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Maintaining safe operation of chemical processes and meeting environmental constraints are issues of paramount
importance in the area of process systems and control engineering, and are ideally achieved while maximizing economic
profit. It has long been argued that process safety is fundamentally a process control problem, yet few research efforts
have been directed toward integrating the rather disparate domains of process safety and process control. Economic
model predictive control (EMPC) has attracted significant attention recently due to its ability to optimize process opera-
tion accounting directly for process economics considerations. However, there is very limited work on the problem of
integrating safety considerations in EMPC to ensure simultaneous safe operation and maximization of process profit.
Motivated by the above considerations, this work develops three EMPC schemes that adjust in real-time the size of the
safety sets in which the process state should reside to ensure safe process operation and feedback control of the process
state while optimizing economics via time-varying process operation. Recursive feasibility and closed-loop stability are
established for a sufficiently small EMPC sampling period. The proposed schemes, which effectively integrate feedback
control, process economics, and safety considerations, are demonstrated with a chemical process example. VC 2016
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Introduction

Safe operation of chemical processes plays a vital role in the
chemical and petrochemical industry. It has been reported that
the 20 accidents that caused the largest property damage losses
in the hydrocarbon industry from 1972 to 2011 cost $14.6 bil-
lion in such losses.1 Clearly, process safety has a great impact
on economic profitability, stable production, environmental
damage, and human injury.2 As technological advances
increase the economic profitability of chemical processes, the
complexity of ensuring safe operation increases.3 A good strat-
egy to handle such complex processes is to introduce methods
that can predict and control the interactions between the com-
ponents of the complex processes.4 In industry, the safety of a
chemical process is often evaluated through methods based on
accident causation and statistics such as hazards and operabil-
ity studies, fault trees, event trees, what-if scenarios, and
worst-case scenarios, which are performed by engineers,
chemists, operators, industrial hygienists, and other experts to
suit the complexity of the process considered. These studies

often result in a qualitative or quantitative description of dam-

age that may result from an accident (including life losses, cap-

ital equipment loss, and damage to the environment) which is

evaluated to determine whether it is within an acceptable level

of risk.5 Process safety is also evaluated through layers of pro-

tection analysis, which is conducted during or after the process

design stage to determine whether there are sufficient barriers

to accidents (e.g., process control, alarms, and containment

areas) to ensure safe operation of the process considered.5

In the chemical processing industry, the most important

approach for promoting process safety, which is designing a

process to be inherently safe, is performed by engineers at the

design phase. Inherent safety refers to the innate safeness of a

chemical process based on the chemical and physical proper-

ties, phenomena, and dynamics of the process, and can be

adjusted by, for example, choosing a different catalyst, reac-

tion pathway, reactant, or operating pressure. To assess the

inherent safety of a chemical plant, methods incorporating

Boolean mathematics6 and fuzzy logic theory7 can be used.

The construction of an inherently safe process requires the

selection of processing conditions that eliminate or reduce

hazards, rather than developing add-on protective layers and

systems such as process control systems. New technology
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enables the construction of more inherently safe processes
with lower operating costs, increased profitability, and
increased reliability.5

The second most important safety approach for chemical
plants is the design of an effective process control system.5 A

control system is only effective, however, when the control
software is well-designed and the operator is trained to take
appropriate action in unsafe rare events.8,9 However, from a

safety perspective, the most common industrial control strat-
egy currently in use, the traditional single-input/single-output

feedback control loop (e.g., PID controllers), lacks many of
the capabilities that would be desired from a control system
designed to ensure process safety. The primary drawback of

these types of controllers from a safety perspective is that they
are unable to account for actuator constraints, state constraints

expressing process operation in a safe region, and multi-
variable interactions for complex processes.10 In addition,
such a simple control structure is less adaptable to federal and

environmental regulation changes.5

Alternatively, advanced control methodologies can be inte-
grated with safety considerations because they are able to

deal with multi-variable interactions using the process model
and at the same time can compute control actions that account
for actuator constraints.3,11 Model predictive control (MPC),

for example, an advanced control technique that takes into
account multi-variable interactions and actuator limitations,

can be used for improved control and safety.3,10,12 MPC is
characterized by the use of optimization and a dynamic pro-
cess model to compute optimal control actions that typically

drive the state of the process to a desired steady-state.13–15

Several research works have integrated safety with MPC; for

instance, an adaptive learning-based model predictive con-
troller was designed to decouple safety and performance in an
optimization framework16 and a two-mode MPC with a stand-

ard mode and a reactive safety mode was designed to account
for unexpected state-constraint changes.17 Recently, a form of

MPC termed economic model predictive control (EMPC) that
optimizes process operation through dynamic operation rather
than by driving the process to a steady-state, has gained atten-

tion.18–21 The shift that EMPC represents from a steady-state
operation paradigm to a time-varying operation paradigm

does not come without risk. Regardless of the degree of per-
formance benefit that may be realized by applying EMPC,
maintaining safe operation of process systems is of the high-

est priority. It has been argued, however, that safety can be
used as a constraint in control systems to allow a control sys-

tem to simultaneously address process control and process
safety.3 However, mathematically formalizing this vision of
integrating safety and process control is an open and challeng-

ing area as new safety metrics, process monitoring methodol-
ogies, and control schemes that incorporate safety as a

constraint need to be introduced. Several works have shown
that EMPC is capable of addressing safety in a proactive
sense, in that it is able to account for preventive maintenance

of sensors22 and of actuators23 to prevent faults that could
lead to unsafe conditions. However, despite the fact that
EMPC provides a natural framework for integrating opera-

tional safety considerations and feedback control because it is
a unique predictive control technique that uses a general cost

function in its formulation which may be formulated to incor-
porate both economic and safety considerations, no treatment
of safety integrated with EMPC in a general sense has been

performed.

In this work, we develop three Lyapunov-based EMPC

(LEMPC) schemes with safety-based constraints based on a

Lyapunov function for the closed-loop system termed safety-

LEMPC that guarantee safe operation of a class of nonlinear

process systems by varying the allowable region of operation.

Specifically, the safety-LEMPC’s drive the process state from

a normal region of operation to a subset of this region (termed

the safety region) by activating safety-based constraints at a

certain time (the switching time). In scheme 1, the safety-

LEMPC drives the closed-loop state trajectory of the process

into a safe region of operation using a contractive constraint,

starting at the switching time, that ensures that the closed-loop

state enters the safety region at least as quickly as it would

under an explicit Lyapunov-based controller. However, the

contractive constraint alone may not guarantee that the state

will be driven quickly to the safety region after the switching

time. Therefore, in scheme 2 the safety-LEMPC exploits a

longer prediction horizon and a region constraint to drive the

closed-loop state to the safety region by the switching time. In

an EMPC optimization framework, a long prediction horizon

implies a large number of decision variables which may

require a long computation time.
To overcome the drawbacks of the first two schemes,

scheme 3 introduces two different optimization formulations

that incorporate time-varying safety-based constraints to effi-

ciently move the closed-loop state from the normal region of

operation to the safety region. In the first formulation of

scheme 3, the safety-LEMPC utilizes slack variables and a

penalty term in the objective to increase the rate at which the

closed-loop state enters the safety region. The second formula-

tion of scheme 3, termed dynamic safety level set-LEMPC

(DSLS-LEMPC), is a safety-LEMPC design that dynamically

controls the upper bound on the level set of the Lyapunov

function of the closed-loop state. Specifically, the DSLS-

LEMPC includes a first-order ordinary differential equation

that governs the rate of decrease of the upper bound on the

level set of the Lyapunov function in addition to a penalty

term in the objective function to enhance the rate at which the

closed-loop state goes to the safety region. Suitable constraints

for the safety-LEMPC’s are developed that ensure that the

closed-loop system state is bounded in a pre-defined safety

region and is ultimately bounded in a compact set containing

the origin. Recursive feasibility and guaranteed closed-loop

stability for a nonlinear process under the safety-LEMPC

schemes are proven for a sufficiently small sampling period.

Through a chemical process example, the three proposed

safety-LEMPC schemes, which effectively integrate feedback

control, process economics, and safety considerations, are

demonstrated.

Preliminaries

Notation

The L2 norm of a vector is denoted by the operator j � j. The

transpose of a vector x is represented by the symbol xT. A level

set of a sufficiently smooth, positive definite scalar-valued func-

tion V(x) is represented by the symbol Xq (Xq : 5fx 2 Rn :
VðxÞ � qg). The symbol SðDÞ denotes the family of piecewise

constant functions with period D � 0. A diagonal matrix which

has the components of a vector s as its diagonal elements is

denoted by the symbol diagðsÞ. Set subtraction is denoted by the

operator “/,” that is, A=B : 5fx 2 Rn : x 2 A; x 62 Bg. A function
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að�Þ : ½0; aÞ ! ½0;1Þ belongs to class K (i.e., a 2 K) if it is

strictly increasing and continuous, and að0Þ50.

Class of nonlinear process systems

The class of nonlinear process systems considered is as

follows:

_xðtÞ5f ðxðtÞ; uðtÞ;wðtÞÞ (1)

where xðtÞ 2 Rn is the state vector of the system, and uðtÞ 2 Rm

and wðtÞ 2 Rw are the control (manipulated) input vector and

the disturbance vector, respectively. The admissible input values

are restricted to m nonempty convex sets Ui � R; i51; . . . ;m,

where Ui : 5fui 2 R : umin
i � ui � umax

i g, and umax
i and

umin
i ; i51; . . . ;m, are the magnitudes of the input constraints

which result from the physical constraints on the control actua-

tors. We assume that f is a locally Lipschitz vector function of

its arguments and that the state of the system of Eq. 1 is synchro-

nously sampled at time instances tk5t01kD; k50; 1; . . ., where

D is the sampling period and t0 is the initial time. The disturb-

ance w(t) is bounded within the set W : 5fw 2 Rw : jwj � h; h
> 0g (i.e., wðtÞ 2 W). We assume that the origin is an equilib-

rium point of the unforced nominal system which implies that

f ð0; 0; 0Þ50.

Stabilizability assumption

We consider nonlinear systems that are stabilizable in the

sense that there exists a Lyapunov-based controller hðxÞ5
½h1ðxÞ � � � hmðxÞ�T which renders the origin of Eq. 1 with wðtÞ
� 0 (the nominal closed-loop system) asymptotically stable

with hiðxÞ 2 Ui; i51; . . . ;m, inside a given stability region

Xq. We further assume the existence24,25 of a sufficiently

smooth Lyapunov function V(x) for the nominal closed-loop

system and class K functions aið�Þ; i51; 2; 3; 4 such that the

following inequalities hold:

a1ðjxjÞ � VðxÞ � a2ðjxjÞ
@VðxÞ
@x

f ðx; h1ðxÞ; . . . ; hmðxÞ; 0Þ � 2a3ðjxjÞ���� @VðxÞ
@x

���� � a4ðjxjÞ

hiðxÞ 2 Ui; i51; . . . ;m

(2)

for all x 2 D � Rn where D is an open neighborhood of the

origin. We define a level set of the Lyapunov function within

which _V is negative as the stability region Xq of the process of

Eq. 1 under h(x) (where Xq � D; see, for example,26–29 for

results on the design of stabilizing control laws).
When x is maintained within the compact set Xq;

ui 2 Ui; i51; . . .;m, and w 2 W, we have from the continuity

of x, the local Lipschitz property of f, and the smoothness of

V(x) that there exist positive constants M, Lx, Lw, L�x , and L�w
such that the following inequalities hold:

jf ðxðtÞ; uðtÞ;wðtÞÞj � M (3)

jf ðx; u;wÞ2f ðx�; u; 0Þj � Lxjx2x�j1Lwjwj (4)���� @VðxÞ
@x

f ðx; u;wÞ2 @Vðx�Þ
@x

f ðx�; u; 0Þ
���� � L�x jx2x�j1L�wjwj

(5)

for all x; x� 2 Xq; ui 2 Ui; i51; . . . ;m, and w 2 W.

Lyapunov-Based EMPC

Lyapunov-based economic model predictive control (LEMPC)

is an optimization-based control strategy implemented in a reced-

ing horizon fashion that utilizes the Lyapunov-based controller

h(x) as follows20:

min
u2SðDÞ

ðtk1N

tk

Leð~xðsÞ; uðsÞÞ ds (6a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (6b)

~xðtkÞ5xðtkÞ (6c)

uiðtÞ 2 Ui; i51; . . . ;m; 8 t 2 ½tk; tk1NÞ (6d)

Vð~xðtÞÞ � qe; 8 t 2 ½tk; tk1NÞ

if xðtkÞ 2 Xqe

(6e)

@VðxðtkÞÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ

if xðtkÞ 62 Xqe

(6f)

where the piecewise constant input trajectory u(t) is the deci-

sion variable of the optimization problem defined over the pre-

diction horizon with N sampling periods of length D, and the

predicted state trajectory is denoted by ~xðtÞ. The nominal

model of Eq. 1 is used to predict the evolution of the system

over the prediction horizon (Eq. 6b) where the initial condition

of the dynamic system is obtained through a state measure-

ment at the current sampling time tk (Eq. 6c). Equation 6a is

the objective function of the LEMPC design, where the stage

cost Leð~x; uÞ reflects the process economics of the class of

nonlinear systems of Eq. 1. The constraint of Eq. 6d restricts

the control actions u(t) to be within the admissible set over the

prediction horizon.
In Mode 1 (Eq. 6e), the LEMPC optimizes the economic

cost function of Eq. 6a in a time-varying fashion when the

state measurement of Eq. 6c is within the region Xqe
, which is

a subset of Xq. This subset Xqe
is selected to make the stability

region Xq a forward invariant set for the closed-loop process

under LEMPC in the presence of disturbances (i.e., if the pro-

cess is initialized within Xq, the closed-loop state is main-

tained within Xq for all time). In Mode 2 (Eq. 6f), which is

activated when xðtkÞ 2 Xq=Xqe
, the contractive constraint uti-

lizes the explicit stabilizing controller h(x) to drive the closed-

loop state back into Xqe
by computing control actions that

decrease the value of the Lyapunov function at least as much

as the decrease given by the stabilizing controller.

Safety-LEMPC Structure

The major contribution of this work is the development of

control schemes that address safety in a control design frame-

work through the incorporation of constraints based on safety

considerations. In this work, three LEMPC schemes (termed

safety-LEMPC schemes) are presented that couple the ability of

LEMPC to optimize profit with its ability to handle safety con-

siderations by accounting for multivariable interactions, con-

straints, and a general objective function. These safety-LEMPC

schemes add various safety-based constraints to the standard

formulation of LEMPC in Eq. 6 so that safety is enforced as a

constraint of operation, which allows for economic optimization

AIChE Journal July 2016 Vol. 62, No. 7 Published on behalf of the AIChE DOI 10.1002/aic 2393



to be pursued among all solutions to the optimization problem

that satisfy the safety criteria.
In this section, we provide descriptions of the three pro-

posed safety-LEMPC schemes with safety-based constraints.

Specifically, a detailed description of the implementation strat-

egy for the safety-LEMPC schemes, the formulations of the

schemes, and a chemical process example for each scheme are

presented. Moreover, provable stability and feasibility proper-

ties of the safety-LEMPC’s are given.

Implementation strategy

The classical LEMPC design20 dictates time-varying opera-

tion to maximize the profit while maintaining the closed-loop

state of the process in the stability region Xq. The stability

region Xq may be estimated as the largest level set of the Lya-

punov function where the time-derivative of the Lyapunov

function is negative along the closed-loop state trajectories of

the nominal system of Eq. 1 under h(x) for all points in the

level set. However, there may be regions in Xq within which it

becomes unsafe to operate the process for some period of time

due to disturbances (e.g., significant disturbances in the con-

centration of the feed stream, disturbances in ambient temper-

ature, actuator problems such as a sticking valve). In such

scenarios, it is necessary to change the allowable region of

operation in real-time from Xq to a smaller level set of the

Lyapunov function where safe process operation is achieved

to maintain the closed-loop state within a safe region of opera-

tion. In this work, we present three LEMPC schemes with

safety-based constraints called safety-LEMPC that can update

the level set of the Lyapunov function online to tackle the

following two tasks:
Task 1: Driving the closed-loop state of the process of Eq. 1

under the safety-LEMPC into a safe region of operation.
Task 2: Maintaining the closed-loop state of the process of

Eq. 1 under the safety-LEMPC in this safe region of operation.
Figure 1 depicts the implementation strategy of the safety-

LEMPC paradigm. As shown in Figure 1, a safety logic unit

determines an appropriate level set for safe process operation

by using data on the probability of potential failures of process

equipment or software components, measurement feedback of

the process state and the estimated future process state trajec-

tory. If it is determined that an equipment or software failure

or other unsafe scenario is likely, the safety logic unit commu-

nicates the most profitable safety set-point qsp to the safety-

LEMPC to cause it to drive the closed-loop state to a safe

region of operation termed the safety region Xqsp
and maintain

the process operation there. The control actions computed by

the safety-LEMPC will be applied to the plant in a sample-

and-hold fashion, and the measured state will be fed back to

both the safety-LEMPC for controller robustness and the

safety logic unit so that the safety level set will be re-

evaluated if necessary.

Remark 1. If no process faults or unsafe conditions are

predicted by the safety logic unit, qsp will be chosen as the

largest level set in the stability region where closed-loop sta-

bility in the presence of uncertainty is guaranteed to maxi-

mize the economic measure of the safety-LEMPC.
Remark 2. In Figure 1, the safety logic unit receives the

state measurement from the plant regularly; however,

the safety logic unit may communicate a new value of qsp to

the safety-LEMPC less frequently.

Remark 3. The safety-LEMPC schemes that will be pre-
sented are not intended to sacrifice process safety for eco-
nomic performance. Rather, the three schemes to be
presented are intended for different purposes (e.g., one
scheme may be better suited for processes where rapid and
safety-critical switches of the region of operation are neces-
sary, while another may be better suited for processes where
the transition to a new region of operation can be slower
without negative consequences, such as a process for which
high temperature operation is acceptable for a small period
of time although it is safer to move it to a region where the
temperature is lower after this time to avoid, for example,
material weakening). A control engineer would choose the
desired scheme and tune any parameters of the desired
scheme in a manner that provides acceptable control and
safety for a given process. Advantages and disadvantages of
the three safety-LEMPC’s will be presented in the discussion
of each below to elucidate some of the factors that should
be considered when selecting a safety-LEMPC scheme. The
safety-LEMPC system is not intended to replace traditional
process safety systems. It is, however, intended to be used in
place of other EMPC schemes that may be used to control a
process to augment the traditional safety systems that would
also be used to provide an additional means of increasing
process safety.

Scheme 1: LEMPC Using Level-Set Switching

As noted in the “Implementation strategy” section, the two
tasks of the safety-LEMPC are to shift the region of operation
to a safer zone and to maintain the closed-loop states within
this safer zone. The first considered scheme tackles these tasks
by applying the standard LEMPC scheme of Eq. 6 (with the
Mode 1 and Mode 2 constraints defined with respect to Xqe

)
until a switching time t1 at which time it is desired that the
closed-loop state moves toward a lower level set Xqsp

(the
safety region) that is within the stability region. At this time,
the level set that determines whether the Mode 1 or Mode 2
constraint should be used is re-defined in terms of X�qsp

, which
is a subset of Xqsp

defined to make Xqsp
an invariant set under

the safety-LEMPC in the presence of disturbances/uncertainty
once the state enters Xqsp

(i.e., the relationship between X�qsp

Figure 1. The implementation strategy of the safety-
LEMPC paradigm.
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and Xqsp
is similar to that between Xqe

and Xq). Thus, the
effect of this safety-LEMPC scheme is to enforce the Mode 2
contractive constraint starting from the state xðt1Þ 2 Xq until
the closed-loop state enters X�qsp

, so that the rate at which the
state approaches the safety region is no worse than the rate at
which the state would approach X�qsp

under the Lyapunov-
based controller h(x). Due to the closed-loop stability property
of the explicit stabilizing controller h(x), this scheme is guar-
anteed to drive the closed-loop state to the lower level set X�qsp

in the presence of uncertainty.30 Once the state enters X�qsp
, the

safety-LEMPC dictates time-varying operation to maximize
the profit while the measured state remains within X�qsp

, but
uses the contractive constraint when xðtkÞ 2 Xqsp

=X�qsp
to

ensure process operation is maintained within the safety region
Xqsp

in the presence of disturbances/uncertainty (the proof of
this will be clarified in the section “Feasibility and stability
analysis”).

The formulation of this control strategy is presented in the
following optimization problem:

max
u2SðDÞ

ðtk1N

tk

Leð~xðsÞ; uðsÞÞ ds (7a)

s:t: _~x ðtÞ5f ð~xðtÞ; uðtÞ; 0Þ; ~xðtkÞ5xðtkÞ (7b)

uiðtÞ 2 Ui; i51; . . . ;m; 8 t 2 ½tk; tk1NÞ (7c)

Vð~xðtÞÞ � q̂; 8 t 2 ½tk; tk1NÞ

q̂5qe; if xðtkÞ 2 Xqe
and tk < t1

q̂5�qsp; if xðtkÞ 2 X�qsp
and tk � t1

(7d)

@VðxðtkÞÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ

if xðtkÞ 62 Xqe
and tk < t1 or if xðtkÞ 62 X�qsp

and tk � t1

(7e)

Remark 4. Although this scheme is guaranteed to drive
the closed-loop state of Eq. 1 to the desired safety region, it
is not guaranteed to do so in a fast or proactive fashion (i.e.,
there is no adjustable parameter in this scheme that can be
changed to modify the time that it takes to drive the closed-
loop state into Xqsp

after t1). Often, safety constraints are
required to be satisfied in a measurable amount of time; as a
result, this scheme may present an issue for practical imple-
mentation in certain scenarios. However, it is also possible
to perform extensive closed-loop simulations of the process
under h(x) in the presence of bounded disturbances/uncer-
tainty for initial values xðt1Þ 2 Xq throughout the stability
region before implementing this safety-LEMPC scheme.
From these simulations, it is possible to determine the worst-
case rate of approach to a variety of possible safety level
sets to determine whether the rate of transition from Xq to
Xqsp

would be acceptable for a given process.
Remark 5. The economic optimality of a feasible control

action plays a significant role in the safety-LEMPC’s selec-
tion of control actions in this scheme. Because the constraint
of Eq. 7e only requires that the state move toward Xqsp

at
least as quickly as it would under h(x), the LEMPC will
choose a control action that maximizes profit during this
approach since that is the required objective in this case, and
thus it will not choose a different control action that may

cause the closed-loop state to more quickly approach the

safety region but with less economic benefit during this

approach. However, the emphasis of this scheme on econom-

ics during the approach to the safety region as opposed to

the speed with which the approach to the safety region

occurs is an important consideration when determining

whether this controller is the best safety-LEMPC to apply

for a given process. In circumstances where the known

Lyapunov-based controller does not provide a satisfactory

rate of approach of the process state to the safety region,

this more economically-focused safety-LEMPC may be inad-

equate to ensure that the safety region is approached in the

timeframes that may be desired. However, for processes for

which the worst-case rate of approach to a safety region

under h(x) is considered to be acceptable, the economic

focus of the LEMPC during the transition to the safety

region (the transition period) may be economically beneficial

while still ensuring that all safety requirements are met.

Scheme 1: application to a chemical process example

In this section, we demonstrate scheme 1 of the safety-

LEMPC using a chemical process example. Because this

chemical process example will also be used for the demonstra-

tion of the other safety-LEMPC schemes developed in this

work, we will begin with a general statement of the control

problem that will be used in the demonstration of all three

schemes, and will then focus on the parameters chosen specifi-

cally to demonstrate scheme 1, and the closed-loop results for

the process under scheme 1.
The chemical process considered is a well-mixed, non-iso-

thermal continuously stirred tank reactor (CSTR) within which

a reactant A is transformed to a product B through the exother-

mic, irreversible second-order reaction A! B.31 The CSTR is

fed with pure A at flow rate F, concentration CA0, and tempera-

ture T0, and it is cooled and heated at heat rate Q by a jacket.

The concentration of A (CA) and temperature T in the reactor

are modeled using mass and energy balances with standard

modeling assumptions as follows:

dCA

dt
5

F

V
ðCA02CAÞ2k0e

2E
RT C2

A (8a)

dT

dt
5

F

V
ðT02TÞ1 2DH

qLCp
k0e

2E
RT C2

A1
Q

qLCpV
(8b)

where DH, k0, E, and R are the enthalpy of reaction, pre-

exponential constant, activation energy, and ideal gas constant.

The reactor volume V, heat capacity Cp, and fluid density qL

within the reactor are assumed constant. The values of these

parameters are given in Table 1.
The two manipulated inputs of the CSTR are the inlet concen-

tration CA0 and the heat input/removal rate Q. These manipulated

Table 1. Parameter Values

T05300 K F 5 5 m3

hr

V 5 1.0 m3 E553104 kJ
kmol

k058:463106 m3

kmolhr DH521:153104 kJ
kmol

Cp50:231 kJ
kgK R 5 8.314 kJ

kmolK

qL51000 kg
m3 CAs151:2 kmol

m3

Ts15438 K CAs252 kmol
m3

Ts25400 K CA0s54 kmol
m3

Qs 5 0 kJ
hr
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inputs are bounded as follows: 0:5 � CA0 � 7:5 kmol=m3 and
jQj � 53105 kJ=hr.

In the operating region of interest, the process model of
Eq. 1 has one stable steady-state ([CAs1 Ts1] 5 [1.2 kmol

m3 438 K])
and one unstable steady-state ([CAs2 Ts2] 5 [2 kmol

m3 400 K]) cor-
responding to the steady-state input ½CA0s Qs� given in Table 1
(steady-states outside the operating region of interest are not
considered). The dynamic model of Eq. 8 is a member of the
class of nonlinear systems of Eq. 1 with wðtÞ � 0, where x5

½CA2CAs T2Ts�T is the state vector (CAs 5 CAs1 or CAs2, and
Ts 5 Ts1 or Ts2) and u5½CA02CA0s Q2Qs�T is the input vector.
In particular, it is an input-affine nonlinear system with the
form:

_xðtÞ5~f ðxðtÞÞ1gðxðtÞÞuðtÞ (9)

The explicit Euler method with an integration time step of hc

51025 hr was applied to numerically simulate the dynamic
model of Eq. 8.

The control objective is to maximize the profit of the CSTR
process of Eq. 8 while driving the closed-loop state trajectories
to a safe region of operation when required by controlling the
process using a safety-LEMPC scheme. To maximize the
profit, the objective function of the safety-LEMPC optimizes
the following stage cost, which represents the production rate
of B:

Leðx; uÞ5k0e2 E
RTC2

A (10)

The process and basic design parameters of the safety-LEMPC
presented above are now used in the demonstration of scheme
1 (and, as noted, that same problem formulation will be used
in the demonstration of the other safety-LEMPC schemes
developed in this work). In the demonstration of scheme 1
using this chemical process example, the process is operated
around the stable steady-state of the CSTR with steady-state

input values [CA0s Qs] 5 [4 kmol
m3 0 kJ

hr]. In addition, we consider

a limitation on the amount of reactant material available over
a given operating period tp51:0 hr (i.e., the amount of reac-

tant material used in each operating period must average to
that which would be used under steady-state operation) which
is described by the following constraint:

1

tp

ðtp

0

u1ðsÞ ds50:0 kmol=m3: (11)

The stabilizing controller designed for use in scheme 1 of the
safety-LEMPC is a Lyapunov-based controller of the form
hðxÞ5 h1ðxÞ h2ðxÞ½ �T . The inlet concentration is set to its
steady-state value to meet the material constraint of Eq. 11
(i.e., h1ðxÞ50). The rate of heat input is determined by the fol-
lowing Sontag control law32:

h2ðxÞ5 2
L~f V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L~f V21LgV4

q
LgV

; if LgV 6¼ 0

0; if LgV50

8>><
>>: (12)

where L~f V and LgV are the Lie derivatives of the Lyapunov
function V(x) with respect to the vector fields ~f ðxÞ and g(x),
respectively. Extensive closed-loop simulations of the CSTR
under the Lyapunov-based controller were performed to
determine the stability region of the process under h(x) and the
corresponding Lyapunov function. A quadratic Lyapunov
function of the form VðxÞ5xTPx was chosen with P being the
following positive definite matrix:

P5
1060 22

22 0:52

" #
(13)

The stability region was estimated to be the largest level set
where the time derivative of the Lyapunov function of the

closed-loop system was negative. The stability region of the

CSTR under the Lyapunov-based controller, which is used in

the Lyapunov-based constraint of Eqs. 7d and 7e, was esti-

mated to be q 5 368 (note that because nominal operation was

considered, qe5q). A sampling period D50:01 hr and an

operating period of length tf 51 hr were used to simulate the

safety-LEMPC using the interior point solver Ipopt.33 In addi-

tion, for this example, the prediction horizon was chosen to be

N 5 10.
The scheme 1 safety-LEMPC design (Eq. 7 with the addi-

tional material constraint of Eq. 11) was applied to the CSTR,
with the process states initialized at the stable steady-state,

and the process originally operating in Xq. After half an hour

of operation within Xq, we assume that the safety logic unit

determines that it is necessary to reduce the maximum allow-

able temperature of operation, so it requests a switch of the

region of operation from Xq to Xqsp
where qsp5294 (because

nominal operation is considered, �qsp5qsp). Thus, beginning at

t150:5 hr, the Mode 2 constraint was applied until the closed-

loop state was driven into the safety region Xqsp
by decreasing

the time derivative of the Lyapunov function by at least as

much as the decrease given by the stabilizing control law of
Eq. 12. Once the state entered Xqsp

, the process was dynami-

cally operated within the safety region to maximize the pro-

cess profit in this safe region of operation.
The state-space trajectories of the CSTR are presented in

Figure 2 and the state and input trajectories are presented in

Figure 3. In addition, a plot of the Lyapunov function value of

the closed-loop system with respect to time is presented in

Figure 4. As can be seen, the scheme 1 safety-LEMPC design

maximized the profit before t1 by driving the state from the

steady-state to the boundary of Xq. At t1, the level set that

defines the Mode 1 and Mode 2 constraints was updated

online, and scheme 1 was successfully able to drive the

closed-loop state from Xq to Xqsp
in 19 sampling periods and

to optimize the profit within Xqsp
, subject to the constraints,

thereafter. The drop in the Lyapunov function value at the end

of the operating period occurs to satisfy the material constraint

(Eq. 11). Although this safety-LEMPC scheme was able to

drive the closed-loop state to the safety region Xqsp
in a finite

number of sampling periods, the rate of decrease of the Lyapu-

nov function after t1 was slow, which may not be desirable for

safety-critical processes.

Scheme 2: LEMPC with Sufficiently Long
Prediction Horizon

As demonstrated by the trajectories of the closed-loop

CSTR example under scheme 1, the control actions calculated

by scheme 1 are chosen to decrease the Lyapunov function of
the closed-loop state but to do so in a manner that optimizes

the process economics (rather than optimizing the speed with

which the control actions drive the closed-loop state into the

safety region), which may cause the time between t1 and the

time at which the state enters Xqsp
to be longer than is practi-

cally acceptable. Hence, a scheme that can drive the closed-

loop state into Xqsp
by t1 was developed. This second scheme

is an LEMPC design with a sufficiently long prediction
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horizon, a region constraint,34 and an estimate of the switching

time t1 to drive the closed-loop state into the safety region by

t1 under certain conditions. One of these conditions is that

there are no disturbances/uncertainties (i.e., nominal process

operation is considered), so the formulation for scheme 2 is

presented for the case of nominal operation (i.e., for nominal

operation, qe5q and no contractive constraint is needed to

ensure that the state remains in Xq since we also assume

xðt0Þ 2 Xq). The second condition required to prove that

scheme 2 can drive the closed-loop state from Xq into Xqsp
by

t1 is that the switching time is known in advance. The third

required condition is that the time interval between the current

time and t1 is long enough in the sense that there exists an

explicit stabilizing controller that can drive the closed-loop

state into Xqsp
in no more time than this time interval t12tk

(the remarks at the end of this section will address the use of

scheme 2 when these conditions are not met). Under the

assumption that these three conditions are met, the formulation

of scheme 2 is as follows:

max
u2SðDÞ

ðtk1N̂ 11N̂ 2

tk

Leð~xðsÞ; uðsÞÞ ds (14a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (14b)

~xðtkÞ5xðtkÞ (14c)

uiðtÞ 2 Ui; i51; . . . ;m; 8 t 2 ½tk; tk1N̂ 11N̂ 2
Þ (14d)

Vð~xðtÞÞ � q̂; 8 t 2 ½tk; tk1N̂ 11N̂ 2
Þ

q̂5q; 8 t 2 ½tk; t1Þ

q̂5qsp; 8 t 2 ½t1; tk1N̂ 11N̂ 2
Þ

(14e)

where the prediction horizon N is the summation of two hori-

zons N̂1 and N̂2. N̂1 is initially set to be the number of sam-

pling periods required to drive the closed-loop state into the

safety region and it must thus initially be equal to or less than

ðt12t0Þ=D. N̂2 is an additional number of sampling periods
added to the prediction horizon when desired to more closely

approximate the infinite-horizon case and thus, for many
cases, increase the process profit by choosing control actions
that optimize the cost function over a longer period of time.

In the scheme 2 safety-LEMPC formulation presented in

Eq. 14, the long prediction horizon, region constraint, and
known value of t1 combine to drive the process state from Xq

into Xqsp
by t1. Specifically, the region constraint of Eq. 14

allows the nominal process to operate in a time-varying man-
ner within the stability region Xq at the beginning of process

operation. When the process has operated for a sufficient
period of time (which depends on the length of the prediction

horizon, including whether the initial value of N̂1 is equal to
ðt12t0Þ=D or less than it) such that t1 is within ½tk; tk1N̂ 11N̂ 2

Þ
(i.e., t1 is within the prediction horizon), the region constraint

of Eq. 14e requires that the process state be within Xqsp
by t1

and that it remains there afterward. Thus, when the optimiza-

tion problem of Eq. 14 is feasible, the closed-loop state is
driven into Xqsp

by t1. For nominal operation, the closed-loop
process state is driven into Xqsp

and maintained there after-

ward, thus accomplishing Tasks 1 and 2 of the safety-
LEMPC design noted in the “Implementation strategy” sec-

tion. In addition to satisfying safety constraints, all control
actions calculated by scheme 2 optimize the process profit
subject to the constraints.

The feasibility of the optimization problem in Eq. 14 can be

guaranteed when the three conditions previously mentioned,
which are the assumptions of nominal operation, the knowl-

edge of t1 in advance, and that the time interval is longer than
the time that it takes a feasible (stabilizing) controller to drive
the state into Xqsp

, are met. The third requirement can be pro-

ven to hold when the initial value of N̂1 is equal to the number
of sampling periods required by an explicit stabilizing control-

ler implemented in sample-and-hold that meets the input con-
straints in Eq. 14d to drive the closed-loop state from any
initial state within Xq to the safety region. However, this num-

ber of sampling periods may be large, so that a long prediction
horizon may be required, even if the prediction horizon length
N is set to its minimum value of N̂1 (i.e., N̂250). When the

prediction horizon is long, the computation time required to
solve the safety-LEMPC dynamic optimization problem may

be substantially long and the controller may not be practical to
implement.

Remark 6. N̂1 is taken to be the minimum number of
sampling periods required to drive the closed-loop state from

any initial state in Xq into Xqsp
, although it is only necessary

that it is equal to the number of sampling periods required

to drive the state from xðt12N̂1DÞ 2 Xq to Xqsp
by t1. How-

ever, because xðt12N̂1DÞ may not be known before the con-
troller is designed and applied, N̂1 should be chosen to be

sufficiently large such that xðt12N̂1DÞ could be any state in
Xq and the process could still be driven to the safety region

by t1.
Remark 7. Because restrictive conditions are required to

hold for this scheme to guarantee that the optimization prob-
lem is feasible and that the closed-loop state enters Xqsp

by

t1, this scheme may be more difficult to apply practically.
However, unlike scheme 1, it has the potential to drive the

closed-loop state into Xqsp
by t1 (rather than starting to move

toward Xqsp
after t1), which may be a desirable property for

processes for which changes from one region to another may

need to occur by a certain time to ensure process safety.

Figure 2. The state-space profile for the closed-loop
CSTR under the stabilizing safety-LEMPC
design of Eq. 7 (with Eq. 11) for the initial
condition [CA(0);T(0)]5[1:2 kmol

m3 ; 438 K] and
q 5 368.
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Thus, it may be desirable to use scheme 2 even when the
restrictive conditions (nominal operation, t1 is known, and t1
2tk is sufficiently long) are not known to hold. When there
are disturbances, closed-loop stability and feasibility of
scheme 2 cannot be proven, but they may hold. In addition,
a contractive constraint like the one used in scheme 1 may
be added and applied when no feasible solution is found
(although this would not guarantee that the state can still be
driven into Xqsp

by t1). If t1 is not known and thus it cannot
be verified whether t12tk is sufficiently long, a conservative
estimate may be made of t1, or scheme 2 may be applied
long before it is expected that safety concerns may arise.

Remark. 8. The time that an explicit stabilizing controller
h(x) may take to drive the closed-loop state into Xqsp

can be
known for a specific h(x) (e.g., Sontag’s controller). Specifi-
cally, the nonlinear process of Eq. 1 can be simulated off-
line, applying h(x) in a sample-and-hold fashion to measure

the length of time that h(x) requires to move any initial state

within the stability region (i.e., xðt0Þ 2 Xq) to the safety

region.

Scheme 2: application to a chemical process example

The same CSTR example that was utilized to demonstrate

scheme 1 will now be used to demonstrate scheme 2 (in partic-

ular, the same steady-state, initial condition, Lyapunov func-

tion V(x), Lyapunov-based controller h(x), input constraints,

stability region Xq, safety level set Xqsp
, sampling period, and

operating period were used for the process of Eq. 8 with the

objective function of Eq. 10 and the material constraint of Eq.

11). For the demonstration of scheme 2 using this example, it

is assumed that the safety logic unit indicated at the beginning

of the operating period (at t0) that it is necessary to switch the

region of operation to Xqsp
where qsp5294 after half an hour

(i.e., t150:5 hr, which corresponds to 50 sampling periods).

As mentioned, this scheme is guaranteed to be feasible as long

as the interval t12t0 is long enough in the sense that it is no

shorter than the minimum number of sampling periods needed

for a stabilizing controller that meets the input constraints and

is implemented in sample-and-hold to drive the closed-loop

state from the initial state within Xq to Xqsp
within t12t0.

Because the length required for this interval is unknown with-

out performing extensive off-line simulations as noted in

Remark 8, the prediction horizon N5N̂11N̂2 was set to 100.

This ensures that if the number of sampling periods required

by an explicit stabilizing controller to drive the closed-loop

state into Xqsp
in the interval t12t0 is no more than 50 (because

ðt12t0Þ=D550), the optimization problem is feasible, and the

prediction horizon includes a significant number of additional

sampling periods for more economically optimal process per-

formance. The simulations demonstrated that this horizon

length was sufficient, because the optimization problem was

feasible. Scheme 2 was implemented with a shrinking horizon

in this example (the horizon length decreases by 1 at each

sampling time tk until it becomes 0 at tf).
The closed-loop state-space trajectories of the CSTR tem-

perature and concentration under the scheme 2 safety-LEMPC

are presented in Figure 5. In addition, the closed-loop trajecto-

ries of the inputs and states under scheme 2 and the corre-

sponding values of the Lyapunov function throughout the

Figure 3. Manipulated input and state profiles for the closed-loop CSTR under the stabilizing safety-LEMPC design
of Eq. 7 (with Eq. 11) for the initial condition [CA(0);T(0)]5[1:2 kmol

m3 ; 438 K].

Figure 4. The Lyapunov function value as a function of
time for the closed-loop CSTR under the sta-
bilizing safety-LEMPC design of Eq. 7 (with
Eq. 11) starting at [CA(0);T(0)]5[1:2 kmol

m3 ;
438 K] and q 5 368 and ending with qsp5294.
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operating window tf 51 hr are shown in Figure 6 and in
Figure 7, respectively. The oscillatory behavior of the states
and inputs observed in these figures results because scheme 2
seeks to maximize the process profit using a sufficiently long
prediction horizon while still meeting process and safety con-
straints, and the safety-LEMPC determined that the oscillatory
trajectories achieved this in the most economically optimal
manner. In addition, Figure 5 shows the movement of the tra-
jectories from Xq into Xqsp

, and Figure 7 shows that the
closed-loop state moved into Xqsp

by t1 and was maintained
within the safety region thereafter. Thus, scheme 2 was able to
achieve economically optimal process operation while driving
the closed-loop state into Xqsp

by t1. However, despite these
successes, it required a significant computation time and
advance knowledge of t1, which may not be practical in engi-
neering applications.

Scheme 3: Simultaneous Control of Safety
Constraint Sets and Process Economic
Optimization

Given the drawbacks of schemes 1 and 2 of the safety-

LEMPC (scheme 1 does not guarantee a fast rate of transition

of the closed-loop state to the safety region, and scheme 2

requires knowledge of the time that the closed-loop state

should be within the safety region in advance and may require

a long computation time), a scheme that is able to accomplish

the transition of the closed-loop state between the level sets

efficiently without requiring prior knowledge of the switching

time was developed. This third scheme of the safety-LEMPC

incorporates time-varying safety constraints (it adds auxiliary

optimization variables that allow the upper bound on the Lya-

punov function in the Mode 1 constraint to vary in time) and

also adds a penalty in the objective with parameters that can

be tuned to achieve a desired rate of transition of the closed-

loop state to the safety region without the need for a long pre-

diction horizon to ensure feasibility/stability and without

requiring prior knowledge of the switching time. In this sec-

tion, two formulations of scheme 3 are presented with differ-

ent time-varying constraints: one that utilizes slack variables

to adjust the Lyapunov function bound, and a second that

decreases the upper bound on the Lyapunov function

dynamically.

Scheme 3-1: slack variable safety level set constraint

In the first formulation of scheme 3, a slack variable is

incorporated in the Mode 1 constraint of the LEMPC, and a

penalty on the magnitude of the slack variable is imposed in

the objective function to drive the closed-loop state to the

safety region at a desired rate. The scheme 3 formulation

which incorporates this slack variable is presented as follows:

max
u;s2SðDÞ

ðtk1N

tk

½Leð~xðsÞ; uðsÞÞ2aLsðsÞ2� ds (15a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (15b)

~xðtkÞ5xðtkÞ (15c)

uiðtÞ 2 Ui; i51; . . . ;m; 8 t 2 ½tk; tk1NÞ (15d)

sðtÞ � 0; 8 t 2 ½tk; tk1NÞ if tk � t1 and xðtkÞ 62 Xqsp
(15e)

Figure 5. The state-space profile for the closed-loop
CSTR under the long-horizon safety-LEMPC
design of Eq. 14 (with Eq. 11) for the initial
condition [CA(0);T(0)]5[1:2 kmol

m3 ; 438 K] and
q 5 368.

Figure 6. Manipulated input and state profiles for the closed-loop CSTR under the long-horizon safety-LEMPC
design of Eq. 14 (with Eq. 11) for the initial condition [CA(0);T(0)]5[1:2 kmol

m3 ;438 K].
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sðtÞ50; 8 t 2 ½tk; tk1NÞ if tk < t1; or if tk � t1

and xðtkÞ 2 Xqsp

(15f)

Vð~xðtÞÞ1sðtÞ � q̂; 8 t 2 ½tk; tk1NÞ

q̂5q; 8 t 2 ½tk; tk1NÞ if tk < t1

q̂5qsp; 8 t 2 ½tk; tk1NÞ if tk � t1

(15g)

@VðxðtkÞÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ

if xðtkÞ 62 Xqe
and tk < t1 or xðtkÞ 62 X�qsp

and tk � t1

(15h)

where s denotes the piecewise constant slack variable of the
optimization problem over the prediction horizon ND, and aL

is a weighting constant.
From the formulation of scheme 3 in Eq. 15, it can be seen

that like scheme 1, scheme 3 optimizes the process economics
within Xq until t1 (the slack variable is set to s(t) 5 0 in Eq.
15f before t1, so the safety-LEMPC reduces to the standard
formulation of LEMPC in Eq. 6 in that case). At t1, the safety
constraints of Eqs. 15e, 15g, and 15h are activated. Thus, at t1,
the contractive constraint of Eq. 15h begins to be enforced,
and it is enforced until the closed-loop state enters X�qsp

to
ensure that the Lyapunov function always decreases between
two sampling periods when the closed-loop state is outside
X�qsp

(this ensures that Tasks 1 and 2 of the safety-LEMPC
strategy from the “Implementation strategy” section are
accomplished). In addition, the upper bound q̂ in Eq. 15g is
changed to qsp at t1, and the slack variable is allowed to take
negative values. The role of the slack variable in this con-
straint is to ensure feasibility of the optimization problem. If
the slack variable was not included in Eq. 15g, the optimiza-
tion problem may be infeasible at t1 because the closed-loop
state was allowed to vary throughout all of Xq before t1, and

thus it would not in general be expected that xðt1Þ 2 Xqsp
.

Because of this, the slack variable, which takes a negative

value per Eq. 15e, is added to the value of Vð~xðtÞÞ; t 2 ½tk;
tk1NÞ to decrease the left-hand side of Eq. 15g so that the
upper bound qsp can be met. Thus, this scheme enforces the

decrease of the Lyapunov function level set as a soft
constraint.

An important role of the slack variable is to ensure feasibil-
ity of the optimization problem when the safety logic unit

requires the region of operation to change. The second role of
the slack variable is to cause the safety-LEMPC to compute
control actions that drive the closed-loop state into Xqsp

as

quickly as possible when desired. This is a result of its appear-
ance in the objective of Eq. 15a as a term that decreases the
value of the objective function and thus it causes the safety-

LEMPC to seek control actions that make the magnitude of
s(t) as small as possible to maximize the objective function

value when the weighting constant aL is sufficiently large.
From Eq. 15g, the magnitude of s(t) will be smaller as Vð~xðtÞÞ
becomes closer to qsp, and finally takes its minimum magni-

tude of zero when VðxðtkÞÞ5qsp. Thus, for a sufficiently large
aL, the use of the slack variable dictates scheme 3-1 to choose
control actions that improve the rate of transition to Xqsp

com-

pared to the rate which would be obtained if only the contrac-
tive constraint of Eq. 15h were used. The rate of decrease of
the level set value is adjusted by varying the weighting con-

stant aL.
Remark 9. aL is a weighting constant that determines the

rate at which the closed-loop state goes to Xqsp
by penalizing

the magnitude of the slack variable in the objective. Due to

the penalty in the objective function and the constraint of
Eq. 15g, the optimal value of the slack variable at each sam-

pling time when tk � t1 and xðtkÞ 62 Xqsp
will be equal to

qsp2Vð~xðtjÞÞ, where ~xðtjÞ is the predicted state that gives the
maximum value of the Lyapunov function in a given sam-

pling period. If it is desired to move quickly toward the
safety region regardless of whether or not this decreases the
process profit, then aL must be sufficiently large in the sense

that it must dominate the economics-based component Leð~x; uÞ
of the objective function.

Remark 10. The formulation of Eq. 15 implements the
slack variable carefully so that issues with closed-loop stabil-

ity cannot occur due to the slack variable. In this remark, we
clarify some of the important aspects of the formulation in
Eq. 15. First, the reason that s(t) 5 0 when the state is not

transitioning between Xq and Xqsp
is that if aL is small, there

is a potential that the economic benefit of increasing the

magnitude of s(t) to operate the process in a larger region of
operation may outweigh the loss in the objective function
from the addition of the term containing the slack variable

(as an extreme case, aL may be set to 0 if it is desired to
only optimize the process economics, and then the slack
variable magnitude may become arbitrarily large to maxi-

mize the economics). By setting s(t) 5 0 when the state is
within the safety region, such issues cannot occur during
operation within the safety region. When the state is transi-

tioning to the safety region, the use of the contractive con-
straint throughout the transition period ensures that none of
the implemented control actions (i.e., the control actions cor-

responding to the first sampling period in the prediction hori-
zon) will cause the closed-loop state to leave Xq or to move
away from the safety level set, regardless of the values of aL

and of s(t), t 2 ½tk; tk1NÞ; however, it cannot be guaranteed

Figure 7. The Lyapunov function value as a function of
time for the closed-loop CSTR under the
long-horizon safety-LEMPC design of Eq. 14
(with Eq. 11) starting at [CA(0);T(0)]5
[1:2 kmol

m3 ;438 K] and q 5 368 and ending with
qsp5294.
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that control actions for the remaining N 2 1 sampling periods
of the prediction horizon (for which the contractive con-
straint is not imposed) will not cause undesirable behavior

for s(t), t 2 ½tk11; tk1NÞ if aL is small. Because these N 2 1
control actions are never implemented, their behavior cannot
affect whether the implemented control actions move the

state to a lower level set, but it may affect the economic
optimality or constraint satisfaction of the process if, for
example, constraints that depend on past control actions are

included (and if infeasibility occurs, such that even the con-
tractive constraint is not satisfied by the LEMPC solution, it
may be necessary to use a different controller such as the

Lyapunov-based controller to ensure that the state can be
driven to lower level sets, although this may not satisfy pro-
cess constraints). Therefore, it is necessary to tune aL care-

fully or, if there are concerns that it cannot be tuned in such
a way to guarantee that the slack variables do not pose an
issue for the process, the contractive constraint of Eq. 15h
can be enforced at each sampling period of the prediction

horizon, which will ensure that all predicted control actions
decrease the value of the Lyapunov function and can prevent
infeasibility in later sampling periods if the optimization

problem is properly formulated. If this issue is accounted
for, aL can be tuned to achieve the desired rate of approach
to the safety region. If aL 5 0, the slack variable formulation

puts more emphasis on the optimization of economics during
the approach to the safety region than the speed of approach
to the safety region; as aL is increased, the slack variable

formulation will drive the state more quickly to the safety
region, within the possible speed of the dynamics of the pro-
cess and any state/input constraints. An advantage of this

slack variable formulation over scheme 1 is that it has
greater flexibility because it can be used to maximize profit
during the approach to the safety region or used for the

alternate purpose of improving the speed of approach to the
safety region; a disadvantage, however, is that it requires the
addition of additional optimization variables to do so, which
may increase the computation time.

Remark 11. In the formulation in Eq. 15, the slack vari-
able is shown as a negative number added to the left-hand
side of Eq. 15g to decrease the left-hand side to be below
qsp after t1. An alternative way to consider this constraint is

to instead require that the slack variables be positive, and to
add them to the right-hand side of Eq. 15g, instead of to the
left. This increases the bound on the right-hand side so that

the value of the Lyapunov function at ~xðtÞ is within this
upper bound.

Remark 12. In the formulation of Eq. 15, the slack variable
s(t) is calculated at every sampling period in the prediction

horizon. However, one may consider updating s(t) less often
than once per sampling period (e.g., having one slack variable
for the entire prediction horizon) to reduce the number of opti-

mization variables, since only the first control action of the pre-
diction horizon is applied. However, a careful analysis should
be performed when one slack variable is used over the predic-

tion horizon due to the bound qsp2Vð~xðtjÞÞ on the slack vari-
able that was mentioned in Remark 9. To further clarify, this
bound implies that if one slack variable is used for the entire

prediction horizon and it is desired to move the closed-loop
state to the safety region quickly (i.e., aL is large), then depend-
ing on how this constraint is imposed in the controller, the
slack variable s(t) may be ineffective at accomplishing its pur-

pose of causing the implemented control action to move the

closed-loop state from Xq to Xqsp
at a rate faster than that given

by the Lyapunov-based controller.
To see this, consider first the extreme case in which the con-

straint of Eq. 15g is enforced at every time instance in the pre-
diction horizon, including the sampling time tk at the

beginning of the prediction horizon, when the state is transi-
tioning from Xq to Xqsp

. However, s(t) takes only one value for

t 2 ½tk; tk1NÞ since we are considering the case that one slack
variable is used for the whole prediction horizon. In a best

case, the value of the Lyapunov function will never become
greater than its initial value VðxðtkÞÞ throughout the prediction

horizon because it is desired to move all predicted control
actions toward the safety level set. Then, because the con-

straint of Eq. 15g must be satisfied at tk since it is enforced at
that time, and the value of VðxðtkÞÞ is the maximum value of

Vð~xðtÞÞ throughout the prediction horizon, the controller will
choose sðtÞ5qsp2VðxðtkÞÞ; t 2 ½tk; tk1NÞ to make the bound of

Eq. 15g as tight as possible to minimize the value of s(t) and
maximize the objective (since aL is large). This means that the

value of the slack variable is set by the measured state xðtkÞ,
which is not able to be adjusted by the controller, so the pen-

alty term in the objective becomes a constant depending on a
measured value of the closed-loop state and thus is ineffective

at driving the state into Xqsp
as quickly as possible (the objec-

tive in this case is equivalent to using only Leð~x; uÞ, so as for

scheme 1, the maximization of economics during the approach
to the safety region will slow the approach). Since the Lyapu-

nov function decreases throughout the first sampling period
due to the contractive constraint of Eq. 15h and only the first

sampling period of the prediction horizon is implemented on
the process, it is desirable to make the value of the Lyapunov

function at the end of the first sampling period as small as pos-
sible to move the closed-loop state as quickly as possible to the

safety region, which can be obtained by enforcing the con-
straint of Eq. 15g at the end of the first sampling period, rather

than at any other point during that sampling period.

Scheme 3-1: application to a chemical process example

To demonstrate scheme 3-1, the formulation of Eq. 15 (with

the added material constraint) was applied to the same CSTR
example that was utilized previously to demonstrate schemes

1 and 2. The optimization variables were the manipulated
inputs as well as one slack variable that was held constant

throughout the prediction horizon N 5 10 (one slack variable
was used to avoid having a large number of optimization vari-

ables that might increase the computation time as in scheme
2). The weighting coefficient was chosen to be aL 5 80 to

severely penalize the slack variable term in the objective func-
tion when the closed-loop state is transitioning between Xq

and Xqsp
. Due to this significant weight, the constraint of Eq.

15e was enforced for all times (Eq. 15f was not used).
In this demonstration of scheme 3-1, the process is initially

operated in Xq. After half an hour of operation in Xq, it is
assumed that the safety logic unit determines that it is neces-

sary to switch to the safety region Xqsp
(t150:5 hr). After t1,

the safety-LEMPC calculates control actions that quickly drive

the closed-loop state into Xqsp
due to the significant penalty

term on the magnitude of the slack variable in the objective

function. Figures 8, 9, and 10 depict the state-space trajecto-
ries, state and input trajectories, and Lyapunov function value,

respectively, for the CSTR operated under scheme 3-1. Figure
8 shows the transition of the closed-loop state from Xq into

Xqsp
, and Figure 10 shows that the controller was able to drive
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the closed-loop state into the safety region in 2 sampling peri-

ods after t1 and maintain it within the safety region thereafter.

From these figures, it is observed that scheme 3-1 effectively

drove the state to the desired safety region rapidly. In addition,

this scheme was not computationally expensive and did not

require prior knowledge of the switching time.

Remark 13. Based on the discussion in Remark 12, it

should be noted that the one slack variable in this example

was implemented by enforcing the Mode 1 constraint at the

end of each sampling period of the prediction horizon to

avoid the issues noted in that remark.

Scheme 3-2: dynamic safety level set

The motivation of the second formulation of scheme 3,

termed dynamic safety level set-LEMPC (DSLS-LEMPC), is

to design a controller that explicitly controls the rate at which

the closed-loop state goes to the safety region Xqsp
while maxi-

mizing the process economics. The DSLS-LEMPC design uti-
lizes the explicit stabilizing controller h(x) and dynamic
safety-based constraints that decrease the upper bound on the
Lyapunov function through an ordinary differential equation
to drive the closed-loop state into the safety region at a desired
rate while maintaining closed-loop stability and recursive fea-
sibility of the system of Eq. 1 under the DSLS-LEMPC design
in the presence of uncertainty. In addition to optimizing the
process economic performance, the DSLS-LEMPC paradigm,
like the other schemes presented, performs Tasks 1 and 2 of
the safety-LEMPC noted in the “Implementation strategy”
section.

The optimization problem of the proposed DSLS-LEMPC
for the process of Eq. 1 is presented for the case that t1 has
been reached, and is as follows:

max
uðtÞ;KcðtÞ2SðDÞ

ðtk1N

tk

½Leð~xðsÞ; uðsÞÞ2/ðqsp2~qðsÞÞ�ds (16a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (16b)

uiðtÞ 2 Ui; i51; . . . ;m; 8t 2 ½tk; tk1NÞ (16c)

~xðtkÞ5xðtkÞ (16d)

KcðtÞ � 0 ;8t 2 ½tk; tk1NÞ (16e)

Vð~xðtÞÞ � ~qðtÞ; 8t 2 ½tk; tk1NÞ (16f)

d~q
dt

5KcðtÞðqsp2~qðtÞÞ (16g)

~qðtkÞ5VðxðtkÞÞ; if xðtkÞ 62 Xqsp

~qðtkÞ5qsp; if xðtkÞ 2 Xqsp

(16h)

@VðxðtkÞÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ;

if xðtkÞ 2 Xq=X�qsp
or tk > ts

(16i)

where ts is the time after which the DSLS-LEMPC starts to
drive the closed-loop state into a small neighborhood of the
origin in the presence of disturbances, which will be elabo-
rated on in the “Feasibility and stability analysis” section (in
the previous safety-LEMPC schemes, ts was not included for

Figure 8. The state-space profile for the closed-loop
CSTR under the slack variable safety-LEMPC
design of Eq. 15 (with Eq. 11) for the initial
condition [CA(0);T(0)]5[1:2 kmol

m3 ; 438 K] and
q 5 368.

Figure 9. Manipulated input and state profiles for the closed-loop CSTR under the slack variable safety-LEMPC
design of Eq. 15 (with Eq. 11) for the initial condition [CA(0);T(0)]5[1:2 kmol

m3 ;438 K].
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simplicity of presentation and thus was assumed to be infinity;
it has been included here to simplify the discussion of the fea-
sibility and closed-loop stability properties of the safety-
LEMPC’s that will be given in the “Feasibility and stability
analysis” section based on this scheme 3-2 formulation). In
addition to the manipulated input u(t), the piecewise constant
gain KcðtÞ is a decision variable of the optimization problem
defined over the prediction horizon ND. The function /ð�Þ is
appropriately chosen to give a desired rate of approach of the
closed-loop state to Xqsp

(it may be, for example, the squared
absolute value of its arguments). The constraint of Eq. 16e
restricts the gain KcðtÞ to take nonnegative values over the pre-
diction horizon. The DSLS-LEMPC optimization problem
minimizes the stage cost Leð~xðsÞ; uðsÞÞ, derived from the sys-
tem economics, and the penalty /ðqsp2~qðtÞÞ that penalizes
the deviation of the upper bound of the Lyapunov function
value ~qðtÞ from the safety set-point qsp over the prediction
horizon.

The dynamic safety-based constraints in Eqs. 16e–16h con-
trol the rate of variation of the level set of the predicted Lyapu-
nov function value Vð~xðtÞÞ over the prediction horizon to
shrink the region of operation to Xqsp

. Specifically, the con-
straint of Eq. 16f maintains the predicted state trajectory ~xðtÞ
in the region X~qðtÞ over the prediction horizon. The level set
X~qðtÞ of the predicted Lyapunov function changes with time
through the first-order differential equation of Eq. 16g. The
gain KcðtÞ adjusts the rate of decrease of the level set X~qðtÞ
over the prediction horizon. The initial condition of Eq. 16g is
obtained from the value of the Lyapunov function at the cur-
rent state if the current state is outside the safety region Xqsp

;
however, if the current state enters the safety region (i.e.,
xðtkÞ 2 Xqsp

) then the initial condition will be set to the safety
set-point qsp (Eq. 16h). The contractive constraint (Eq. 16i)
forces the control actions computed by the DSLS-LEMPC to
decrease the Lyapunov function for the first sampling period in
the prediction horizon by at least as much as the decrease given
by the explicit stabilizing controller h(x). Because of the
safety-based constraints and the contractive constraint, it is
guaranteed that the Lyapunov function value will decrease for

the first sampling period (i.e., Vðxðtk11ÞÞ � VðxðtkÞÞ). This
continuous decreasing of the Lyapunov function value guaran-

tees that the closed-loop state will be driven into the safety
region in finite time, which accomplishes Task 1 of the safety-

LEMPC. Moreover, to achieve boundedness of the closed-loop
state within the safety region Xqsp

and thus, meet the require-

ment of Task 2, the contractive constraint of Eq. 16i will force
the closed-loop state into the subset of the safety region X�qsp

	 Xqsp
which makes the region Xqsp

a forward invariant set.
Remark 14. The contractive constraint of Eq. 16i is

imposed in the optimization problem to ensure that ~qðtÞ is

decreasing at the beginning of each sampling period tk in the
presence of disturbances, and the role of the constraints in

Eqs. 16e–16h in this case is to enhance the rate of decrease
of ~qðtÞ over the prediction horizon. However, the constraints

of Eqs. 16e–16h will decrease ~qðtÞ without the need to
impose the contractive constraint (Eq. 16i) for the nominal

system of Eq. 1 (i.e., wðtÞ � 0) under the DSLS-LEMPC
design when the gain KcðtÞ is sufficiently large over the pre-
diction horizon.

Remark 15. Owing to the constraint of Eq. 16h, the pen-
alty term /ðqsp2~qðtÞÞ in the objective function of the opti-
mization problem of Eq. 16 will be equal to zero and the

upper bound of the predicted Lyapunov function value in
Eq. 16f will be set to the safety set-point qsp once xðtkÞ
enters the safety region Xqsp

. From that point on, due to the
contractive constraint of Eq. 16i, Xqsp

will be a forward

invariant set (which will be proven in the “Feasibility and
stability analysis” section).

Remark 16. If the penalty term /ðqsp2~qðtÞÞ is large rela-

tive to the process economic cost, it will be desirable that
~qðtÞ5qsp, which means that it is preferable to go as quickly

as possible to Xqsp
and then optimize the profit after the

closed-loop state enters the safety region, rather than opti-

mizing it along the way. Thus, the weighting on the
economics-based part of the objective function compared to

that of the safety-based penalty may depend on the process
and how long in advance of a fault or change in the process

conditions the controller is notified that it needs to change
the region of operation to Xqsp

.
Remark 17. Note that the decrease of ~qðtÞ through Eq. 16g

does not mean that the value of the Lyapunov function of the
actual state VðxðtÞÞ has decreased according to Eq. 16g. This is

due to process disturbances and also the fact that V(x) is a sepa-
rate function for which the dynamics are not those in Eq. 16g.

However, if KcðtÞ and u(t) can be found that can decrease ~qðtÞ
in Eq. 16f, the predicted state is guaranteed to be within

smaller level sets. If ~qðtÞ decreases quickly, this means that
there is a value of u(t) that can quickly decrease Vð~xðtÞÞ and

thus is likely to decrease VðxðtÞÞ significantly, even if it is not
able to decrease it by as much as is indicated by Eq. 16f due to
disturbances in the actual process.

Remark 18. Unlike the piecewise constant input u(t)
which is, for practical implementation reasons, implemented
in a sample-and-hold fashion, KcðtÞ can be updated as often

as desired because it is an auxiliary variable for optimization
purposes and not a control action that is implemented by the

actuator, and thus there is no limit on how often it can be
updated; however, constant updating (e.g., every integration

step) in general is not computationally practical.
Remark 19. It was noted that the DSLS-LEMPC formula-

tion was presented for the case that t1 had already been

reached, and it is desired to move the state into Xqsp
, to

Figure 10. The Lyapunov function value as a function
of time for the closed-loop CSTR under the
slack variable safety-LEMPC design of Eq.
15 (with Eq. 11) starting at [CA(0);
T(0)]5[1:2 kmol

m3 ; 438 K] and q 5 368 and end-
ing with qsp5294.
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provide better clarity to the discussion of the scheme by
explicitly including qsp in the formulation of Eq. 16. In the

time before t1, the value of qsp in Eq. 16 would be replaced
by q, and the value of �qsp would be replaced by qe, which
would simplify Eq. 16 to the standard LEMPC design of

Eq. 6. At t1, the EMPC of Eq. 16 would then be used as
written, which would require only an update of the values of
qsp and �qsp from the safety logic unit.

Remark 20. Scheme 3-1 and scheme 3-2 have many simi-

larities and can be used to accomplish similar goals,
although they are not equivalent. They both have the benefit
of flexibility compared to schemes 1 and 2 because of the

tuning parameters that they incorporate, as noted for scheme
3-1 in Remark 10. Like scheme 3-1, a disadvantage of
scheme 3-2 compared to schemes 1 and 2 is that it requires

the addition of auxiliary decision variables that may increase
the computation time.

There are several differences in the manner in which

schemes 3-1 and 3-2 handle the dynamic variation of the upper
bound on the Lyapunov function throughout time. For exam-
ple, the auxiliary optimization variable KcðtÞ used in scheme

3-2 is not included in any equation that includes the values of
the closed-loop states themselves, but is only used to modify
the bound on the Lyapunov function. In addition, it is not uti-

lized in the objective function, so there are no possible nega-
tive interactions between KcðtÞ and the values of the closed-
loop states that would require KcðtÞ to be set to a specific value

once the state enters the safety region. This is in contrast to
scheme 3-1, where the slack variable s(t) is used in the Mode
1 constraint that is also a function of the states and thus can

directly affect their values, in addition to being in the objec-
tive. This can cause the competing effects noted in Remark 10

that require s(t) to be set to 0 after the state enters the safety
region. Another significant difference between the two
schemes is that scheme 3-2 controls the upper bound on the

Lyapunov function value through the first-order ordinary dif-
ferential equation that adjusts the bound on the Lyapunov
function value ~qðtÞ in time. Although this differential equation

requires a value of the decision variable KcðtÞ to modify the
Lyapunov function bound, the bound on the Lyapunov func-
tion value is not directly calculated by the safety-LEMPC.

Thus, scheme 3-2 can be described as adjusting the bound on
the level set by using a controller (Eq. 16g) within the safety-
LEMPC controller. In contrast, scheme 3-1 modifies the upper

bound on the Lyapunov function by adjusting s(t), which is an
optimization variable of the safety-LEMPC.

Another difference between the two formulations is that if

it is desired to reduce the computation time by applying
only one value of the auxiliary variable (s(t) in scheme 3-1
and KcðtÞ in scheme 3-2) throughout the prediction horizon,

the manner in which s(t) is implemented in such a case is an
important consideration in scheme 3-1, as noted in Remark 12,
due to the structure of that optimization problem, but no spe-

cial considerations need to be made for scheme 3-2. Con-
versely, there may be some benefit with respect to the rate of
approach of the closed-loop state to the safety region when the

number of optimization variables KcðtÞ in scheme 3-2 is
increased (i.e., there are more decision variables KcðtÞ than the
number of sampling periods in the prediction horizon) due to

the increase in flexibility that this may give to adjust the upper
bound on the Lyapunov function ~qðtÞ (and thus the greater
possibility of finding control actions that move the state to the

safety region more quickly). For scheme 3-1, in contrast, there

is no benefit to increasing the number of slack variables s(t)
because the slack variables set the upper bound on the Lyapu-
nov function directly and when the input is piecewise constant
as in the safety-LEMPC schemes, changing the upper bound
on the Lyapunov function often throughout a sampling period
will not affect the values of the control actions chosen since
they are fixed throughout the sampling period.

Remark 21. Unlike scheme 2, schemes 3-1 and 3-2 do
not guarantee that the closed-loop state will be within Xqsp

by any specific time. They can be tuned to drive the state
into Xqsp

quickly in the sense that they may take the mini-
mum or close to the minimum number of sampling periods
possible to drive the closed-loop state into Xqsp

from xðt1Þ;
however, the actual speed of this transition will depend on
the process dynamics and state/input constraints, and thus
may not, in practice, occur on a short timescale. Scheme 2
had the benefit then that regardless of the speed of the pro-
cess dynamics and constraints, it can drive the state into Xqsp

by a required time; however, it is not in general possible to
prove that it can do this in the presence of disturbances or if
t1 is not known, whereas schemes 3-1 and 3-2 are robust to
disturbances and require no prior knowledge of the switching
time.

Remark 22. There are no restrictions on the objective
functions that can be used with the safety-LEMPC schemes.
This means that they hold not only for an economics-based
objective, but can also hold for traditional quadratic objec-
tives utilized in tracking MPC in industry.

Feasibility and stability analysis

In this section, we present sufficient conditions such that the
state of the closed-loop system of Eq. 1 under the three safety-
LEMPC schemes is always bounded in Xqsp

and is ultimately
bounded in a compact set containing the origin. We present
these results in detail for the DSLS-LEMPC design, and then
describe how they can be generalized to the other safety-
LEMPC schemes through several remarks. Since the DSLS-
LEMPC design is a modified formulation of the classical
LEMPC design of,20 the proofs of stability and feasibility uti-
lize the approach in Ref. 20. We begin the proof for the
DSLS-LEMPC by re-stating the two propositions required for
stability and feasibility from Ref. 20 to define functions and
parameters needed for the proof of feasibility and closed-loop
stability of the DSLS-LEMPC formulation.

Proposition 1. (c.f. Refs. 20, 35). Consider the systems

_xaðtÞ 5 f ðxaðtÞ; u1ðtÞ; . . . ; umðtÞ;wðtÞÞ

_xbðtÞ 5 f ðxbðtÞ; u1ðtÞ; . . . ; umðtÞ; 0Þ
(17)

with initial states xaðt0Þ5xbðt0Þ 2 Xq. There exists a K func-
tion fWð�Þ such that

jxaðtÞ2xbðtÞj � fWðt2t0Þ; (18)

for all xaðtÞ; xbðtÞ 2 Xq and all wðtÞ 2 W with

fWðsÞ5
Lwh
Lx
ðeLxs21Þ: (19)

Proposition 2. (c.f. Refs. 20, 35). Consider the Lyapunov
function Vð�Þ of the system of Eq. 1. There exists a quadratic
function fVð�Þ such that

VðxÞ � Vðx̂Þ1fVðjx2x̂jÞ (20)

for all x; x̂ 2 Xq with
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fVðsÞ5a4ða21
1 ðqÞÞs1Mvs2 (21)

where Mv is a positive constant.
In the following theorem, we establish feasibility and sta-

bility of DSLS-LEMPC by introducing conditions on qsp and
�qsp.

Theorem 1. Consider the system of Eq. 1 in closed-loop
under the DSLS-LEMPC design of Eq. 16 based on a con-
troller h(x) that satisfies the conditions of Eq. 2. Let �w > 0;
D > 0; q > qsp > �qsp > qs > 0 satisfy

�qsp � qsp2fVðfWðDÞÞ (22)

and

2a3ða21
2 ðqsÞÞ1L0xMD1L0wh � 2�w=D: (23)

If xðt0Þ 2 Xq; qmin � �qsp and N � 1 where

qmin 5max fVðxðt1DÞÞ : VðxðtÞÞ � qsg; (24)

then the state x(t) of the closed-loop system can be driven in
a finite time to Xqsp

and then be bounded there, and also the
state x(t) of the closed-loop system is ultimately bounded in
Xqmin

.
Proof. The proof will be given in two parts. In Part 1, we

prove the feasibility of the optimization problem of Eq. 16
for all initial states starting within the region Xq. In Part 2,
we prove the two results of Theorem 1 (which are that the
state x(t) of the closed-loop system can be driven in a finite
time to Xqsp

and then be bounded there, and also is ulti-
mately bounded in Xqmin

). �

Part 1: The solution KcðtÞ50; 8t 2 ½tk; tk1NÞ; uðtÞ5hð~xðtnÞÞ;
8t 2 ½tn; tn11Þ with n5k; . . . ;N1k21 is a feasible solution
when ~xðtÞ is maintained within Xq. The gain KcðtÞ50; 8t 2 ½tk;
tk1NÞ is feasible since it satisfies Eq. 16e over the prediction
horizon. When KcðtÞ50, then by Eq. 16g, ~qðtÞ will be equal to
its initial value from Eq. 16h throughout the prediction horizon,
and thus the upper bound on the Lyapunov function in Eq. 16f
will be fixed (i.e., either ~qðtkÞ5VðxðtkÞÞ ) Vð~xðtÞÞ � VðxðtkÞÞ;
8t 2 ½tk; tk1NÞ; if xðtkÞ 62 Xqsp

or ~qðtkÞ5qsp ) Vð~xðtÞÞ � qsp;
8t 2 ½tk; tk1NÞ; if xðtkÞ 2 Xqsp

). In such a case, the feasibility of
uðtÞ5hð~xðtnÞÞ;8t 2 ½tn; tn11Þ with n5k; . . . ;N1k21 is guaran-
teed because it satisfies the input constraint of Eq. 16c and also,
because of the closed-loop stability property of the Lyapunov-
based controller h(x),30 it satisfies the constraint of Eq. 16f. Trivi-
ally, uðtÞ5hð~xðtnÞÞ;8t 2 ½tn; tn11Þ with n5k; . . . ;N1k21 satis-
fies the contractive constraint of Eq. 16i, making it a feasible
input trajectory for the DSLS-LEMPC design of Eq. 16. There-
fore, KcðtÞ50;8t 2 ½tk; tk1NÞ; uðtÞ5hð~xðtnÞÞ;8t 2 ½tn; tn11Þ
with n5k; . . . ;N1k21 is a feasible solution, and recursive feasi-
bility of the DSLS-LEMPC follows if the closed-loop state tra-
jectory is maintained within Xq (which will be proven in Part 2).

Part 2: We now show that if the closed-loop state xðtkÞ is
initialized outside the safety region (i.e., xðtkÞ 62 Xqsp

and
tk � ts), then within finite time the closed-loop state will be
maintained in Xqsp

. We also show that if tk> ts, then the
closed-loop state will be ultimately bounded in a small region
containing the origin.

If xðtkÞ 2 Xq=X�qsp
, then due to the contractive constraint of

Eq. 16i in the DSLS-LEMPC formulation of Eq. 16, the Lya-
punov function of the closed-loop state will decrease for the
first sampling period in the prediction horizon by at least the
rate given by the explicit stabilizing controller h(x). Owing to
the closed-loop stability property of the explicit controller
h(x),30 the Lyapunov function value of the closed-loop state

under the DSLS-LEMPC design will decrease in the next sam-
pling period (i.e., VðxðtÞÞ � VðxðtkÞÞ;8t 2 ½tk; tk11�, which is

derived in Ref. 20). Thus, if xðtkÞ 2 Xq=X�qsp
then Vðxðtk11ÞÞ

< VðxðtkÞÞ and in finite time, the closed-loop state converges

to X�qsp
(i.e., xðtk1jÞ 2 X�qsp

where j is a finite positive integer).
If xðtkÞ 2 X�qsp

and tk � ts, then ~xðtk11Þ 2 X�qsp
by the con-

straints of Eqs. 16f–16h and xðtk11Þ 2 Xqsp
, which is proven in

Ref. 20. If xðtkÞ 2 Xqsp
=X�qsp

, then the contractive constraint
will continue to be enforced, decreasing the Lyapunov func-

tion value until xðtk1lÞ 2 X�qsp
where l is a finite positive inte-

ger. Therefore, Xqsp
is a forward invariant set.

If tk> ts, then the contractive constraint of Eq. 16i will con-

tinue to decrease the Lyapunov function value until the
closed-loop state enters the compact set Xqmin

in which it is

ultimately bounded. The proof of this is analogous to the proof
of ultimate boundedness in Ref. 20.

Remark 23. As noted in Remark 19, before t1, the safety-

LEMPC operates with qsp and �qsp replacing q and qe in the for-
mulation of Eq. 16, so scheme 3-2 is also stable before t1 and

ensures closed-loop stability for the same reasons as mentioned
in the proof of Theorem 1.

Remark 24. The proofs of feasibility and closed-loop sta-

bility of schemes 1, 2, and 3-1, under the assumptions of
Theorem 1 that Xqmin

� X�qsp
and that xðt0Þ 2 Xq, have many

similarities to the proof presented for the DSLS-LEMPC and
will be outlined in several following remarks. These remarks
will show that schemes 1 and 3-1, like scheme 3-2, have

robustness properties that guarantee that they can maintain
closed-loop stability of the process state within a given

safety region in the presence of sufficiently small disturban-
ces (i.e., disturbances small enough that the Lyapunov-based

controller implemented in sample-and-hold is robust to these
disturbances) after the state has entered this safety region,

and will show that scheme 2 can guarantee that the closed-
loop state can be maintained within a given safety region for

nominal operation.
Remark 25. For scheme 1, uðtÞ5hð~xðtnÞÞ; 8t 2 ½tn; tn11Þ

with n5k; . . . ;N1k21, is a feasible solution when tk < t1
and when tk � t1 because it satisfies the input constraints
and the Mode 1 and Mode 2 constraints in Eqs. 7c–7e. This

scheme is also guaranteed to maintain closed-loop stability
of the state before and after t1. Before t1, q̂5qe, and the

safety-LEMPC operates as the standard LEMPC in Eq. 6,
which is guaranteed to maintain closed-loop stability accord-

ing to the proof presented in Ref. 20. From t1 until the state
first enters X�qsp

, the Mode 2 constraint of Eq. 7e is able to

drive the closed-loop state from any state in Xq into X�qsp

because of the robustness property of the explicit stabilizing

controller, as mentioned in the proof of Theorem 1 for the
DSLS-LEMPC. Finally, after the state has reached X�qsp

, it is

maintained within this final level set by the combination
of the Mode 1 and Mode 2 constraints in the same manner

as was detailed for the DSLS-LEMPC in the proof of
Theorem 1.

Remark 26. Feasibility and closed-loop stability for

scheme 2 can be proven when the three conditions mentioned
in the section “Scheme 2: LEMPC with sufficiently long pre-
diction horizon” are met (nominal process operation, t1 is

known, and the time interval t12tk is longer than t12N̂1D,
where N̂1 is defined based on an explicit stabilizing controller

h(x)). When these conditions are met, uðtÞ5hð~xðtnÞÞ; 8t 2 ½tn;
tn11Þ with n5k; . . . ;N1k21 is a feasible solution because it is

guaranteed to drive the closed-loop state from xðt0Þ 2 Xq to
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Xqmin
in finite time if implemented repeatedly due to the stabil-

ity properties of the Lyapunov-based controller.30 Thus, before

t1 is within the prediction horizon, q̂5q in Eq. 14e and
uðtÞ5hð~xðtnÞÞ;8t 2 ½tn; tn11Þ with n5k; . . . ;N1k21 is a feasi-

ble solution because it decreases the value of VðxðtÞÞ with time
which ensures that Vð~xðtÞÞ is maintained within Xq. When t1 is

within the prediction horizon (and thus q̂5q before t1 and qsp

starting at t1 in Eq. 14e), uðtÞ5hð~xðtnÞÞ;8t 2 ½tn; tn11Þ with n5

k; . . . ;N1k21 is feasible because the prediction horizon was
designed with respect to h(x) to be at least as long as the time

needed for an explicit stabilizing controller h(x) implemented
in sample-and-hold to drive the closed-loop state into Xqsp

from any point within Xq while meeting the input constraints
of Eq. 14d. Closed-loop stability in the sense of boundedness

of the closed-loop state within Xq before it enters Xqsp
and

within Xqsp
after it first enters the safety region is guaranteed

for a nominal process operated under scheme 2 when a feasible
solution exists because then the constraints of Eq. 14e hold not

only in the optimization problem but also for the actual
process.

Remark 27. For scheme 3-1, uðtÞ5hð~xðtnÞÞ; 8t 2 ½tn; tn11Þ;
n5k; . . . ;N1k21, with sðtÞ50 8 t 2 ½tk; tk1NÞ is a feasible
solution before t1 because it trivially satisfies the contractive

constraint and Eq. 15f and also satisfies the constraint of Eq.
15g because q̂5q. When tk � t1 and xðtkÞ 62 Xqsp

; uðtÞ5
hð~xðtnÞÞ;8t 2 ½tn; tn11Þ; n5k; . . . ;N1k21, with a negative s(t)
of arbitrarily large magnitude allows for Eqs. 15e and 15g to

be satisfied and also satisfies the contractive constraint and the
input constraints by design of h(x). When tk � t1 and

xðtkÞ 2 Xqsp
; q̂5qsp, and uðtÞ5hð~xðtnÞÞ;8t 2 ½tn; tn11Þ; n5

k; . . . ;N1k21, with sðtÞ50 8 t 2 ½tk; tk1NÞ is a feasible solu-

tion because it again satisfies both the contractive constraint
and the constraints of Eqs. 15g and 15f. The proof of the

closed-loop stability of this method follows that of the standard
LEMPC of Eq. 6 presented in Ref. 20 before t1. Scheme 3-1

decreases the state to X�qsp
in finite time due to the contractive

constraint and then maintains the state within Xqsp
after it

enters this set for the reasons described for the DSLS-LEMPC
in the proof of Theorem 1.

Remark 28. To prove ultimate boundedness of the

closed-loop state under schemes 1 and 3-1, the contractive
constraint in each scheme could be enforced for all times

after a pre-specified time ts. To prove ultimate boundedness
of the closed-loop state under scheme 2, this contractive

constraint could be added to scheme 2 at ts and enforced for
all times after ts. In all three cases, the proof of ultimate

boundedness would follow that presented for the DSLS-
LEMPC in Part 2 of the proof of Theorem 1.

Scheme 3-2: application to a chemical process example

The DSLS-LEMPC design is demonstrated using the same
CSTR example that was used for scheme 1, scheme 2, and

scheme 3-1, but with different problem settings. Specifically,
the process of Eq. 8 was operated with the same objective

function in Eq. 10, the same constraints on the inputs, for
tf 51 hr, using a prediction horizon N 5 10 and a sampling

period D50:01 hr. However, the material constraint of Eq. 11
was not used. The process of Eq. 8 was operated around the

unstable steady-state point [CAs2 Ts2] 5 [2 kmol
m3 400 K]. More-

over, a quadratic Lyapunov function VðxÞ5xTPx was con-

structed with P5diagð½636:94 0:5�Þ to determine the stability
region Xq for the DSLS-LEMPC design. The weights of the P
matrix were chosen so that each state contributed to the Lya-

punov function value approximately equally. The stability
region was chosen to be the largest level set where the time-

derivative of the Lyapunov function, _V , along the closed-loop

state trajectories is negative under the Lyapunov-based con-
troller hðxÞ5½h1ðxÞ h2ðxÞ�T defined by feedback linearization

as follows:

h1ðxÞ5
V

F
½2cx11

2F

V
ðCA0s2ðx11CAs2ÞÞ1

k0e
2E

Rðx21Ts2Þðx11CAs2Þ2�

h2ðxÞ5qLCpV½2cx21
2F

V
ðT02ðx21Ts2ÞÞ1

DH

qLCp
k0e

2E
Rðx21Ts2ÞðCAs21x1Þ2�

where c 5 25 was chosen to make the process model of Eq. 8

globally exponentially stable under h(x) in the absence of
input constraints. Both control laws are subject to the input

constraints and by using this strategy, q was chosen to be
2002.3.

The change in the example specifications in this section is

made to show that the safety-LEMPC schemes have the poten-

tial not only to ensure safe operation around a stable steady-
state, but also around an unstable steady-state. The examples

presented in this work are not intended to be used to directly
compare the performance of the schemes for the particular

system used, but rather to demonstrate the properties of the

individual schemes, since the objective of this work is to
develop several safety-LEMPC schemes and to present their

differences and similarities so that a control engineer can have
an understanding of which scheme may be best for a particular

application due to its properties as a formulation.
We assume that at the beginning of operation the safety

logic unit determines that it is necessary to shift the region of
operation Xq to the safety region Xqsp

where qsp5500 (i.e.,

t1 5 t0), again to reduce the maximum allowable temperature
of operation. The process of Eq. 8 is controlled by the DSLS-

LEMPC design given by the following optimization problem:

min
u2SðDÞ;Kc

ðtk1N

tk

2Leð~xðsÞ; uðsÞÞ
ND

1
jqsp2~qðsÞj2

hc

" #
ds (26a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (26b)

uiðtÞ 2 Ui; i51; . . . ;m; 8t 2 ½tk; tk1NÞ (26c)

~xðtkÞ5xðtkÞ (26d)

Kc � 0; 8t 2 ½tk; tk1NÞ (26e)

Vð~xðtÞÞ � ~qðtÞ; 8t 2 ½tk; tk1NÞ; (26f)

d~q
dt

5Kcðqsp2~qðtÞÞ (26g)

~qðtkÞ5VðxðtkÞÞ; if xðtkÞ 62 Xqsp

~qðtkÞ5qsp; if xðtkÞ 2 Xqsp

(26h)

where the optimization variables are the piecewise-constant

trajectory for u(t) and the auxiliary optimization variable Kc

(only one value of Kc is found for the entire prediction horizon
to minimize the number of auxiliary optimization variables

used), and hc is the integration time step 1025 hr.
The DSLS-LEMPC formulation considered is implemented

with a prediction horizon N 5 10. The objective function of

the optimization problem includes two terms; the first term is
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the negative of the time-average production rate of Eq. 10 (to
maximize the production rate since Eq. 26 is a minimization
problem), and the second term is the L2 norm of the difference
between ~qðtÞ and the safety set-point qsp. We penalize the sec-
ond term significantly more than the average production rate
using a large weight 1=hc so that the highest priority of the
DSLS-LEMPC is to drive the closed-loop state into the safety
region Xqsp

in a short time.
In the following simulation, we demonstrate the application

of the proposed DSLS-LEMPC by starting the optimization
problem from an initial condition that is at the boundary of the
stability region Xq (significantly far from the safety region) to
assess the quality of the DSLS-LEMPC controller. Figures 11
and 12 show the closed-loop state trajectories and the manipu-
lated input trajectories of the dynamic model of Eq. 8 under
the DSLS-LEMPC design of Eq. 26. Due to the high penalty

in the objective function on the deviation of the predicted
states from the safety region Xqsp

, the manipulated heat rate u2

drops to its minimum allowable value at the beginning of the
operating period to decrease the temperature of the reactor x2

as quickly as possible so that the closed-loop trajectories enter
the safety region in a short time. Once the closed-loop state
trajectories are inside the safety region Xqsp

, the objective
function reduces to only the average production rate, so the
inlet concentration u1 saturates at its maximum allowable
value to increase the reactant concentration x1, and thus the
profit is maximized. The DSLS-LEMPC controller was able to
drive the closed-loop state trajectories into the safety region
Xqsp

within three sampling periods (i.e., 3D). Another

Figure 11. The state profiles for the closed-loop CSTR
under the DSLS-LEMPC design of Eq. 26
for the initial condition [CA(0);T(0)]5
[1:606 kmol

m3 ;461:7 K].

Figure 12. Manipulated input profiles for the closed-
loop CSTR under the DSLS-LEMPC design
of Eq. 26 for the initial condition
[CA(0);T(0)]5[1:606 kmol

m3 ; 461:7 K].

Figure 13. The state-space profile for the closed-loop
CSTR under the DSLS-LEMPC design of
Eq. 26 for the initial condition [CA(0);
T(0)]5[1:606 kmol

m3 ;461:7 K] and qint52002:3
for two different safety set-points qsp15500
at t150 hr; qsp25300 at t250:5 hr.

Figure 14. The state-space profile for the closed-loop
CSTR under the DSLS-LEMPC design of Eq.
26 for the initial condition [CA(0);T(0)]5
[1:606 kmol

m3 ;461:7 K] and qint52002:3.
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simulation was performed to demonstrate that the DSLS-
LEMPC is efficient at adapting to sudden changes of the safety
set-point. In this simulation, the safety logic unit required the
process state to move to two different safety level sets at two
different time instants, where t1 5 t0 and t250:5 hr, with the
corresponding safety set-points being qsp1

5500 and qsp2
5300.

Figure 13 represents the state trajectory in this case; clearly
the DSLS-LEMPC was successfully able to drive the closed-
loop state into the boundary of Xqsp2

within one sampling
period after t2 where the process state settled to maximize the
profit.

Figure 14 depicts the closed-loop state-space trajectories
for x1 and x2 starting from an initial level set Xqint

that is
equal to the level set Xq (i.e., q5qint5Vðxðt0ÞÞ, where t0 is
the initial time). As shown in Figure 14, shortly after the
closed-loop state trajectories enter the safety region, they
start to approach the boundary of the safety region to maxi-
mize the production rate. Also, the state trajectories settle at
the point ½x1ð0Þ; x2ð0Þ�5½0:07 kmol

m3 ; 31:53 K� where the pro-
duction rate attains a local maximum within the specified
safety region Xqsp

.
Figure 15 shows the inverse relationship between the gain

KcðtÞ and the initial value of ~qðtÞ of Eq. 26g at the beginning
of each sampling period tk under the DSLS-LEMPC design of
Eq. 26. The gain KcðtÞ levels off at a constant value after the
initial value of ~qðtÞ of Eq. 26g under the DSLS-LEMPC is
equal to the safety set-point value qsp5500.

Remark 29. The formulation of the DSLS-LEMPC used
for this example, shown in Eq. 26, is not guaranteed to be
stabilizing in the sense of convergence to a small neighbor-
hood of the steady-state, particularly around the unstable
steady-state, since it does not include the contractive con-
straint for simplicity. It was able to maintain the closed-loop
state within the stability region in the simulations discussed
above; to guarantee convergence to a small neighborhood of
the steady-state or robustness to disturbances in this exam-
ple, the contractive constraint should be added.

Conclusion

In this work, safety-LEMPC schemes were introduced to

combine feedback control, process economics, and safety con-

siderations. Three different safety-LEMPC schemes that main-

tain safe operation while maximizing the profit were

developed. The first scheme used a contractive constraint to

compute control actions that drive the closed-loop state to a

safe region of operation at least as quickly as a stabilizing

Lyapunov-based controller would. However, under this

scheme, the rate of the transition between the regions of opera-

tion may be slow. Although the second scheme utilized a suffi-

ciently long prediction horizon and a region constraint to

ensure that the state was within the safety region by a specific

time, it may require a long computation time associated with

the larger number of decision variables required to simulate a

process over a long prediction horizon. The third scheme

tackled the drawbacks of the first two schemes by giving two

formulations that incorporate time-varying safety-based con-

straints to transition the closed-loop state between the regions

of operation efficiently. The first formulation incorporated a

slack variable to achieve this while the second formulation

(DSLS-LEMPC) dynamically controlled the upper bound on

the Lyapunov function directly. For a sufficiently small sam-

pling period, we proved recursive feasibility and closed-loop

stability of a class of nonlinear systems under the safety-

LEMPC schemes for nominal operation and, for schemes 1

and 3, in the presence of uncertainty. A chemical process

example under each of the safety-LEMPC schemes was pre-

sented to demonstrate the ability of the proposed controllers to

drive the closed-loop state into a safe region of operation and

then maintain it within the safety region while maximizing the

profit of the process. Closed-loop stability was maintained in

all simulations and the safety-LEMPC schemes demonstrated

an effective economic performance and safety constraints

satisfaction.
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