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a b s t r a c t

Model predictive control (MPC) has beenwidely adopted in the chemical and petrochemical industry due
to its ability to account for actuator constraints and multi-variable interactions for complex processes.
However, closed-loop stability is not guaranteed within the framework of MPC without additional
constraints or assumptions. An MPC formulation that can guarantee closed-loop stability in the presence
of uncertainty is Lyapunov-based model predictive control (LMPC) which incorporates stability con-
straints based on a stabilizing Lyapunov-based controller. Though LMPC drives the closed-loop state
trajectory to a steady-state, it lacks the ability to adjust the rate at which the closed-loop state ap-
proaches the steady-state in an explicit manner. However, there may be circumstances in which it would
be desirable, for safety reasons, to be able to adjust this rate to avoid triggering of safety alarms or
process shut-down. In addition, there may be scenarios in which the current region of operation is no
longer safe to operate within, and another region of operation (i.e., a region around another steady-state)
is appropriate. Motivated by these considerations, this work develops two novel LMPC schemes that can
drive the closed-loop state to a safety region (a level set within the stability region where process
functional safety is ensured) at a prescribed rate or can drive the closed-loop state to a safe level set
within the stability region of another steady-state. Recursive feasibility and closed-loop stability are
established for a sufficiently small LMPC sampling period. A comparison between the proposed method,
which effectively integrates feedback control and safety considerations, and the classical LMPC method is
demonstrated with a chemical process example. The chemical process example demonstrates that the
safety-LMPC drives the closed-loop state into a safe level set of the stability region two sampling times
faster than under the classical LMPC in the presence of process uncertainty.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Process functional safety is critical to industrial chemical plants.
The catastrophic incidents and disasters that have occurred over
the past decades highlight the importance of safety and can be
studied to prevent similar accidents in the future (Crowl and Louvar
(2011)). These accidents may cause chemical substances to be
released which can affect limited resources such as water and
agricultural resources (Valipour (2012); Yannopoulos et al. (2015);
Valipour and Singh (2016); Valipour (2016)). The frequency of ac-
cidents has motivated systematic methods for evaluating and
improving process functional safety to be developed. For example,
in (Leveson (2004)), an accident model is developed that can
nd Biomolecular Engineering,
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improve process functional safety. In (Kadri et al. (2014)), methods
are developed to apply corrective actions based on data analysis,
measurement and sorting processes to achieve meaningful process
functional safety performance improvements. Process control is
also utilized to control the risks that are associated with chemical
processes (Bahr (2015)). Despite these methods for assessing and
improving process functional safety, technological advances and
further process/plant intensification continue to increase the
complexity of maintaining safe process operation
(Venkatasubramanian (2011); Leveson and Stephanopoulos (2014);
Mannan et al. (2015)). Therefore, implementing control techniques
that can predict and control the interactions between the compo-
nents of these complex processes is necessary
(Venkatasubramanian (2011)). In chemical plants, techniques such
as hazards and operability (HAZOP) (Khan and Abbasi (2000);
Dunj�o et al. (2010)) analysis, fault trees and what-if scenarios are
performed to evaluate the safety of a process. These techniques
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usually result in a report that describes the damage that would
result from an accident. Chemical process safety has traditionally
been addressed through process design decisions (e.g., designing
the process to be inherently safe in terms of its chemistry and
physics Kletz and Amyotte (2010); Gentile et al. (2003); Heikkil€a
et al. (1996)) and control and safety system design decisions (e.g.,
adding measurement sensors for critical process variables that
trigger an alarm when an undesirable measurement is obtained).

Inherently safer designs are achieved through four primary
principles: minimize (reduce the quantity of hazardous substances
used and stored by a process), substitute (utilize less hazardous
process chemistries), moderate (dilute chemicals or change oper-
ating conditions), and simplify (choose designs with less
complexity and less potential to create hazardous conditions when
faults or errors occur) Kletz (1985). Though designs can be made
inherently safer, it is not possible to eliminate all hazards Kletz
(2009), so a safety system, comprised of several independent
layers, should be added to chemical processes. The layers of pro-
tection commonly used in industry are the basic process control
system (BPCS), safety critical alarm system, safety trips/interlocks
system, safety relief devices, containment and emergency response.
Ideally, the layers of the safety system should not be activated
regularly because a basic process control system (BPCS) regulates
process variables to their set-points. When the control system is
unable to keep the process variables within acceptable ranges due
to, for example, equipment faults or unusually large process dis-
turbances, alarms are triggered that alert operators to the issue so
that actions can be taken to prevent further unsafe deviations.
When operators are unable to bring the process back into a normal
operating regime and the process variables exceed allowable
values, the safety trips/interlocks system is triggered, which takes
automatic and extreme actions such as forcing a valve to its fully
open position to bring the process to a safer state of operation.
Safety relief devices such as relief valves are used on vessels that
can become highly pressurized very quickly, such that the control
system, alarms, and safety trips/interlocks system would not be
effective for preventing an explosion without the relief device.
Containment is used to prevent hazardous material from entering
the environment or injuring workers when the other layers of the
safety hierarchy fail to prevent release of the material. The emer-
gency response plan is used in severe cases that were not mitigated
by any of the other layers of the safety hierarchy to minimize the
impact to humans and the environment. The layers of the safety
hierarchy are independent of each other and of the control system
(i.e., they have separate sensors, computing elements, and actua-
tors) to allow redundancy and improve safety Marlin (2012).

In (Leveson and Stephanopoulos (2014)), it has been argued that
safety considerations can be used as constraints in control systems
to combine process functional safety and process control in one
framework. Nevertheless, the majority of the control techniques
currently in use such as, for example, the traditional single-input/
single-output (SISO) feedback control systems (e.g., PID control-
lers), would be incapable of enforcing safety constraints in the
process control layer (Whiteley (2006)). Traditional SISO control
strategies can be replaced with advanced control techniques that
can potentially integrate safety and process control in one frame-
work (Leveson and Stephanopoulos (2014)). One example of an
advanced control system is tracking model predictive control
(MPC), which is widely adopted in industry. MPC is a control
technique that applies control actions (manipulated inputs) which
are computed by formulating and solving a dynamic optimization
problem on-line that takes advantage of a dynamic process model
while accounting for process constraints (e.g., Mayne et al. (2000);
Qin and Badgwell (2003); Mhaskar et al. (2006)). Several research
works have integrated safety with MPC; for instance, an adaptive
learning-based model predictive controller was designed to
decouple safety and performance in an optimization framework
(Aswani et al. (2013)) and a two-mode MPC with a standard mode
and a reactive safety mode was designed to account for unexpected
state-constraint changes (Carson et al. (2013)). In (Ahooyi et al.
(2016)), a model-predictive safety system was developed that can
detect operation hazards in a proactive fashion using model pre-
dictions to aid in safety alarm triggering. In addition, a recent
research work has proposed data-based probabilistic models for
special-cause event occurrences and operator response-times to
evaluate the likelihood of alarm and safety interlock system failures
(Moskowitz et al. (2016)).

Recently, a form of MPC termed Lyapunov-based model pre-
dictive control (LMPC) has gained attention (Mhaskar et al. (2006))
due to its guaranteed and explicit closed-loop stability properties in
terms of characterization of the closed-loop stability region that the
standard tracking MPC formulation with terminal stability con-
straints lacks. Though LMPC is guaranteed to drive the closed-loop
state to a small neighborhood of the steady-state, the rate at which
the LMPC drives the closed-loop state toward the equilibrium using
a quadratic objective function and Lyapunov-based stability con-
straints alone may not be fast enough to ensure process functional
safety. This can pose a safety issue if there are process transients
that make it necessary for the closed-loop state to approach a safe
level set of operation (safety region) around the steady-state more
quickly and can lead to triggering safety alarms or process shut-
down. Furthermore, quantifying a priori the rate at which the
closed-loop state will move toward the safety region for a given
tuning of theweightingmatrices in the quadratic objective function
is not possible in general, showing that adjusting the weighting
matrices to achieve a required rate of approach to the safety region
would not be sufficient.

Hence, it is necessary to develop an LMPC design that can adjust
the rate at which the state approaches the safe operating region in
unsafe scenarios. Moreover, the safe operating region may shift
from a level set around one steady-state to a level set around
another, and the LMPC should be able to drive the state to the newly
computed safe operating region. However, the classical LMPC
would be incapable of accomplishing this task because it is not
designed to drive the closed-loop state to a safe operating region
that corresponds to a new steady-state. To date, no work on
formulating an MPC scheme that utilizes safety-based constraints,
which controls the rate at which the closed-loop state approaches
the steady-state in a direct manner, with guaranteed closed-loop
stability properties, has been completed. Motivated by the above
considerations, two LMPC schemes are first designed that can
achieve safe operation of nonlinear processes by controlling the
rate at which the closed-loop state moves toward a safe operating
regionwhich is associated with the original operating steady-state,
and second, modifications to these LMPC schemes are developed
that allow the closed-loop state to be driven to a level set within the
stability region of another steady-state. Recursive feasibility and
closed-loop stability of both safety-LMPC schemes are addressed
for a sufficiently small LMPC sampling period. Using a chemical
process example, the applicability of the proposed LMPC with
safety-based constraints, which effectively integrates feedback
control and safety considerations, is demonstrated and the per-
formance is compared with that of a classical LMPC scheme.

2. Preliminaries

2.1. Notation

The transpose of a vector x is represented by the symbol xT . The
Euclidean norm of a vector is denoted by the operator j,j. A level set
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of a sufficiently smooth, positive definite scalar-valued function
VðxÞ is represented by the symbol Ur (Ur :¼ fx2Rn : VðxÞ � rg).
The symbol SðDÞ denotes the family of piecewise constant, right-
continuous functions with period D � 0. Set subtraction is deno-
ted by the operator ‘/’, that is, A=B :¼ fx2Rn : x2A; x;Bg.

2.2. Class of systems

Nonlinear process systems are considered with the following
state-space description

_x ¼ f ðx;u;wÞ (1)

where x2Rn is the state of the system, and u2Rm and w2Rw are
the control (manipulated) input vector and the disturbance vector,
respectively. The admissible input values are restricted to be in m
nonempty convex sets Ui4R, i ¼ 1;…;m, defined as
Ui :¼ fui2R : umin

i � ui � umax
i g, where umax

i and umin
i , i ¼ 1;…;m,

are the magnitudes of the input constraints. The vector function f is
assumed to be a locally Lipschitz vector function of its arguments
with f ð0;0;0Þ ¼ 0. Further, the disturbance vector w is assumed to
bounded within the set W :¼ fw2Rw : jwj � q; q>0g (i.e., w2W).

2.3. Lyapunov-based controller assumption

The class of nonlinear systems of Eq. (1) is constrained to a class of
stabilizable nonlinear systems. Particularly, the existence of a
Lyapunov-based controller hðxÞ ¼ ½h1ðxÞ/hmðxÞ�T which renders the
origin of Eq. (1) with wðtÞ≡0 (the nominal closed-loop system)
asymptotically stable with hiðxÞ2Ui, i ¼ 1;…;m, inside a given sta-
bility region Ur is assumed. Further, it is assumed that there exist
(Massera (1956); Khalil (2002)) a sufficiently smooth Lyapunov
function VðxÞ for the nominal closed-loop system and class K func-
tions aið,Þ; i ¼ 1;2;3;4, such that the following inequalities hold:

a1ðjxjÞ � VðxÞ � a2ðjxjÞ
vVðxÞ
vx

f ðx; h1ðxÞ;…; hmðxÞ;0Þ � �a3ðjxjÞ����vVðxÞvx

���� � a4ðjxjÞ

hiðxÞ2Ui; i ¼ 1;…;m

(2)

for all x2D4Rn where D is an open neighborhood of the origin. The
stability region Ur of the process of Eq. (1) under hðxÞ (where
Ur4D) is defined as a level set of the Lyapunov function within
which _V is negative. Designs for stabilizing control laws that ac-
count for input constraints for different classes of nonlinear sys-
tems have been developed (see, for instance, (Lin and Sontag
(1991); Kokotovi�c and Arcak (2001); El-Farra and Christofides
(2003); Christofides and El-Farra (2005)).

When x is maintained within the compact set Ur, ui2Ui,
i ¼ 1;…;m, and w2W , we have from the continuity of x, the local
Lipschitz property of f, and the smoothness of VðxÞ that there exist
positive constants M, Lx, Lw, L

0
x and L

0
w such that the following in-

equalities hold:

j f ðxðtÞ;uðtÞ;wðtÞÞj � M (3)

j f ðx;u;wÞ � f ðx�;u;0Þj � Lxjx� x�j þ Lwjwj (4)

����vVðxÞvx
f ðx;u;wÞ � vVðx�Þ

vx
f ðx�;u;0Þ

���� � L
0
x

����x� x�
����þ L

0
w

����w
���� (5)

for all x; x�2Ur, ui2Ui, i ¼ 1;…;m, and w2W .
2.4. Lyapunov-based model predictive control

Lyapunov-based model predictive control (LMPC) (Mhaskar
et al. (2006)) is a model predictive control (MPC) strategy that in-
corporates Lyapunov-based constraints to ensure closed-loop sta-
bility of the optimization-based controller. The formulation of the
classical LMPC optimization problem is as follows:

min
uðtÞ2SðDÞ

ZtkþN

tk

h
~xðtÞTQ~xðtÞ þ uðtÞTRuðtÞ

i
dt (6a)

s:t: _~xðtÞ ¼ f ð~xðtÞ;uðtÞ;0Þ (6b)

uðtÞ2U;ct2½tk; tkþNÞ (6c)

~xðtkÞ ¼ xðtkÞ (6d)

Vð~xðtÞÞ � r;ct2½tk; tkþNÞ (6e)

vVðxðtkÞÞ
vx

f ðxðtkÞ;uðtkÞ;0Þ

� vVðxðtkÞÞ
vx

f ðxðtkÞ;hðxðtkÞÞ;0Þ
(6f)

where the decision variable of the optimization problem is the
piecewise constant input trajectory uðtÞ. The input constraint of Eq.
(6c) restricts the computed input trajectories to be within the ad-
missible set over the prediction horizon. The nominal model of Eq.
(1) is incorporated to predict the evolution of the system over the
prediction horizon ND (Eq. (6b)). The notation ~xðtÞ and xðtkÞ de-
notes the predicted state trajectory and the state measurement
obtained at the sampling time tk, respectively. The stage cost of the
LMPC of Eq. (6) is a quadratic function that penalizes the deviations
of the state and inputs from their corresponding steady-state values
(Eq. (6a)). The weighting matrices Q and R are tuned to manage the
trade-off between the amount of control energy required to move
the state to the steady-state and the speed of approach to this
steady-state (even though this trade-off is not transparent). Eqs.
(6e) and (6f) represent the Lyapunov-based constraints where the
constraint of Eq. (6e) maintains the closed-loop state of the process
of Eq. (1) within the stability region Ur over the prediction horizon.
Finally, the constraint of Eq. (6f) (contractive constraint) forces the
time derivative of the Lyapunov function under the classical LMPC
to be less than the time derivative of the Lyapunov function under
the explicit stabilizing controller hðxÞ.
3. Safety-based LMPC design

In this section, an LMPC design is developed that incorporates
safety-based constraints (termed safety-LMPC). In the first sub-
section, the motivation for adding safety-based constraints to the
classical LMPC scheme of Eq. (6) is provided to form safety-LMPC. In
the second and third subsections, the formulations of two proposed
safety-LMPC optimization problems are given and the proofs of
recursive feasibility and closed-loop stability of one of the safety-
LMPC schemes are presented, with discussion of such properties
for the other safety-LMPC scheme. In the fourth subsection, the
changes required to the proposed safety-LMPC formulations to
change the current region of operation to another one around a
different steady-state are presented.
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3.1. Motivation for safety-based constraints

Tracking MPC is widely used in the chemical process industries.
The main purpose of tracking MPC is to steer the process to the
operating steady-state and maintain process operation at this
steady-state. However, in the presence of disturbances, tracking
MPC does not guarantee closed-loop stability. Alternatively, the
LMPC design of Eq. (6) uses the explicit stabilizing controller hðxÞ to
ensure closed-loop stability by decreasing the Lyapunov function
value at the beginning of each sampling time. Though LMPC is thus
able to guarantee closed-loop stability of the process, always
maintaining process operation within Ur and driving the state to a
neighborhood of the steady-state, there may be scenarios in which
a region within Ur becomes unsafe to operate within. In this case,
the closed-loop stability properties of LMPC, and the rate at which
it drives the state to a neighborhood of the origin through the
combination of the contractive constraint and tracking objective
function, may not be enough to ensure safe process operation. The
rate of approach to the steady-state is lower bounded by a worst-
case rate at which hðxÞ would drive the closed-loop state to the
steady-state when implemented in sample-and-hold, but other-
wise is determined by the weighting matrices Q and R and the
penalties they place on deviations of the states and inputs from
their steady-state values. The only flexibility this classical LMPC
formulation offers for changing the rate of approach to the steady-
state when process monitoring logic determines that the state
needs to move to a smaller level set within the stability region
quickly to avoid safety alarms or process shut-down is to adjust Q
and R on-line. However, determining appropriate values of Q and R
for a desired rate of approach to the safe region of operation is
difficult. A method for enhancing the rate of approach to the
steady-state when an unsafe situation is detected would allow the
process control system to enhance process functional safety.

One method for improving the rate at which the closed-loop
state approaches the steady-state is by shrinking the level set
used within the LMPC formulation on-line when an unsafe situa-
tion is detected. A safe level set of the stability region Ursp3Ur,
termed the safety region, could be identified, outside of which the
enhanced rate of decrease would be imposed by shrinking the
upper bound on VðxÞ to force the state to enter smaller level sets at
a desired rate. This would have the effect of forcing the state to
move toward the origin at a rate potentially faster than that which
would be achieved using the quadratic objective and contractive
constraint alone. In this present work, two LMPC schemes are
developed termed safety-LMPC 1 and safety-LMPC 2 that can
enhance the rate at which the closed-loop state approaches Ursp .

3.2. Safety-LMPC 1 formulation

Safety-LMPC 1 decreases the upper bound on the Lyapunov
function with time to enhance the rate of approach of the closed-
loop trajectories to the safety region by imposing a hard
constraint within the LMPC scheme that decreases the upper bound
on VðxÞ at a fixed rate. The hard constraint, which can be utilized in
place of Eq. (6e), is as follows:

Vð~xðtÞÞ � rsp þ
�
VðxðtkÞÞ � rsp

�
e�aðt�tkÞ;

ct2½tk; tkþNÞ
(7)

where rsp represents the safety set-point. The constant a represents
the convergence rate, which can be assigned a value consistent
with the rate of approach required to enter the safety region before
safety issues occur (which may be a very large value if the required
rate of approach is very fast). Based on the value of a, the closed-
loop state is required to be within the safety region Ursp after a
certain number of sampling times to satisfy the constraint. As a
result of this constraint, the closed-loop state may enter the safety
region more rapidly than under the classical LMPC design of Eq. (6).
The proposed safety-LMPC 1 guarantees closed-loop stability of the
system of Eq. (1) in the presence of uncertainty when the safety-
LMPC 1 optimization problem is feasible; however, recursive
feasibility is not guaranteed because the safety-based constraints
may not satisfy the rate that the hard constraint of Eq. (7) requires
(i.e., the parameter a is significantly large). When the closed-loop
state enters Ursp , the constraint of Eq. (7) can be replaced with
the constraint of Eq. (6e) with r ¼ rsp.

Another idea for formulating safety-LMPC 1 with a hard upper
bound on the rate of decrease of the Lyapunov function is to utilize
a dynamic upper bound ~r on Vð~xðtkÞÞ that also must meet Eq. (7) as
follows:

min
uðtÞ;KcðtÞ2SðDÞ

ZtkþN

tk

h
~xðtÞTQ~xðtÞ þ uðtÞTRuðtÞ

i
dt (8a)

s:t: _~xðtÞ ¼ f ð~xðtÞ;uðtÞ;0Þ (8b)

uðtÞ2U;ct2½tk; tkþNÞ (8c)

~xðtkÞ ¼ xðtkÞ (8d)

KcðtÞ � 0;ct2½tk; tkþNÞ (8e)

Vð~xðtÞÞ � ~rðtÞ � rsp þ
�
VðxðtkÞÞ � rsp

�
e�aðt�tkÞ;

ct2½tk; tkþNÞ
(8f)

d~r
dt

¼ KcðtÞ
�
rsp � ~rðtÞ

�
(8g)

~rðtkÞ ¼ VðxðtkÞÞ; if xðtkÞ;Ursp

~rðtkÞ ¼ rsp; if xðtkÞ2Ursp (8h)

vVðxðtkÞÞ
vx

f ðxðtkÞ;uðtkÞ;0Þ

� vVðxðtkÞÞ
vx

f ðxðtkÞ; hðxðtkÞÞ;0Þ
(8i)

where the notation follows that in Eq. (6). In addition to the
manipulated input trajectory uðtÞ, the gain KcðtÞ is another decision
variable that is restricted to take nonnegative values over the
prediction horizon ND (Eq. (8e)). The performance index of the
safety-LMPC 1 is the objective function of the classical LMPC of
Eq. (6).

Eqs. (8e)e(8h) represent the safety-based constraints. The
contractive constraint (Eq. (8i)) ensures that the closed-loop state
enters Ursp in finite time by utilizing the explicit stabilizing
controller hðxÞ to compute control actions that decrease the value
of the Lyapunov function at least as much as the decrease given by
hðxÞ. Though the constraint of Eq. (8i) ensures that the closed-loop
state of the process of Eq. (1) converges to the safety region Ursp at a
rate that is at least as fast as that which the explicit stabilizing
controller hðxÞwould offer (it may be faster depending on Q and R),
the role of the safety-based constraints is to enhance the rate of
decrease of the state until it enters Ursp in the required number of
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sampling times that the hard constraint of Eq. (8f) imposes, and
then to resume the normal rate of approach to the steady-state
using the classical LMPC scheme. This allows the original tuning
of the objective function with respect to Q and R to retain its sig-
nificance once the state is within a safe region of operation, and also
allows for the rate of decrease toward the safety region to poten-
tially be faster than it would be under the classical LMPC design
alone. Specifically, the upper bound (Eq. (7)) in the constraint of Eq.
(8f) enforces a fast rate of approach of the state to Ursp by causing
the optimization problem to choose a Kc that will decrease the
upper bound ~rðtÞ on the Lyapunov function value of the predicted
state as quickly as the rate of approach (parametrized by a) required
to enter the safety region. This has the potential to decrease the
level set of the predicted Lyapunov function value Vð~xðtÞÞ over the
prediction horizon more significantly than under the classical
LMPC design alone, causing the closed-loop state to move more
quickly toward the safety region Ursp . The rate at which ~r decreases
is governed by the magnitude of the decision variable KcðtÞ in the
first-order ordinary differential equation of Eq. (8g). Moreover, the
predicted state trajectory ~xðtÞ is maintained within the predicted
level set U~rðtÞ over the prediction horizon by the constraint of Eq.
(8f), so that the predicted state cannot leaveU~r in a given prediction
horizon once it enters it. To ensure that the classical LMPC design of
Eq. (6) can be recovered when the optimization problem of Eq. (8)
causes the state to enter Ursp, the safety-LMPC utilizes state feed-
back to set the initial condition of the constraint of Eq. (8g) to the
value of the Lyapunov function at the current state when the state
measurement is outside the safety region Ursp , or to the safety set-
point rsp if the current state enters the safety region (i.e.,
xðtkÞ2Ursp ) (Eq. (8h)). Thus, when xðtkÞ enters the safety region, the
classical LMPC design is recovered because the constraint of Eq. (8g)
will be set to zero and the bound of Eq. (7) is removed in Eq. (8f).

The constraint of Eq. (8f) may be more likely to become infea-
sible than the constraint of Eq. (7) because it requires that the dy-
namics of both the nominal process (Eq. (8b)) and the dynamics of ~r
(Eq. (8g)) cause Eq. (8f) to be met. However, the LMPC of Eq. (8) has
the advantage of being more readily transformed to the soft
constraint formulation that will be developed in the next subsec-
tion than does the LMPC formulation of Eq. (6) with Eq. (7) (and
hence further discussion on this point will be deferred to that
subsection). Despite the possible infeasibility of the safety-LMPC 1
formulation, the safety-based constraint allows it to require an
explicit rate of decrease of the Lyapunov function value until the
closed-loop state enters the safety region, which would be difficult
to achieve by tuning Q and R if the safety-based constraints were
not utilized.

Remark 1. The proposed safety-LMPC design does not study the
process complexity itself (the nonlinear, coupled nature of the
process dynamics is considered to be an innate aspect of the physics
and chemistry of the process), rather this work is focused on the
problem of the complexity (difficulty) of ensuring safe operation of
nonlinear, highly coupled processes. The new solution proposed by
this work is a control design that explicitly incorporates safety-
based state constraints that guarantee recursive feasibility and
closed-loop stability of a process under the controller, and also
guarantee that the closed-loop process can be driven into a safe
region of operation in finite time, under certain conditions. The
new controller design proposed below can handle the difficulty
associated with the conventional tracking MPC formulation in
which it is not obvious how to adjust the matrices Q and R on-line
so that the rate of approach to the steady-state when process
monitoring logic determines that the state needs tomove faster to a
safe region of operation is enhanced. However, the proposed safety-
LMPC design enhances the rate of approach to the steady-state by
incorporating safety-based constraints and a safety penalty term
that can shrink the level set used within the MPC formulation on-
line. Subsequently, the process state will move toward the safe
region of operation at a rate potentially faster than that which
would be achieved using the quadratic objective function of the
conventional tracking MPC. Thus, the proposed formulation avoids
the difficulty of tuning the Q and R matrices due to safety consid-
erations and can still achieve the goal of driving the closed-loop
state to a region of operation closer to the steady-state at a faster
rate than would otherwise be attained with the Q and R matrices
unchanged.

Remark 2. It is noted that the safety-based constraints do not
guarantee a decrease in the Lyapunov function value of the closed-
loop state at the rate given by Eq. (8g) because the dynamics of VðxÞ
are not those in Eq. (8g) and furthermore process disturbances will
cause the value of VðxÞ along the actual closed-loop state trajectory
to differ from the predicted upper bound in Eq. (8). However, when
KcðtÞ and uðtÞ decrease ~rðtÞ significantly, it is possible that the
actual process state will move significantly closer to the safety re-
gion for that same value of the input, which may cause the closed-
loop state under Eq. (8) to be driven into Ursp more quickly than it
would be under Eq. (6).

Remark 3. Though KcðtÞ is piecewise constant with period D in
Eq. (8), it is not a physical quantity and thus could be piecewise
constant with a different period if desired.

Remark 4. Though it is possible to continue to enforce the
enhanced rate of decrease to the steady-state from Eqs. (7 or 8f)
even after the closed-loop state enters Ursp , this would not in
general be desirable because the weighting matrices Q and R are
typically chosen to allow a trade-off between the rate of approach
to the steady-state and the use of the inputs. If the safety-based
constraints of the safety-LMPC were always active and drove the
state quickly toward the origin, Q and R would lose their value as
tuning parameters because the effect would be like having a large
Q.

Remark 5. An alternative upper bound in Eqs. (7) and (8f) is
ðrsp þ ðVðxðtsaf ÞÞ � rspÞe�aðt�tsaf ÞÞ, where tsaf corresponds to the
time at which process monitoring logic requests that the closed-
loop state begin to move toward the safety region. This upper
bound ensures that the only change in the value of the upper bound
is due to t increasing, whereas the upper bound in Eqs. (7) and (8f)
changes not only due to t changing, but also due to changes in
VðxðtkÞÞ and tk. Thus, the requested rate of decrease toward the
safety region corresponding to the former upper bound may be
more easily understood a priori using the decaying exponential,
whereas it is more difficult to determine the rate of decrease
throughout time with the latter upper bound because at any given
sampling period it depends on the process statemeasurement xðtkÞ,
which is affected by prior chosen control actions and process dis-
turbances that cannot be known a priori.
3.3. Safety-LMPC 2 formulation

The second safety-LMPC formulation that is proposed in this
work is a modification of the formulation of safety-LMPC 1 such
that the resulting controller, termed safety-LMPC 2, forces the
closed-loop state to go to Ursp while recursive feasibility and closed-
loop stability of the process of Eq. (1) under safety-LMPC 2 are
guaranteed. Themathematical formulation of safety-LMPC 2 for the
process of Eq. (1) is as follows:
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min
uðtÞ;KcðtÞ2SðDÞ

ZtkþN

tk

h
~xðtÞTQ~xðtÞ þ uðtÞTRuðtÞ þ f

�
rsp � ~rðtÞ

�i
dt

(9a)

s:t: _~xðtÞ ¼ f ð~xðtÞ;uðtÞ;0Þ (9b)

uðtÞ2U;ct2½tk; tkþNÞ (9c)

~xðtkÞ ¼ xðtkÞ (9d)

KcðtÞ � 0;ct2½tk; tkþNÞ (9e)

Vð~xðtÞÞ � ~rðtÞ;ct2½tk; tkþNÞ (9f)

d~r
dt

¼ KcðtÞ
�
rsp � ~rðtÞ

�
(9g)

~rðtkÞ ¼ VðxðtkÞÞ; if xðtkÞ;Ursp

~rðtkÞ ¼ rsp; if xðtkÞ2Ursp (9h)

vVðxðtkÞÞ
vx

f ðxðtkÞ;uðtkÞ;0Þ

� vVðxðtkÞÞ
vx

f ðxðtkÞ; hðxðtkÞÞ;0Þ
(9i)

where the notation follows that in Eq. (8). The performance index of
the safety-LMPC 2 formulation includes the objective function of
the classical LMPC of Eq. (6) and a safety penalty term. The safety
penalty term fðrsp � ~rðtÞÞ penalizes the deviation of the upper
bound of the Lyapunov function value ~rðtÞ from the safety set-point
rsp over the prediction horizon. Specifically, the penalty term in the
objective can be appropriately weighted to enforce a fast rate of
approach of the state toUrsp by causing the optimization problem to
choose a Kc that will decrease the upper bound ~rðtÞ on the Lya-
punov function value of the predicted state rapidly. This has the
potential to decrease the value of the Lyapunov function along the
predicted closed-loop state trajectories (Vð~xðtÞÞ) over the predic-
tion horizon more significantly than under the classical LMPC
design alone, causing the closed-loop state to move more quickly
toward the safety region Ursp . However, the rate of decrease to the
safety region does not necessarily meet the convergence rate
required by Eq. (7) because safety-LMPC 2 enforces the hard
constraint of Eq. (7) as a soft constraint through a penalty term in
the objective function to drive the closed-loop state to Ursp while
feasibility of the optimization problem is guaranteed for all times.

It was noted in the prior section that the benefits of the dynamic
upper bound ~r utilized within the safety-LMPC 1 formulation in Eq.
(8) (as opposed to the formulation of Eq. (6) with Eq. (7)) would be
more clear after the formulation of safety-LMPC 2 had been intro-
duced, and theywill now be discussed. Specifically, the formulation
of Eq. (8) clarifies the relationship between the desired rate of
approach to the safety region as parametrized by a and the gain Kc

calculated by the LMPC (i.e., a specific gain Kc must be chosen in any
given sampling period if the rate of approach parameterized by a is
to be met in Eq. (8f)). This is helpful in understanding how the rate
of approach to the steady-state is embedded within the soft
constraint formulation of Eq. (9) through the gain Kc. Furthermore,
the closeness of the formulations of Eqs. (8) and (9) is beneficial
because it provides a strategic set-up for, for example, employing
logic that enforces a specific rate of decrease through Eq. (8) when
that optimization problem is feasible but then switches to the soft
constraint formulation of Eq. (9) with minimal adjustment of the
optimization problem when Eq. (8) becomes infeasible (i.e., only a
penalty on the objective function and the removal of the upper
bound on ~r in Eq. (8f) need to be implemented when infeasibility
occurs to obtain a control action that can guarantee closed-loop
stability and controller feasibility; the transition to the modified
optimization problem is not as smooth with the formulation of Eq.
(6) with Eq. (7), for which new constraints and optimization vari-
ables would need to be added to the optimization problem to
enable the transition).

Safety-LMPC 2 provides two primary benefits in terms of
enforcing the rate of approach of the closed-loop state to the safety
region that cannot easily be obtained by tuning Q and R in an LMPC
formulation without safety-based constraints. Firstly, safety-LMPC
2 may aid as noted in the previous paragraph in developing a
controller design that can easily transition between the LMPC
formulation of Eq. (8) and that of Eq. (9) whenever Eq. (8) becomes
infeasible to encourage the closed-loop state to meet the explicit
rate of approach to the safety region (that could not easily be
determined by adjusting Q and R) that is enforced by Eq. (8f) as
closely as possible. Furthermore, even if safety-LMPC 2 is utilized
on its own (i.e., not with Eq. (8)), safety-LMPC 2 still allows for one
parameter (the weighting on the penalty on ðrsp � ~rÞ in the
objective function) to be adjusted to alter the rate of approach to
the safety region as desired. When it is unclear how large this
weight should be for a desired rate of approach, it can be adjusted
based on process data. Specifically, the rate at which the closed-
loop state moves toward the safety region can be evaluated based
on measurements of the process state between sampling times.
Then, based on whether this rate is appropriate for the safety
concerns at hand, the weight can be increased (to drive the process
state toward the safety region more quickly) or decreased (if the
rate is faster than required and is using more control action than
desired). The relative weighting on the safety penalty term
compared to the quadratic terms in the objective function may
depend on the process dynamics and the length of time remaining
until it is desired that the state be within the safety region. This
allows the difficult problem of adjusting Q and R at the same time
(which involves not just tuning two different quantities with
respect to one another, but also all of the individual values within
both matrices) to achieve a desired rate of approach to the safety
region to be simplified to the problem of adjusting only one
parameter, the weighting on the penalty term.

Remark 6. Themain objective of our work is to enhance the safety
performance of the conventional tracking MPC by imposing safety-
based constraints and Lyapunov-based constraints into the MPC so
that the process state variables can be driven to the safety region at
a faster rate than the conventional tracking MPC would offer. The
safety region is defined as a level set of the stability region where
the process state variables stay within a range that prevents trig-
gering of safety alarms. Similar to the conventional tracking MPC,
the proposed safety-LMPC can be applied to nonlinear systems that
do not obey the superposition principle which defines linear sys-
tems. Our scope includes the nonlinear processes and it also in-
cludes a number of assumptions regarding process safety, such as
that there are no actions from the safety system interferingwith the
actions of the control system, and that the region of safe operation
can be pre-determined on-line as a level set. Also, this work con-
siders controlling a nonlinear process (in terms of its dynamics, the
underlying differential equations describing the physico-chemical
phenomena are nonlinear ordinary differential equations) with
an MPC that includes safety constraints. MPC's should be equipped
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with a sufficiently accurate process model to provide accurate state
predictions; in this work, it is considered that the MPC includes a
nonlinear process model to make state predictions. It is in that
sense that the MPC incorporates nonlinearity (i.e., the MPC de-
termines optimal control actions to apply based on how it predicts
these control actions will affect the state of a nonlinear process
throughout the prediction horizon, and also the control actions are
applied to a nonlinear process). Therefore, LMPC is a nonlinear
controller as it has constraints and uses a nonlinear model to
compute control actions that regulate the nonlinear process state -
LMPC is not a linear controller.
3.3.1. Feasibility and stability analysis of safety-LMPC 2
In this subsection, sufficient conditions are presented such that

the state of the closed-loop system of Eq. (1) under the safety-LMPC
2 design is guaranteed to enter the safety region Ursp in finite time
and reside within the safety region Ursp thereafter. Moreover, it is
proved that the closed-loop state is guaranteed to be ultimately
bounded within a compact set containing the origin. Because
safety-LMPC 1 is not guaranteed to be recursively feasible but
safety-LMPC 2 is, the feasibility and stability analysis is only pre-
sented for safety-LMPC 2, though the closed-loop stability results
also hold for both safety-LMPC 1 formulations (Eq. (6) with Eq. (7)
and Eqs. (8a)e(i)) when those formulations are recursively feasible.
The following theorem provides sufficient conditions that prove
practical stability of the system of Eq. (1) under the proposed
safety-LMPC 2 design.

Theorem 1. Consider the system of Eq. (1) in closed-loop under
the safety-LMPC 2 design of Eqs. (9a)e(i) based on a controller hðxÞ
that satisfies the conditions of Eq. (2). Let εw >0, D>0,
r> rsp > rs >0 satisfy

�a3

�
a�1
2 ðrsÞ

�
þ L

0
xMDþ L

0
wq � �εw=D: (10)

If xðt0Þ2Ur, rmin � r and N � 1 where

rmin ¼ maxfVðxðt þ DÞÞ : VðxðtÞÞ � rsg; (11)

then the closed-loop state xðtÞ of Eq. (1) is guaranteed to enter the
safety region Ursp in finite time and then reside there, and also the
state xðtÞ of the closed-loop system is ultimately bounded in Urmin

.

Proof. The proof consists of two parts. The first part includes the
proof of the feasibility of the safety-LMPC 2 optimization problem
for all states xðtÞ2Ur. The second part includes the proof of the two
results of Theorem 1.

Part 1: The proposed safety-LMPC 2 of Eq. (9) is always a feasible
optimization problem. The feasibility of the safety-LMPC 2 formu-
lation is guaranteed because the following solution is always
feasible:

KcðtÞ ¼ 0;c t2½tk; tkþNÞ
uðtÞ ¼ hð~xðtnÞÞ;c t2½tn; tnþ1Þ

with n ¼ k;…;N þ k� 1;c ~xðtÞ2Ur

(12)

The proof of feasibility of the solution of Eq. (12) is given in
four steps: 1) the gain KcðtÞ ¼ 0;ct2½tk; tkþNÞ is feasible since it
satisfies Eq. (9e) over the prediction horizon 2) when KcðtÞ ¼ 0
throughout the prediction horizon, then by Eq. (9g), ~rðtÞ will be
equal to its initial value from Eq. (9h) throughout the prediction
horizon, and hence the upper bound on the Lyapunov function
in Eq. (9f) will remain constant (i.e., either
~rðtkÞ ¼ VðxðtkÞÞ0Vð~xðtÞÞ � VðxðtkÞÞ;ct2½tk; tkþNÞ; if xðtkÞ;Ursp or
~rðtkÞ ¼ rsp0Vð~xðtÞÞ � rsp;ct2½tk; tkþNÞ if xðtkÞ;Ursp ) 3) when ~r is
constant, the feasibility of uðtÞ ¼ hð~xðtnÞÞ;ct2½tn; tnþ1Þ, with
n ¼ k;…;N þ k� 1, is guaranteed because it satisfies the input
constraint of Eq. (9c) and also, because of the closed-loop stability
property of the Lyapunov-based controller hðxÞ (Mu~noz de la Pe~na
and Christofides (2008)), it satisfies the constraint of Eq. (9f) and
(4)) finally, uðtÞ ¼ hð~xðtnÞÞ;ct2½tn; tnþ1Þ, with n ¼ k;…;N þ k� 1,
satisfies the contractive constraint of Eq. (9i) making it a feasible
input trajectory for the safety-LMPC 2 design. Therefore, the so-
lution of Eq. (12) is a feasible solution, and recursive feasibility of
the safety-LMPC 2 follows if the closed-loop state trajectory is
maintained within Ur.

Part 2: In this part, it is proved that if the closed-loop state xðtkÞ
is initialized within the stability region, but outside the safety re-
gion (i.e., xðtkÞ2Ur=Ursp ), then within finite time the closed-loop
state will enter the safety region Ursp , and also will be ultimately
bounded in a small region containing the origin Urmin

.
If xðtkÞ2Ur=Urs , then due to the contractive constraint of Eq. (9i)

in the safety-LMPC 2 formulation of Eq. (9), the Lyapunov function
of the closed-loop state will decrease for the first sampling period
in the prediction horizon by at least the worst-case rate given by
the explicit stabilizing controller hðxÞ. Owing to the closed-loop
stability property of the explicit controller hðxÞ (Mu~noz de la Pe~na
and Christofides (2008)), the Lyapunov function value of the
closed-loop state under the safety-LMPC designwill decrease in the
next sampling period (i.e., VðxðtÞÞ � VðxðtkÞÞ;ct2½tk; tkþ1), which is
derived in (Heidarinejad et al. (2012))). Thus, if xðtkÞ2Ur=Urs then
Vðxðtkþ1ÞÞ<VðxðtkÞÞ and in finite time, the closed-loop state con-
verges toUrs (i.e., xðtkþjÞ2Urs where j is a finite positive integer). By
the definitions of rs and rmin in Theorem 1, once the closed-loop
state converges to Urs4Urmin

, it remains inside Urmin
for all times.

This proves the second result of Theorem 1 which is the ultimate
boundedness of the closed-loop state in Urmin

. However, the first
result of Theorem 1which is that the closed-loop state converges to
the safety region Ursp in finite time and then resides there is a result
of the previous proof due to the assumption that rsp > rs which is
stated in Theorem 1.

3.4. Safety region changes

The safety-LMPC formulations of Eq. (6) with Eq. (7) and of Eqs.
(8) and (9) assume thatUrsp is a subset ofUr. However, theremay be
scenarios in which the safety logic unit indicates that regions
within the current stability region Ur are no longer safe to operate
within, but that another safety region that is a subset of a different
stability region is appropriate. Therefore, it is necessary to modify
the safety-LMPC during the transition between the stability regions
in amanner that allows the region of operation to shift. Themanner
in which the safety-based LMPC formulation should be modified
depends on the configuration of the old stability and safety regions
(Ur1 and Ursp1 respectively) with respect to the newly requested
stability and safety regions (Ur2 and Ursp2 respectively). This will be
illustrated by presenting two example configurations in the context
of the safety-LMPC 2 of Eq. (9), though the closed-loop stability
results noted will also hold for the safety-LMPC 1 formulations of
Eq. (6) with Eq. (7) and of Eq. (8) when those LMPC's are feasible.

Fig. 1 shows one possible configuration (Configuration 1) of the
two different safe regions of operation Ursp1 and Ursp2 . For this
configuration, the safety-LMPC 2 of Eq. (9) will be applied with
rsp ¼ rsp1 until the closed-loop state enters Ursp1 . At the switching
time ts, the safety logic unit determines that Ursp2 is the new safe
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region of operation, which is a subset of the stability region Ur2 .
Therefore, at this time rsp in the formulation of Eq. (9) will be
changed to rsp2 (the quadratic terms in the objective function,
nominal process model, and Lyapunov function will also be refor-
mulated to have their origins at the new steady-state). Because the
first safety region Ursp1 is contained within the stability region Ur2
and the safety-LMPC 2 of Eq. (9) with rsp ¼ rsp2 drives the closed-
loop state into Ursp2 from any initial condition in Ur2 , the safety-
LMPC 2 of Eq. (9) is feasible after ts and guarantees that the
closed-loop state will be driven from Ursp1 into Ursp2 in finite time.

Fig. 2 shows a second possible configuration (Configuration 2) of
Ur1 , Ursp1 , Ur2 , and Ursp2 . In this case, Ursp1 is not fully within the
stability region Ur2 . To drive the closed-loop state from any initial
condition within Ursp1 into Ursp2 after ts, one method is to remove
the constraints of Eqs. (9e)e(9i) and the safety penalty term in the
objective function (formulated with rsp ¼ rsp1) from Eq. (9) at ts,
and to instead utilize a terminal region constraint (e.g.,
~xðtsþNÞ2Ur2 ) with a sufficiently long prediction horizon N to drive
the closed-loop state into Ur2 by the end of the prediction horizon.
Fig. 2. Configuration 2 for switching between two different safe regions of operation.
However, due to the hard terminal constraint, feasibility of this
optimization problem is not guaranteed. The formulation of the
proposed safety-LMPC for the process of Eq. (1) to be used during
the transition from Ursp1 to Ur2 is as follows:

min
uðtÞ2SðDÞ

ZtkþN

tk

h
~xðtÞTQ~xðtÞ þ uðtÞTRuðtÞ

i
dt (13a)

s:t: _~xðtÞ ¼ f ð~xðtÞ;uðtÞ;0Þ (13b)

uðtÞ2U;ct2
h
tk; tkþN

�
(13c)

~xðtkÞ ¼ xðtkÞ (13d)

V2ð~xðtÞÞ � r2;ct2
h
tsþN ; tkþN

i
(13e)

V1ð~xðtÞÞ � r1;ct2
h
tk; tsþN

�
(13f)

where the objective function, nominal process model, and Lyapu-
nov function V1 for the old steady-state have their minimums at the
original steady-state, but the Lyapunov function V2 for the new
steady-state has its origin at the new steady-state. In the tran-
sitioning period, the terminal region constraint of Eq. (13e) will be
activated with a sufficiently long prediction horizon N to force the
closed-loop state to be within the second stability region Ur2 at the
end of the prediction horizon tsþN . If the closed-loop state is outside
the second stability region Ur2 at the switching time ts, feasibility of
the proposed controller of Eq. (13) is not guaranteed. The
Lyapunov-based constraint of Eq. (13f) is imposed to guarantee that
the closed-loop state chooses a path that does not go outside the
first stability region Ur1 to maintain closed-loop stability of the
process in the transitioning period. In other words, the closed-loop
state will be driven to the intersection between the two stability
regions Ur1 and Ur2 . After that, the safety-LMPC of Eq. (8) will be
applied with rsp ¼ rsp2 and the objective function, Lyapunov
function, and nominal process model with their origins at the new
steady-state to drive the closed-loop state into the safety region
Ursp2 .

An alternative method for attempting the safety region transi-
tion is to remove the contractive constraint from Eq. (9) at ts and to
add a soft constraint (e.g., a penalty on ðVð~xðtÞÞ � r2Þ) in the
objective function to encourage the LMPC to compute control ac-
tions that drive the closed-loop state into Ur2 . Though this
approach would always be feasible, there is still no guarantee that
the state will be driven intoUr2 . However, once the state enters Ur2 ,
the LMPC problem of Eq. (9) with rsp ¼ rsp2 and the appropriate
modifications to the objective function, f, and V could be used to
drive the state into Ursp2 . These two example configurations show
that themanner inwhichUr1 ,Ursp1 , Ur2 , andUrsp2 are related to each
other (e.g., how they intersect) determines how the safety-LMPC 2
of Eq. (9) should be modified at ts until the state enters Ur2 to drive
the state into the new stability region, and also whether this can be
achieved while guaranteeing closed-loop stability and feasibility.
4. Application to a chemical process example

To illustrate the safety advantage of the safety-LMPC paradigm
over the classical LMPC, a chemical process example is considered
which is a well-mixed, non-isothermal continuous stirred tank
reactor (CSTR). The reaction transforms a reactant A to a product B
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through an irreversible, exothermic second-order reaction A/B.
The feed of the CSTR consists of pure A and the inlet concentration
of A is CA0. The inlet temperature and feed volumetric flow rate of
the reactor are T0 and F, respectively. By applying material and
energy balances under standard modeling assumptions, the con-
centration of A (CA) and temperature T are modeled as follows:

dCA
dt

¼ F
V
ðCA0 � CAÞ � k0e

�E
RT C2

A (14a)

dT
dt

¼ F
V
ðT0 � TÞ þ �DH

rLCp
k0e

�E
RT C2

A þ Q
rLCpV

(14b)

The notation DH, k0, E, and R represent the enthalpy of reaction,
pre-exponential constant, activation energy, and ideal gas constant,
respectively. The reactor volume V, heat capacity Cp, and fluid
density rL within the reactor are assumed constant. Table 1 shows
the values of the process parameters used in the simulations. The
dynamic model of Eqs. (14a) and (b) is numerically simulated by
using the explicit Euler method with an integration time step of
hc ¼ 10�5 hr.

The two states of the CSTR are CA and T, and the two manipu-
lated inputs are CA0 and Q. In this simulation, the safety-LMPC 2 of
Eq. (9) is applied to the closed-loop CSTR due to its guaranteed
closed-loop stability and recursive feasibility properties in the
presence of uncertainty. The process of Eq. (14) is operated at an

unstable steady-state ½CAs Ts� ¼
�
2 kmol

m3 400 K
�

with associated

steady-state input values ½CA0sQs� ¼
�
4 kmol

m3 0 kJ
hr

�
to demonstrate

the ability of the safety-LMPC 2 to enhance process functional
safety even around open-loop unstable operating points. The
nonlinear process of Eq. (14) can be formulated as the following
class of nonlinear systems

_xðtÞ ¼ ~f ðxðtÞÞ þ g1ðxðtÞÞu1ðtÞ þ g2ðxðtÞÞu2ðtÞ (15)

where xðtÞ and uðtÞ denote the state and the manipulated inputs of
the CSTR in deviation variable form (i.e., xT ¼ ½CA � CAsT � Ts� is the
state vector and uT ¼ ½CA0 � CA0sQ � Qs� is the manipulated input

vector), ~f
T ¼ ½~f 1 ~f 2� is a vector containing the terms in the CSTR

model that do not include u1 or u2, and gTi ¼ ½gi1 gi2� ði ¼ 1;2Þ is a
vector containing the terms in the CSTRmodel that multiply u1 (for
i ¼ 1) or u2 (for i ¼ 2). The magnitudes of the manipulated inputs

are bounded as follows:
����u1

���� � 3:5 kmol
m3 and

����u2
���� � 5� 105 kJ

hr.

The safety-LMPC 2 for the process of Eq. (14) is designed to
compute feasible control actions that drive the closed-loop state
into the safety region quickly. Due to operation at the unstable
steady-state, a Lyapunov-based controller of the form
hT ðxÞ ¼ ½h1ðxÞ h2ðxÞ� is constructed to estimate the stability region
Table 1
Parameter values.

T0 ¼ 300 K F ¼ 5 m3

hr
V ¼ 1:0 m3 E ¼ 5� 104 kJ

kmol

k0 ¼ 8:46� 106 m3

kmolhr
DH ¼ �1:15� 104 kJ

kmol
Cp ¼ 0:231 kJ

kgK
R ¼ 8:314 kJ

kmolK

rL ¼ 1000 kg
m3

CAs ¼ 2 kmol
m3

Ts ¼ 400 K CA0s ¼ 4 kmol
m3

Qs ¼ 0 kJ
hr
for the safety-LMPC 2. Also, a quadratic Lyapunov function
VðxÞ ¼ xTPx is used to construct the Lyapunov-based controller hðxÞ
where the weights of the P matrix were chosen to account for the
different ranges of numerical values for each state. After extensive
simulations, the P matrix was determined to be:

P ¼
�
850 18
18 3

�

To estimate the stability region Ur, the following feedback law
(Sontag control law (Lin and Sontag (1991))) is utilized for the inlet
concentration and heat rate (i.e., ui ¼ hiðxÞ; i ¼ 1;2):

hiðxÞ ¼

8>><
>>:

�
L~f V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L~f V

2 þ LgiV
4

q
LgiV

; if LgiVs0

0; if LgiV ¼ 0

(16)

where L~f V and LgiV are the Lie derivatives of the Lyapunov function
VðxÞ with respect to the vector fields ~f ðxÞ and giðxÞ respectively.
Both control laws are subject to input constraints. Under the control
laws of Eq. (16) with input constraints, the stability region Ur is
determined as a sufficiently large level set where the time-
derivative of the Lyapunov function, _V , along the closed-loop
state trajectories is negative. Fig. 3 shows the methodology for
choosing the stability region. Specifically, the state-space region
shown in Fig. 3 was discretized and the value of _V along the closed-
loop state trajectories of Eq. (14) under the control laws of Eq. (16)
was evaluated at each discretized point. The grey region in Fig. 3 is
the open neighborhood around the originwhere _V is negative. After
these extensive simulations, r was found with value 2800.

The process was initiated from an initial condition that is rela-
tively far from the steady-state (i.e., xðt0Þ ¼ xint ¼�
� 1:42192 kmol

m3 22 K
�
, and Vðxðt0ÞÞ ¼ 2044:42) at time t0. At this

time, it is determined that the process state must move quickly into
a region where the temperature deviates from the steady-state
value by no more than 4:33 K (i.e., rsp ¼ 50) to avoid an unsafe
operating condition. For this scenario, the abilities of the safety-
LMPC 2 and classical LMPC formulations are compared to meet
this safety goal with and without process disturbances. Both con-
trollers drive the closed-loop state toward the steady-state, but the
safety-LMPC design accomplishes this while controlling the rate at
which the closed-loop state converges to the steady-state. The
safety-LMPC 2 and the classical LMPC formulations considered are
both implemented with a prediction horizon N ¼ 10, a sampling
period D ¼ 0:01 hr and an operating period of length tf ¼ 1 hr. The
interior point solver Ipopt (W€achter and Biegler (2006)) was used
to solve the optimization problems at each sampling time.

The safety-LMPC 2 formulation follows that in Eq. (9) with the
objective function:

Lð~x;u;KcÞ ¼
ZtkþN

tk

"
~xðtÞT~xðtÞ þ uðtÞTuðtÞ þ

���rsp � ~rðtÞ
���2

hc

#
dt (17)

The first two terms of Eq. (17) are the objective function of the
classical LMPC where the weighting matrices are

Q ¼ R ¼
�
1 0
0 1

�

This weighting was chosen because it is considered that the heat
input u2 is costly, and since the magnitude of u2 can be much larger
than the magnitude of x or u1, the specified weighting matrices



Fig. 3. The stability region (black ellipse) for the closed-loop CSTR under the explicit stabilizing controller hðxÞ of Eq. (16).
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prevent large values of u2 from being requested and causing the
value of Eq. (17) to become large. The third term in Eq. (17) is the
safety penalty termwhere the squared Euclidean norm is chosen to
Fig. 4. The state profiles for the closed-loop CSTR under the classical LMPC design

xint ¼
�
� 1:42192 kmol

m3 22 K
�
without process disturbances.
penalize the deviation of the Lyapunov function value of the pre-
dicted closed-loop state ~rðtÞ from the safety set-point rsp. The
safety penalty term is significantly penalized by a largeweight 1=hc.
of Eq. (6) and under the safety-LMPC design of Eq. (9) for the initial condition



Fig. 5. Manipulated input profiles for the closed-loop CSTR under the classical LMPC design of Eq. (6) and under the safety-LMPC design of Eq. (9) for the initial condition xint ¼�
� 1:42192 kmol

m3 22 K
�
without process disturbances.
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Hence, the safety-LMPC 2 seeks to drive the closed-loop state into
the safety region Ursp in a short time while using the minimum
amount of energy u2.

Figs. 4e5 show the closed-loop state trajectories and the
manipulated input trajectories of the CSTR, initiated from xint , un-
der the safety-LMPC scheme and the classical LMPC scheme
without process disturbances. From Fig. 4, the closed-loop state
trajectory of the CSTR for the safety-LMPC 2 scheme reached the
steady-state before that for the classical LMPC scheme. This is
because the safety penalty term is highly penalized, which causes
the closed-loop state to converge to the safety region more quickly
than it does under the classical LMPC, and to then go to the steady-
state. As shown in Fig. 5, the safety-LMPC 2 utilized a large amount
of energy (i.e., u2 ¼ �2:6� 105 kJ

hr) and the maximum amount of
material (i.e., u1 ¼ 3:5 kmol

m3 ) in the first sampling period of the
simulation to drive the closed-loop state into the safety region
quickly due to the highweight on the safety penalty term. However,
the classical LMPC used very little thermal energy (u2) and less
material (u1) in the first sampling period of the simulation to
minimize the value of the quadratic LMPC objective function.

Figs. 6e7 depict the Lyapunov function value of the closed-loop
state, and the state-space profile for the closed-loop state, under
both the safety-LMPC 2 and the classical LMPC without process
disturbances. In Fig. 6, the closed-loop state under the safety-LMPC
2 entered the safety level set Ursp two sampling times before that
under the classical LMPC. Fig. 7 demonstrates that the state-space
profile for the closed-loop state under the classical LMPC drove
the closed-loop state to the safety region even in the presence of
disturbances due to the combination of the contractive constraint
and the quadratic cost function of the classical LMPC. In addition,
the safety-LMPC 2 scheme enhances the rate at which the closed-
loop state approaches the safety region by the use of the safety
penalty term and the safety-based constraints. After the closed-
loop state trajectories under both schemes entered the safety
region, they both reached the steady-state.
Figs. 8e9 show the corresponding state and manipulated input

profiles starting from the same initial condition but under bounded
process disturbances (wT ¼ ½w1 w2� is the bounded disturbance
vector corresponding to Gaussian white noise with variances

s1 ¼ 1 kmol
m3 and s2 ¼ 40 K) with

����w1

���� � 1 kmol
m3 and jw2j � 40 K . In

the presence of disturbances, the safety-LMPC computes a value of
u1 that goes up to its allowable maximum value and u2 reduces to
its allowable minimum value in the first sampling period of the
simulation to decrease the Lyapunov function value of the closed-
loop state quickly, but the safety-LMPC eventually computes that
both inputs should remain approximately at their steady-state
values. Figs. 10 and 11 show the Lyapunov function value of the
closed-loop state, and the state-space profile for the closed-loop
state, under both the safety-LMPC 2 and the classical LMPC under
bounded process disturbances. In the presence of uncertainty, the
closed-loop state under the safety-LMPC 2 entered the safety re-
gion two sampling times before that under the classical LMPC
(Fig. 10). Figs. 11 and 7 show that the closed-loop state trajectory
under the safety-LMPC 2 chose a different path than the one for the
classical LMPC, which led to an earlier entrance to the safety region
by two sampling times in the presence and absence of uncertainty.

Remark 7. The proposed control-safety system integration
methodology (safety-LMPC) is demonstrated in the context of the
traditional continuous stirred tank reactor (CSTR) example. The
CSTR example uses a generic A-> B reaction which corresponds to
numerous industrial reactions. Generic reactions can be used to
represent various industrial reactions including the production of
propylene glycol from propylene oxide, which can be considered
unsafe due to its exothermic nature and open-loop unstable steady-
state (conceptually similar to the unstable steady-state analyzed for



Fig. 6. The Lyapunov function value with time for the closed-loop CSTR under the classical LMPC design of Eq. (6) and under the safety-LMPC design of Eq. (9) for the initial

condition xint ¼
�
� 1:42192 kmol

m3 22 K
�
without process disturbances. The safety set-point rsp is also shown.

Fig. 7. The state-space profile for the closed-loop CSTR under the classical LMPC design of Eq. (6) and under the safety-LMPC design of Eq. (9) for the initial condition xint ¼
�
�

1:42192 kmol
m3 22 K

�
without process disturbances.
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Fig. 8. The state profiles for the closed-loop CSTR under the classical LMPC design of Eq. (6) and under the safety-LMPC design of Eq. (9) for the initial condition

xint ¼
�
� 1:42192 kmol

m3 22 K
�
with process disturbances.

Fig. 9. Manipulated input profiles for the closed-loop CSTR under the classical LMPC design of Eq. (6) and under the safety-LMPC design of Eq. (9) for the initial condition xint ¼�
� 1:42192 kmol

m3 22 K
�
with process disturbances.
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the CSTR of Eq. (14)) fromwhich open-loop deviations may result in
the state moving toward a stable steady-state with a relatively high
temperature. Therefore, incorporating safety-based constraints
within the control system can reduce the number of alarms because
the control system is now working to explicitly keep the closed-
loop state in a safe region at all times.



Fig. 10. The Lyapunov function value with time for the closed-loop CSTR under the classical LMPC design of Eq. (6) and under the safety-LMPC design of Eq. (9) for the initial

condition xint ¼
�
� 1:42192 kmol

m3 22 K
�
with process disturbances. The safety set-point rsp is also shown.

Fig. 11. The state-space profile for the closed-loop CSTR under the classical LMPC design of Eq. (6) and under the safety-LMPC design of Eq. (9) for the initial condition xint ¼
�
�

1:42192 kmol
m3 22 K

�
with process disturbances.
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5. Conclusion

In this work, two LMPC schemes with safety-based constraints
were presented to integrate feedback control and process func-
tional safety within a unified framework. The motivation for the
proposed safety-LMPC design was given, in particular that it can be
formulated to drive the closed-loop state to a safe region of oper-
ation at a desired rate, which cannot easily be accomplished by
tuning the weighting matrices in the quadratic objective function.
The safety-LMPC's vary the upper bound on the level set of the
Lyapunov function to achieve the improved rate of approach to the
safety region, and they can also be modified to shift the region of
operation from a level set around one steady-state to a level set
around another. For a sufficiently small sampling period, a proof of
recursive feasibility and closed-loop stability of a class of nonlinear
systems under one of the safety-LMPC formulations in the presence
of uncertainty was given. The safety advantage of the safety-LMPC
paradigm over the classical LMPC paradigmwas illustrated through
a chemical process example. Nevertheless, the safety-based
controller design was developed with a centralized model predic-
tive control (MPC) structure; thus, computation time limitations
within a sampling period may reduce the effectiveness of such a
controller design for promoting process safety. An alternative MPC
architecture that is intended to improve the computation time of
the MPC algorithm is a distributed model predictive control
(DMPC) architecture Christofides et al. (2011); Scattolini (2009).
This MPC architecture has been investigated for computation time
benefits since it can reduce the number of decision variables in each
of the distributed optimization problems and may be able to
terminate the optimization problems before the optimal solution is
found while maintaining feasibility and closed-loop stability of the
controller. A future work can be done to integrate a distributed
Lyapunov-based model predictive control architecture formulated
with safety-based constraints to decrease the computation time of
the centralized safety-LMPC design.
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