into different distributed

EMPC controllers based on their impact on process safety and

process economics is presented. Sufficient conditions under

which the state of the closed-loop system can be driven to the

safety region and remain there for all subsequent times are

derived. A catalytic reactor example is utilized to demonstrate

the computational time improvement of the proposed control

architectures over the centralized one while achieving similar

closed-loop performance and process safety performance.

Preliminaries

Notation

The operator j � j denotes the Euclidean norm of a vector. xT

represents the transpose of a vector x. The symbol Xq is used

to represent a level set of a sufficiently smooth, positive defi-

nite scalar-valued function V(x) and is defined by

Xq : 5fx 2 Rn : VðxÞ � qg. The operator “/” denotes set sub-

traction, that is, A=B : 5fx 2 Rn : x 2 A; x 62 Bg. The symbol

SðDÞ denotes the family of piecewise constant, right-

continuous functions with a fixed time interval D � 0. A diag-

onal matrix which has the components of a vector v as its diag-

onal elements is denoted by the symbol diagðvÞ. A function

að�Þ : ½0; aÞ ! ½0;1Þ belongs to class K (i.e., a 2 K) if it is

strictly increasing and continuous, and að0Þ50.

Class of Nonlinear Process Systems

In this work, we consider a nonlinear process system with

the following state-space description:

_x5f ðxÞ1
Xm

i51

giðxÞ�ui1bðxÞw (1)

where x 2 Rn and w 2 Rnw are the state and disturbance vec-

tors, respectively. Due to the implementation strategy of the

proposed safety-based DEMPC, the full input vector is divided

into m input vectors where the ith manipulated input vector

is denoted by �ui 2 Rmi for i51; . . . ;m, and each of these

input vectors is bounded in a convex set Ui (i.e.,

Ui : 5f�ui 2 Rmi : j�uij � �umax
i g; i51; . . . ;m, where the

�umax
i ; i51; . . . ;m, represent the magnitudes of the input con-

straints). The vector functions f, gi, i51; . . . ;m; and b are

assumed to be locally Lipschitz vector functions of their argu-

ments. Furthermore, it is assumed that the state of the system

of Eq. 1 is synchronously sampled at time instances

tk5t01kD; k50; 1; . . ., where t0 is the initial time. The vector

w is bounded within the set W : 5fw 2 Rnw : jwj � h; h > 0g
(i.e., w 2 W). We assume that the origin is an equilibrium

point of the unforced nominal system (i.e., f ð0Þ50;
gið0Þ50; i51; . . . ;m, and bð0Þ50).

Remark 1. The systems of equations describing the
behavior of many chemical process systems are of the form
of Eq. 1. For those that are not, the distributed safety-based
controller formulations developed in this work can still be
utilized, but the closed-loop stability and feasibility results
presented may not hold.

Stabilizability Assumption

We consider systems of the form of Eq. 1 for which

Assumption 1 (stabilizability assumption) holds.
Assumption 1. There exists a locally Lipschitz feedback

control law �h
TðxÞ5½�h1ðxÞ . . . �hmðxÞ� with �hð0Þ50 for the

nominal closed-loop system of Eq. 1 (i.e., wðtÞ � 0) that ren-
ders the origin of the nominal system of Eq. 1 under
�ui5�hiðxÞ; i51; . . . ;m, asymptotically stable for all
x 2 D � Rn, where D is an open neighborhood of the origin,
when applied continuously in the sense that there exists a
continuously differentiable Lyapunov function V(x)22,23 for
the nominal closed-loop system and class K functions
aið�Þ; i51; 2; 3; 4, such that the following inequalities hold:

a1ðjxjÞ � VðxÞ � a2ðjxjÞ (2a)

@VðxÞ
@x

�
f ðxÞ1

Xm

i51

giðxÞ�hiðxÞ
�
� 2a3ðjxjÞ (2b)

���� @VðxÞ
@x

���� � a4ðjxjÞ (2c)

�hiðxÞ 2 Ui; i51; . . . ;m (2d)

The stability region of the closed-loop system under the

feedback control law that meets Assumption 1 is defined as a

level set of the Lyapunov function within D where Eq. 2 holds,

and it is denoted by Xq.
By continuity, the local Lipschitz property assumed for

the vector fields f, gi, i51; . . . ;m; and b, the continuous differ-

entiability property of the Lyapunov function V(x), and taking

into account that the manipulated inputs �ui; i51; . . . ;m, and

the disturbances w are bounded in convex sets, there exist pos-

itive constants Lw; Lx; L�ui
; i51; . . . ;m; and M such that
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����f ðxÞ1X
m

i51

giðxÞ�ui1bðxÞw
���� � M (3)

���� @V

@x
f ðxÞ2 @V

@x
f ðx0Þ

���� � Lxjx2x0j (4)

���� @V

@x
giðxÞ2

@V

@x
giðx0Þ

���� � L�ui
jx2x0j; i51; . . . ;m (5)

���� @V

@x
bðxÞ

���� � Lw (6)

for all x; x0 2 Xq; �ui 2 Ui; i51; . . . ;m, and w 2 W.

Centralized Safety-Based Lyapunov-Based
Economic Model Predictive Control

In a centralized Safety-Lyapunov-based economic model

predictive controller (LEMPC), the control actions for all m
input vectors are computed together in one optimization prob-

lem.10 The centralized Safety-LEMPC design for the nonlinear

system of Eq. 1 is formulated as follows:

max
�u1;...;�um;Kc2SðDÞ

ðtk1N

tk

Leð~xðsÞ; �u1ðsÞ; . . . ; �umðsÞÞ2 (7a)

/ðqsp2~qðsÞÞds

s:t: _~xðtÞ5f ð~xðtÞÞ1
Xm

i51

gið~xðtÞÞ�ui

(7b)

�uiðtÞ 2 Ui; i51; . . . ;m; 8 t 2 ½tk; tk1NÞ (7c)

~xðtkÞ5xðtkÞ (7d)

KcðtÞ � 0; 8 t 2 ½tk; tk1NÞ (7e)

Vð~xðtÞÞ � ~qðtÞ; 8 t 2 ½tk; tk1NÞ (7f)

d~q
dt

5KcðtÞðqsp2~qðtÞÞ (7g)

~qðtkÞ5VðxðtkÞÞ; if xðtkÞ 62 Xqsp

~qðtkÞ5qsp; if xðtkÞ 2 Xqsp

@VðxðtkÞÞ
@x

ð
Xm

i51

giðxðtkÞÞ�uiðtkÞÞ (7h)

� @VðxðtkÞÞ
@x

ð
Xm

i51

giðxðtkÞÞ�hiðxðtkÞÞÞ;

if xðtkÞ 2 Xq=X�qsp
or tk > ts

where the optimization variables are the piecewise-constant

input trajectories �u1ðtÞ; . . . ; �umðtÞ, over the prediction horizon

ND, as well as the piecewise-constant auxiliary variable KcðtÞ
that plays a role in the safety-based constraints. Le is a cost

function that is determined based on economic considerations

and is not required to have its minimum at a steady-state. The

Safety-LEMPC formulation is a variation on the LEMPC for-

mulation developed in Ref. 21 that has been augmented with

safety-based constraints, and as a result it contains many of

the standard constraints utilized in EMPC (e.g., a nominal pro-
cess model for the predicted state ~x (Eq. 7b), input constraints
(Eq. 7c), and state feedback (Eq. 7d)). The time ts represents a
time after which the constraint of Eq. 7h is active for all subse-
quent times.

The motivation for adding safety-based constraints to this
formulation is that situations may arise in which parts of Xq

become unsafe to operate within due to, for example, pro-
longed closed-loop operation in a high-temperature region of
state-space or expected effects from process disturbances. In
such cases, a safety logic unit that determines the safest level
set of V for the process to operate within may find that the
closed-loop state should enter and remain within the set
Xqsp

; qsp < q, to avoid unsafe scenarios. The safety level set
Xqsp

is determined based on data on the probability of potential
failures of process equipment, control system failures and
measurement sampling time of the process state.10 To drive
the closed-loop state rapidly into Xqsp

while maintaining feasi-
bility of the optimization problem, safety-based constraints
(Eqs. 7e–7h) are added to the LEMPC, in addition to adding a
penalty term /ðqsp2~qðsÞÞ to the objective function of Eq. 7a,
that penalizes the difference between the the upper bound of
the Lyapunov function ~qðsÞ and qsp. The function /ð�Þ is
selected based on the need to drive the process state into the
safety region; for example, /ð�Þ5j � j2 is a potential function
since its minimum occurs with qsp5~qsp. When the penalty
term is significant, the Safety-LEMPC will seek to find trajec-
tories for �uiðtÞ; i51; . . . ;m, and KcðtÞ that drive the predicted
closed-loop state into Xqsp

more quickly than without the pen-
alty and dynamic constraints of Eqs. 7e–7h. Specifically, to
decrease ~qðtÞ from Eq. 7g toward qsp to minimize the objec-
tive function including /, a positive value of KcðtÞ (Eq. 7e) is
computed for which inputs �uiðtÞ; i51; . . . ;m, are found to
decrease Vð~xðtÞÞ at a rate that allows Eq. 7f to be satisfied at
all times given the rate of decrease of ~q from Eq. 7g. The con-
straint of Eq. 7h (contractive constraint) forces the time deriv-
ative of the Lyapunov function under the Safety-LEMPC to be
less than or equal to the time derivative of the Lyapunov func-
tion under the explicit stabilizing controller �hðxÞ. A subset of
the safety level set X�qsp

activates the contractive constraint of
Eq. 7h and should be chosen to make Xqsp

an invariant set.10

Safety-Distributed-LEMPC

For large-scale industrial nonlinear process systems, the
time required to solve the centralized Safety-LEMPC design
of Eq. 7 with the full process model and potentially tens or
hundreds of optimization variables may be large. Therefore, a
large sampling period in the LEMPC may be required. How-
ever, the closed-loop stability, feasibility, and safety-related
proofs in Ref. 10 hold only for a sufficiently small sampling
period and sufficiently small disturbances. Furthermore, even
if the sampling period is sufficiently small to ensure that
closed-loop stability within Xq is guaranteed, the length of the
sampling period affects the minimum size of the level set of
the stability region into which the closed-loop state is driven
under repeated application of the contractive constraint.21 This
minimum size level set corresponds to the minimum size of a
safe level set of operation that can be chosen within the stabili-
ty region. To improve process safety, it is desirable to be able
to make the safety region as small as possible (i.e., to be able
to decrease the sampling period to a small value) to provide
great flexibility in handling unsafe scenarios. When the time
required to solve the centralized Safety-LEMPC is high, the

3406 DOI 10.1002/aic Published on behalf of the AIChE August 2017 Vol. 63, No. 8 AIChE Journal



computation time issue cannot be handled with decentralized
control designs (i.e., multiple controllers utilize the same pro-

cess model to compute subsets of the entire set of available
control actions without communication between the control-

lers), because such designs may pose safety concerns since the
controllers do not coordinate their actions.6 However, a dis-

tributed Safety-LEMPC design (i.e., multiple controllers uti-
lize the same process model to compute subsets of the entire

set of available control actions but the controllers communi-
cate) can be used to address the computation time concerns.

Therefore, both sequential and iterative distributed Safety-
LEMPC designs are proposed in this work.

Remark 2. In this work, we assume that the upper bound
on the disturbance is known, and thus we appeal to the con-
ditions guaranteeing closed-loop stability and feasibility
from Ref. 10 to motivate the use of distributed Safety-
LEMPC. However, in industry, it is more common that the
upper bound on the disturbance is estimated but not known,
and in that case reducing the computation time of Safety-
LEMPC using a distributed architecture has the safety bene-
fit of allowing more frequent feedback to reduce the likeli-
hood that the closed-loop state will exit the safety level set
during a sampling period if a large disturbance potentially
greater than the expected/typical bound affects the process.
However, further discussion of this point is outside the scope
of this work.

Safety-Sequential-DLEMPC

A sequential design for a distributed Safety-LEMPC (Safe-

ty-S-DLEMPC) involves a hierarchy of m controllers, each of
which solves the optimization problem in Eq. 7 but optimizes

only �ui for a given i 2 f1; . . . ;mg and assumes a value of the
other inputs. The designation “sequential” arises because the

controllers are connected in series. The ith controller in the
hierarchy (which we will refer to as Safety-S-DLEMPC i)
assumes the values of �up; p51; . . . ; i21, throughout the pre-
diction horizon calculated by the controllers higher up in the

hierarchy, and the values �upðtÞ5�hpð~xðtqÞÞ; p5i11; . . . ;m;
8 t 2 ½tq; tq11Þ; q5k; . . . ; k1N21, for the rest of the control

inputs when calculating �ui. The optimal input trajectory for �ui

determined for Safety-S-DLEMPC i at tk is denoted by
�u�i ðtjtkÞ; t 2 ½tk; tk1NÞ; i51; . . . ;m. Two considerations with
respect to the distributed control design are: (1) whether it is

necessary to solve for Kc in all m Safety-S-DLEMPC’s, and
(2) how to decide which inputs should be placed within �u1,

which within �u2, and so on. To address these points, the main
results of the proof of feasibility and closed-loop stability for

the Safety-S-DLEMPC will be utilized (which will be rigor-
ously presented in the Appendix).

To determine the number of distributed controllers that

must solve for Kc, consider first the case that all m distributed
controllers solve for Kc. First, Safety-S-DLEMPC 1 solves

Eq. 7 for the piecewise-constant trajectories for �u1 and Kc

throughout the prediction horizon and sets ½�u2ðtÞ; . . . ; �umðtÞ� to
the corresponding ½�h2ð~xðtqÞÞ; . . . ; �hmð~xðtqÞÞ�; 8 t 2 ½tq; tq11Þ;
q5k; . . . ; k1N21. The input trajectory �u1ðtÞ5�h1ð~xðtqÞÞ;
8 t 2 ½tq; tq11Þ; q5k; . . . ; k1N21, and the gain Kc 5 0,
8 t 2 ½tk; tk1NÞ, is a feasible solution to the resulting optimiza-

tion problem because it satisfies all constraints. Therefore,
there is always a feasible solution to Safety-S-DLEMPC 1.

Now, consider that Safety-S-DLEMPC 2 receives the optimal
trajectory of �u1 throughout the prediction horizon from

Safety-S-DLEMPC 1, sets ½�u3ðtÞ; . . . ; �umðtÞ�5½�h3 ð~xðtqÞÞ; . . . ;

�hmð~xðtqÞÞ�; 8 t 2 ½tq; tq11Þ; q5k; . . . ; k1N21, and solves for
both the trajectory of �u2 and of Kc. When �u2ðtÞ5
�h2ð~xðtqÞÞ; 8 t 2 ½tq; tq11Þ; q5k; . . . ; k1N21, all inputs
�ui; i51; . . . ;m, take the same values as they did for the opti-
mal solution of Safety-S-DLEMPC 1 and the problem is feasi-
ble, assuming that Kc also takes the same trajectory as for that

optimal solution. Therefore, a feasible solution to safety-S-
DLEMPC 2 exists, which is the same as the feasible solution
to Safety-S-DLEMPC 1. Recursively applying such arguments

to Safety-S-DLEMPC 3 through Safety-S-DLEMPC m
shows that each optimization problem in the Safety-S-
DLEMPC structure has a feasible solution, and that the final

solution satisfies Eqs. 7f and 7h with �u�1ðtjtkÞ; . . . ; �u�mðtjtkÞ;
8 t 2 ½tk; tk1NÞ. When Eq. 7h is satisfied throughout a sam-
pling period, then given a sufficiently small D and a sufficient-

ly small h, and due to Eq. 2b, the distributed Safety-S-
DLEMPC architecture will cause the Lyapunov function value
to decrease between two sampling periods when xðtkÞ 2 Xq=
X�qsp

until it reaches the safety region.21 Due to the safety pen-

alty term in the objective function and safety-based con-
straints, there is a possibility that the rate at which V(x)
decreases along the closed-loop state trajectories under the

Safety-S-DLEMPC paradigm may be faster than under a dis-
tributed LEMPC paradigm without safety-based constraints;
however, in general, no guarantee can be made regarding this,

and no proof can even be made regarding whether the rate of
approach is the fastest rate that was obtained in any one of the
m Safety-S-DLEMPC optimization problems.

The above discussion shows that if Kc is solved in all m
Safety-S-DLEMPC’s of the distributed architecture, then the
Safety-S-DLEMPC is guaranteed to cause the closed-loop
state to enter the safety region in finite time and to remain

there. In the above discussion, it was noted that Kc 5 0
allowed a feasible solution in each Safety-S-DLEMPC, but
potentially a less restrictive solution than if the value of Kc

was allowed to be positive. Therefore, it is possible to set
Kc 5 0 (i.e., remove Kc as an optimization variable) for some
subset of the m Safety-S-DLEMPC’s to reduce the number of

optimization variables in some of these controllers when that
provides a computation time benefit. The resulting control
actions may not decrease the Lyapunov function as quickly as
if Kc was optimized; however, if the inputs in the vector �ui, for

some i 2 f1; . . . ;mg, have very little impact on the value of
Vð~xÞ throughout the prediction horizon, the result of solving
Safety-S-DLEMPC both including Kc as an optimization vari-

able and the result with Kc � 0 may produce similar results
because the vector �ui is not able to affect the safety penalty
term in the objective function highly. This implies that group-

ing inputs with regard to their impact on process safety may
be beneficial for helping to reduce the number of optimization
variables in some of the m Safety-S-DLEMPC problems.

However, the full effects of the input partitioning and of set-
ting Kc 5 0 in some optimization problems should be evaluat-
ed through closed-loop simulations.

A schematic of the sequential distributed safety-based

LEMPC architecture with m controllers is shown in Figure 1.
Safety-S-DLEMPC j calculates an input vector �uj where �u�j
ðsjtkÞ; s 2 ½tk; tk1NÞ denotes the optimal solution of Safety-

S-DLEMPC j at time tk. Safety-S-DLEMPC j may calculate
the gain Kc as well throughout the prediction horizon (the tra-
jectory of the optimal gain throughout the prediction horizon
calculated by Safety-S-DLEMPC j at time tk is denoted by

K�c ðsjtkÞ; s 2 ½tk; tk1NÞ; it is not shown in Figure 1 because it is
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not communicated to the other Safety-S-DLEMPC control-
lers). The implementation strategy for the Safety-S-DLEMPC
design is summarized as follows:

1. At tk, all Safety-S-DLEMPC controllers receive a mea-
surement of the current state xðtkÞ from the sensors. Go to
step 2.

2. For j 5 1 to m:

a. Safety-S-DLEMPC j receives the set of input trajec-
tories �u�pðsjtkÞ; s 2 ½tk; tk1NÞ; p51; . . . ; j21, from
Safety-S-DLEMPC j – 1 and assumes the input tra-
jectories �urðtÞ5�hrð~xðtqÞÞ; t 2 ½tq; tq11Þ; q5k; . . . ; k1

N21, for r5j11; . . . ;m. Based on these input trajec-
tories and xðtkÞ, Safety-S-DLEMPC j evaluates the
input trajectory of �uj and, when Kc 6� 0, the trajecto-
ry of the gain Kc. If j 6¼ m, go to step 2b else, go to
step 2c.

b. Safety-S-DLEMPC j sends �u�pðsjtkÞ; s 2 ½tk; tk1NÞ;
p51; . . . ; j, to Safety-S-DLEMPC j 1 1. Go to step 2a.

c. Go to step 3.

3. Each Safety-S-DLEMPC sends its optimal solution for
the first sampling period of the prediction horizon to its actu-
ator (i.e., all u�i ðtkjtkÞ; i51; . . . ;m, are implemented on the
process). Go to step 4.

4. When a new state measurement is received at tk11, go
to step 1 (k k11).

The formulation of Safety-S-DLEMPC j is as follows:

max
�uj;Kc2SðDÞ

ðtk1N

tk

Leð~xjðsÞ; �u1ðsÞ; . . . ; �umðsÞÞ2 (8a)

/ðqsp2~qðsÞÞds

s:t: _~x
jðtÞ5f ð~xjðtÞÞ1

Xm

i51

gið~xjðtÞÞ�uiðtÞ (8b)

�ujðtÞ 2 Uj; 8 t 2 ½tk; tk1NÞ (8c)

�urðtÞ5�hrð~xjðtk1qÞÞ; r5j11; . . . ;m; 8 t 2 ½tk1q; tk1q11Þ;

q50; . . . ;N21 (8d)

�upðtÞ5�u�pðtjtkÞ; p51; . . . ; j21; 8 t 2 ½tk; tk1NÞ (8e)

~xjðtkÞ5xðtkÞ (8f)

KcðtÞ � 0; 8 t 2 ½tk; tk1NÞ (8g)

Vð~xjðtÞÞ � ~qðtÞ; 8 t 2 ½tk; tk1NÞ (8h)

d~q
dt

5KcðtÞðqsp2~qðtÞÞ (8i)

~qðtkÞ5VðxðtkÞÞ; if xðtkÞ 62 Xqsp

~qðtkÞ5qsp; if xðtkÞ 2 Xqsp

@VðxðtkÞÞ
@x

�Xm

i51

giðxðtkÞÞ�uiðtkÞ
�

(8j)

� @VðxðtkÞÞ
@x

�Xm

i51

giðxðtkÞÞ�hiðxðtkÞÞ
�
;

if xðtkÞ 2 Xq=X�qsp
or tk > ts

where ~xjðtÞ denotes the predicted state trajectory under Safety-

S-DLEMPC j. The values of the inputs �ur; r5j11; . . . ;m,

that have not yet been computed by a Safety-S-DLEMPC are

set to the corresponding elements of �hðxÞ applied in a sample-

and-hold fashion by the constraint of Eq. 8d. The trajectories

of �up; p51; . . . ; j21, are set to the optimal trajectories

�u�pðtjtkÞ; t 2 ½tk; tk1NÞ, calculated by the Safety-S-DLEMPC’s

p51; . . . ; j21, by the constraint of Eq. 8e. The other con-

straints of the optimization problem of Eq. 8 follow those in

Eq. 7.
If Kc is set to zero in Safety-S-DLEMPC j, the controller

will only solve for the input vector �uj. As a result, the objec-

tive function of Eq. 8a will only include the economic cost

Leð~xjðsÞ; �u1ðsÞ; . . . ; �umðsÞÞ. When KcðtÞ � 0; 8 t 2 ½tk; tk1NÞ,
the constraints of Eqs. 8h and 8i reduce to:

Vð~xjðtÞÞ � ~q; 8 t 2 ½tk; tk1NÞ

~q5VðxðtkÞÞ; if xðtkÞ 62 Xqsp

~q5qsp; if xðtkÞ 2 Xqsp

The contractive constraint of Eq. 8j will also be imposed in

the Safety-S-DLEMPC that only solves for the input vector �uj.

This constraint guarantees that regardless of the value of Kc,

the closed-loop state can be driven to the safety level set Xqsp

and maintained within that set thereafter (as will be shown in

the proof of Theorem 1 in the Appendix).
We will now prove recursive feasibility and closed-loop sta-

bility of the Safety-S-DLEMPC implementation strategy, with

the design of Safety-S-DLEMPC j following Eq. 8, and allow-

ing for Kc � 0 in any of the m Safety-S-DLEMPC’s as

desired. To proceed with this analysis, we first state a proposi-

tion that describes the closed-loop stability properties of the

Lyapunov-based controller utilized in defining constraints of

the Safety-S-DLEMPC design of Eq. 8.

Figure 1. Block diagram of the Safety-S-DLEMPC
scheme.
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Proposition 1. (c.f. Ref. 24). Consider the trajectory x̂ðtÞ
of the system of Eq. 1 in closed-loop for a controller �hðxÞ,
which satisfies the condition of Eq. 2, obtained by solving
recursively:

_̂xðtÞ5f ðx̂ðtÞÞ1
Xm

i51

giðx̂ðtÞÞ�hiðx̂ðtkÞÞ1bðx̂ðtÞÞwðtÞ (9)

where t 2 ½tk; tk11Þ with k50; 1; . . .. Let D; �w > 0 and
q > qs > 0 satisfy:

2a3ða21
2 ðqsÞÞ1ðLx1

Xm

i51

L�ui
�umax

i ÞMD1Lwh � 2�w=D: (10)

Then, if x̂ðt0Þ 2 Xq and qmin < q where

qmin 5max fVðxðt1DÞÞ : VðxðtÞÞ � qsg; (11)

the following inequality holds:

Vðx̂ðtkÞÞ � max fVðx̂ðt0ÞÞ2k�w;qmin g: (12)

Proposition 1 guarantees several points regarding operation
of the closed-loop system under �hðxÞ implemented in sample-
and-hold, namely that with a sufficiently small sampling peri-
od and bound on the disturbance such that Eq. 10 is satisfied:
(1) If x̂ðtkÞ 2 Xq, then x̂ðtk11Þ 2 Xq, (2) if x̂ðtkÞ 2 Xq=Xqs

,
then Vðx̂ðtk11ÞÞ < Vðx̂ðtkÞÞ, and (3) if x̂ðtkÞ enters Xqs

; x̂ðtÞ
obtained from recursively solving Eq. 9 remains within Xqmin

(ultimate boundedness of the closed-loop state of Eq. 9 within
Xqmin

). We note that qmin is defined in Eq. 11 with respect to
the state x(t) in Eq. 1, rather than with respect to the state
under �hðxÞ as in Eq. 9 (i.e., qmin is defined with respect to the
worst-case deviation of V(x) from qs throughout a sampling
period given D, h, and �umax

i ; i51; . . . ;m, and does not assume
any specific feedback control law in its definition).

The following theorem provides sufficient conditions under
which the Safety-S-DLEMPC design of Eq. 8 guarantees
recursive feasibility and closed-loop stability of the system of
Eq. 1.

Theorem 1. Consider the system of Eq. 1 in closed-loop
under the sequential distributed safety-based LEMPC design
of Eq. 8 based on a controller �hðxÞ that satisfies the condi-
tions of Eq. 2. Let �w > 0; D > 0; q > qsp > �qsp > qs > 0
satisfy

2a3ða21
2 ðqsÞÞ1

�
Lx1

Xm

i51

L�ui
�umax

i

�
MD1Lwh � 2�w=D:

(13)

and let �qsp be defined such that if xðtkÞ 2 X�qsp
, then

xðtk11Þ 2 Xqsp
. If xðt0Þ 2 Xq; qmin < q and N � 1, then the

state x(t) of the closed-loop system can be driven in a finite
time to Xqsp

and then be bounded there, and after ts the state
x(t) of the closed-loop system is ultimately bounded in Xqmin

with Xqmin
defined as in Proposition 1.

The proof of Theorem 1 can be found in the Appendix.
Remark 3. The definition of X�qsp

in Theorem 1 removes
the direct correspondence between a constraint of the form
in Eq. 8h and the proof of closed-loop stability that is made
in other works on LEMPC (e.g., Ref. 21). To determine �qsp,
closed-loop simulations could be performed utilizing worst-
case scenarios for the process model of Eq. 1 based on
bounds on the disturbances and inputs in calculating the val-
ue of X�qsp

. In such a case, the constraint of Eq. 8h would
not play a role in the closed-loop stability proof. An

alternative implementation of the Safety-S-DLEMPC strategy
would, however, allow a bound on �qsp to be determined
based on satisfaction of a constraint of the form of Eq. 8h.
Specifically, because the primary purpose of the constraint
of Eq. 8h is in driving the closed-loop state to the safety
region, once the closed-loop state enters the safety region, it
is no longer necessary to utilize the safety-based constraints.
Therefore, Eqs. 8g–8j can be replaced by the standard Mode
1 and Mode 2 constraints of Ref. 21 once the closed-loop
state enters Xqsp

(and the penalty term in the objective func-
tion could be removed). The Mode 1 constraint would be the
constraint of Eq. 8h but with the upper bound on the Lyapu-
nov function fixed to �qsp, and the activation condition being
that xðtkÞ 2 X�qsp

. The Mode 2 constraint would be the con-
straint of Eq. 8j. With this modification, an explicit bound
can be utilized on �qsp to prove that the closed-loop state is
maintained within Xqsp

for all times after this region is
entered, where the bound is based on satisfaction of the
Mode 1 constraint requiring Vð~xjÞ � �qsp when xðtkÞ 2 X�qsp

.
Remark 4. The focus of this work is on distributed safety-

based LEMPC designs; however, a safety-based tracking
Lyapunov-based model predictive control (LMPC) design
was proposed in Ref. 1 which takes the form of the central-
ized safety-based LEMPC design in Eq. 7 but with the con-
tractive constraint of Eq. 7h enforced for all times,
regardless of the location in state-space of the measurement
of the state at tk. Due to the similarity of this design to the
centralized safety-based LEMPC design considered in this
work, the results in this work, including the closed-loop sta-
bility and feasibility results, can be readily extended to the
LMPC design considered in that work. For the sequential
design, the same architecture and implementation strategy
can be employed, with a similar formulation for the j – th
distributed controller as in Eq. 8 but with the contractive
constraint always activated, Kc can be set to zero in some of
the distributed controllers and inputs can be grouped based
on their effect on Vð~xÞ, and the results of Theorem 1 would
hold for the resulting formulation, effectively with ts5t0 due
to the repeated application of the contractive constraint.

Safety-Iterative-DLEMPC

An alternative to the Safety-S-DLEMPC that may in some

cases demonstrate improved performance compared to the
Safety-S-DLEMPC (i.e., the implemented control actions may

minimize the objective function more significantly) is a
Safety-Iterative-DLEMPC (Safety-I-DLEMPC). As for the

Safety-S-DLEMPC, there are m controllers, but unlike for the
Safety-S-DLEMPC, all m controllers are solved simultaneous-
ly. In addition, the constraint of Eq. 8j in the jth Safety-S-

DLEMPC, j51; . . . ;m, is reformulated. The first time that the
m controllers are solved, the jth controller (Safety-I-DLEMPC

j) solves for �uj and Kc and assumes that �uzðtÞ; z 2 f1; . . . ;mg
but z 6¼ j, are equal to �hzð~xjðtqÞÞ; 8 t 2 ½tq; tq11Þ;
q5k; . . . ; k1N21. After the solutions of all m controllers
have been obtained, the Safety-I-DLEMPC can cause the solu-

tions of these m controllers to be implemented, or they can be
exchanged. If the solutions are exchanged, each of the Safety-

I-DLEMPC’s is re-solved for �uj and Kc assuming that
�uz; z 2 f1; . . . ;mg but z 6¼ j, are equal to the trajectories of �uz

returned by each of the m controllers at the prior iteration. In

general, the number of iterations is an integer c 2 ½1;1Þ.
When it is necessary to clearly specify the iteration number

associated with the solution of the Safety-I-DLEMPC’s below,
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we will refer to the solution to Safety-I-DLEMPC j at time tk
at iteration c as �u�j;cðtjtkÞ and Kc;cðtjtkÞ; 8 t 2 ½tk; tk1NÞ. Termi-

nation of the exchange of solutions (i.e., preventing further
iterations at a given time tk) can be triggered by various condi-

tions. Examples of considerations that could be used are a
fixed number of iterations or terminating when the value of
the objective function evaluated for the predicted state of the

nominal process under the inputs calculated by the m Safety-I-
DLEMPC’s at iteration c is no better than the cost function at

iteration c – 1 or is better by no more than a termination condi-
tion �.

The proposed formulation of Safety-I-DLEMPC j; j51;
. . . ;m, at iteration c is as follows:

max
�uj;Kc2SðDÞ

ðtk1N

tk

Leð~xjðsÞ; �u1ðsÞ; . . . ; �umðsÞÞ2 (14a)

/ðqsp2~qðsÞÞds

s:t: _~x
jðtÞ5f ð~xjðtÞÞ1

Xm

i51

gið~xjðtÞÞ�uiðtÞ (14b)

�ujðtÞ 2 Uj; 8 t 2 ½tk; tk1NÞ (14c)

�uzðtÞ5�u�z;c21ðtjtkÞ; z 2 f1; . . . ;mg;
z 6¼ j; 8 t 2 ½tk1r; tk1r11Þ;

r50; . . . ;N21; c � 2 (14d)

�uzðtÞ5�hzð~xjðtk1rÞÞ; z 2 f1; . . . ;mg;
z 6¼ j; 8 t 2 ½tk1r; tk1r11Þ;

r50; . . . ;N21; c51 (14e)

~xjðtkÞ5xðtkÞ (14f)

KcðtÞ � 0; 8 t 2 ½tk; tk1NÞ (14g)

Vð~xjðtÞÞ � ~qðtÞ; 8 t 2 ½tk; tk1NÞ (14h)

d~q
dt

5KcðtÞðqsp2~qðtÞÞ (14i)

~qðtkÞ5VðxðtkÞÞ; if xðtkÞ 62 Xqsp

~qðtkÞ5qsp; if xðtkÞ 2 Xqsp

@VðxðtkÞÞ
@x

gjðxðtkÞÞ�ujðtkÞ (14j)

� @VðxðtkÞÞ
@x

gjðxðtkÞÞ�hjðxðtkÞÞ;

if xðtkÞ 2 Xq=X�qsp
or tk > ts

where as for the Safety-S-DLEMPC, Kc may be set to zero in
any of the m Safety-I-DLEMPC’s as desired. The constraint of
Eq. 14d sets the input trajectories �uzðtÞ; z 2 f1; . . . ;mg where
z 6¼ j, to their optimal solution in the previous iteration assuming
c> 1, whereas the constraint of Eq. 14e sets the input trajectories
to the corresponding Lyapunov-based control laws implemented
in sample-and-hold when there is no prior iteration (i.e., c 5 1).
The notation of the other constraints follows that in Eq. 8.

The implementation strategy for the Safety-I-DLEMPC
architecture is as follows:

1. At tk, all m Safety-I-DLEMPC’s receive a measurement

of the current state xðtkÞ from the sensors. Go to step 2.
2. At iteration c (c � 1):

a. If c5 1, Safety-I-DLEMPC j assumes �uzðtÞ5�hzð~xjðtk1qÞÞ;
8 t 2 ½tk1q; tk1q11Þ; z 2 f1; . . . ;mg but z 6¼ j; q50; . . . ;
N21. If c> 1, Safety-I-DLEMPC j assumes �uzðtÞ5
�u�z;c21ðtjtkÞ; 8 t 2 ½tk1r; tk1r11Þ; r50; . . . ; N21; z 2
f1; . . . ;mg but z 6¼ j. Using these values, Safety-I-
DLEMPC j evaluates both the optimal input trajectory
�u�j;cðsjtkÞ, and the optimal gain K�c;cðsjtkÞ; s 2 ½tk; tk1NÞ,
or only the optimal input trajectory �u�j;cðsjtkÞ;
8 s 2 ½tk; tk1NÞ, when Safety-I-DLEMPC j sets the

value of the gain Kc to zero. Go to step 2b.
b. Both the constraint of Eq. 14h under �u�j;cðsjtkÞ;
8 s 2 ½tk; tk1NÞ, where j51; . . . ;m (i.e., Vð~xtotÞ �
VðxðtkÞÞ; 8 t 2 ½tk; tk1NÞ, if xðtkÞ 62 Xqsp

, or Vð~xtotðtÞÞ
� qsp; 8 t 2 ½tk; tk1NÞ, if xðtkÞ 2 Xqsp

, where ~xtot is
the predicted state trajectory of the nominal system

of Eq. 1 under �u�j;cðsjtkÞ; 8 s 2 ½tk; tk1NÞ; j51;
. . . ;m) and the iteration termination condition are

evaluated. If Eq. 14h is not met or the iteration ter-

mination condition is met, go to step 2c. Else, go to
step 2d.

c. If c> 1, implement ½�u�1ðtkjtkÞ . . . �u�mðtkjtkÞ�5
½�u�1;c21ðtkjtkÞ . . . �u�m;c21ðtkjtkÞ�. Else, implement

½�u�1ðtkjtkÞ . . . �u�mðtkjtkÞ�5 ½�h1ðxðtkÞÞ . . . �hmðxðtkÞÞ�. Go
to step 3.

d. The optimal input trajectories are exchanged

between the Safety-I-DLEMPC controllers. The con-
troller stores any required values related to the itera-

tion termination condition (e.g., the calculated value

of the objective function used in evaluating the itera-
tion termination condition). Go to step 2a

(c c11).
3. When a new state measurement is received at tk11, go

to step 1 (k k11).
A schematic of the Safety-I-DLEMPC scheme is shown in

Figure 2. At iteration c, Safety-I-DLEMPC j calculates the

optimal solution �u�j;cðtjtkÞ; 8 t 2 ½tk; tk1NÞ, with the piecewise-

constant gain K�c;cðsjtkÞ; s 2 ½tk; tk1NÞ, corresponding to that
iteration. The values of �u1; . . . ; �um that are implemented on

the process throughout the sampling period from tk to tk11 as a
result of the above implementation strategy for the Safety-I-

DLEMPC architecture are denoted by u�1ðtkjtkÞ; . . . ; u�mðtkjtkÞ.
As for the Safety-S-DLEMPC architecture, the number of

controllers in which to solve for Kc and the method of parti-
tioning the inputs into vectors �u1; �u2, and so on are important

considerations, which rely on the above implementation strate-

gy for the Safety-I-DLEMPC. It is noted that because the m
Safety-I-DLEMPC’s are solved independently, assuming in

each controller different values of �uz; z 2 f1; . . . ;mg but
z 6¼ j, than are used by the other controllers, there is no

guarantee that the constraint of Eq. 14h is satisfied for the

nominal system of Eq. 1 under the set of trajectories
�u�1;c; ðtjtkÞ . . . ; �u�m;cðtjtkÞ; t 2 ½tk; tk1NÞ, returned by the set of

Safety-I-DLEMPC’s at iteration c, even if Kc 5 0 in Eq. 14h.
However, satisfaction of Eq. 14h by this trajectory would be

required for proving feasibility of the next iteration for the

Safety-I-DLEMPC design. Therefore, it is necessary to check
whether Eq. 14h is satisfied by the optimal control actions at

the end of every iteration (i.e., compute the solution ~xtot to the
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nominal system of Eq. 1 under �u�1;cðtjtkÞ,. . .,
�u�m;cðtjtkÞ; 8 t 2 ½tk; tk1NÞ, and check whether Vð~xtotÞ � VðxðtkÞÞ
if xðtkÞ 2 Xq=Xqsp

or Vð~xtotÞ � qsp if xðtkÞ 2 Xqsp
throughout

the prediction horizon). If this condition is satisfied, then the

solution �u�1;cðtjtkÞ,. . . �u�m;cðtjtkÞ; 8 t 2 ½tk; tk1NÞ, at iteration c
can be implemented or exchanged between the controllers and

another iteration can begin. If Eq. 14h is not satisfied, then

either the solution from iteration c – 1 that met the condition

should be implemented when c> 1, or �hðxðtkÞÞ should be

implemented if c 5 1. This strategy, which keeps the optimiza-

tion problem of Eq. 14 feasible at each sampling time tk, has

been included in the above implementation strategy.
To determine whether Kc can be set to zero in some of the

Safety-I-DLEMPC’s given this implementation strategy, with-

out negatively impacting closed-loop stability, to decrease the

number of optimization variables in some of the Safety-I-

DLEMPC’s, we appeal to feasibility and closed-loop stability

arguments (which will be presented in greater detail in the

Appendix). First, consider iteration c 5 1. In this case, the jth
Safety-I-DLEMPC assumes that �uzðtÞ; z 2 f1; . . . ;mg but

z 6¼ j, is equal to �hzð~xðtqÞÞ; q5k; . . . ; k1N21; 8 t 2 ½tk; tk1NÞ,
and solves for �uj and Kc. The solution

�ujðtÞ5�hið~xðtqÞÞ; q5k; . . . ; k1N21; 8 t 2 ½tk; tk1NÞ, with

Kc 5 0, 8 t 2 ½tk; tk1NÞ, is a feasible solution for the jth Safety-

I-DLEMPC; therefore, there is always a feasible solution to all

Safety-I-DLEMPC’s for c 5 1. To ensure feasibility of subse-

quent iterations, there must be a feasible solution to the con-

straint of Eq. 14h at the next iteration. This is ensured,

regardless of whether KcðtÞ � 0; 8 t 2 ½tk; tk1NÞ, if Vð~xtotÞ is

below a required bound throughout the prediction horizon at

the prior iteration. The LEMPC implementation strategy

ensures that no subsequent iterations are performed if this iter-

ation condition is not met; therefore, all attempted iterations

will have a feasible solution, regardless of whether

KcðtÞ � 0; 8 t 2 ½tk; tk1NÞ, under the Safety-I-DLEMPC

implementation strategy. It is important to ensure that a con-

trol action implemented by the Safety-I-DLEMPC

implementation strategy will be stabilizing (i.e., xðtÞ 2 Xq for
all times, and x(t) enters Xqsp

in finite time and remains in Xqsp

thereafter). If �u�1;c21ðtkjtkÞ; . . . ; �u�m;c21ðtjtkÞ; 8 t 2 ½tk; tk1NÞ, is
implemented, a summation of the constraints of Eq. 14j for
all m Safety-I-DLEMPC’s reveals that Vðxðtk11ÞÞ < VðxðtkÞÞ,
as will be demonstrated in the Appendix. If instead �hðxÞ is
implemented in sample-and-hold, Vðxðtk11ÞÞ < VðxðtkÞÞ from
Proposition 1. If xðtkÞ 2 X�qsp

, then under either u�1;c21ðtkjtkÞ;
. . . ; u�m;c21ðtkjtkÞ, or �hðxÞ implemented in sample-and-hold,
xðtk11Þ 2 Xqsp

from the definition of X�qsp
. This establishes that

closed-loop stability is maintained under the Safety-I-
DLEMPC implementation strategy because this implementa-
tion strategy ensures that the implemented control actions sat-
isfy both Eqs. 14h and 14j. Furthermore, this stability proof
does not depend on the value of Kc in each controller, and
Kc 5 0, 8 t 2 ½tk; tk1NÞ, is guaranteed to provide a feasible
solution to the Safety-I-DLEMPC at c 5 1 and all subsequent
attempted iterations. Therefore, it is possible to set Kc to zero
in some of the Safety-I-DLEMPC optimization problems to
reduce the number of decision variables in these problems. It
may be helpful to partition the inputs with a large effect on
Vð~xÞ into some �uj vectors and those with more minimal
effect into others, so that the Safety-I-DLEMPC’s for which
solving for �ui may have less effect on the safety penalty
term can be selected to have Kc � 0. However, the effects of
partitioning and of setting Kc � 0 in some controllers should
be assessed with closed-loop simulations.

We will now provide the conditions that guarantee closed-
loop stability of a nonlinear process under the Safety-I-
DLEMPC implementation strategy, as well as conditions that
guarantee feasibility of the Safety-I-DLEMPC optimization
problem of Eq. 14 at a given iteration.

Theorem 2. Consider the system of Eq. 1 in closed-loop
under the implementation strategy (steps 1–3) of the iterative
distributed safety-based LEMPC design of Eq. 14 based on a
controller h(x) that satisfies the conditions of Eq. 2. Let �w

> 0; D > 0; q > qsp > �qsp > qs > 0 satisfy the constraint of
Eq. 13, with �qsp defined such that if xðtkÞ 2 X�qsp

, then
xðtk11Þ 2 Xqsp

. For any N � 1 and c � 1, if
xðt0Þ 2 Xq; qmin < q, then the state x(t) of the closed-loop
system can be driven in a finite time to Xqsp

and then be
bounded there, and after ts the state x(t) of the closed-loop
system is ultimately bounded in Xqmin

with Xqmin
defined as

in Proposition 1.
The proof of Theorem 2 can be found in the Appendix.

Remark 5. For the proof of closed-loop stability and fea-
sibility of the Safety-I-DLEMPC design, similar comments as
in Remark 3 can be made. First, the constraint of Eq. 14h is
not utilized in the proof of closed-loop stability. Also, once
the closed-loop state enters the safety region, the Safety-I-
DLEMPC can be modified to no longer include the penalty
term in the objective function or safety-based constraints,
but can instead by formulated like an iterative distributed
LEMPC with the constraints of Eqs. 14g–14i replaced by the
constraint of Eq. 14h but with a static upper bound of �qsp

on the Lyapunov function, and the constraint activated
whenever the closed-loop state is within X�qsp

. The same
implementation strategy could continue to be used after this
modification (e.g., checking the value of Vð~xtotðtÞÞ between
iterations). This discussion brings up two important points
regarding the Safety-I-DLEMPC closed-loop stability and
feasibility proof:
1. Although satisfaction of the condition on Vð~xtotðtÞÞ is
not directly utilized for proving closed-loop stability,

Figure 2. Block diagram of the Safety-I-DLEMPC
scheme.
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checking the condition on Vð~xtotðtÞÞ was shown through the
proof of feasibility to be important in ensuring that there
was a feasible solution to Safety-I-DLEMPC j, j51; . . . ;m,
at each iteration attempted.

2. Because only the slight modifications discussed in this
remark to Eqs. 14a and 14g–14i are required to transform
the Safety-I-DLEMPC into an iterative distributed LEMPC
(i.e., not including safety-based constraints), the implementa-
tion strategy proposed above with the resulting guarantees
on closed-loop stability within Xqsp

and feasibility of the
optimization problem at every sampling time for c 5 1 and
at subsequent sampling times when the condition on Vð~xtotðtÞÞ
is met would also hold. This is significant because it is the
first closed-loop stability result for iterative distributed
LEMPC in general.

Remark 6. Due to the similarity between the centralized
safety-LEMPC and safety-LMPC formulations as mentioned
in Remark 4, an iterative distributed design for the safety-
LMPC formulation, with the implementation strategy and
associated closed-loop stability and feasibility proofs, would
follow that of this section, with ts5t0.

Remark 7. An assumption throughout this work is that
the time to calculate the solutions to the distributed safety-
LEMPC problems is much less than the sampling time such
that the calculations can be considered instantaneous. When
such short time scales are assumed for the computations, an
alternative to terminating the iterations as soon as the con-
dition on Vð~xtotðtÞÞ is not met would be to re-perform optimi-
zation iteration c with different initial guesses to try to meet
the condition on Vð~xtotðtÞÞ at the iteration and potentially
improve the optimality of the implemented solutions from a
safety and economics perspective.

Application to a Chemical Process Example

In this section, we demonstrate the advantages of the pro-
posed Safety-DLEMPC schemes over the centralized Safety-
LEMPC of Eq. 7 by applying them to a benchmark catalytic
reactor example. The closed-loop economic performance and
the on-line computation time needed to solve the three Safety-
LEMPC optimization problems are the key performance met-
rics. A chemical process example (catalytic reactor) is consid-
ered in which the oxidation of ethylene to ethylene oxide takes
place in a non-isothermal continuous stirred tank reactor
(CSTR) according to the following reactions:

C2H41
1

2
O2�!r1 C2H4O (R1)

C2H413O2�!r2 2CO212H2O (R2)

C2H4O1
5

2
O2�!r3 2CO212H2O (R3)

To remove the heat generated by the exothermic reactions, a
cooling jacket is used. The dimensionless material and energy
balances for the catalytic reactor are developed in Ref. 3
where the rate laws for the reactions use the nonlinear Arrhe-
nius reaction in Ref. 4. The dimensionless mass and energy
balances for this process are described by the following
equations3:

dx1ðtÞ
dt

5u1ð12x1x4Þ (15a)

dx2ðtÞ
dt

5u1ðu22x2x4Þ2A1e
c1
x4ðx2x4Þ0:5

2A2e
c2
x4ðx2x4Þ0:25

(15b)

dx3ðtÞ
dt

52u1x3x41A1e
c1
x4ðx2x4Þ0:52A3e

c3
x4ðx3x4Þ0:5 (15c)

dx4ðtÞ
dt

5
u1

x1

ð12x4Þ1
B1

x1

e
c1
x4ðx2x4Þ0:5 (15d)

1
B2

x1

e
c2
x4ðx2x4Þ0:25

1
B3

x1

e
c3
x4ðx3x4Þ0:52

B4

x1

ðx42u3Þ

The resulting dimensionless dynamic model of this reactor has
four states x1, x2, x3, and x4 and three manipulated inputs u1,
u2, and u3. The four dimensionless states represent the reactor
gas mixture density, ethylene concentration, ethylene oxide
concentration, and temperature in the reactor, respectively.
The three dimensionless inputs u1, u2, and u3 of the reactor are
the feed volumetric flow rate, the concentration of ethylene in
the feed, and the coolant temperature, respectively. The values
of the parameters of this model are presented in Table 1. Due
to the physical constraints on the control actuators, the manip-
ulated inputs are bounded (i.e., u1 2 ½0:0704; 0:7042�; u2 2
½0:2465; 2:4648�; u3 2 ½0:6; 1:1�). The economic performance
index of the catalytic reactor is the average yield of ethylene
oxide where the yield is defined by:

Yðtf Þ5

ðtf

t0

u1ðsÞx3ðsÞx4ðsÞ ds

ðtf

t0

u1ðsÞu2ðsÞ ds
(16)

where tf is the operating period. A limitation on the amount of
reactant material that may be fed to the reactor is fixed by the
following integral material constraint:

1

tf

ðtf

t0

u1ðsÞu2ðsÞ ds50:175: (17)

Since the denominator of Eq. 16 is fixed over the length of
operation, the various Safety-LEMPC schemes considered in
this work will maximize the following stage cost:

Leðx; uÞ5u1x3x4: (18)

The dynamic model of the catalytic reactor has an open-loop
asymptotically stable steady-state that satisfies the integral
material constraint of Eq. 17 with xT

s 5 x1s x2s x3s x4s½ �5
0:998 0:424 0:032 1:002½ � which corresponds to the

steady-state input uT
s 5 0:35 0:5 1:0½ �. The contractive con-

straint of Eqs. 7h, 8j, and 14j was not imposed in all the simu-
lations below since closed-loop stability under the various
Safety-LEMPC schemes is not an issue for the region of oper-
ation considered for the dynamic model of this reactor. To
determine the safety level set, a characterization of the closed-
loop stability region Xq of the dynamic model of the reactor is

Table 1. Values of the Dimensionless Parameters of the Eth-

ylene Oxidation CSTR

A1592:8 B2510:39 c2527:12
A2512:66 B352170:57 c35211:07
A352412:71 B457:02
B157:32 c1528:13
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required. To estimate the stability region Xq, a PI controller
hTðxÞ5½h1ðxÞ h2ðxÞ h3ðxÞ� is implemented in a sample-and-
hold fashion for the three manipulated inputs (i.e.,

haðxÞ5KPa
ðxa2xasÞ1 1

sa

Ð t
0
ðxa2xasÞdt; a51; 2; 3, where KP1

5

3:0; KP2
50:105; KP3

5 0:1; s150:00001; s250:0002081,
and s350:005). The centralized and distributed Safety-
LEMPC schemes are implemented with a shrinking prediction
horizon that covers the entire operating window tp 5 47; spe-
cifically, at the beginning of the lth operating window, the pre-
diction horizon was set to tp=D and the horizon was decreased
by one at each sampling period where D 5 1. At the beginning
of the ðl11Þth operating window where l50; . . . ; 9, the predic-
tion horizon is reinitialized to tp=D. To satisfy the material
constraint of Eq. 17, this constraint is imposed over the ten
operating windows (i.e., the average molar flow rate of ethyl-
ene must be equal to 0.175 at the end of each operating inter-
val of length tp). The dynamic model of the catalytic reactor is
simulated numerically by using the explicit Euler method with
a step size of 1025, while the step size used for the model
within the Safety-LEMPC optimization problems is 0.0005.
All the optimization problems were solved using the interior-
point solver Ipopt.25

Figure 4. Evolution of the Lyapunov function value of
the closed-loop state under the Safety-I-
DLEMPC.

Figure 5. Evolution of the Lyapunov function value of
the closed-loop state under the Safety-S-
DLEMPC.

Figure 6. Input trajectories computed by the central-
ized Safety-LEMPC.

Figure 7. Process state trajectories under the central-
ized Safety-LEMPC.

Figure 3. Evolution of the Lyapunov function value of
the closed-loop state under the centralized
Safety-LEMPC.

AIChE Journal August 2017 Vol. 63, No. 8 Published on behalf of the AIChE DOI 10.1002/aic 3413



We use a quadratic Lyapunov function of the form Vð�xÞ5
�xTP�x to estimate the stability region of the closed-loop system
under h(x) where P5diagð 1 1 1 1½ �Þ. The notation �x
denotes the process state vector in deviation form (i.e.,
�x5x2xs). The safety level set Xqsp

is chosen to operate the
closed-loop process in a relatively small region around the
steady-state to avoid the boundary of the stability region. Fol-
lowing this technique and using the Lyapunov function Vð�xÞ,
the values of q and qsp were chosen to be 2.1 and 0.5, respec-
tively. As a result of the integral material constraint of Eq. 17,
the inputs u1 and u2 are optimized by one Safety-DLEMPC
(i.e., �uT

1 5½u1 u2�), as well as Kc, while only u3 is computed by
another (i.e., �u35u3 with Kc � 0) for both iterative and dis-
tributed Safety-DLEMPC’s. The termination condition for the
Safety-I-DLEMPC algorithm was to stop iterating the optimi-
zation problem when the cost function at the current iteration
is less than or equal to the cost function at the previous itera-
tion. In this example, the condition on the value of Vð~xtotÞ
along the closed-loop state trajectories of the nominal system

under the control actions calculated by the two iterative dis-
tributed controllers was not checked between iterations, but no
issues with feasibility occurred during the iterations per-
formed. Ipopt was forced to stop optimizing the problem after
100 iterations to take real-time computation considerations
into account. The computation time for the Safety-S-
DLEMPC is evaluated as the sum of the computation times of
Safety-S-DLEMPC 1 and Safety-S-DLEMPC 2 at each sam-
pling time because the distributed controllers are evaluated in
sequence which means that the minimal time to obtain a solu-
tion is the sum of the evaluated times of all controllers. How-
ever, the computation time for one iteration of the Safety-I-
DLEMPC is computed as the maximum computation time of
the two optimization problems because the distributed control-
lers are evaluated in parallel which implies that the minimal
time to obtain a solution is the largest computation time
among all the Safety-I-DLEMPC controllers.

In these simulations, the catalytic reactor was initiated far
from Xqsp

with xTðt0Þ5½0:9818 1:4566 0:1987 1:0523�

Figure 8. Input trajectories computed by the Safety-I-
DLEMPC.

Figure 9. Process state trajectories under the Safety-I-
DLEMPC.

Figure 10. Input trajectories computed by the Safety-S-
DLEMPC.

Figure 11. Process state trajectories under the Safety-
S-DLEMPC.
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(i.e., Vðxðt0ÞÞ51:09 > qsp50:5). Starting at tk 5 222, the safe-
ty logic unit requests the closed-loop state to move toward the
safety level set under the centralized and distributed Safety-
LEMPC schemes. Figures 3–5 show the Lyapunov function
value of the closed-loop states under the centralized Safety-
LEMPC and iterative and sequential Safety-DLEMPC control-
lers, respectively. From these figures, the closed-loop states
under the three controllers successfully entered the safety level
set after one sampling time (i.e., VðtkÞ < qsp where tk 5 223).
Figures 6–11 represent the closed-loop state trajectories and
the manipulated input trajectories of the centralized Safety-
LEMPC and iterative and sequential Safety-DLEMPC control-
lers, respectively. As in Ref. 14, the centralized Safety-
LEMPC, the Safety-S-DLEMPC, and the Safety-I-DLEMPC
dictate periodic operation (i.e., the ethylene is distributed in a
non-uniform fashion with respect to time) to maximize the
yield of ethylene oxide. The input trajectories u1 and u2 satis-
fied the material constraint of Eq. 17 under all Safety-LEMPC
schemes. Figures 7 and 9, and 11 show that the closed-loop
trajectories under all the Safety-LEMPC schemes changed
after the safety-based constraints are activated at tk 5 222
while periodic operation is still maintained. Due to the nonlin-
earity and non-convexity of the optimization problem, the
Safety-I-DLEMPC under the termination condition described
above terminates most of the time after the second iteration so
that the c 5 1 solution is applied (i.e., the cost function at the
first iteration is generally greater than or equal to the cost func-
tion at the second iteration). Table 2 shows the average yield
and average computation time required to solve each of the
three optimization problems over the ten operating windows.
From Table 2, the average yield of ethylene oxide under the
centralized safety-LEMPC and distributed (iterative and
sequential) safety-LEMPC’s is similar. Both the iterative and
the sequential Safety-DLEMPC’s require over 60% less com-
putation time than that required to solve the centralized safety-
LEMPC of Eq. 7. Additionally, the average yield of ethylene
oxide over ten operating periods under the PI controllers is
5.34%; the average yield under the centralized safety-LEMPC
is 70% better than that under the PI controllers.

Remark 8. Even though the dynamic model of the reactor
of Eq. 15 does not explicitly follow the class of systems of
Eq. 1 due to the bilinear term in the right hand side of the
second differential equation (i.e., u1ðu22x2x4Þ), the system
can be reformulated to be in the class of systems of Eq. 1.
Since the manipulated input u2 only appears in that term
and the Safety-DLEMPC 1 solves for the inputs u1 and u2

together in one optimization problem due to the material
constraint of Eq. 17, a new variable u45u1u2 can be intro-
duced to make the process model be in the class of systems
of Eq. 1 (input affine with inputs u1, u3, and u4). Further-
more, as is demonstrated above, the distributed control
methodology of this work performed well for this example.

Conclusion

In this work, sequential and iterative Safety-DLEMPC

schemes were proposed as alternatives to centralized Safety-
LEMPC that may have less on-line computation time while
achieving similar closed-loop performance and safety con-
straints satisfaction. An implementation strategy and mathe-
matical formulation for the Safety-Sequential-DLEMPC

design and the Safety-Iterative-DLEMPC design were devel-
oped. The main objective of the two distributed Safety-
LEMPC schemes is to improve the computation time with
respect to the centralized Safety-LEMPC while maintaining

similar closed-loop performance. For a sufficiently small sam-
pling period, proofs of recursive feasibility and closed-loop
stability of a class of nonlinear systems under the Safety-S-
DLEMPC and Safety-I-DLEMPC formulations in the presence
of uncertainty were given. Using a catalytic reactor example,

the proposed iterative and sequential Safety-DLEMPC strate-
gies were able to yield comparable closed-loop performance
while significantly decreasing the on-line computation time
compared to that required to solve the centralized Safety-
LEMPC. This illustrates that distributed implementation may

allow Safety-LEMPC to be implemented on processes where
the computation time of the centralized implementation strate-
gy exceeds the controller sampling time.
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Appendix
Proof of Theorem 1. The proof consists of three parts.

We first prove that the optimization problem of Eq. 8 is
recursively feasible for all xðt0Þ 2 Xq. Subsequently, we
prove that under the Safety-S-DLEMPC design of Eq. 8, the
closed-loop state of the system of Eq. 1 is maintained within
Xq at all times (i.e., Xq is a forward invariant set), and is
driven in finite time into Xqsp

and thereafter bounded there.
Finally, we prove that after ts, the closed-loop state under
the Safety-S-DLEMPC of Eq. 8 is ultimately bounded in
Xqmin

.
Part 1: The feasibility of the optimization problem for

Safety-S-DLEMPC j (for j51; . . . ;m) when xðt0Þ 2 Xq fol-
lows because the solution KcðtÞ50; 8 t 2 ½tk; tk1NÞ;
�ujðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ, with n5k; . . . ;N1k21, is
a feasible solution both when Kc is pre-set to zero through-
out the prediction horizon and when it is not. The gain
KcðtÞ50; 8 t 2 ½tk; tk1NÞ, is feasible since it satisfies Eq.
8g over the prediction horizon. When KcðtÞ50, then by Eq.
8i, ~qðtÞ will be equal to its initial value throughout the pre-
diction horizon, and thus the upper bound on the Lyapunov
function in Eq. 8h will be fixed (i.e., either ~qðtkÞ5VðxðtkÞÞ
) Vð~xjðtÞÞ � VðxðtkÞÞ; 8 t 2 ½tk; tk1NÞ; if xðtkÞ 62 Xqsp

or
~qðtkÞ5qsp ) Vð~xjðtÞÞ � qsp; 8 t 2 ½tk; tk1NÞ; if xðtkÞ 2 Xqsp

).
In such a case, �ujðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ, with
n5k; . . . ;N1k21, satisfies the input constraint of Eq. 8c.
To prove that �ujðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ; n5k; . . . ;
N1k21, satisfies Eqs. 8h and 8j and is thus a feasible
solution to Safety-S-DLEMPC j when �urðtÞ5 �hrð~xjðtk1qÞÞ;
r5j11; . . . ;m; 8 t 2 ½tk1q; tk1q11Þ; q50; . . . ;N21, and �upðtÞ
5 �u�pðtjtkÞ; p51; . . . ; j21; 8 t 2 ½tk; tk1NÞ, as required by
Eqs. 8d and 8e, the sequence of distributed controllers
must be evaluated. We will proceed by induction. When
j 5 1, �ujðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ; n5k; . . . ;N1k21,
satisfies Eq. 8h in Safety-S-DLEMPC 1 by Proposition 1

when xðtÞ 2 Xq, and trivially satisfies the constraint of Eq.

8j since �urðtÞ; r52; . . . ;m are set to �hrð~xjÞ implemented in

sample-and-hold through Eq. 8e. Thus, KcðtÞ50; 8 t 2 ½tk;
tk1NÞ; �ujðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ; n5k; . . . ;N1k21,

is a feasible solution for Safety-S-DLEMPC 1.
Now, assume that there exists a feasible solution to Safety-S-

DLEMPC j – 1 (i.e., �u�pðtjtkÞ; p51; . . . ; j21; 8 t 2 ½tk; tk1NÞ) and

that feasibility of �ujðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ;
n5k; . . . ;N1k21, is being considered for Safety-S-DLEMPC j.

Because Safety-S-DLEMPC j – 1 was feasible (i.e., Eqs. 8h and

8j were satisfied) when �upðtÞ5�u�pðtjtkÞ; p51; . . . ; j21;

8 t 2 ½tk; tk1NÞ, with all other inputs set to the corresponding

components of �hðxÞ implemented in sample-and-hold, the same

input trajectory (i.e., �ujðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ;
n5k; . . . ;N1k21, and the other inputs defined according to

Eqs. 8d and 8e) will be feasible for Safety-S-DLEMPC j

because it will again satisfy Eqs. 8h and 8j; the feasibility of

this solution is independent of the value of Kc in Safety-S-

DLEMPC j – 1 or Safety-S-DLEMPC j. Therefore, KcðtÞ50; 8
t 2 ½tk; tk1NÞ; �ujðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ; n5k; . . . ; N1

k21, is a feasible solution for Safety-S-DLEMPC 1 and

also for Safety-S-DLEMPC j when Safety-S-DLEMPC j – 1 is

feasible; by induction, KcðtÞ50;8 t 2 ½tk; tk1NÞ; �ujðtÞ5
�hj ð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ; n5k; . . . ;N1k21, is therefore a

feasible control action for each Safety-S-DLEMPC j,

j51; . . . ;m. Recursive feasibility of the Safety-S-DLEMPC

follows if the closed-loop state trajectory is maintained within

Xq (which will be proven in Part 2 to hold for all times if

xðt0Þ 2 Xq).

Part 2: We now prove that if xðtkÞ is initialized outside the

safety level set (i.e., xðtkÞ 2 Xq=Xqsp
and tk � ts), then the

closed-loop state remains bounded within Xq (i.e., xðtÞ 2 Xq

when xðt0Þ 2 Xq) and within finite time, the closed-loop state

will be driven to Xqsp
and remain there for all subsequent times

under the Safety-S-DLEMPC design of Eq. 8.

Due to the sequential solution strategy of the Safety-S-

DLEMPC architecture, the set of control actions

u�j ðtkjtkÞ; j51; . . . ;m, that are implemented on the process (and

thus affect closed-loop stability) satisfy the constraints of the

Safety-S-DLEMPC of Eq. 8 when j 5 m. When xðtkÞ 2 Xq=X�qsp
,

from the constraint of Eq. 8j of the Safety-S-DLEMPC m of Eq.

8 and from Eq. 2b, we obtain:

@VðxðtkÞÞ
@x

ðf ðxðtkÞÞ1
Xm

i51

giðxðtkÞÞ�u�i ðtkjtkÞÞ

� @VðxðtkÞÞ
@x

ðf ðxðtkÞÞ1
Xm

i51

giðxðtkÞÞ�hiðxðtkÞÞÞ (A1a)

� 2a3ðjxðtkÞjÞ (A1b)

The time derivative of the Lyapunov function along the actual

system state trajectory x(t) for t 2 ½tk; tk11Þ can be written as

follows:

_VðxðtÞÞ5 @VðxðtÞÞ
@x

ðf ðxðtÞÞ1
Xm

i51

giðxðtÞÞ�u�i ðtkjtkÞ1bðxðtÞÞwðtÞÞ

(A2)

Adding and subtracting
@VðxðtkÞÞ

@x ðf ðxðtkÞÞ1
Pm

i51 giðxðtkÞÞ�u�i ðtkjtkÞÞ
to/from the above equation and accounting for Eq. A1, the

bound on the disturbance (jwj � h), and the Lipschitz properties

of Eqs. 4–6, we can write:
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_VðxðtÞÞ � 2a3ðjxðtkÞjÞ1
�

Lx1
Xm

i51

L�ui
�u�i ðtkjtkÞ

�
jxðtÞ2xðtkÞj1Lwh

(A3)

From Eq. 3 and the continuity of x(t), the following bound can

be written for all t 2 ½tk; tk11Þ:
jxðtÞ2xðtkÞj � MD (A4)

Since xðtkÞ 2 Xq=X�qsp
, it can be concluded that xðtkÞ 2 Xq=Xqs

.

Using this, as well as Eqs. A3 and A4 and the bounds on the

inputs �ui; i51; . . . ;m, we obtain the following bound on _VðxðtÞÞ
for t 2 ½tk; tk11Þ:

_VðxðtÞÞ � 2a3ða21
2 ðqsÞÞ1

�
Lx1

Xm

i51

L�ui
�umax

i

�
MD1Lwh

(A5)

If the condition of Eq. 13 is satisfied, then there exists �w > 0

such that the following inequality holds for xðtkÞ 2 Xq=X�qsp
:

_VðxðtÞÞ � 2�w=D 8 t 2 ½tk; tk11Þ (A6)

Integrating the bound of Eq. A6 on t 2 ½tk; tk11Þ we obtain that:

Vðxðtk11ÞÞ � VðxðtkÞÞ2�w (A7a)

VðxðtÞÞ � VðxðtkÞÞ; 8 t 2 ½tk; tk11Þ (A7b)

for all xðtkÞ 2 Xq=X�qsp
. Using Eq. A7 recursively, it is proved

that, if xðtkÞ 2 Xq=X�qsp
, the state converges to X�qsp

in a finite

number of sampling times while remaining within Xq through-

out the transition since V(x) does not increase. Once the state

converges to X�qsp
� Xqsp

, it remains inside Xqsp
for all times

from the definition of X�qsp
in Theorem 1 (i.e., if xðtkÞ 2 X�qsp

,

then xðtk11Þ 2 Xqsp
) and re-activation of the contractive con-

straint of Eq. 8j to decrease the Lyapunov function value until

xðtkÞ 2 X�qsp
whenever xðtkÞ 2 Xqsp

=X�qsp
. Since Xqsp

� Xq, the

state of the closed-loop system is always maintained within Xq

making it a forward invariant set.

Part 3: Finally, we prove ultimate boundedness of the closed-

loop state within Xqmin
when tk> ts. If tk> ts, then Eq. 8j is

active at all subsequent sampling times. Since Eq. A6 holds

whenever xðtkÞ 2 Xq=Xqs
, Eq. A7a also holds and thus for

xðtkÞ 2 Xq=Xqs
; Vðxðtk11ÞÞ < VðxðtkÞÞ and the closed-loop state

moves to lower level sets until xðtkÞ 2 Xqs
. From the definition

of Xqmin
in Proposition 1, once the state converges to

Xqs
� Xqmin

, it remains inside Xqmin
for all times. w

Proof of Theorem 2. Like the proof of Theorem 1, the
proof of Theorem 2 consists of three parts. We first prove
that under steps 1–3 of the safety-I-DLEMPC implementa-

tion strategy, the optimization problem of Eq. 14 is feasible
for each iteration c that is executed when xðt0Þ 2 Xq, and

that the control actions implemented on the process under
this implementation strategy have characterizable properties.

Then we prove that the closed-loop state of the system of
Eq. 1 can be driven in finite time into Xqsp

under the control

actions from the Safety-I-DLEMPC implementation strategy,
and then be bounded there. We also prove that under the

Safety-I-DLEMPC implementation strategy, the closed-loop
state is always maintained in Xq if xðt0Þ 2 Xq (i.e., Xq is a

forward invariant set). Finally, we prove that after ts, the
closed-loop state under the Safety-I-DLEMPC implementa-
tion strategy is ultimately bounded in Xqmin

.
Part 1: At the initial iteration (i.e., c 5 1) and for all

xðt0Þ 2 Xq, the solution Kc;1ðtÞ50; 8 t 2 ½tk; tk1NÞ;

�uj;1ðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ, with n5k; . . . ;N1k21, is a

feasible solution to each Safety-I-DLEMPC j of Eq. 14,

j51; . . . ;m, both when Kc is fixed at zero and when it is not.

Feasibility of Kc;1ðtÞ50; 8 t 2 ½tk; tk1NÞ, at c 5 1 follows

because Kc;1ðtÞ50; 8 t 2 ½tk; tk1NÞ, satisfies Eq. 14g throughout

the prediction horizon. When Kc;1ðtÞ50, then as described in the

proof of Theorem 1, the upper bound on the Lyapunov function

in Eq. 14h is fixed to either VðxðtkÞÞ or qsp. In such a case,

�uj;1ðtÞ5�hjð~xjðtnÞÞ; 8 t 2 ½tn; tn11Þ; n5k; . . . ;N1k21, satisfies

the input constraint of Eq. 14c. Because �uzðtÞ5�hz ð~xjðtk1rÞÞ;
z 2 f1; . . . ;mg; z 6¼ j; 8 t 2 ½tk1r; tk1r11Þ; r50; . . . ;N21, from

Eq. 14e, the constraint of Eq. 14h is satisfied by Proposition 1,25

as is the constraint of Eq. 14j (trivially). For the subsequent iter-

ations (i.e., c> 1), the solution Kc;cðtÞ50; 8 t 2 ½tk; tk1NÞ;
�uj;cðtÞ5�u�j;c21ðtjtkÞ; 8 t 2 ½tn; tn11Þ, with n5k; . . . ;N1k21, is

a feasible solution to Safety-I-DLEMPC j, j51; . . . ;m (regard-

less of whether Kc is fixed to zero in the optimization problem

or not) when the condition of Eq. 14h is satisfied by the solu-

tions �u�j;c21ðtjtkÞ; 8 t 2 ½tn; tn11Þ; n5k; . . . ;N1k21; j51; . . . ;m,

from the prior iteration, i.e., when Vð~xtotðtÞÞ � VðxðtkÞÞ;
8 t 2 ½tk; tk1NÞ, if xðtkÞ 62 Xqsp

, or when Vð~xtotðtÞÞ � qsp;
8 t 2 ½tk; tk1NÞ, if xðtkÞ 2 Xqsp

, where ~xtotðtÞ; 8 t 2 ½tk; tk1NÞ, is

defined as the solution obtained by recursively solving:

_~x
tot

5f ð~xtotÞ1
Xm

i51

gið~xtotÞ�u�i;c21ðtjtkÞ (A8)

given ~xtotðtkÞ5xðtkÞ. Feasibility of this solution follows because

since it was feasible at the prior iteration, it satisfied the input

constraint of Eq. 14c and will also satisfy the constraints of Eqs.

14h and 14j. Because the upper bound on the Lyapunov function

in Eq. 14h is the same between two iterations since it is based

only on a state measurement at tk and thus will be the same for

all iterations at tk, when the condition on Vð~xtotðtÞÞ is checked

under �u�z;c21ðtjtkÞ; z51; . . . ;m; 8 t 2 ½tk; tk1NÞ, at the end of the

prior iteration and now �uzðtÞ5�u�z;c21ðtjtkÞ; z 2 f1; . . . ;mg, but

z 6¼ j; 8 t 2 ½tk; tk1NÞ, within Safety-I-DLEMPC j from the con-

straint of Eq. 14d, it is already known from the check at the pri-

or iteration that with those trajectories for all �uzðtÞ for z 6¼ j that

�u�j;c21ðtjtkÞ; 8 t 2 ½tk; tk1NÞ, will meet the constraint of Eq. 14h.

Finally, unlike the constraint of Eq. 14h, the contractive con-

straint of Eq. 14j does not depend on control actions

�uzðtÞ; z 6¼ j; therefore, the solution �u�j;c21ðtÞ will satisfy the con-

tractive constraint of Safety-I-DLEMPC j, where j51; . . . ;m, at

iteration c if it is satisfied at the prior iteration. If the termina-

tion condition is met or the condition on Vð~xtotðtÞÞ under

�u�j;cðtjtkÞ; 8 t 2 ½tk; tk1NÞ; j51; . . . ;m, is not satisfied and c> 1,

then a new iteration is not performed. When the new iteration is

not performed, a solution that was feasible at the prior iteration

(i.e., �u�z;c21ðtjtkÞ; t 2 ½tk; tk1NÞ; z51; . . . ;m) is implemented.

Because this solution was feasible for all j Safety-I-DLEMPC’s,

j51; . . . ;m, at the prior iteration, it is known to have satisfied

the constraint of each Safety-I-DLEMPC and therefore has char-

acterizable properties. If c 5 1 and the condition on Vð~xtotðtÞÞ is

not satisfied, �hðxÞ is implemented in sample-and-hold, which

also has characterizable properties (e.g., Proposition 1). There-

fore, feasibility of the Safety-I-DLEMPC is ensured at each iter-

ation that is attempted due to checking of the condition on

Vð~xtotðtÞÞ before attempting a new iteration. However, there is

no guarantee that this condition will be met at the end of any

iteration. When it is not met and iterating stops, however, the

solution applied under the implementation strategy (i.e., either

�u�j;c21ðtkjtkÞ; j51; . . . ;m, or �hðxðtkÞÞ) has characterizable

properties.
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Part 2: We now utilize the known properties of the imple-

mented control actions under the Safety-I-DLEMPC implementa-

tion strategy to prove closed-loop stability of a nonlinear process

under this implementation strategy in the sense of boundedness of

the closed-loop state. First, we prove that if xðtkÞ 2 Xq=X�qsp
then

Vðxðtk11ÞÞ < VðxðtkÞÞ and in finite steps, the closed-loop state

converges to X�qsp
(i.e., xðtk1pÞ 2 X�qsp

where p is a finite positive

integer) in a manner that maintains the closed-loop state within

Xq. We then demonstrate that once the closed-loop state enters

Xqsp
, it is bounded there for all subsequent times.

When xðtkÞ 2 Xq=X�qsp
and �u�j;c21ðtkjtkÞ; j51; . . . ;m, is applied

to the plant, Eq. 14j holds for each implemented control action.

By summing the constraints of Eq. 14j for all j Safety-I-

DLEMPC’s, j51; . . . ;m, and utilizing Eq. 2b, we obtain:

Xm

j51

@VðxðtkÞÞ
@x

gjðxðtkÞÞ�u�j;c21ðtkjtkÞ

�
Xm

j51

@VðxðtkÞÞ
@x

gjðxðtkÞÞ�hjðxðtkÞÞ (A9a)

5
@VðxðtkÞÞ

@x
ðf ðxðtkÞÞ1

Xm

j51

gjðxðtkÞÞ�u�j;c21ðtkjtkÞÞ

� @VðxðtkÞÞ
@x

ðf ðxðtkÞÞ1
Xm

j51

gjðxðtkÞÞ�hjðxðtkÞÞÞ (A9b)

� 2a3ðjxðtkÞjÞ (A9c)

Following the same approach as in the proof of Theorem 1, if

the condition of Eq. 13 is satisfied, then Vðxðtk11ÞÞ < VðxðtkÞÞ

under the implemented control action. If xðtkÞ 2 Xq=X�qsp
but

�hðxðtkÞÞ is applied to the plant, then by Proposition 1,

Vðxðtk11ÞÞ < VðxðtkÞÞ. Therefore, at any given sampling

time when xðtkÞ 2 Xq=X�qsp
, regardless of whether

�u�j;c21ðtkjtkÞ; i51; . . . ;m, or �hðxðtkÞÞ is implemented according to

the implementation strategy of the Safety-I-DLEMPC, Vðxðtk11ÞÞ <
VðxðtkÞÞ and this will cause the closed-loop state to be driven into X�qsp

in finite time in a manner that cannot exit Xq. When X�qsp
is defined as in

Theorem 2 such that if xðtkÞ 2 X�qsp
, then xðtk11Þ 2 Xqsp

, the result is

that Xqsp
is a forward invariant set. This is because if xðtkÞ 2 Xqsp

=X�qsp
,

the constraint of Eq. 14j is active when computing the

�u�j;c21ðtkjtkÞ; j51; . . . ;m, that are applied to the plant, and thus either a

solution that meets that constraint or �hðxðtkÞÞwill be applied to the plant.

The result will be that Vðxðtk11ÞÞ < VðxðtkÞÞ, so if xðtkÞ 2 Xqsp
=X�qsp

,

then xðtk11Þ 2 Xqsp
. If xðtkÞ 2 X�q sp

, then xðtk11Þ 2 Xqsp
from the defi-

nition of X�qsp
. Therefore, once the closed-loop state enters Xqsp

under

this implementation strategy, it cannot leave it. Furthermore, since

Xqsp
� Xq, the closed-loop state under this implementation strategy is

always bounded in Xq.

Part 3: When tk> ts, either inputs �u�j;c21ðtkjtkÞ; j51; . . . ;m,

that cause Eq. A9 to hold are applied to the plant, or the

Lyapunov-based controller implemented in sample-and-hold is

applied, for which the results of Proposition 1 hold. Following

similar steps as in the proof of Part 3 of Theorem 1, this causes

Vðxðtk11ÞÞ � VðxðtkÞÞ while xðtkÞ 2 Xq=Xqs
, driving the closed-

loop state into Xqs
in finite time. Subsequently, from the defini-

tion of Xqmin
, the system state is ultimately bounded in an

invariant set Xqmin
under the implementation strategy of the

Safety-I-DLEMPC. w
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