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a b s t r a c t

In this work, sequential and iterative distributed economic model predictive control (DEMPC) architec-
tures are developedwith constraints based on ametric (termed the Safeness Index) that is indicative of the
safeness of operating a process at a given state in state-space. The DEMPC’s may have lower computation
times than a centralized economic model predictive control (EMPC) design with Safeness Index-based
constraints, without significantly limiting closed-loop economic performance, which enhances their
practicality and ability to improve process operational safety. Sufficient conditions are derived under
which the implementation strategies for the DEMPC’s guarantee closed-loop stability.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The potential for catastrophic accidents in the chemical pro-
cess industries has caused chemical processes to be instrumented
with various alarms [1], shut-down systems, and relief valves
to prevent incidents. Recent calls for improving process safety
further by handling it as a system property (e.g., [2]) have been
answered by several recent works that unite control and safety
within a systems framework. One of these [3] develops a metric
termed the Safeness Index that indicates the relative safeness
of the process state in state-space (and therefore accounts for
interactions between states) and a centralized Lyapunov-based
EMPC (LEMPC) scheme with constraints related to thresholds on
the Safeness Index. However, a DEMPC design, in which multiple
controllers optimize the same objective function and each solves
for only a subset of the decision variables from the centralized
EMPC design [4,5], may have a lower computation time than the
centralized design, which may make it more effective for use
with large-scale nonlinear industrial processes. In this work, se-
quential and iterative DEMPC’s with Safeness Index-based con-
straints, and implementation strategies for each, are developed.
Sufficient conditions that guarantee closed-loop stability of a non-
linear process operated under these implementation strategies are
derived.
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2. Preliminaries

The notations |x| and xT denote the 2-norm and transpose of
a vector x, respectively. A level set of a sufficiently smooth, posi-
tive definite scalar-valued function V (x) is represented by Ωρ :=

{x ∈ Rnx : V (x) ≤ ρ}. The operator ‘/’ denotes set subtraction,
(i.e., A/B := {x ∈ Rnx : x ∈ A, x ̸∈ B}). The family of piecewise
constant, right-continuous functions with time interval ∆ > 0 is
denoted by S(∆). A function α(·) : [0, a) → [0,∞) belongs to
class K if it is strictly increasing and continuous, and α(0) = 0.
We consider nonlinear process systems with the form:

ẋ = f (x)+
m∑
i=1

gi(x)ūi + b(x)w (1)

where x ∈ Rnx , w ∈ Rnw and ūi ∈ Rni for i = 1, . . . ,m, are the
process state vector, disturbance vector and ith manipulated input
vector, respectively. Each input vector ūi is constrained to be in a
nonempty convex set Ui := {ūi ∈ Rni : |ūi| ≤ ūmax

i }, where ūmax
i

is a bound on the 2-norm of ūi resulting from actuator limitations.
State measurements are assumed to be available at synchronous
time instants tk = t0 + k∆, k = 0, 1, . . . , where ∆ is the
sampling period and t0 is the initial time. Bounded disturbances are
considered in the sense that w ∈ W := {w ∈ Rnw : |w| ≤ θ, θ >
0}. The vector functions f , gi, i = 1, . . . ,m, and b are assumed to
be locally Lipschitz vector functions of their arguments. The origin
is assumed to be an equilibrium point of the unforced nominal
(i.e., w(t) ≡ 0) system (i.e., f (0) = 0, gi(0) = 0, i = 1, . . . ,m,
and b(0) = 0).
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We consider systems of the form of Eq. (1) that are stabilizable
in the sense that there exists a locally Lipschitz feedback control
law h̄T (x) = [h̄1(x) . . . h̄m(x)] with h̄(0) = 0 for the nominal
closed-loop system of Eq. (1) that renders the origin of the nominal
system asymptotically stable for all x ∈ D ⊆ Rnx , where D is
an open neighborhood of the origin, in the sense that there exist
a sufficiently smooth Lyapunov function V (x) [6] for the nominal
closed-loop system and class K functions αi(·), i = 1, 2, 3, 4, such
that the following inequalities hold for all x ∈ D:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)

∂V (x)
∂x

(f (x)+
m∑
i=1

gi(x)h̄i(x)) ≤ −α3(|x|) (2b)⏐⏐⏐⏐∂V (x)
∂x

⏐⏐⏐⏐ ≤ α4(|x|), h̄i(x) ∈ Ui, i = 1, . . . ,m (2c)

The stability region of the closed-loop system (denoted by Ωρ) is
taken to be a level set of the Lyapunov function within Dwhere Eq.
(2) holds. By the local Lipschitz property assumed for the vector
fields f , gi, i = 1, . . . ,m, and b, the smoothness of the Lyapunov
function V (x), and the boundedness of ūi, i = 1, . . . ,m, and w,
there exist positive constantsM , Lx, Lūi , i = 1, . . . ,m, and Lw such
that⏐⏐⏐⏐⏐f (x)+

m∑
i=1

gi(x)ūi + b(x)w

⏐⏐⏐⏐⏐ ≤ M (3)

⏐⏐⏐⏐∂V∂x f (x)−
∂V
∂x

f (x′)
⏐⏐⏐⏐ ≤ Lx

⏐⏐x− x′
⏐⏐ , ⏐⏐⏐⏐∂V∂x b(x)

⏐⏐⏐⏐ ≤ Lw (4)

⏐⏐⏐⏐∂V∂x gi(x)−
∂V
∂x

gi(x′)
⏐⏐⏐⏐ ≤ Lūi

⏐⏐x− x′
⏐⏐ , i = 1, . . . ,m (5)

for all x, x′ ∈ Ωρ , ūi ∈ Ui, i = 1, . . . ,m, and w ∈ W .

3. Distributed Safeness Index-based LEMPC

A centralized LEMPC design was developed in [3] (i.e., one
optimization problem is solved to determine the values of all ūi,
i = 1, . . . ,m) with constraints requiring the value of the Safeness
Index (which is functionally dependent on the state vector x and
is therefore denoted by S(x)) evaluated along the predicted state
trajectory under the LEMPC to be no greater than a threshold value
STH to seek to prevent the process state from approaching unsafe
operating conditions. The computation time required to solve this
centralized Safeness Index-based LEMPC may be significant with
the process model and constraints of a large-scale industrial non-
linear process system with tens or hundreds of inputs. Therefore,
the problem may not be solved to optimality within a short sam-
pling period, which prevents the optimization problem from being
solved frequently with new state measurements. However, fre-
quent feedback of the process state can be beneficial for enhancing
process safety under this control design because the region where
S(x) ≤ STH (the safety zone) is not necessarily an invariant set
under the Safeness Index-based LEMPCdesign, and the controller is
made aware that the state has exited the safety zone (so that it can
compute control actions guaranteed to drive the state back into the
safety zone in finite time) through feedback of the process state [3].
Moreover, this LEMPC design may be applied in practice to pro-
cesses for which the upper bound on the disturbance is estimated
but not known (though that is not the theoretical consideration
in this work), and in such cases, more frequent feedback may aid
in preventing the closed-loop state from exiting the safety zone
during a sampling period if a disturbance potentially greater than
the expected bound affects the process. To obtain Safeness Index-
based controllers with reduced computation time (allowing more

frequent feedback) compared to the centralized design, this work
develops twodistributed (sequential and iterative) Safeness Index-
based LEMPC designs.

3.1. Safeness Index-based Sequential DLEMPC

The first distributed control scheme considered is a sequential
Safeness Index-based DLEMPC (termed Safeness Index-S-DLEMPC)
design where each of m controllers solves for a different subset
of the set of all control actions. The jth controller solves for the nj
control actions in vector ūj out of the total ntot =

∑m
i=1ni available

control actions while it assumes values of the remaining ntot − nj
manipulated inputs. In the Safeness Index-S-DLEMPC design, the
m controllers form a hierarchy connected using a one-directional
communication network and are evaluated in sequence (i.e., the
first LEMPC in the hierarchy calculates ū1, the second LEMPC re-
ceives the computed value of ū1 and calculates ū2, and so on). The
jth controller, j ∈ {1, . . . ,m}, in the hierarchy (Safeness Index-S-
DLEMPC j) solves only for ūj. It assumes that ūz , z = 1, . . . , j − 1,
are the optimal values of these control actions from the controllers
higher up in the hierarchy, and assumes that ūz = h̄z(x̃(tq)), ∀ t ∈
[tq, tq+1), q = k, . . . , k+N−1, for z = j+1, . . . ,m. The jth Safeness
Index-S-DLEMPC solves the following optimization problem for
the input trajectory ūj(t) over the prediction horizon N∆:

max
ūj∈S(∆)

∫ tk+N

tk

Le(x̃j(τ ), ū1(τ ), . . . , ūm(τ ))dτ (6a)

s.t. ˙̃x
j
(t) = f (x̃j(t))+

m∑
i=1

gi(x̃j(t))ūi(t) (6b)

ūj(t) ∈ Uj, ∀ t ∈ [tk, tk+N ) (6c)

ūr (t) = h̄r (x̃j(tk+q)), r = j+ 1, . . . ,m,

∀ t ∈ [tk+q, tk+q+1), q = 0, . . . ,N − 1 (6d)
ūp(t) = ū∗p(t|tk), p = 1, . . . , j− 1, t ∈ [tk, tk+N ) (6e)

x̃j(tk) = x(tk) (6f)

V (x̃j(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ) (6g)
if x(tk) ∈ Ωρe

S(x̃j(t)) ≤ STH , ∀ t ∈ [tk, tk+N ) (6h)
if S(x(tk)) ≤ STH

∂V (x(tk))
∂x

(
m∑
i=1

gi(x(tk))ūi(tk))

≤
∂V (x(tk))

∂x
(

m∑
i=1

gi(x(tk))h̄i(x(tk))),

if x(tk) ∈ Ωρ/Ωρe or tk > ts or S(x(tk)) > STH (6i)

where x̃j(t) denotes the predicted state trajectory under Safeness
Index-S-DLEMPC j. This control scheme maximizes the time inte-
gral of an economics-based stage cost Le(x, ū1, . . . , ūm) (Eq. (6a)),
subject to input constraints (Eq. (6c)) and a nominal processmodel
(Eq. (6b)) initialized with a state measurement at the current
sampling time tk (Eq. (6f)). The notation ts denotes the time after
which it is desired to apply the constraint of Eq. (6i). The predicted
state trajectory x̃j(t) is maintained within Ωρe throughout the
prediction horizon by the constraint of Eq. (6g) when x(tk) ∈ Ωρe .
The region Ωρe is chosen such that if the measured state x(tk) is
within Ωρe , then x(tk+1) is still within Ωρe , even in the presence
of uncertainty. The constraint of Eq. (6h) maintains the predicted
closed-loop state within the safety zone throughout the prediction
horizonwhen S(x(tk)) ≤ STH . The safety zone is assumed to contain
the origin of the system of Eq. (1) in its interior. The contractive
constraint of Eq. (6i) guarantees that feasible control actions will
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decrease the value of the Lyapunov function between tk and tk+1
when this constraint is applied (i.e., x(tk) ∈ Ωρ/Ωρe , tk > ts, or
S(x(tk)) > STH ). Because the activation conditions of the constraints
of Eqs. (6g)–(6i) are different, more than one of these constraints
may be activated simultaneously (see also [3]). The constraint of
Eq. (6e) sets the trajectory of each ūp, p = 1, . . . , j − 1, to the
optimal trajectory (denoted by ū∗p(t|tk), t ∈ [tk, tk+N )) calculated
by Safeness Index-S-DLEMPC p, p = 1, . . . , j− 1. The values of the
inputs ūr , r = j + 1, . . . ,m, that will be calculated by Safeness
Index-S-DLEMPC’s later in the sequence of m controllers are set
by the constraint of Eq. (6d) to the corresponding elements of h̄(x)
applied in a sample-and-hold fashion.

Themanner inwhich thentot inputs are partitionedbetween the
various ūj and the order inwhich the various ūj are computed in the
hierarchy of distributed controllers can impactwhether each of the
m controllers in the hierarchy is feasible. Specifically,when Eq. (6h)
is not applied (i.e., S(x(tk)) > STH ), ūj = h̄j(x̃(tq)), ∀ t ∈ [tq, tq+1),
q = k, . . . , k+N−1, is a feasible control action for Safeness Index-
S-DLEMPC j. However, the region where S(x) ≤ STH is not required
to take a specific shape (e.g., it is not required to be a Lyapunov
level set), so when Eq. (6h) is applied, there is no guarantee that
any control action within the input bounds can satisfy this con-
straint (whether or not constraints such as Eqs. (6g) and/or (6i) are
simultaneously applied). This means that the jth Safeness Index-
S-DLEMPC will have a feasible solution when the constraint of
Eq. (6h) is applied only if there exists a ūj that, when ūp(t) =
ū∗p(t|tk), p = 1, . . . , j−1, t ∈ [tk, tk+N ), and ūr (t) = h̄r (x̃j(tk+q)), r =
j + 1, . . . ,m, ∀ t ∈ [tk+q, tk+q+1), q = 0, . . . ,N − 1, the state pre-
dictions are maintained within the safety zone. Furthermore, if the
control actions calculated by Safeness Index-S-DLEMPC 1 ensure
that S(x̃1) ≤ STH throughout the prediction horizon (i.e., Safeness
Index-S-DLEMPC 1 is feasible even when Eq. (6h) is applied), then
Safeness Index-S-DLEMPC 2 to Safeness Index-S-DLEMPC m will
be feasible as well because a feasible solution to Safeness Index-S-
DLEMPC j is a feasible solution to Safeness Index-S-DLEMPC j + 1.
Hence, grouping inputs that have a large effect on themagnitude of
S(x) (and thus provide significant flexibility for adjusting its value
throughout the prediction horizon to seek to maintain the state
predictions within the safety zone) together within ū1 may enable
the constraint of Eq. (6h) to be feasible more regularly in Safeness
Index-S-DLEMPC 1 than if inputs with less impact on S(x) were
computed by this controller. This would allow the set of m dis-
tributed controllers to be feasible more regularly as well (since all
are feasible if Safeness Index-S-DLEMPC1 is feasible). Furthermore,
other process constraints beyond those presented in Eq. (6) may
be added to the Safeness Index-S-DLEMPC’s (e.g., constraints on
the time-averaged value of certain inputs or products of inputs due
to physical constraints on the process such as available reactant),
and input partitioning may impact feasibility of these constraints
as well. For example, if a constraint on the product of two inputs
is present, it may be desirable to solve for both inputs in the same
Safeness Index-S-DLEMPC if it is likely that the constraint will be
infeasible if such flexibility in satisfying the constraint is not pro-
vided. Process economicsmay be impacted by themanner inwhich
the inputs are partitioned (e.g., as the number of control actions
nj determined by Safeness Index-S-DLEMPC j is decreased due to
an increasing magnitude of m, Safeness Index-S-DLEMPC j may
have less flexibility to maximize process economic performance).
Computation time is also affected by input partitioning (e.g., it may
increase for Safeness Index-S-DLEMPC j if nj is increased to provide
the LEMPC with greater flexibility in control action selection for
feasibility and/or economics reasons). Thus, an appropriate parti-
tioning of inputs may be based on trade-offs between feasibility,
economics, and computation time considerations. This approach
for partitioning inputs may be complemented by other methods of
input partitioning (see, e.g., [4,7]), though the partitions resulting

Fig. 1. Block diagram of the Safeness Index-S-DLEMPC scheme.

from alternative methods should be evaluated from the feasibility
standpoint discussed before being used.

A schematic of the Safeness Index-S-DLEMPC architecture is
depicted in Fig. 1. An implementation issue for the Safeness Index-
S-DLEMPC design is that, when Safeness Index-S-DLEMPC 1 is
infeasible when the constraint of Eq. (6h) is applied, no feasible
solution to Safeness Index-S-DLEMPC 1 is available to be sent to
Safeness Index-S-DLEMPC 2 to m. Safeness Index-S-DLEMPC 2 to
m cannot then be solved to obtain u∗i (tk|tk), i = 1, . . . ,m, to
apply to the process; in such cases, we require that the explicit
stabilizing controller h̄i(x(tk)), i = 1, . . . ,m, be applied to the
plant because h̄(x(tk)) is guaranteed to maintain the closed-loop
state inΩρ throughout a sampling period [8]. This implementation
strategy for the Safeness Index-S-DLEMPC design is summarized as
follows:

1. At tk, the m Safeness Index-S-DLEMPC’s receive a measure-
ment of the current state x(tk) from the sensors. Go to Step
2.

2. Solve Safeness Index-S-DLEMPC 1. If the Safeness Index-S-
DLEMPC 1 optimization problem is feasible, go to Step 2a.
Else, go to Step 2b.

(a) Safeness Index-S-DLEMPC 1 sends ū∗1(τ |tk), τ ∈

[tk, tk+N ), to Safeness Index-S-DLEMPC 2. Go to Step 3
(j = 2).

(b) Apply ūi(tk) = h̄i(x(tk)), i = 1, . . . ,m, to the plant. Go
to Step 6.

3. Solve Safeness Index-S-DLEMPC j. If j < m, go to Step 4. If
j = m, go to Step 5.

4. Send ū∗p(τ |tk), τ ∈ [tk, tk+N ), p = 1, . . . , j, to Safeness Index-
S-DLEMPC j+ 1. Go to Step 3 (j← j+ 1).

5. The m Safeness Index-S-DLEMPC’s send the optimal solu-
tions u∗i (tk|tk), i = 1, . . . ,m, for the first sampling period of
the prediction horizon to the actuators to be implemented
on the process. Go to Step 6.

6. When a new state measurement is received at tk+1, go to
Step 1 (k← k+ 1).
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Remark 1. The partitioning of the inputs based on feasibility is
not intended to make the m Safeness Index-S-DLEMPC’s feasible
at each sampling time (e.g., when the centralized Safeness Index-
based LEMPC would be infeasible at tk because the safety zone is
not necessarily a forward invariant set, there is no partitioning of
the inputs that would be able to make Safeness Index-S-DLEMPC 1
to m feasible). Appropriate partitioning is intended to prevent the
distributed controllers from frequently becoming infeasible when
the centralized design would not have been.

3.1.1. Feasibility and closed-loop stability analysis for the Safeness
Index-S-DLEMPC implementation strategy

To prove closed-loop stability of a nonlinear process operated
under the Safeness Index-S-DLEMPC implementation strategy, we
introduce three propositions which, respectively, illustrate the
closed-loop stability properties of the Lyapunov-based controller
used for the Safeness Index-S-DLEMPC constraint design, bound
the norm of the difference between the trajectories of the nominal
and perturbed (i.e., w(t) ̸≡ 0) systems when initiated from the
same initial condition, and bound the difference in the Lyapunov
function value at different locations in the stability region.

Proposition 1 (c.f. [8]). Consider the trajectory x̂(t) of the system
of Eq. (1) in closed-loop under a controller h̄(x), which satisfies the
conditions of Eq. (2), obtained by solving recursively:

˙̂x(t) = f (x̂(t))+
m∑
i=1

gi(x̂(t))h̄i(x̂(tk))+ b(x̂(t))w(t) (7)

where t ∈ [tk, tk+1) with k = 0, 1, . . .. Let ∆, ϵw > 0 and ρ > ρs >

0 satisfy:

− α3(α−12 (ρs))+ (Lx +
m∑
i=1

Lūi ū
max
i )M∆+ Lwθ ≤ −ϵw/∆. (8)

Then, if x̂(t0) ∈ Ωρ and ρmin < ρ where

ρmin = max{V (x(t +∆)) : V (x(t)) ≤ ρs}, (9)

the following inequality holds:

V (x̂(tk)) ≤ max{V (x̂(t0))− kϵw, ρmin}. (10)

Proposition 2 (c.f. [9,10]). Consider the systems

ẋa(t) = f (xa(t))+
m∑
i=1

gi(xa(t))ūi(t)+ b(xa(t))w(t)

ẋb(t) = f (xb(t))+
m∑
i=1

gi(xb(t))ūi(t)
(11)

with initial states xa(t0) = xb(t0) ∈ Ωρ . There exists a K function
fW (·) such that

|xa(t)− xb(t)| ≤ fW (t − t0), (12)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with

fW (τ ) =
L′wθ

L′x
(eL
′
xτ − 1). (13)

where L′w and L′x are positive constants.

Proposition 3 (c.f. [9,10]). Consider the Lyapunov function V (·) of the
system of Eq. (1). There exists a quadratic function fV (·) such that

V (x) ≤ V (x′)+ fV (|x− x′|) (14)

for all x, x′ ∈ Ωρ with

fV (s) = α4(α−11 (ρ))s+Mvs2 (15)

where Mv is a positive constant.

We note that ρmin in Proposition 1 is defined without reference
to a specific controller such as h̄(x), but rather as the maximum
value that V (x) can take in a time period ∆ if V (x(t)) ≤ ρs at the
beginning of this time period, given ∆ and the constraints. Propo-
sition 1 guarantees that with a sufficiently small sampling period
and bound on the disturbance (i.e., Eq. (8) holds), the magnitude
of V (x) decreases throughout a sampling period for the system of
Eq. (1) under h̄(x) when x̂(tk) ∈ Ωρ/Ωρs , and when x̂(tk) ∈ Ωρs ,
then x̂(t) ∈ Ωρmin , ∀ t ∈ [tk, tk+1).

Theorem 1 below provides sufficient conditions which guaran-
tee closed-loop stability of the system of Eq. (1) under the Safeness
Index-S-DLEMPC implementation strategy.

Theorem 1. Consider the system of Eq. (1) in closed-loop under the
implementation strategy (Steps 1–6) of the Safeness Index-S-DLEMPC
based on a controller h̄(x) that satisfies the conditions of Eq. (2). Let
ϵw > 0, ∆ > 0, ρ > ρe > ρs > 0 satisfy

ρe ≤ ρ − fV (fW (∆)) (16)

and Eq. (8). If x(t0) ∈ Ωρ , ρmin ≤ ρe and N ≥ 1where ρmin is defined
as in Eq. (9) and where the compact set Ωρmin satisfies

Ωρmin ⊆ {x ∈ Ωρ : S(x) ≤ STH}, (17)

then the closed-loop state x(t) of Eq. (1) is guaranteed to enter the
safety zone in finite time when x(t0) ∈ Ωρ , to be bounded within Ωρ

at all times, and to be ultimately bounded in Ωρmin .

Proof. The proof of Theorem 1 is given in two parts. The first part
is the proof of the existence of an input trajectory with characteri-
zable properties for the process of Eq. (1) operated under Steps 1–
6 of the Safeness Index-S-DLEMPC implementation strategy when
x(t0) ∈ Ωρ . The second part proves the three results of Theorem 1
given these characterizable properties.

Part 1: Based on the implementation strategy of the Safeness
Index-S-DLEMPC, in a given sampling period, either: (1) Safeness
Index-S-DLEMPC 1 is a feasible optimization problem and ū∗1(τ |tk),
τ ∈ [tk, tk+N ), is communicated to Safeness Index-S-DLEMPC 2,
or (2) Safeness Index-S-DLEMPC 1 is not feasible and h̄i(x(tk)) for
i = 1, . . . ,m, is applied to the process for t ∈ [tk, tk+1). In the
case that Safeness Index-S-DLEMPC 1 is feasible, Safeness Index-S-
DLEMPC’s 2 to m are guaranteed to be feasible. This is because if
Safeness Index-S-DLEMPC j is feasible with the input trajectories
defined by ū∗j (t|tk), t ∈ [tk, tk+N ), ūp(t) = ū∗p(t|tk), p = 1, . . . , j− 1,
t ∈ [tk, tk+N ), and ūr (t) = h̄r (x̃j(tk+q)), r = j + 1, . . . ,m, ∀ t ∈
[tk+q, tk+q+1), q = 0, . . . ,N − 1, then in Safeness Index-S-DLEMPC
j + 1, which solves for ū∗j+1(t|tk), t ∈ [tk, tk+N ), but sets the other
inputs according to the constraints of Eqs. (6d)–(6e) (which forces
all inputs except ū∗j+1(t|tk), t ∈ [tk, tk+N ), to take the same values
as they had in the feasible solution returned by Safeness Index-
S-DLEMPC j), the trajectory of ū∗j+1(t|tk), t ∈ [tk, tk+N ), that was
feasible for Safeness Index-S-DLEMPC j (i.e., ū∗j+1(t|tk) = h̄j+1(x̃(tq)),
∀ t ∈ [tq, tq+1), q = k, . . . , k+N−1) is feasible for Safeness Index-
S-DLEMPC j + 1. When ū∗j+1(t|tk) = h̄j+1(x̃(tq)), ∀ t ∈ [tq, tq+1),
q = k, . . . , k + N − 1, is applied with the input trajectories of
Eqs. (6d)–(6e), the state predictions of Eq. (6b) for Safeness Index-
S-DLEMPC’s j and j+1 are initiated from the same initial condition
(Eq. (6f)) and have the same input trajectories. We assume that the
local Lipschitz property for vector functions f , gi, i = 1, . . . ,m,
and b allows them to be constructed such that since x(t) ∈ Ωρ

for all times (as will be demonstrated in Part 2 of this proof),
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Eq. (6b) in Safeness Index-S-DLEMPC’s j and j + 1 has the same
unique solution throughout the prediction horizon when the same
input trajectories are applied [6]; therefore, if such trajectories
meet the constraints of Eqs. (6g)–(6i) in Safeness Index-S-DLEMPC
j, they will also meet them in Safeness Index-S-DLEMPC j + 1.
The only constraint in Eq. (6) that is enforced in Safeness Index-
S-DLEMPC j + 1 that is not enforced in Safeness Index-S-DLEMPC
j is Eq. (6c) (in Safeness Index-S-DLEMPC j, it is enforced on ūj,
whereas in Safeness Index-S-DLEMPC j+ 1, it is enforced on ūj+1).
By Eq. (2), however, ū∗j+1(t|tk) = h̄j+1(x̃(tq)), ∀ t ∈ [tq, tq+1),
q = k, . . . , k + N − 1, satisfies this constraint as well, showing
that this trajectory fully satisfies all constraints of Safeness Index-
S-DLEMPC j+1 if Safeness Index-S-DLEMPC jwas feasible. Because
Safeness Index-S-DLEMPC1 is feasible, Safeness Index-S-DLEMPC’s
2 tom are therefore feasible by induction.When a feasible solution
to Safeness Index-S-DLEMPC’s 1 tom is obtained, Eqs. (6b)–(6i) are
satisfied in Safeness Index-S-DLEMPCm for the set of implemented
control actions ū∗i (t|tk), t ∈ [tk, tk+N ), i = 1, . . . ,m, and thus the
set of implemented control actions has characterizable properties.
When Safeness Index-S-DLEMPC 1 is not feasible and h̄(x(tk)) is
applied, the conditions of Proposition 1 hold. Thus, the control
actions applied to the process according to the Safeness Index-S-
DLEMPC implementation strategy throughout any sampling period
have characterizable properties that can be used to analyze closed-
loop stability of a nonlinear process under these control actions.

Part 2: We now prove the results of Theorem 1. To prove that
if S(x(tk)) > STH and x(t0) ∈ Ωρ , then the Safeness Index-S-
DLEMPC implementation strategy will drive the closed-loop state
into the safety zone in finite time, we demonstrate that either a
feasible solution to all m distributed controllers of the Safeness
Index-S-DLEMPC design or h̄(x(tk)) will drive the closed-loop state
toward the setΩρmin (which iswithin the safety zone fromEq. (17))
throughout a given sampling period.When allm Safeness Index-S-
DLEMPC’s are feasible at a given sampling time (which follows if
Safeness Index-S-DLEMPC 1 is feasible), the set of control actions
ū∗i (tk|tk), i = 1, . . . ,m, that are applied to the process satisfy
the constraints of Safeness Index-S-DLEMPC m (the last controller
in the hierarchy). Specifically, when S(x(tk)) > STH , from the
contractive constraint of Eqs. (6i) and (2b), we obtain:

∂V (x(tk))
∂x

(f (x(tk))+
m∑
i=1

gi(x(tk))ū∗i (tk|tk))

≤
∂V (x(tk))

∂x
(f (x(tk))+

m∑
i=1

gi(x(tk))h̄i(x(tk))) (18a)

≤ −α3(|x(tk)|) (18b)

The time derivative of the Lyapunov function along the state tra-
jectory x(t) under ū∗i (tk|tk), i = 1, . . . ,m, for t ∈ [tk, tk+1), is:

V̇ (x(t)) =
∂V (x(t))

∂x

(
f (x(t))+

m∑
i=1

gi(x(t))ū∗i (tk|tk)+ b(x(t))w(t)
) (19)

Adding and subtracting ∂V (x(tk))
∂x (f (x(tk)) +

∑m
i=1gi(x(tk))ū

∗

i (tk|tk))
to/from Eq. (19), we obtain the following inequality by utilizing
Eq. (18), the Lipschitz properties in Eqs. (4)–(5), and the distur-
bance bound |w| ≤ θ :

V̇ (x(t)) ≤ −α3(|x(tk)|)+
(
Lx+

m∑
i=1

Lūi ū
∗

i (tk|tk)
)
|x(t)− x(tk)| + Lwθ

(20)

From the continuity of x(t) and Eq. (3), the following bound holds
for all t ∈ [tk, tk+1):

|x(t)− x(tk)| ≤ M∆ (21)

Because S(x(tk)) > STH , it follows from Eqs. (9) and (17) that
x(tk) ∈ Ωρ/Ωρs . In addition, since Eqs. (20)–(21) and the bounds
on ūi, i = 1, . . . ,m, also hold, the following bound on V̇ (x(t)) can
be written for t ∈ [tk, tk+1):

V̇ (x(t)) ≤ −α3(α−12 (ρs))+
(
Lx +

m∑
i=1

Lūi ū
max
i

)
M∆+ Lwθ (22)

When Eq. (8) is satisfied, there exists ϵw > 0 such that the
following inequality holds for S(x(tk)) > STH :

V̇ (x(t)) ≤ −ϵw/∆ ∀ t ∈ [tk, tk+1) (23)

Integrating the bound of Eq. (23) on t ∈ [tk, tk+1) gives:

V (x(tk+1)) ≤ V (x(tk))− ϵw (24a)
V (x(t)) ≤ V (x(tk)), ∀ t ∈ [tk, tk+1) (24b)

whenever S(x(tk)) > STH and them Safeness Index-S-DLEMPC’s are
feasible.When Safeness Index-S-DLEMPC1has no feasible solution
and x(t0) ∈ Ωρ , then h̄(x(tk)) is applied for t ∈ [tk, tk+1), which
will decrease the value of the Lyapunov function between tk and
tk+1 according to Proposition 1. Therefore, regardless of whether
ū∗i (tk|tk), i = 1, . . . ,m, or h̄(x(tk)) is implemented throughout a
given sampling period when S(x(tk)) > STH , V (x(tk+1)) < V (x(tk))
and the sequence of control actions implemented until S(x(tk)) ≤
STH will thus drive the closed-loop state into Lyapunov level sets
with a smaller upper bound on the Lyapunov function. This will
eventually drive the state into the safety zone, because the control
actions will drive the state toward Ωρmin throughout every sam-
pling period and thus into Ωρmin if S(x(tk)) is greater than STH at
every sampling time until x(tk) ∈ Ωρmin (the state is within the
safety zone after it is within Ωρmin from Eq. (17), regardless of the
shape of the safety zone).

To prove that x(t) ∈ Ωρ, ∀ t ∈ [t0,∞), when x(t0) ∈ Ωρ for a
process operated under the Safeness Index-S-DLEMPC implemen-
tation strategy, we begin by demonstrating that if x(tk) ∈ Ωρ , then
x(t) ∈ Ωρ ,∀ t ∈ [tk, tk+1), both in the case that a feasible solution of
the Safeness Index-S-DLEMPC design is applied to the process and
in the case that h̄(x(tk)) is instead applied for t ∈ [tk, tk+1). When
Safeness Index-S-DLEMPC 1 is feasible and x(tk) ∈ Ωρe such that
the constraint of Eq. (6g) is applied and satisfied by the solution
of Safeness Index-S-DLEMPC m under the implemented control
actions ū∗i (t|tk), t ∈ [tk, tk+N ), i = 1, . . . ,m, then x̃m(t) ∈ Ωρe for
t ∈ [tk, tk+1). From Propositions 2 and 3, and considering that the
maximum value of t − tk for t ∈ [tk, tk+1) is ∆, we have that

V (x(t)) ≤ V (x̃m(t))+ fV (fW (∆)) (25)

for t ∈ [tk, tk+1). Since V (x̃m(t)) ≤ ρe for t ∈ [tk, tk+1) and Eq. (16)
holds, we conclude that x(t) ∈ Ωρ for t ∈ [tk, tk+1). If x(tk) ∈
Ωρ/Ωρe (or S(x(tk)) > STH ), then Eq. (6i) is active and Eqs. (24a)–
(24b) hold, preventing the closed-loop state from leaving Ωρ in a
sampling period.When Safeness Index-S-DLEMPC 1 is not feasible,
then h̄(x(tk)) will be applied for t ∈ [tk, tk+1), in which case
Proposition 1 holds. A similar series of steps to those performed
in Eqs. (18)–(24) can be performed when Proposition 1 holds, with
the result that Eqs. (24a)–(24b) hold when Proposition 1 holds and
therefore x(t) ∈ Ωρ for t ∈ [tk, tk+1). Since throughout each
sampling period, a feasible solution to the m Safeness Index-S-
DLEMPC’s or h̄(x(tk)) maintains the closed-loop state within Ωρ ,
the sequence of control actions generated throughout time by
applying either the Safeness Index-S-DLEMPCm solution or h̄(x(tk))
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at each sampling time according to the Safeness Index-S-DLEMPC
implementation strategy maintains the closed-loop state in Ωρ .

Finally, the closed-loop state under the Safeness Index-S-
DLEMPC implementation strategy is ultimately bounded in Ωρmin
when tk > ts because when tk > ts, either a feasible solution to the
m Safeness Index-S-DLEMPC’s that had Eq. (6i) applied is imple-
mented for the process, or h̄(x(tk)) is implemented. In both cases,
Eqs. (24a)–(24b) hold and the Lyapunov function value decreases
until the closed-loop state entersΩρmin in finite time. After it enters
Ωρmin , it cannot come out due to the definition of Ωρmin in Eq. (9).

3.2. Safeness Index-based Iterative DLEMPC

In this section, we develop an iterative Safeness Index-based
DLEMPC paradigm (Safeness Index-I-DLEMPC). In the iterative
control design, each of them controllers calculates a control action
simultaneously. The jth controller solves for ū∗j (t|tk), t ∈ [tk, tk+N ),
j = 1, . . . ,m, and assumes that the control actions for which it
does not solve (ūz , z ∈ {1, . . . ,m}, z ̸= j) are set to h̄z(x̃(tq)),
∀ t ∈ [tq, tq+1), q = k, . . . , k + N − 1. After the solution for
each controller is obtained, either this solution is applied to the
process or is provided to (exchangedwith) the otherm−1 Safeness
Index-I-DLEMPC’s and each of the m controllers is then re-solved
assuming that the control actions for which it does not solve are
set to the values ū∗z (t|tk), t ∈ [tk, tk+N ), z ∈ {1, . . . ,m}, z ̸= j, that
have just been exchanged. Each re-solution of all m optimization
problems is called an iteration. The number of iterations of the
Safeness Index-I-DLEMPC is an integer c ∈ [1,∞), where c =
1 corresponds to the case that the m controllers have not yet
exchanged solutions. The termination condition for the iterations
of the Safeness Index-I-DLEMPC design can be chosen in various
ways; for example, a fixed number of iterations may be selected
after which the solution of allm controllers is implemented on the
process at tk and the optimization problems no longer exchange
solutions. Another consideration to prevent further iterations at tk
is to terminate the optimization problem when the value of the
objective function evaluated using the predicted nominal process
state trajectories when ūi(t) = ū∗i (t|tk), t ∈ [tk, tk+N ), i = 1, . . . ,m,
at iteration c shows no improvement compared to iteration c −
1 or improves by no more than a tolerance ϵ. However, even
with a termination condition based on the objective function,
there is no guarantee that the economic performance of a non-
linear process under the Safeness Index-I-DLEMPC design will be
comparable to that of the process under the centralized Safeness
Index-based LEMPC since the manipulated inputs in the Safeness
Index-I-DLEMPC are calculated by different controllers. The block
diagram in Fig. 2 shows the Safeness Index-I-DLEMPC, where the
solution to Safeness Index-I-DLEMPC j at time tk at iteration c is
denoted by ū∗j,c(t|tk), t ∈ [tk, tk+N ). The formulation of the jth
Safeness Index-I-DLEMPC is:

max
ūj∈S(∆)

∫ tk+N

tk

Le(x̃j(τ ), ū1(τ ), . . . , ūm(τ ))dτ (26a)

s.t. ˙̃x
j
(t) = f (x̃j(t))+

m∑
i=1

gi(x̃j(t))ūi(t) (26b)

ūj(t) ∈ Uj, ∀ t ∈ [tk, tk+N ) (26c)

ūz(t) = h̄z(x̃j(tk+r )), z ∈ {1, . . . ,m}, (26d)
z ̸= j, ∀ t ∈ [tk+r , tk+r+1),
r = 0, . . . ,N − 1, c = 1

ūz(t) = ū∗z,c−1(t|tk), z ∈ {1, . . . ,m}, (26e)
z ̸= j, t ∈ [tk, tk+N ), c ≥ 2

x̃j(tk) = x(tk) (26f)

Fig. 2. Block diagram of the Safeness Index-I-DLEMPC scheme.

V (x̃j(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ) (26g)
if x(tk) ∈ Ωρe

S(x̃j(t)) ≤ STH , ∀ t ∈ [tk, tk+N ) (26h)
if S(x(tk)) ≤ STH

∂V (x(tk))
∂x

gj(x(tk))ūj(tk)

≤
∂V (x(tk))

∂x
gj(x(tk))h̄j(x(tk)),

if x(tk) ∈ Ωρ/Ωρe or tk > ts or S(x(tk)) > STH (26i)

The notations of Eqs. (26a)–(26c) and Eqs. (26f)–(26h) follow that
in Eq. (6). Eq. (26d) is applied when c = 1 (i.e., no iteration has
yet been performed at tk) and assumes ūz(t) is h̄z(x), z ̸= j, im-
plemented in sample-and-hold throughout the prediction horizon.
Eq. (26e) is applied if c > 1 and sets ūz(t), z ∈ {1, . . . ,m}, where
z ̸= j, to the optimal solutions obtained from all Safeness Index-I-
DLEMPC’s except the jth at the prior iteration. Unlike the constraint
of Eq. (6i), in which all inputs appear, the contractive constraint of
Eq. (26i) only constrains the decision variable ūj(tk).

To obtain a solution to the Safeness Index-I-DLEMPC design at
tk, all m Safeness Index-I-DLEMPC’s must be feasible simultane-
ously. It may be more likely for allm controllers to be feasible at tk
when Eq. (26h) is applied if each vector ūi, i = 1, . . . ,m, contains
control actions that have a significant impact on S(x) and therefore
may give each of the m distributed controllers more flexibility to
satisfy Eq. (26h). For some processes, feasibility of the m Safeness
Index-I-DLEMPC’s for several iterations may improve process eco-
nomic performance because the controllers can exchange solutions
and re-solve Eq. (26) to attempt to improve process economic
performance only if the solutions of all m controllers at the prior
iteration are feasible. Unlike the computation time of the Safeness
Index-S-DLEMPC, which is equal to the summation of the compu-
tation times of each of the m controllers, the computation time
of the iterative control architecture (at one iteration) is equal to
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the maximum computation time among all m Safeness Index-I-
DLEMPC’s (the sum of the computation times of all iterations per-
formed is the total computation time of the iterative architecture).
This indicates that increasing the number of distributed controllers
(i.e., increasing m) may improve the computation time compared
to using a smallerm because it parallelizes the computations more
significantly. As noted in Section 3.1, constraints beyond those
noted in Eq. (26)may be required to be satisfied by the process and
may affect the input partitioning. Therefore, tradeoffs between fea-
sibility, computation time, and economic performance may affect
input partitioning for the Safeness Index-I-DLEMPC design.

The solutions of the m Safeness Index-I-DLEMPC’s are calcu-
lated independently, with each controller assuming different val-
ues of ūz , z ∈ {1, . . . ,m} but z ̸= j, than are used by the
other controllers (e.g., Safeness Index-I-DLEMPC 1 assumes for
c = 1 that ū1 can be any piecewise-constant input trajectory
that satisfies the constraints of Eq. (26), but assumes that ū2 =

h̄2(x̃(tq)), ∀ t ∈ [tq, tq+1), q = k, . . . , k + N − 1, whereas Safeness
Index-I-DLEMPC 2 assumes that ū1 = h̄1(x̃(tq)), ∀ t ∈ [tq, tq+1),
q = k, . . . , k + N − 1, but that ū2 can be any piecewise-constant
input trajectory that satisfies the constraints of Eq. (26)). Therefore,
all m controllers may be feasible (i.e., Eqs. (26g)–(26h) may be
satisfied in Safeness Index-I-DLEMPC j by the nominal trajectory
of Eq. (1) under ū∗j (t|tk), t ∈ [tk, tk+N ), and the assumed control
actions in Eqs. (26d)–(26e)), but Eqs. (26g)–(26h) may not be
satisfied for the nominal system of Eq. (1) under the trajectories
ū∗1,c, (t|tk) . . . , ū

∗
m,c(t|tk), t ∈ [tk, tk+N ) (this trajectory is denoted

by x̃tot in the following) returned by the set of m Safeness Index-I-
DLEMPC’s at iteration c since that was not a condition required for
feasibility of any of the m Safeness Index-I-DLEMPC’s. Neverthe-
less, iteration c+1 is not guaranteed to be feasible unless x̃tot meets
the constraints of Eqs. (26g)–(26h). Therefore, satisfaction of those
constraints by the control actions returned at iteration c should be
checked before a new iteration is performed. If Eqs. (26g)–(26h)
are not satisfied by x̃tot and c > 1, the solution from iteration c −
1 should be implemented (this implementation strategy ensures
that the solution from iteration c−1 causes Eqs. (26g)–(26h) to be
met or iteration c would not have been performed). If Eqs. (26g)–
(26h) are not satisfied by x̃tot and c = 1, then h̄(x(tk)) should be
implemented (the solution to the m Safeness Index-I-DLEMPC’s
should not be implemented because satisfaction of Eqs. (26g)–
(26h) by x̃tot is required for the closed-loop stability results in the
next section). This gives the following implementation strategy of
the Safeness Index-I-DLEMPC design:

1. At tk, all m Safeness Index-I-DLEMPC’s receive a measure-
ment of the current state x(tk) from the sensors. Go to Step
2 (c = 1).

2. An attempt is made to solve allm Safeness Index-I-DLEMPC
optimization problems. If c = 1, Safeness Index-I-DLEMPC
j assumes ūz(t) = h̄z(x̃j(tk+r )), ∀ t ∈ [tk+r , tk+r+1), z ∈
{1, . . . ,m} but z ̸= j, r = 0, . . . ,N − 1. If c > 1,
Safeness Index-I-DLEMPC j assumes ūz(t) = ū∗z,c−1(t|tk), t ∈
[tk, tk+N ), z ∈ {1, . . . ,m} but z ̸= j. If allm Safeness Index-I-
DLEMPC’s are feasible, go to Step 3. Else, go to Step 4.

3. Evaluate whether V (x̃tot (t)) ≤ ρe and S(x̃tot (t)) ≤ STH , ∀ t ∈
[tk, tk+N ). Also, evaluate whether the iteration termination
conditions aremet (e.g., the objective function evaluated for
x̃tot and ū∗i,c(t|tk), i = 1, . . . ,m, t ∈ [tk, tk+N ) fails to improve
between two iterations). If Eqs. (26g)–(26h) are not satisfied
by x̃tot or the iteration termination condition is met, go to
Step 4. Else, any information required for evaluating the
iteration termination condition (e.g., the objective function
value) is stored, and go to Step 5 (c ← c + 1).

4. If c > 1, implement [ū∗1(tk|tk) . . . ū∗m(tk|tk)] =

[ū∗1,c−1(tk|tk) . . . ū∗m,c−1(tk|tk)]. Else, implement [ū∗1(tk|tk) . . .
ū∗m(tk|tk)] = [h̄1(x(tk)) . . . h̄m(x(tk))]. Go to Step 6.

5. Safeness Index-I-DLEMPC j receives the optimal solutions
ū∗z,c−1(t|tk), z = 1, . . . ,m, z ̸= j, t ∈ [tk, tk+N ), for j =
1, . . . ,m. Go to Step 2.

6. When a new state measurement is received at tk+1, go to
Step 1 (k← k+ 1).

3.2.1. Feasibility and closed-loop stability analysis for the Safeness
Index-I-DLEMPC implementation strategy

Theorem 2 provides sufficient conditions under which the im-
plementation strategy of the Safeness Index-I-DLEMPC maintains
closed-loop stability of a nonlinear process.

Theorem 2. Consider the system of Eq. (1) in closed-loop under the
implementation strategy (Steps 1–6 ) of the Safeness Index-I-DLEMPC
based on a controller h̄(x) that satisfies the conditions of Eq. (2). Let
ϵw > 0, ∆ > 0, ρ > ρe > ρs > 0 satisfy Eqs. (16) and (8). If
x(t0) ∈ Ωρ , ρmin ≤ ρe and N ≥ 1 where ρmin is defined as in Eq. (9)
and where the compact set Ωρmin satisfies Eq. (17), then the closed-
loop state x(t) of Eq. (1) is guaranteed to enter the safety zone in finite
time when x(t0) ∈ Ωρ , to be bounded within Ωρ at all times, and to
be ultimately bounded in Ωρmin .

Proof. The proof consists of two parts. In Part 1, we demonstrate
that the inputs applied to the process at every sampling time
have characterizable properties. In Part 2, we demonstrate that
this sequence of characterizable inputs guarantees the results of
Theorem 2.

Part 1. At each sampling time, according to the implementation
strategy of the Safeness Index-I-DLEMPC, either h̄(x(tk)) is imple-
mented on the process, or a feasible solution to all m Safeness
Index-I-DLEMPC’s (i.e., a solution satisfying Eqs. (26b)–(26i) in
Safeness Index-I-DLEMPC i, ∀ i = 1, . . . ,m) is implemented that
ensures V (x̃tot ) ≤ ρe and S(x̃tot ) ≤ STH from Step 3 of the
implementation strategy (feasibility of Safeness Index-I-DLEMPC’s
1 tom ensures that each implemented input ū∗i (t|tk), t ∈ [tk, tk+1),
i = 1, . . . ,m, satisfies Eqs. (26c) and (26i) because satisfaction of
these constraints depends only on the value of ū∗j (t|tk) calculated
by the controller and is not affected by the values of u∗z (t|tk), t ∈
[tk, tk+N ), z ∈ {1, . . . ,m}, z ̸= j).When c = 1, there is no guarantee
that a feasible solution to Eq. (26) exists in any of the m Safeness
Index-I-DLEMPC’s when Eq. (26h) is applied (however, a feasible
solution ū∗i,1(t|tk) = h̄i(x̃(tq)), ∀ t ∈ [tq, tq+1), q = k, . . . , k+ N − 1,
is guaranteed for Safeness Index-I-DLEMPC i, i = 1, . . . ,m, when
Eq. (26h) is not applied because this manipulated input trajectory
satisfies Eq. (26c) from Eq. (2), it satisfies Eq. (26g) when combined
with the manipulated input trajectories of Eq. (26d) by Eq. (10)
when ρmin ≤ ρe, and it trivially satisfies Eq. (26i)). When c > 1,
each iteration performed is guaranteed to have a feasible solution.
To show this, it is noted that if iteration c is attempted, then
ū∗i,c−1(t|tk), t ∈ [tk, tk+N ), i = 1, . . . ,m, met Eqs. (26c) and (26i)
from feasibility of those constraints at iteration c − 1 and ensured
that Eqs. (26g)–(26h) were satisfied by the nominal solution of
Eq. (1) under ū∗i,c−1(t|tk), t ∈ [tk, tk+N ), i = 1, . . . ,m, by Step 3
of the Safeness Index-I-DLEMPC implementation strategy. At iter-
ation c , Safeness Index-I-DLEMPC j sets ū∗z,c(t|tk) = ū∗z,c−1(t|tk),
t ∈ [tk, tk+N ), z ∈ {1, . . . ,m}, z ̸= j, by Eq. (26e) (the input
trajectory for the prior iteration except for ū∗j,c−1(t|tk)). Therefore,
ū∗j,c(t|tk) = ū∗j,c−1(t|tk), t ∈ [tk, tk+N ), is a feasible solution to
Safeness Index-I-DLEMPC j because it is guaranteed to satisfy all
constraints in Eq. (26) at iteration c since it satisfied them at
iteration c − 1 (even when the constraint of Eq. (26h) is applied).
When any of them Safeness Index-I-DLEMPC’s is infeasible for c =
1, h̄(x(tk)) is implemented, and Proposition 1 holds. Thus,whether a
feasible solution to the Safeness Index-I-DLEMPC’s is implemented
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or h̄(x(tk)), the implemented solution is characterizable and closed-
loop stability of a nonlinear system under such control actions can
be analyzed.

Part 2. We will now prove the three results of Theorem 2. First,
we prove that the Safeness Index-I-DLEMPC implementation strat-
egy guarantees that the closed-loop statewill enter the safety zone
in finite timewhenever x(tk) ∈ Ωρ but S(x(tk)) > STH . At each sam-
pling time that S(x(tk)) > STH and a feasible solution to them Safe-
ness Index-I-DLEMPC’s meeting the conditions checked in Step 3
of the Safeness Index-I-DLEMPC implementation strategy is imple-
mented on the process, the constraint of Eq. (26i) is applied in each
of the m Safeness Index-I-DLEMPC’s. Summing these constraints
gives Eq. (18a), and the results developed through Eqs. (18)–(24)
in the proof of Theorem 1 hold, showing that V (x(tk+1)) < V (x(tk)).
Alternatively, if h̄(x(tk)) is applied at tk when S(x(tk)) > STH , then
by Proposition 1, V (x(tk+1)) < V (x(tk)). This indicates that at each
sampling time that S(x(tk)) > STH , the implementation strategy
of the Safeness Index-I-DLEMPC drives x(t) from a Lyapunov level
set to one with a lower upper bound on the Lyapunov function.
The state will either enter the safety zone before it enters Ωρmin
or will be driven to Ωρmin (contained within the safety zone from
Eq. (17)) in finite time. We next prove that the closed-loop state
remains bounded in Ωρ at all times under the Safeness Index-
I-DLEMPC implementation strategy. When a feasible solution to
the Safeness Index-I-DLEMPC is implemented on the process, this
solution satisfies the constraint of Eq. (26g) for x̃tot and/or the
constraint of Eq. (26i). When the constraint of Eq. (26i) is applied
(regardless ofwhether the constraint of Eq. (26g) is simultaneously
applied), the analysis from the prior paragraph indicates that Eq.
(24b) holds and therefore, V (x(t)) ≤ V (x(tk)), ∀ t ∈ [tk, tk+1), so
that the state cannot leave Ωρ within ∆ if x(tk) ∈ Ωρ . If Eq. (26g) is
applied but Eq. (26i) is not (i.e., x(tk) ∈ Ωρe , tk < ts, and S(x(tk)) ≤
STH ), then utilizing Propositions 2 and 3, Eqs. (16) and (26g), and
Step 3 of the implementation strategy, we conclude that Eq. (25)
holds with x̃tot replacing x̃m and that x(t) ∈ Ωρ , ∀ t ∈ [tk, tk+1),
if x(tk) ∈ Ωρe . If h̄(x(tk)) is implemented on the process and Eq. (8)
holds, then Eqs. (18)–(24) hold and Eq. (24b) shows that x(t) cannot
leave Ωρ in ∆ if x(tk) ∈ Ωρ . Therefore, under the implementation
strategy of the Safeness Index-I-DLEMPC, the implemented control
action at tk ensures that x(t) ∈ Ωρ , ∀ t ∈ [tk, tk+1), whenever
x(tk) ∈ Ωρ and therefore, x(t) ∈ Ωρ throughout the length of
operation if x(t0) ∈ Ωρ .

Finally, we prove that the closed-loop state is ultimately
bounded in Ωρmin when tk > ts. In this case, either Eq. (26i)
holds (if a feasible solution to the Safeness Index-I-DLEMPC is
implemented) or h̄(x(tk)) is implemented. In both cases from the
analysis above, V (x(tk+1)) < V (x(tk)) for x(tk) ∈ Ωρ/Ωρs . Once

x(tk) ∈ Ωρs , then by definition of Ωρmin , the closed-loop state will
not leave Ωρmin .

Remark 2. An ethylene oxidation process example from [11]
was examined under a centralized Safeness Index-based LEMPC
and under both iterative and sequential Safeness Index-based
DLEMPC’s. The results (see [12]) indicate that the two distributed
designs may offer improved computation times compared to the
centralized design while maintaining the state in the safety zone
and improving economic performance compared to steady-state
operation.
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