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 A B S T R A C T

Smart Manufacturing (SM), which is short for ‘‘Smart (Predictive, Preventive, Proactive) zero incident, zero 
emissions Manufacturing,’’ describes manufacturing’s digital transformation in which factories, supply chains 
and ecosystems are integrated, interoperable, and interconnected. Smart Manufacturing is rooted in AI, 
Machine Learned (ML), and Data Synchronized (DS) modeling to tap into invaluable operating data. By 
making data actionable at larger scales, SM opens new ways to increase productivity, precision, and process 
performance. Smart Manufacturing applied to front-end wafer manufacturing in the semiconductor industry 
offers significant opportunity to increase production throughput and ensure precision by increasing staff and 
operational productivity. Front-end wafer manufacturing involves multi tool operations for complex material 
processing that requires a high degree of precision and extensive product qualification. There is a high degree 
of commonality with semiconductor manufacturing tools, for example etching, that are well instrumented. 
Companies are already collecting large amounts of operational data from these tools that can be aggregated 
and leveraged for virtual metrology and other control, diagnostic, and management solutions. AI/ML/DS 
modeling involves monitoring the state of an operation in real-time to continuously learn and improve on 
human centered, automated, and autonomous actions. This operational data are embedded in invaluable 
machine, process, product, and material behaviors as interaction complexities, linearities/non-linearities, and 
dimensional effects. Because of machine commonalities, data can be selected to draw out operational value 
across machines. Today’s data science offers considerable capability for qualifying, assessing alignment and 
contribution, aggregating, and engineering data for more robust modeling. We refer to this as a Data-first 
strategy to process, engineer and model with AI-Ready data. In this paper, we address AI-Ready data for 
a virtual metrology solution focused on etching measurement PASS/FAIL classification and milling depth 
prediction regression tasks using operational data from production machine tools. If the quality of the product 
can be predicted, the productivity of the metrology process can be increased, which in turn increases the 
productivity of the overall operation. In a previous paper, we considered how to aggregate data from different 
etch tools in the same processes at different factories within Seagate Technology and proposed a method 
for data aggregation and demonstrated its value (Ou et al., 2024). The present paper considers how to 
process and engineer datasets from two different etch tool processes: wafer and slider production. The data 
processing approaches when used systematically with appropriate ML algorithms demonstrate the potential for 
reducing metrological interventions in semiconductor manufacturing. Advanced machine learning techniques 
are used to tackle the modeling challenges of a low failure rate and limited operational variability. XGBoost, a 
gradient descent-based tree algorithm, outperforms the commonly used Feedforward Neural Networks (FNN) 
in terms of training speed and resource utilization for binary-classifications, as well the performance criterion 
in ROC-AUC score (classification), Median Absolute Error (regression) and 𝑅2 value. Principal Component 
Analysis (PCA) effectively reduces the dimensionality of the data and overfitting, while retaining vital variances 
and significantly reducing noise. Data aggregation with separated scaling harmonizes inputs from diverse 
manufacturing tools and significantly improves the efficacy and versatility of combining multiple datasets 
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to improve model performance. A live updating transfer learning approach, that periodically updates the FNN 
models in real-time using Stochastic Gradient Descent (SGD) with individual data points, addresses process 
drift, and markedly improves predictive accuracy. For the slider production tools, data augmentation with 
linear Mixup, overcomes a short recording period, enriches the training dataset, and significantly reduces 
error metrics.
1. Introduction

As the transition to the digital era accelerates and the Internet of 
Things (IoT) grows, the demand for microelectronic devices is skyrock-
eting. The Semiconductor Industry Association (SIA) announced that 
global semiconductor industry sales totaled $574.1 billion in 2022, the 
highest ever annual total and an increase of 3.3% compared to the 2021 
total of $555.9 billion. The industry shipped a record 1.15 trillion semi-
conductor units in 2021, as chip companies ramped up production to 
address high demand amid the global chip shortage (Casanova, 2023). 
These are devices equipped with integrated circuits such as central 
processing units (CPUs), graphics processing units (GPUs), hard drives, 
and solid state drives (Nguyen et al., 2024). Demand for these devices 
has long driven the need for higher transistor densities and narrower 
gate widths to improve computing performance and reduce power 
consumption rates (Mack, 2011). Today, the increase in demand has 
led to recurring shortages (Mohammad et al., 2022), negatively affect-
ing global economies in various sectors, for example, the automotive 
industry (Wu et al., 2021). There is a substantial incentive in semicon-
ductor manufacturing to increase production volume, increase product 
quality and precision, and increase productivity without only increas-
ing operational equipment and personnel. Digital transformation and 
leveraging Industry 4.0 for Smart Manufacturing are pivotal with how 
to take advantage of operational data, AI/ML, IoT, information tech-
nology, and interconnectedness at greater scales to open new avenues 
of increased productivity, performance and precision (Malkani and 
Korambath, 2022). Smart manufacturing is, by definition, about using 
real-time data and modeling at scale. It is the intersection of plant-wide 
agility and optimization, sustainable production and resilient demand-
driven supply chains made interoperable through interconnectedness 
with trust and meaningfully shared data and tools (Davis et al., 2020).

Smart Manufacturing at scale depends on operating sensor data 
collected, contextualized, and aggregated from sensors on factory floor 
operations. Specifically, sensors are installed on each machine for each 
process operation, and they process and/or collect data in real time. 
These data are used to manage, control, and optimize the perfor-
mance of each individual machine tool and process operation. They are 
useful for multiple management objectives such as monitoring, diag-
nosis, operational health, preventive maintenance, faster changeovers 
and quality assurance (Tsanousa et al., 2022). These data are critical 
to automation and autonomous operations. When used across line 
and factory operations, the data are used to address interoperability, 
agility, and higher-level key performance indicators in combination. 
Line operation and factory interoperability extend into supply chain 
interoperability. Cross company data that provide visibility into supply 
chain material and product flows and product demands and capaci-
ties are needed for resilience. In addition to the benefits of applying 
data and models to improve physical operations at all levels, these 
same data are also valuable assets that can be aggregated to build 
richer data sets for model building (Ou et al., 2024). The data can 
be categorized, discovered and used to validate models and when syn-
chronized with models, the resulting digital twin systems can be used 
for real-time preventive, proactive, predictive control, management and 
optimization (Davis et al., 2022).

In this paper we focus on data as valuable assets and demonstrate 
how data from multiple similar machines can be aggregated into richer 
datasets for more robust machine learning (ML) model building for all 
machines and/or how multiple machines can be optimized together. 
2 
We focus on method and demonstration of virtual metrology (a.k.a., 
soft sensing) as one important application in semiconductor manufac-
turing. Unlike direct measurement methods, such as an offline quartz 
microbalance to analyze layer thickness manufacturing  (Songkhla 
and Nakamoto, 2021), ML virtual metrology predicts product qual-
ity measurements or condition from operating sensor data by using 
these data to train models that can, within the range of operating 
conditions experienced, associate operating conditions to quality mea-
surement (Kadlec et al., 2009). The advantage of soft sensing lies in 
its ability to overcome the drawbacks of direct sensing, which can 
be expensive, time-consuming, untimely and/or labor-intensive (Wang 
et al., 2022). There can be situations in which the measurement costs 
more than the product. There are also situations in which technical 
measurement complexity, product conditions, and or measurement 
objectives make physically impossible to do a direct measurement, 
e.g., key performance indicators (KPIs).

In contrast, virtual metrology uses data generated during production 
processes. These are data that embed operational effects for the range 
of operations experienced. The data, collected from widely available 
sensors are relatively inexpensive. The engineering of the data and 
the modeling process, if done systematically and carefully, has been 
shown to be highly effective in measuring physical parameters that 
are difficult to directly assess (Jiang et al., 2020). Benefits from these 
models can accrue quickly. However, these ML models are limited 
to operating range experienced. It is therefore crucial to pay close 
attention to the operating conditions within which the reliability of 
the model is high. Modern manufacturing processes have become in-
creasingly complex, generating vast amounts of data from dozens or 
even hundreds of sensors (Konyha and Bányai, 2017). There can be 
data volumes and operational complexities that exceed human assimi-
lation. Machine learning and deep learning techniques have emerged as 
promising methods. They perform well in capturing complex non-linear 
correlations between inputs and outputs, and it has been demonstrated 
that neural networks of sufficient scale can approximate any non-linear 
functions (Hornik et al., 1989).

Several types of neural networks have been successfully imple-
mented in production settings: for example, Convolutional Neural Net-
works (CNNs) (Coleman et al., 2022) and Recurrent Neural Networks 
(RNNs) (Lee et al., 2021). Transformer networks have been used by 
companies including Seagate Technology for fault detection in etch 
tools (Zhang et al., 2021). Although recent advancements in ML have 
prompted extensive research into the application of soft sensing across 
various industries, challenges such as data insufficiency, sensor noise, 
and the presence of redundant sensors remain significant problems. 
Furthermore, the issue of process drift over time complicates the ef-
fectiveness and reliability of models built on historical data.

In this paper, ML virtual metrology is tailored for both plasma etch-
ing and slider production. Specifically, datasets from multiple plasma 
etching and slider production tools were consistently collected and 
contextualized by applying CESMII’s Data Information Model structure, 
called a Profile (Davis et al., 2020). The Profile ensures that the mea-
surements from each of the machines could be concatenated for further 
cross-machine analyses and uses of the data. Importantly, the paper 
recognizes that these AI/ML/DS models depend on, in fact thrive on 
the ‘‘right’’ data when there is enough that is engineered appropriately 
to build, train, test, and validate the AI/ML models. A ‘‘Data-First’’ 
strategy emphasizes the importance of data available in the amounts, 
forms, scale, and access necessary to achieve benefits in productivity, 
jobs, market share, sustainability, and growth. A Data-First strategy 
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emphasizes engineering AI-Ready data that is consistently, collected, 
ingested, contextualized, cleaned, normalized, protected, aggregated, 
assessed, and selected to draw out the operational value that has 
been refined from years of experience even when the physics may 
not be fully understood. Data-First also addresses the primacy of data 
access in implementing affordable AI/ML solutions including how to 
obtain, categorize, scale, and use AI-Ready data. This includes how to 
validate, learn, unlearn, and adjust models when using and reusing this 
invaluable data.

This paper explores the impact of data modification and manipula-
tion techniques, including dimension reduction, data aggregation, and 
data augmentation, on model performance to address these challenges. 
Principal Component Analysis (PCA) is employed as a dimension re-
duction technique to eliminate redundant features and reduce noise. 
Building upon a prior work (Ou et al., 2024), this study introduces 
a separate scaling method designed to normalize input datasets more 
effectively, thereby enhancing model performance. Despite the com-
mon use of Feedforward Neural Networks (FNN) in such applications, 
decision tree methods based on gradient descent boosting, which are 
well-suited for handling large feature sets with lower computational 
training costs, have rarely been explored in this context. To address 
the issue of process drift, a live-updating transfer learning approach is 
implemented with FNN models. This approach periodically updates the 
model using up-to-date data to reduce the need for physical measure-
ments, leveraging a base model trained on historical data. Additionally, 
this paper discusses and applies a data augmentation method, linear 
Mixup, to mitigate commonly encountered data insufficiency issues, 
which may arise from sensor failures or pre-mature process lines. The 
Mixup method has been shown to significantly improve model perfor-
mance as data-adaptive regularization, offering a promising solution to 
these pervasive challenges (Zhang et al., 2020).

This work is organized as follows: Section 2.1 provides an overview 
of the datasets with Section 2.2 going more in depth on the pre-
processing procedures for both etching and slider production tools, 
Section 2.3 presents the machine learning model construction for both 
classification and regression tasks, Sections 3.1 and 3.2 demonstrate 
and discuss the model performance results on both tools, and Section 4 
summarizes the findings of this work.

2. Data preprocessing and modeling

2.1. Overview

This section provides an overview of the solution objective, data 
collection, physical functionality, and specific machine tools for the 
use case used in this study. As mentioned, the use case encompasses 
five plasma etching machines at various Seagate factories used in wafer 
production distinct from those examined in previous research (Ou et al., 
2024), and an additional seven slider tools from the production of the 
slider component used in hard disk drives (HDD). The 12 datasets, one 
from each machine, made it possible to extend the prior study on data 
aggregation on similar machines and processes to a study on similar 
machines but different processes. The solution objective remained the 
same as the previous study (Ou et al., 2024), in which the model was 
constructed to use machine tool data to determine (predict, before 
metrology) if the final thickness of the deposited layer PASS or FAIL. 
PASS refers to if the wafer is expected with high probability to fall 
within a specified quality range, and FAIL is if it does not. As in 
the previous study, a classification model was applied. In addition, a 
regression model was also developed for the slider production process 
to quantitatively predict the depth of the milling process. Both mod-
els aim to determine whether the output products of these tools are 
expected to meet specific metrological standards. If the performance 
of these models is sufficiently high, this virtual metrology application 
can increase the machine and staffing productivity of the physical 
metrology quality assurance process.
3 
Fig. 1. The industrial etching equipment’s manufacturing system consists of multiple 
etching reactors, each equipped with several modules capable of running different 
processes. The production begins with pure silicon wafers, which undergo a series of 
processing steps before transforming into the final product.

The datasets produced by the etching process facilitate the devel-
opment of a binary classification model to perform fault detection. 
This model classifies the final thickness of the deposited layer as PASS 
if it falls within a predefined range and FAIL if it does not. For the 
slider production process, a regression model is developed to predict 
the depth of the milling process. This model aims to determine whether 
the outputs of these tools meet specific metrological standards, thus 
serving as an effective soft sensor for quality assurance for multiple 
products in manufacturing processes.

The details of the data collection and description of the tools and 
modules of datasets were elaborated in a prior work (Ou et al., 2024) 
and demonstrated in Fig.  1. In summary, the manufacturing process 
requires raw wafers to undergo a sequence of process steps to transform 
into complete products. Due to the repetitiveness of these processes, 
a wafer may interact with the same kind of tool multiple times at 
different processes. This work analyzes etching and slider production 
tools, where each tool functions as a reactor and contains modules that 
operate as nearly independent reaction chambers to conduct specific 
processes. Tool-module combinations are designated in the T-PM for-
mat; for instance, ‘T1-PM1’ refers to module 1 in tool 1. For the rest of 
the paper, a data point is defined as a data vector of all features after 
averaging across the duration of the batch. A dataset is the collection 
of data points obtained from a specific tool-module combination. Given 
these definitions, this section will explain how each type of industrial 
dataset is processed and the structure of their corresponding machine 
learning algorithm.

2.2. Data generation and preprocessing for etching and slider tools

2.2.1. Wafer production etch tools
Operational data from each wafer production etch tool was collected 

and consistently organized by the CESMII Information Model or Profile 
pictured in Fig.  1. The data from each machine comprised two data 
types: 32 streamed, time-based numerical sensor measurements and 
2 categorical features. The streamed, numerical data, sourced from 
various physical sensors, include operational measurements such as 
pressure and gas flow, i.e., state variables that can be measured directly 
and in real-time. Categorical features describe process and material 
specifics that are decisions about the use of the machine. The two 
features included are an alphanumeric process ID that captures the 
‘‘recipe’’ of machine functions for a particular product and the substrate 
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Fig. 2. This figure illustrates the input data preprocessing workflow for etching tools and slider production tools. Common steps include invalid data removal, normalization, and 
dimension reduction. Etching tools incorporate encoders for categorical data management, whereas slider tools utilize Mixup to mitigate data scarcity.
family ID. Each family is a finite set of classes. The steamed operational 
data was averaged for each variable over duration of a batch run 
which is typically on the order of 20 min. Data collected cover five 
years of operation, from February 2018 to December 2022. The five 
etch tool datasets are categorized by machine number and process 
module (single machines that have parallel etch modules) as T51-PM1, 
T52-PM1, T52-PM2, T53-PM1, and T53-PM2.

Again, the solution objective is to build a binary prediction model 
by mapping these operating data to PASS and FAIL outcomes. Data 
from 2018 through 2021 are allocated for training, validation and the 
tuning of the model hyperparameters. The 2022 data, the most recently 
collected, were reserved for testing. Selecting data from the oldest 
rather than the newer sets and then testing with the most recent data 
ensures that model effectiveness with respect to ‘‘normal’’ operational 
shifts and machine changes over time are accounted for and evaluated 
in the context of current and future production scenarios.

In addition to data selection, data preprocessing is also crucial 
for preparing datasets for model training process. Prior studies (Ran-
ganathan, 2021; Albon, 2018) have highlighted that preprocessing 
can significantly impact model training performance, underscoring the 
importance of selecting those preprocessing methods that optimize 
model performance for an operational situation (Zheng et al., 2018). 
In this work, preprocessing involves removing or padding invalid/null 
data points, encoding discrete variables, and normalizing numerical 
data points for maximum performance accurately. The workflows for 
preprocessing inputs and outputs are graphically illustrated in Fig.  2 
(input data) and Fig.  3 (outputs).

With reference to Fig.  1, the first step is remove invalid data. An 
invalid data point is defined when critical sensor data are absent, such 
as the output measurements of oxide thickness, the pass/fail status, or 
when a substantial number of the input sensor data is missing. Missing 
data points can be attributed to the temporary malfunction of sensors 
within a batch run, not uncommon with industrial data. In scenarios 
where extensive numbers of sensor data are missing (usually over half, 
at least 10 features), zeroing all missing features or feature paddings 
could detrimentally affect the dataset’s integrity and, consequently, 
the model training performance. For sensor data points in which a 
4 
small number of the measurements (usually below three features, rarely 
over five features) are missing, these missing values are replaced by 
the average value of the remaining data points in the data set. This 
imputation method helps maintain the consistency and reliability of 
the dataset, ensuring that the training process is not skewed by gaps 
in the data. This strategy of handling missing data preserves the under-
lying statistical relationships and prevents the introduction of bias that 
could mislead the learning algorithm. We note that the sensor data is 
collected as time-series measurements and averaged over the duration 
of each processing step to generate representative values for various 
features. Once this data is properly recorded, it is treated as accurate 
and reliable, as the sensors on the machine have been qualified by 
operations to ensure proper functionality and measurement accuracy.

Conversion of categorical features into numerical formats is essen-
tial for their integration into numeric-based machine learning models. 
Each categorical feature, such as the process ID and the substrate family 
ID, must be uniquely encoded using methods such as label encoding 
or one-hot encoding. In this work, label encoding was used to convert 
process name IDs and substrate family IDs into numerical values. To 
ensure consistency across different machines, substrates, and produc-
tion processes, the encoding was created using all available datasets 
combined, covering all possible entries. This approach prevents issues 
that could arise if the encoder were trained on a limited dataset. For 
example, if a tool or module only runs certain processes, an encoder 
trained only on that data might fail when applied to another tool 
with different processes, leading to errors due to missing values. By 
including all possible entries during encoding, we ensure that the data 
remains compatible across different tools and processes. For the output 
variable, which is either PASS or FAIL condition, binary encoding 
scheme is adopted, where ‘1’ represents a PASS and ‘0’ denotes a FAIL.

Normalization and scaling of data are critical for optimal training 
performance, when the input features span wide numeric ranges and 
scales. For instance, in this use case some features might range from 
0 to 1, while others range from 0 to 100,000. Normalization was 
critical to avoiding gradient vanishing or gradient explosion (Rehmer 
and Kroll, 2020). Although gradient-boosted, tree-based methods like 
XGBoost and AdaBoost are inherently less sensitive to scale differences 
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Fig. 3. This figure illustrates the output data preprocessing workflow for etching tools 
and slider production tools. Common steps include invalid data removal, etching tools 
requires 0/1 encoding, and slider tools requires separate scaling.

due to their reliance on decision tree structures, normalization still 
plays a significant role. Unscaled data can introduce inefficiencies in 
node splitting such that features with larger value ranges can dominate 
the feature selection in split decisions, potentially leading to suboptimal 
splits that do not capture the true underlying patterns in the data 
effectively.

To ensure all features are normalized consistently across different 
datasets, a standard scaler is applied to each dataset independently, 
normalizing the features to a mean value of 0 and a standard deviation 
of 1. This scaling process adheres to the formula: 

𝑍 = 𝑋 − 𝑢
𝑠

(1)

where 𝑍 is the output vector of a scaled numerical feature, 𝑋 is the 
input vector of the original feature, 𝑢 is the average value of 𝑋, and 
𝑠 is the standard deviation of 𝑋. In the context of data aggregation, a 
method detailed in a previous work (Ou et al., 2024), where model 
training involves combining multiple datasets to improve the model 
performance by increasing data variability and data volume, it is found 
to be beneficial to scale each dataset separately prior to concatenating 
datasets. In other words, the concatenations should happen between 
scaled datasets but not raw data. This method is necessary because, 
within each module’s reaction chamber, the distribution of features 
often varies significantly. For example, although the same feature 
across different datasets may be similar in scale, direct scaling of 
the aggregated dataset could distort the inherent distributions of each 
dataset if the differences in scale and standard deviation are substantial. 
As shown in Table  1, the mean percentage difference of average values 
across all features exceeds 40% between most tools, indicating signif-
icant distribution shifts between datasets. This distribution distortion 
5 
Table 1
Mean percentage difference of average value of all features.
 T51-PM1 T51-PM2 T51-PM3 T52-PM2 T53-PM2 
 T51-PM1 N/A 64% 14% 90% 43%  
 T51-PM2 77% N/A 75% 55% 46%  
 T51-PM3 20% 86% N/A 101% 66%  
 T52-PM2 5865% 3208% 5274% N/A 9932%  
 T53-PM2 47% 45% 45% 81% N/A  

can mislead the model if the datasets are concatenated before normal-
ization, then impacting its performance. Consequently, separate scaling 
for each dual-tool combination is implemented to maintain the integrity 
of their original distributions relative to the output. This approach 
preserves crucial relationships within the data, ensuring more reliable 
and accurate model training outcomes.

After the normalization and aggregation process, dimension re-
duction is facilitated using Principal Component Analysis (PCA). It is 
worth noting that PCA requires the data to be normalized before its 
application. Normalization standardizes the range of features, ensuring 
that each feature contributes equally to the analysis and that features 
with larger scales do not dominate the principal components. This 
prerequisite is crucial because PCA is sensitive to any variance in the 
initial variables. The PCA process begins by calculating the covariance 
matrix for the data, which identifies the directions in which the data 
varies the most. If the data are not normalized, features with higher 
absolute values could disproportionately influence the covariance ma-
trix, leading to biased principal components that do not accurately 
reflect the underlying data structure. Subsequently, the eigenvalues and 
eigenvectors of this covariance matrix are computed. The eigenvalues 
are sorted in descending order, and their corresponding eigenvectors 
are aligned accordingly. The principal components are selected based 
on these sorted eigenvalues, those that explain the most variance are 
retained (in this work 99.9% of variances are retained), discarding 
the less significant components (non-contributing features, noise). This 
selection is critical because features that exhibit higher variance are 
considered more influential for the model’s predictive accuracy. The 
calculation process is shown below: 

𝑄 = 𝑋𝑇𝑋 = 𝑊𝛬𝑊 𝑇 (2)

where 𝑋 represents the data matrix with dimension (𝑘 × 𝑑), where 
𝑘 denotes the number of data points and 𝑑 represents dimensions of 
datasets. 𝑄 refers to the covariance matrix, which is a square matrix of 
dimension (𝑑 × 𝑑). 𝛬 is a diagonal matrix consisting of eigenvalues of 
𝑄 arranged in descending order. Correspondingly, 𝑊  is a matrix of the 
eigenvectors of 𝑄, aligned in the same sequence as the eigenvalues in 𝛬. 
The linear transformation from the original data space to the principal 
components space is represented by equation below: 

𝑇𝐿 = 𝑋𝑊𝐿 (3)

where 𝐿 is the number of reduced dimensions determined by the 
proportion of variance to be retained, 𝑇𝐿 represents the transformed 
data matrix with dimension (𝑘 × 𝐿), and 𝑊𝐿 is the first 𝐿 columns of 
W matrix.

Each principal component is a linear combination of the original 
features, representing a new direction in the feature space. By focusing 
on these principal components, PCA effectively reduces the dimension-
ality of the data. This reduction not only compresses the data with 
minimum loss by emphasizing directions with most significant varia-
tions, but also helps in mitigating the risk of overfitting by reducing 
feature numbers and noise in the data. In this work, 99.9% of variances 
are retained, and the resulting feature space has dimension between 
10–15, corresponding to 60% to 75% reduction in dimension.
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Fig. 4. Scatter plot of T15-PM1 output, illustrating how data points are primarily grouped into several clusters.
2.2.2. Slider production tools
Slider tools are a different part of the manufacturing process from 

wafer production where machine tools are used to make specific parts 
used in the production of data storage devices. For this study, we 
focused on a milling machine step which is used to establish a crit-
ical surface depth for the slider component. The modeling objective 
is the same virtual metrology solution for wafer production in that 
milling machine sensor data were collected, contextualized, processed 
and engineered for building a model to predict milling depth. In this 
study we have benchmarked data processing methods and workflow, 
and we compare and contrast the approach to building the virtual 
metrology solution for two different production applications. As with 
wafer production, modeling begins with data analysis. Since the goal is 
to predict milling depth, a continuous variable, a regression model is 
developed. This model leverages multiple features, approximately 20 in 
total, to estimate milling depth with precision. However, an important 
observation from the data is that milling depth values tend to cluster 
into discrete ranges, corresponding to specific product specifications. 
Fig.  4 illustrates these clusters, with milling depths predominantly 
falling within groups of 1450–1550, 1650–1850, and 2150–2350. These 
clusters reflect the limited variety of products, each with its own depth 
requirement, and are an inherent characteristic of the manufacturing 
process.

Given this natural grouping, the regression output can be easily 
mapped into predefined depth ranges, allowing for a multi-class classi-
fication approach. Instead of building a separate classification model, 
the regression predictions are assigned to the nearest cluster, effectively 
classifying each wafer’s milling depth into a corresponding product 
category. Additionally, this classification approach aids in identifying 
failures. Failures are defined as wafers whose milling depth deviates 
significantly from the expected clusters for a given tool-module combi-
nation. For example, if a particular tool is designed to produce only one 
type of product, any wafer with a milling depth outside its designated 
range is considered a failure, even if its depth aligns with a valid 
range for another product. In this context, failures indicate deviations 
in production quality, highlighting potential process anomalies. This 
depth-failure classification enhances both the model’s practical utility 
and its ability to detect defects in real-world manufacturing.

For classification, data points outside of the major depth ranges 
are flagged as failures, with the distribution details of these principal 
ranges cataloged in Table  2. The datasets relevant to slider production, 
namely T07-PM1, T07-PM2, T15-PM1, T02-PM1, T02-PM2, T01-PM1, 
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Table 2
Data distribution across different ranges.

1450–1550 1650–1850 2150–2350 Others Total

T07-PM1 1 869 9 22 901
T07-PM2 7 992 4 11 1014
T15-PM1 518 943 530 15 2006
T01-PM1 98 198 158 11 465
T02-PM1 0 742 108 24 874
T02-PM2 1 685 18 24 728
T05-PM2 0 153 0 3 156

and T05-PM2, consist of 20 features each, similar to the datasets from 
etching tools but encompassing fewer features and data points. The 
organization of data points within major depth categories for each 
dataset is also documented in Table  2, where red numbers mean data 
points in outlier regions.

Data preprocessing for these datasets follows a similar approach 
to that used for etching tools, including the removal of null values, 
padding of missing data, normalization, aggregation, and dimension 
reduction. However, since the slider production datasets do not contain 
categorical features, the encoding step is not required. As shown in 
Fig.  2, unique to slider tools, however, is the application of separate 
scaling on the output data during aggregation, as the outputs of etching 
tools datasets are binary values. In this aggregation process, one dataset 
is designated as the primary or ‘major’ dataset aimed at performance 
enhancement, while other datasets serve as supplementary or ‘helper’ 
datasets. The output scaler is tailored to the distribution of the major 
dataset before being applied to the combined dataset to preserve its 
integrity. This strategy is crucial because using a universal scaler across 
the aggregated data could distort the distribution of the major dataset 
of interest, such as the single-region T07-PM1 versus the three-region 
T15-PM1.

After normalization and aggregation, PCA is applied to the input 
data to retain at least 99.9% of the original variance, significantly 
reducing dimensionality while preserving essential information. The 
number of principal components retained varies by dataset, typically 
resulting in about 10 principal components, effectively halving the 
original feature set. This dimensionality reduction is critical in man-
aging the complexity and enhancing the interpretability of the models 
developed from these high-variance datasets.

Due to the limited data availability for slider production tools as 
characterized by a shorter data collection period of only one year 
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compared to five years for etching tools and a lower frequency of 
data recording, enhancements in model performance are necessary. 
To address this, a data augmentation technique known as Mixup was 
employed to create artificial data points by interpolation between 
existing data points.

However, given that the slider data belongs to several discrete 
regions, interpolating data points between major regions was avoided 
since doing so could lead to non-existing milling depth. For data 
aggregation, each dataset undergoes Mixup independently within its 
respective major regions, and the resulting post-processed datasets 
are then concatenated. This ensures that the augmented data remains 
representative of the true distribution patterns observed in the pro-
duction environment. To evaluate the impact of different interpolation 
strategies on model effectiveness, two distinct Mixup schemes were 
tested. The first scheme is tri-point interpolation, which creates two 
artificial data points between each two data points. This scheme is 
formulated as follows: 
𝑥𝑚𝑖𝑥 = 0.33𝑥𝑖 + 0.67𝑥𝑖+1, 𝑥𝑚𝑖𝑥 = 0.67𝑥𝑖 + 0.33𝑥𝑖+1
𝑦𝑚𝑖𝑥 = 0.33𝑦𝑖 + 0.67𝑦𝑖+1, 𝑦𝑚𝑖𝑥 = 0.67𝑦𝑖 + 0.33𝑦𝑖+1

(4)

The second scheme creates one data point directly in the middle of two 
data points as formulated as follows: 
𝑥𝑚𝑖𝑥 = 0.5𝑥𝑖 + 0.5𝑥𝑖+1
𝑦𝑚𝑖𝑥 = 0.5𝑦𝑖 + 0.5𝑦𝑖+1

(5)

Beyond data augmentation, Mixup also acts as a form of regular-
ization, effectively smoothing the decision boundaries of the model. 
This smoothing is achieved by encouraging the model to perform linear 
interpolations between features and their associated targets in the 
input space, which can reduce the model’s confidence in far-reaching 
predictions. Such a characteristic is particularly useful in mitigating 
overfitting, as it prevents the model from learning overly complex 
patterns that are heavily dependent on the specific training data dis-
tribution. Instead, Mixup encourages the model to generalize better to 
new, unseen data by promoting a broader exploration of the feature 
space and reducing the likelihood of drastic output changes in response 
to small variations in input. This regularization effect makes Mixup a 
valuable technique in enhancing the robustness and generalizability of 
machine learning models (Zhang et al., 2020).

2.3. Model training

2.3.1. Introduction to machine learning models
Feedforward Neural Networks (FNNs) are widely used for modeling 

processes involving regression and classification under large amounts of 
data and features. However, tree-based ensemble methods like Extreme 
Gradient Boosting (XGBoost) demonstrate advantages when dealing 
with high-dimensional feature spaces and significant noise levels. This 
is because:

• FNNs require careful normalization, can consume more compu-
tational resources, and may suffer from overfitting in complex 
architectures.

• Tree-based approaches (like XGBoost) require less stringent nor-
malization, often train faster on moderate size dataset, and are 
generally robust to overfitting due to inherent regularization.

In industrial applications, datasets often present challenges such as 
high-dimensional feature spaces, missing values, class imbalance, and 
the presence of significant noise. These characteristics make tree-based 
approaches particularly well-suited for industrial data modeling. The 
key advantages include:

• Robustness to Noisy and Incomplete Data: Industrial datasets 
frequently contain sensor readings, production metrics, and op-
erational parameters that may be affected by measurement er-
rors, environmental conditions, or missing entries. Tree-based 
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approaches handles such inconsistencies effectively using its op-
timized split criteria and missing value handling mechanisms, 
allowing it to make robust predictions despite imperfect data.

• Feature Selection and Interpretability: Unlike FNNs, which 
often require careful feature engineering and are perceived as 
black-box models, tree-based approaches naturally identifies the 
most important features during training. This ability is critical 
in industrial settings where engineers and decision-makers need 
interpretable insights for process optimization, fault diagnosis, 
and predictive maintenance.

• Computational Efficiency and Scalability: Industrial datasets in 
this study range from 10,000 to 30,000 data points. Training deep 
neural networks on such data is more computationally expensive 
than XGBoost, even with a GPU, and require extensive hyper-
parameter tuning. Tree-based approaches, on the other hand, is 
optimized for speed and scalability for mid size datasets as in this 
work, leveraging parallel processing and tree-pruning techniques 
to efficiently handle large datasets with minimal computational 
overhead.

• Regularization for Generalization: FNNs, particularly deep ar-
chitectures, require careful tuning of dropout rates and batch 
normalization to prevent overfitting. Tree-based approaches can 
incorporate built-in regularization techniques such as L1 (LASSO) 
and L2 (Ridge) penalties, along with shrinkage (learning rate 
adjustment), ensuring better generalization performance without 
extensive fine-tuning.

Given these advantages, tree-based approaches emerges as a highly 
effective tool for modeling industrial processes, where robustness, in-
terpretability, and computational efficiency are paramount. XGBoost is 
one example of a tree-based ensemble method combining the predic-
tions of multiple decision trees in a gradient-boosted framework. The 
algorithm begins by training a base tree, then computes the residual 
(the difference between the current prediction and the true label). 
Subsequent trees are trained to optimize these residuals. The final 
prediction for sample 𝑥𝑖 after 𝑡 trees is: 
�̂�(𝑡)𝑖 = �̂�(𝑡−1)𝑖 + 𝜂 ⋅ 𝑓𝑡(𝑥𝑖), (6)

where 𝜂 is the learning rate and 𝑓𝑡 is the 𝑡th decision tree. This iterative 
approach refines the model incrementally, making XGBoost particularly 
effective in many structured data tasks, which are tasks that involve 
datasets where features are well-defined, typically organized in tabular 
format, and consist of numerical, categorical, or ordinal variables. 
These tasks are common in industrial settings, where data is collected 
from sensors, production logs, and quality control systems.

2.3.2. Model training on etching and slider tools
Etch tool data are used to train a ML classification model to perform 

a binary prediction of PASS or FAIL product at the completion of the 
machine tool process step. Because the FAIL rate from the process 
step is small(∼2%), the data are highly imbalanced between PASS and 
FAIL. We therefore use a weighted cross entropy loss approach to 
emphasize FAIL conditions. Cross-entropy loss, also known as log loss, 
is a commonly used loss function for classification tasks. It measures 
the divergence between the true labels and the predicted probabilities, 
penalizing incorrect predictions more heavily. In binary classification, 
it is defined as: 
𝐿(𝑦𝑖, �̂�𝑖) = −𝑤0(1 − 𝑦𝑖) log(1 − �̂�𝑖) − 𝑤1𝑦𝑖 log(�̂�𝑖), (7)

where 𝑤0 and 𝑤1 are class weights set as: 

𝑤0 =
1
𝑛0

, 𝑤1 =
1
𝑛1

, (8)

and 𝑛0 and 𝑛1 denote the number of PASS and FAIL samples, respec-
tively. It is worth mentioning that in our datasets FAILs are usually 
represented as 1 instead of 0. This scheme emphasizes the minority 
class to improve the detection of FAIL events.
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Table 3
Hyperparameters for FNN.
 Hyperparameter Range/Candidate values 
 Number of layers [1, 2, 3]  
 Number of neurons [16, 32, 64]  
 Activation function [‘relu’, ‘sigmoid’]  
 Dropout ratio [0.0, 0.2, 0.5]  
 L2 regularization [0, 10−4, 10−3, 10−2]  
 Training epochs [500, 1000, 2000]  
 Early stops [‘Yes’, ‘No’]  

Table 4
Hyperparameters for XGBoost.
 Hyperparameter Range/Candidate values 
 Learning rate [0.1, 0.3, 0.5]  
 Max tree depth [6, 8, MAXa]  
 Subsample rate [0, 0.5, 1]  
 L1 regularization [0, 1, 10]  
 L2 regularization [0, 1, 10, 100]  
a Dimension after PCA.

80% of the etch tooling dataset (2018–2021) was used for train-
ing, while the remaining 20% was separated out for validation. To 
systematically tune hyperparameters of the machine learning model, 
we performed a 5-fold cross-validation on the training data. Cross-
validation is a technique used to assess the generalizability of a model 
by splitting the dataset into multiple subsets. In 5-fold cross-validation, 
the training set is divided into five equally sized folds, where the model 
is trained on four folds and validated on the remaining fold. This 
process is repeated five times, with each fold serving as the validation 
set once. The final model performance is averaged over all iterations, 
reducing the risk of overfitting and improving robustness.

To further optimize hyperparameters, we apply a grid search explor-
ing various learning rates, the number of estimators, and regularization 
strengths for both FNN and XGBoost. Grid search systematically eval-
uates predefined combinations of hyperparameter values to identify 
the optimal set that maximizes model performance. This approach 
ensures that different configurations are tested comprehensively, bal-
ancing model complexity and predictive accuracy. The final selected 
hyperparameters are shown in Tables  3 and 4, respectively, where the 
underlined parameters represent the chosen optimal values.

In all kinds of machine operation that run continuously over a 
long periods of time, process drift poses a significant challenge to 
maintain accurate model performance over time, as even the sensors 
themselves can drift and develop bias. Process drift occurs due to 
various factors such as equipment aging, accumulation of unwanted 
deposits on machinery, and other operational changes that alter system 
behavior with time. For example, in etch machines, process drift can 
manifest as a gradual reduction in etch rate due to the accumulation 
of impurities on chamber walls (Card et al., 1998). This buildup alters 
plasma conditions, leading to deviations in feature dimensions and film 
thicknesses over time. If not accounted for, such drift can degrade 
the predictive performance of machine learning models trained on 
historical data, necessitating periodic model recalibration.

As a result, models trained on initial datasets may gradually lose 
accuracy. Transfer learning addresses this by adapting existing models 
to new data without full retraining, preserving prior knowledge while 
integrating new information. This is especially valuable in industrial 
settings, where collecting sufficient data in different environments is 
costly due to the need for physical measurements. Additionally, in 
scenarios such as data drift, continuous updates are required, but new 
data may never be sufficient for training from scratch before being 
outdated.

Our implementation of transfer learning followed a three-step pro-
cedure designed to improve model performance while minimizing the 
need for costly physical measurements:
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Table 5
Hyperparameters for transfer learning model training.
 Parameter Hyperparameters  
 Learning rate [0.0001, 0.001, 0.01] 
 Training data length [1, 10]  
 Test/Train length ratio [1, 2, 4]  

1. Base Model Training: The procedure begins with developing a 
base model by training the feedforward neural network (FNN) on 
old data, which in our case is the data from 2018–2021, to estab-
lish foundational performance metrics. This base model serves as 
the starting point for all subsequent updates and evaluations.

2. Incremental Model Updating with SGD: Once the base model 
is established, it is incrementally retrained on new data using 
stochastic gradient descent (SGD). The training data window 
size (i.e., mini-batch size) is a tunable hyperparameter, with 
examples including mini-batches of 1 or 10 data points, referred 
to as ‘train data length’ in Table  5. To prevent data leakage, 
each new data point is first evaluated using the original, pre-
updated model before being used for training. Although the 
true label is available, the model is tested as if it had not yet 
seen this data point. Only after recording this evaluation is the 
model updated with the new data using SGD. This ensures an 
unbiased assessment of how well the model adapts over time 
while accurately measuring the effectiveness of the updating 
algorithm. The use of SGD with a carefully selected learning rate 
enables efficient updates, striking a balance between adapting to 
new information and preserving existing knowledge to prevent 
model destabilization.

3. Model Evaluation on Test Data: After the model is updated in 
the previous stage, it is now evaluated on new test data points. 
At this stage, the model is not updated—only its performance is 
measured. The ratio between the number of test data points and 
the training data points from the previous step is defined as the 
‘Test/Train Length Ratio’ in Table  5. This evaluation step ensures 
that the model can make accurate predictions on new data 
without additional retraining. The goal of transfer learning here 
is to improve model performance while minimizing the need for 
physical measurements, which are costly and time-consuming. 
If the model were retrained on every new data point, it would 
require collecting new labels through physical measurements, 
defeating the purpose of transfer learning. Although all data 
in this work are labeled through physical measurements, the 
labels are used solely to evaluate the effectiveness of transfer 
learning. From the model’s perspective, it does not have prior 
knowledge of the labels during training. By testing the transfer 
learning scheme in this controlled setting, its effectiveness can be 
validated before future real-world applications. After completing 
this evaluation step, the process returns to the previous stage, 
where the model is updated with the next batch of new data 
points, continuing the learning cycle. After completing Step 3, 
the process returns to Step 2, where the model is updated with 
the next batch of new data points. This continuous cycle of 
evaluation and updating is known as real-time update, allowing 
the model to adapt dynamically to evolving data patterns.

Hyperparameters such as the learning rate, training data length, 
and test/train length ratio are optimized to achieve robust model 
performance. This optimization is conducted through a systematic grid 
search, as detailed in Table  6. For each tool, all combinations of train 
data length and train/test length ratio are thoroughly tested to examine 
the effectiveness of transfer learning.

In summary, transfer learning efficiently maintains model accu-
racy amid process drift by leveraging knowledge from historical data 
and incorporating incremental updates. This approach sustains per-
formance while reducing the costs of full retraining, making it well 
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Table 6
Hyperparameters for FNN.
 Hyperparameter Range/Candidate values 
 Number of layers [1a, 2, 3]  
 Number of neurons [8, 16, 32]  
 Activation function [‘relu’, ‘tanh’]  
 Dropout ratio [0.0, 0.2, 0.5]  
 L2 regularization [0, 10−4, 10−3, 10−2]  
 Training epochs [500, 1000, 2000]  
 Early stops [‘Yes’, ‘No’]  
a Single Training.

suited for evolving industrial processes and the practical constraints of 
manufacturing environments.

For the slider datasets, the task is a regression problem instead 
of binary classification. Therefore, the Mean Squared Error (MSE) is 
employed as the primary loss function: 

MSE = 1
𝑁

𝑁
∑

𝑖=1

(

�̂�𝑖 − 𝑦𝑖
)2, (9)

where �̂�𝑖 and 𝑦𝑖 are the predicted and actual values for sample 𝑖, and 
𝑁 is the total number of samples.

Due to the limited dataset size (collected over a shorter time period), 
fewer layers and neurons are used in the FNN to prevent overfitting. 
XGBoost, however, retains its standard set of hyperparameters, exploit-
ing its tree-based mechanism to handle even relatively small datasets. 
To prevent overly small partitions, we use an 80%–20% train/valida-
tion split without a separate time-based test set. Given the limited data 
volume and its confinement to a one-year range, time-based prediction 
is less critical.

By applying FNN and XGBoost with these tailored hyperparameters 
and the MSE loss, we achieve reliable regression performance within 
the constraints of a smaller dataset. Given the limited data, the FNN 
architecture is kept simple with fewer neurons to avoid overfitting and 
reduce computational costs.

3. Results and discussion

3.1. Etching tools

The performance of the machine learning models introduced in 
Section 2.3.2 that were trained on industrial data we received are best 
evaluated within the bounds of the specific machines, operational en-
vironments, and conditions in which they will be applied. As discussed 
in a previous study, the etch machines in this study perform well with 
low percentages of product FAIL rates; therefore, the data distribution 
is highly imbalanced toward PASS vs. FAIL runs (Ou et al., 2024). There 
are four possible outcomes in a binary classification:

1. True Positive: Correctly identifying a PASS.
2. False Negative: Incorrectly labeling a PASS as a FAIL.
3. True Negative: Accurately detecting a FAIL.
4. False Positive: Incorrectly labeling a FAIL as a PASS.

True positives and true negatives indicate that the classification 
model is correctly qualifying the product state. False negatives, though 
undesirable, can be mitigated since all flagged failures undergo an 
additional metrology inspection where false negatives can be corrected 
by manual measurements. The larger concern in these operations are 
false positives, as they are a much more expensive miscategorization 
compared to false negatives. False positives are more costly because 
downstream operational resources continue to process the defective 
product, wasting resources and time. In most cases, false positives will 
eventually be identified through later metrology steps or final product 
reliability testing (Elsayed, 2012).
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An acceptable classification model for this operating situation needs 
to have sufficient accuracy and precision in identifying true FAIL and 
PASS results but also in minimizing false positives to reduce the cost 
of classification errors. In operational terms, this virtual metrology 
solution leads to significant economic benefit by debottlenecking the 
physical metrology step and increasing production volume.

The performance metrics for the classification models must reflect 
the ability of a model to control its false positive rate. Performance is 
adjusted by modifying classification thresholds that affect the balance 
among all four possible classifications. Increasing the sensitivity to 
misclassified wafers reduces false positives but raises false negatives 
and vice versa. For this application there is a need to demonstrate 
the ability to tune the model by considering performance across a 
range of threshold settings. Confusion matrices, while commonly used 
to evaluate classifier performance, only address results at a specific 
threshold (Salmon et al., 2015). They fail to capture overall model 
performance for various settings. Accuracy evaluation is unsuitable 
because of the extreme PASS vs. FAIL imbalance. For instance, a model 
that always predicts ‘‘PASS’’ may appears highly accurate because the 
vast majority of classifications are PASS, but is functionally useless with 
a 100% false positive rate.

Each model does not have a single, fixed false positive rate; rather, 
its performance can be adjusted by modifying classification thresholds. 
Increasing sensitivity to misprocessed wafers reduces false positives 
but raises false negatives, whereas a more lenient approach does the 
opposite. Confusion matrices, while commonly used to evaluate clas-
sifier performance, only depict results at a specific threshold and fail 
to capture overall model capability across various settings. Other com-
mon evaluation metrics, like accuracy, are also unsuitable due to the 
extreme class imbalance in manufacturing datasets. For instance, a 
model that always predicts ‘‘PASS’’ may appear highly accurate but is 
functionally useless with a 100% false positive rate.

The Receiver Operating Characteristic (ROC) analysis is a better 
analysis tool for this use case because it directly plots the true positive 
rate (TPR) and false positive rate (FPR) across the entire span of 
thresholds. The output of the classifier produces continuous scores in 
the range [0,1] of the classification threshold. The default threshold is 
of 0.5, which is equivalent to guessing an outcome. We therefore want 
to be able to adjust this threshold to get an acceptable performance. 
Setting the threshold to 0 results in a TPR of 100% and an FPR of 
100% (always PASS), while a threshold set at 1 results in TPR and FPR 
rates of 0% (always FAIL). The optimal threshold therefore requires 
balancing sensitivity (TPR) against false alarms (FPR). To objectively 
compare the performance of models, the Area Under the ROC Curve 
(AUC) is used since it is a metric that quantifies overall performance 
across all threshold settings when plotting TPR against FPR. A perfect 
model would achieve an AUC of 1, meaning 100% sensitivity with 
no false positives. In contrast, a model making random predictions 
would yield an AUC of 0.5. Since manufacturing data is typically 
imbalanced, ROC-AUC provides a reliable measure of classification 
effectiveness (Gonçalves et al., 2014).

3.1.1. Single and dual tool training
The AUC scores of the FNN and XGBoost models on each of the five 

etching machine datasets with single-tool (trained only on one dataset) 
and dual-tool (trained on the aggregation of two unique datasets, the 
aggregated dataset is picked by best available score) training are shown 
in Fig.  5:

The plotted results represent the mean values obtained from five-
fold cross-validation. In this procedure, the training data are divided 
into five subsets, with four subsets used for training and one for 
validation in each fold. The resulting models from each fold are then 
evaluated on a separate test set, and the test performance is averaged 
across the five models. The standard deviation of the ROC-AUC scores 
across folds is approximately 0.03, indicating good model stability. An 
exception is observed for tool 52-PM2, which exhibits a higher standard 
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Fig. 5. This figure shows the AUC scores for the FNN and XGBoost models applied to etching tool data using single tool and dual tool training.
deviation exceeding 0.1, primarily due to its significantly smaller data 
volume. For single-tool training, we observed an increase in AUC scores 
for 3 out of the 5 tools when using the XGBoost model compared to 
the FNN model. The largest increase was 0.09 in T53-PM1, while the 
largest decrease was 0.13 in T52-PM2. In dual-tool training, XGBoost 
demonstrated better or similar performance compared to FNN across 
all tools. The largest AUC increase was 0.13 in T52-PM2 and 0.05 in 
T53-PM1, with the largest decrease being minimal at 0.02 in T52-PM1. 
An improvement in the ROC-AUC score indicates a better ability to dis-
tinguish between PASS and FAIL classifications. For instance, an AUC 
increase of 0.13 can suggest that under controlled 80% true positive 
rate (TPR) the false positive rate (FPR) has decreased at least 10% (the 
actual level depends on the specific behavior, the AUC score does not 
have a fixed relationship with TPR/FPR improvement) at various classi-
fication thresholds. In practical terms, this means that XGBoost reduces 
misclassifications that fewer failed cases are incorrectly predicted as 
pass, or more true failures are correctly identified. Conversely, the AUC 
drop of 0.13 in T52-PM2 indicates a decline in this ability, likely due 
to the dataset’s small size. To illustrate the practical implications, an 
AUC score of 0.8 on T53-PM2 typically enables detection of over 90% 
of defective products (i.e., fulfilling the <10% FPR requirement) and 
reduces more than half of the associated physical measurements needed 
for further inspection (False negative predictions). In general, every 0.1 
increment in the ROC-AUC score yields approximately 10% reduction 
in the required physical measurements. However, these improvements 
are not uniformly distributed; gains realized closer to the ideal AUC of 
1.0 tend to be both more significant and more difficult to achieve.

Despite some decreases in single-tool training, the reductions were 
negligible in dual-tool training, and AUC scores either improved or 
remained stable for all datasets. This confirms that XGBoost is a com-
petitive classifier for PASS/FAIL classification in industrial datasets. 
The notable fluctuations in T52-PM2 are likely due to its limited dataset 
size—only 863 data points compared to over 10,000 in other datasets. 
This small sample results in a very limited test set with just 5 fail data 
points, introducing bias and randomness that undermine the reliability 
of performance metrics for this tool. Furthermore, aggregating data 
across tools continues to be valuable. The dual-tool training advantage 
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observed in prior work with FNN remains valid for XGBoost, with dual-
training AUC scores consistently outperforming single-tool training 
across all five tools. Coupled with its superior or comparable perfor-
mance, significantly lower computational resource requirements, and 
easier hyperparameter tuning compared to FNN, XGBoost, along with 
other boosted decision tree models, emerges as a highly competitive 
candidate for PASS/FAIL classification in industrial applications.

3.1.2. Transfer learning
The transfer learning results for three different train/test ratios in 

single-tool training are presented in Fig.  6. As stated in Section 2.3, 
the train/test ratios (row) indicates the proportion of data points used 
for model updates within a given time period, the train data length 
(column) indicates the frequency of model updating. The heat maps 
for each tool are generated by plotting AUC scores for each Test/Train 
Ration and Train Data Length pair. A darker shade of blue indicates a 
higher AUC score, meaning better model performance. The heat map 
indicates that in most cases, variations in the train/test ratio, ranging 
from 1:1 to 1:4, do not significantly affect the AUC score when the train 
data length remains constant. The performance differences between fre-
quent model updates (small train/test ratio) and less frequent updates 
(large train/test ratio) are minimal. This indicates that the model does 
not require persistent updates to maintain its predictive accuracy. It can 
be trained on a subset of the data at periodic intervals and then applied 
over extended periods without substantial performance degradation. 
This finding has practical implications. In settings where labeled data 
collection requires physical measurements, a reduced train/test ratio 
translates to fewer necessary measurements in a given time period. 
For example, in a 1:4 train/test ratio scenario, only 20% of the avail-
able data is used for model updates within an update period. This 
implies that if physical measurements are required for labeling, the 
measurement workload can be significantly reduced, as labeling is only 
needed during model training. In contrast, during the prediction phase, 
which accounts for 80% of the time, no physical measurements are 
required. In addition, in semiconductor manufacturing, where data 
collection is automated and continuous, an important takeaway is that 
effective model updates do not require all collected data. Instead, only a 
small subset is sufficient to maintain optimal model performance within 
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Fig. 6. Single tool transfer learning results in heat map form. The performance difference in the same row is minimal (different train/test length ratio), but the performance 
difference in the same column (different train data length) is significant.  (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
Fig. 7. Dual tool transfer learning results in heat map form. The performance shows slight improvements compared to single-tool training and follows similar trends observed in 
single-tool training.
a given time period. This insight allows for optimizing data usage, 
focusing computational resources on periodic model retraining rather 
than continuously processing every newly collected data point.

However, when comparing different training data lengths, a clear 
trend emerges: models trained with shorter datasets, which require 
more frequent updates in a time-series context, consistently outperform 
those with longer training datasets. This suggests that frequent adapta-
tion of the model to recent data improves performance, likely because 
it enables the model to better capture the dynamics of the evolving 
system and mitigate temporal variations in the data distribution. In 
contrast, when the training data length is large, the model updates 
occur less frequently, potentially making it less responsive to shifts 
in the underlying data patterns. In particular, when the training data 
length is set to 1000 (excluding T52-PM2, which lacks sufficient data 
points), the performance closely resembles that of regular single tool 
training, indicating that transfer learning provides little to no benefit. 
In conclusion, the model should be updated frequently but in a low-
density manner to improve the performance under process drift with 
maximum savings computational resources for retraining the model.

The results of transfer learning for dual tool training are presented 
in Fig.  7 in the form of a heat map. Overall, the trends observed in 
single-tool training are largely retained, and while dual-tool training 
leads to slight performance improvements in certain cases, such as 
for T52-PM1 and T52-PM2, the results for most other tools remain 
comparable to single-tool training. This suggests that although data 
aggregation can enhance model robustness by exposing it to a broader 
range of conditions, its impact under transfer learning is limited.

One key reason for this is that transfer learning inherently allows the 
model to dynamically adjust to shifts in the data distribution over time. 
This continuous adaptation reduces the effectiveness of the generaliza-
tion from aggregating because the model is already evolving to capture 
new patterns. Additionally, while data aggregation improves general-
ization across different tools, transfer learning, particularly through 
fine-tuning, has the opposite effect by making the model more spe-
cialized for a specific tool on the most recent dataset. As a result, the 
benefit of model generalization due to aggregated data may be overrid-
den by the model’s progressive adaptation to recent data. Furthermore, 
11 
transfer learning itself tends to be biased toward recent data, as it 
incrementally modifies the model to fit the latest available information. 
Systematic application of transfer learning to the model is arguably 
the most significant reason why data aggregation is less effective . In 
short,since the model is continuously optimized for the most recent 
dataset, the contribution of earlier aggregated data diminishes over 
time. Consequently, while dual-tool training offers advantages in other 
cases, the overall benefits of data aggregation in a transfer learning 
framework remains negligible.

3.2. Slider tools

The FNN and XGBoost regression models for the seven slider milling 
tools introduced in Section 2.3.2 are evaluated with two metrics: Me-
dian Absolute Error (MAE), measures the magnitude of prediction error, 
and median value is applied to remove the influence from outliers; and 
Coefficient of determination score (𝑅2), evaluates how model explains 
the variance of original dataset. Minimizing MAE and maximizing 𝑅2

are essential for improving model performance.
The Median Absolute Error (MAE) measures the average absolute 

difference between the predicted and actual values. It is mathematically 
defined as:
MAE = 𝑀𝐸𝐷(|𝑦𝑖 − 𝑦𝑖|)

where 𝑦𝑖 is the true value vector and �̂�𝑖 is the predicted value vector, 
𝑀𝐸𝐷 is the operator that calculates the median value of a vector. 
Minimizing median absolute error is desirable because, unlike mean 
absolute error, the median is less affected by large deviations. Also, 
MAE can be beneficial over Mean Squared Error (MSE) because it is 
more robust to outliers, as it measures the median deviation rather 
than squaring all errors, which reduces the impact of extreme values. 
A smaller MAE indicates that the model’s predictions are closer to the 
actual values on average.

The 𝑅2 score, also known as the coefficient of determination, indi-
cates how well a model explains the variance in the target variable. It 
is calculated using the following formula:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛 2
𝑖=1(𝑦𝑖 − �̄�)
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Fig. 8. This figure shows the MAE and 𝑅2 scores for the FNN model applied to slider tool data. MAE generally decreases when training data is aggregated with another tool. 𝑅2

generally increase with this aggregation as well.
Here, �̄� represents the mean of the actual values. The numerator is the 
sum of the squared errors, while the denominator is the total variance 
in the data. A higher 𝑅2 score, approaching 1, suggests that the model 
accounts for a significant portion of the data’s variance and it has a 
strong fit. 𝑅2 is often used to compare the performance of different 
models, where a positive 𝑅2 implies that the model performs better 
than a model that simply predicts the mean value. Achieving a high 𝑅2

score alone is not sufficient, because there may still be large individual 
prediction errors, or the model may overfit the data. Cross-validation 
is critical for confirming generalization capability of the model.

Balancing MAE and 𝑅2 ensures that the model maintains both low 
error magnitudes and strong variance explanation. A model with low 
MAE and a low 𝑅2 may fail to capture underlying patterns in the data, 
while a model with high 𝑅2 but large MAE can suffer from overfitting 
or prediction instability.

3.2.1. Single and dual tool training
Both the FNN and XGBoost models are trained similarly to the etch 

tools: single training, where training data only comes from the tool 
it is being tested on, and dual training, where training data comes 
from the tested tool and one of the other seven slider tools. Since 
the data range is primarily between 1450 and 2350, the goal is to 
ensure predictions remain within the controlled range and do not shift 
to another group. Therefore, an error below 20(∼1%) is considered 
small enough for effective multi-class classification, and an error below 
10 (approximately 0.5%) is regarded as a near-perfect score. In the 
slider production tool, the mean absolute error (MAE) may be loosely 
compared to that of an etching tool by treating predictions within the 
specified major ranges as positive (true) and those outside as negative 
(false). Since this is a direct regression model, it is not feasible to assign 
multiple thresholds for classification; consequently, only a single pair 
of TPR and FPR can be produced, permitting indirect comparison with 
ROC results. In general, an MAE of around 20 corresponds to an AUC 
of approximately 0.70–0.75, whereas an MAE below 10 indicates an 
AUC exceeding 0.85. In this work, the 𝑅2 score is less critical than the 
absolute error, as the primary goal is to accurately predict the group to 
which each data point belongs. However, 𝑅2 remains a useful metric 
for assessing how well the model captures the overall variance in the 
dataset, providing insight into its explanatory power. The performances 
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of both FNN and XGBoost models using single and dual training are 
shown in Figs.  8 and 9.

The standard deviation of the mean absolute error (MAE) across 
five-fold cross-validation on the slider production milling process is 
from about 0.7 to 1.5, reflecting some non-negligible variance due to 
the relatively limited data volume. While this variability across folds 
introduces a degree of uncertainty, it remains within a range that allows 
for drawing reliable qualitative insights and moderately robust quanti-
tative assessments. Importantly, the use of cross-validation averaging 
helps mitigate the effects of data partition randomness, enhancing the 
overall stability and credibility of the reported results. For the FNN 
model, MAE decreased for 5 tools and increased for 2 tools after 
aggregation. The largest decrease was 32.85 (∼2%), while the largest 
increase was 2.36 (∼0.1%). In general, the decreases in MAE were more 
significant than the increases. 𝑅2 scores increased for all 7 tools in the 
FNN model, with the largest increase being 1.37, change from a score 
below baseline to a score over 0.8.

For the XGB model, MAE decreased for 5 tools and increased for 2 
tools. The decrease in MAE is not as large as seen in the FNN model 
but the increases in MAE was less than the one seen in the FNN model. 
The largest decrease in MAE was 3.86(∼0.2%) while the largest increase 
was 1.54(∼0.07%). Significant increase in 𝑅2 scores are also seen in the 
XGB model. 𝑅2 scores increased for 6 tools, the largest increase being 
0.47 while the only decrease being −0.03. Although the decrease in 
MAE from dual-tool training is small for XGBoost model, the MAE score 
predicted by XGBoost is lower for 6 out of 7 tools than FNN.

The results demonstrate that aggregating training data from an-
other tool improves the performance of both models in terms of re-
ducing MAE and increasing 𝑅2 scores. However, the magnitude of 
improvement varies between the two models, with FNN showing more 
pronounced changes in performance metrics. This indicates that FNN 
benefits significantly from data augmentation in most cases, resulting 
in greater prediction accuracy across tools. Furthermore, the 𝑅2 scores 
for the FNN model improved for all seven tools, reflecting enhanced 
model fit and a better ability to explain variance in the target variable. 
The large increases in 𝑅2, particularly for tools with low single-tool 
training performance, suggest that the dual training approach helps 
the FNN model capture important patterns that are not present when 
training on single-tool data alone. This improvement can be attributed 
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Fig. 9. This figure shows the MAE and 𝑅2 scores for the XGBoost model applied to slider tool data. MAE generally decreases when training data is aggregated with another tool, 
but not as much as seen in the FNN model. 𝑅2 generally increase with this aggregation as well.
to FNN’s sensitivity to additional data, as the model’s continuous 
learning structure allows it to better generalize and reduce overfitting 
when exposed to diverse datasets.

The XGBoost model exhibited a similar trend, with MAE reductions 
observed for five tools and increases for two tools, with a mean change 
of −1.20, which is a smaller average decrease than observed in the 
FNN model. This smaller decrease may be due to several factors. 
Firstly, XGBoost’s single-tool training performance was already high, 
leaving less room for noticeable improvement through data aggrega-
tion. Additionally, XGBoost’s tree-based architecture, with its strong 
regularization mechanisms and robust splitting criteria, inherently min-
imizes overfitting, making it less sensitive to the benefits of additional 
synthetic or aggregated data. On the other hand, the average increase in 
MAE for the two tools was 0.92, lower than that observed in the FNN 
model, suggesting that while the gains from data augmentation were 
smaller, XGBoost maintained more stable and consistent performance 
across different tools.

In terms of 𝑅2 scores, XGBoost showed strong overall improve-
ments, with increases in six out of seven tools. The only tool with 
a decrease experienced a minor drop of −0.03, indicating that dual 
training generally enhances the model’s ability to capture variance, 
although not as uniformly improving as observed in the FNN model. 
The improvements in 𝑅2 suggest that data aggregation still contributes 
to better generalization for XGBoost, even though its architecture limits 
the extent of performance changes compared to FNN.

These findings highlight the importance of data aggregation in 
improving model performance in regression tasks, particularly when 
single-tool training data is insufficient to capture underlying patterns. 
While both models benefited from dual training, FNN exhibited greater 
performance gains, particularly in reducing MAE and enhancing 𝑅2

scores. This difference can be attributed to the models’ architectures: 
FNN models rely heavily on complex feature interactions and benefit 
from additional data to reduce overfitting and improve generalization. 
In contrast, XGBoost’s tree-based ensemble structure, with its inherent 
robustness to data variability and strong regularization, makes it less 
sensitive to the size and diversity of the training data. Overall, FNN 
requires more extensive data (through data aggregation) to fully extract 
meaningful patterns, while XGBoost maintains stable performance even 
with limited data, explaining the more modest benefits from data 
aggregation.
13 
3.2.2. Linear mixup data augmentation
The performance differences for the slider datasets augmented using 

the two previously discussed Mixup schemes—one with 100% aug-
mentation and the other with 200%, compared to the non-augmented 
datasets, are presented in Figs.  10 and 11. The plots primarily illustrate 
the impact of Mixup: bars are green if the change is positive (lower 
MAE, higher 𝑅2) and red if the change is negative (higher MAE, lower 
𝑅2). The first scheme creates two artificial data points between two 
real data points, and the second scheme creates one data point between 
two real data points. Training remained as before with single-tool and 
dual-tool training.

Because slider production datasets cluster into three major regions, 
the virtual metrology function needs to classify each data point cor-
rectly into their major regions and detect FAILS (act like outlier points 
in training data). Minimizing the median absolute error (MAE) is there-
fore crucial to ensure predictions remain within the correct class region. 
Under the first Mixup scheme for the FNN model, MAE decreased 
in five tools and increased slightly in two, resulting in an average 
change of −4.13 (largest decrease: 16.2; largest increase: 2.06). In the 
second scheme, MAE decreased for all but one tool (T01-PM1), with 
an average change of −2.73 (largest decrease: 12.7; largest increase: 
3.27). The large decrease in MAE especially on T02-PM2 (close to −10) 
and T05-PM2 (around −15) can significantly improve the multi-class 
classification accuracy. Although 𝑅2 is less indicative in explaining 
performance of multi-class classification, it is still useful for assessing 
the model’s ability to capture overall variance. Specifically, the first 
scheme yielded an average 𝑅2 increase of 0.05 (largest increase: 0.54; 
largest decrease: 0.41), whereas the second scheme produced an aver-
age change of −0.09. The relatively small changes in 𝑅2 suggest that 
the original model may be adequately explain the variance in the target 
variable.

On the other hand, the greater variation in MAE suggests that the 
model’s absolute error is still influenced by the specific conditions of 
each tool. A higher variation in MAE could indicate that certain tools 
require additional data to improve prediction stability or that some 
regions in the feature space are underrepresented. The observed reduc-
tions in MAE across most tools confirm that the Mixup augmentation 
was generally beneficial, but the slight increases in MAE for a few tools 
highlight areas where additional adjustments, such as targeted data 
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Fig. 10. MAE and 𝑅2 scores for the FNN model trained with data from a single slider tool using linear Mixup. In general, there is a decrease in MAE and an increase in 𝑅2 scores 
across most slider tools.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. MAE and 𝑅2 scores for the XGBoost model trained with data from a single slider tool using linear Mixup. Similar trends of decreased MAE and increased 𝑅2 scores are 
observed for most tools, except for T05-PM2 where we saw a marked decrease in 𝑅2 scores.  (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
augmentation or feature refinement, may be needed. For the first Mixup 
scheme with XGBoost, MAE decreased in four tools while increasing 
slightly in three, yielding an average change of −0.74 (largest decrease 
(positive): 3.54; largest increase (negative): 0.42). The second Mixup 
scheme showed a similar pattern, with an average MAE change of 
0.15 (largest decrease (negative): 2.27; largest increase (positive): 3.41, 
this scale of change in MAE will not have a significant impact on the 
model performance practically. In terms of 𝑅2, results were mixed: 
the first scheme improved scores for three tools (average change of 
−0.004), while the second scheme saw gains in four tools (average 
change of 0.03). Despite these outcomes, XGBoost benefits less from 
Mixup compared to FNN, primarily because Mixup generates linearly 
interpolated data that complements FNNs’ continuous, gradient-based 
learning, helping smooth decision boundaries. By contrast, XGBoost re-
lies on discrete tree splits, where such interpolations offer limited value 
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for split decisions. Furthermore, XGBoost’s strong built-in regulariza-
tion reduces the added benefits of Mixup, while FNNs gain considerable 
regularization advantages, mitigating overfitting more effectively.

The results for both Mixup schemes on the FNN and XGBoost models 
using dual training are presented in Figs.  12 and 13. For both figures, 
each tool has two values for MAE and 𝑅2, the darker hue being the first 
Mixup scheme and the second value being the second Mixup scheme. 
A green color indicates a positive change (like a decrease in MAE or 
increase in 𝑅2) while a red color indicates a negative change (like an 
increase in MAE or decrease in 𝑅2).

In the first Mixup scheme for the FNN model, MAE decreased for 
five tools and increased for two, averaging a change of −0.71 (largest 
decrease: 3.95; largest increase: 4.1). Under the second scheme, MAE 
decreased in four tools and increased in three, yielding an average 
change of −1.01 (largest decrease: 3.47; largest increase: 0.87). Al-
though the change in MAE is not large enough to significantly impact 
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Fig. 12. MAE and 𝑅2 scores for the FNN model trained with data from two slider tools using linear Mixup. There is a decrease in MAE in 5 tools and an increase in 2 tools for 
both schemes. 𝑅2 scores decreased in 5 tools for both schemes, with a slight increase in two tools.  (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
Fig. 13. MAE and 𝑅2 scores for the XGBoost model trained with data from two slider tools using linear Mixup. MAE generally decreased across most tools, with increases being 
very slight. 𝑅2 scores saw a mixed pattern of increasing and decreasing scores.  (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
real-world model performance, it is still worth noting that Mixup in 
data aggregation has strong potential for improving model perfor-
mance. Meanwhile, 𝑅2 declined in five tools and rose slightly in two for 
both schemes, with average changes of −0.19 and −0.14, respectively, 
indicating that improvements in error reduction did not consistently 
translate into higher overall variance capture.

Under the first Mixup scheme with XGBoost, MAE decreased in five 
tools while rising slightly in two, averaging a change of −1.43 (largest 
drop: 6.26; largest increase: 0.44). In the second scheme, MAE fell for 
two tools and rose for five, though some increases were under 1%. 
The largest decrease was 6.95, with an average change of –0.76. The 
decrease of MAE on T05-PM2 is significant enough to improve the 
model performance, but the changes in other tools are negligible. For 
𝑅2, the first scheme raised scores in three tools, resulting in an average 
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change of −0.003, while the second scheme improved four tools with an 
average increase of 0.03. The largest 𝑅2 gain was 0.28, and the largest 
decrease was 0.21.

The summary of the overall model performance change results of 
MAE and 𝑅2 above is tabulated in Tables  7 and 8. The first value in each 
cell is mean change, while the second value (blue) is median change:

These results demonstrate the varying impact of linear Mixup data 
augmentation across different models and training schemes by demon-
strating the mean and median value of change in MAE and 𝑅2 after 
Mixup. While improvements are observed in both metric scores in many 
cases, the effectiveness of the Mixup technique appears to depend on 
both the model type and data aggregation status.

In the FNN model, dual training with linear Mixup produced mixed 
results. For the first scheme, MAE decreased across five tools with 
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Table 7
MAE change.
Scheme FNN XGB

Single Dual Single Dual 
Scheme 1 −4.13/−2 −0.71/−1.26 −0.74/−0.15 −1.43/−0.67
Scheme 2 −2.73/−1 −1.01/−0.12 0.15/−0.16 −0.76/0.18

Table 8
R2 change.
Scheme FNN XGB

Single Dual Single Dual 
Scheme 1 0.05/0.08 −0.19/−0.13 −0.004/−0.01 −0.003/−0.05
Scheme 2 −0.09/0.04 −0.14/−0.17 0.03/0.01 0.03/0.01

an average reduction of 17.0%, while increases were observed in 
two tools, averaging 23.6%. Similarly, for the second scheme, MAE 
decreased by an average of 16.6% in five tools and increased by 4.4% 
in two tools. In terms of 𝑅2 scores, the results were less favorable, with 
decreases in five tools and only slight increases in two tools under both 
schemes. The largest increase of 𝑅2 score in both schemes was 0.03 
while the largest decrease was −0.68. These findings suggest that while 
Mixup can reduce errors, it may not always lead to improved model fit, 
particularly when the models are trained on data from two tools.

In contrast, the XGBoost model demonstrated more stable perfor-
mance with Mixup applied under dual training. For the first scheme, 
MAE decreased across five tools by an average of 12.8%, while the 
increases, observed in two tools, averaged only 2.6%. The second 
scheme showed a less favorable balance, with MAE decreasing in two 
tools (average reduction of 11.4%) and increasing in five tools, though 
some increases were minor (average increase of 3.8%). For 𝑅2, the 
results showed mixed trends: under the first scheme, 𝑅2 increased for 
three tools and decreased for four tools, whereas in the second scheme, 
four tools saw an increase and three tools experienced a decrease. The 
largest increase of 𝑅2 score in both schemes was 0.28 while the largest 
decrease was −0.21.

The differences between the FNN and XGBoost models highlight 
the role of model architecture in how linear Mixup affects regression 
performance. FNN models appear to be more sensitive to both im-
provements and degradations in MAE and 𝑅2, due to their reliance 
on complex feature relationships that can be influenced by synthetic 
data interpolation. XGBoost, with its tree-based architecture, shows 
smaller variations, due to its robust splitting criteria and regularization 
mechanisms.

According to Tables  7 and 8, the impact of linear Mixup on re-
gression performance differs significantly between FNN and XGBoost 
models. For XGBoost, the mean and median differences in MAE is much 
smaller compared to FNN for single training, and slightly smaller than 
FNN for dual training; the 𝑅2 value change is negligible. The small MAE 
and 𝑅2 changes indicate that Mixup has little effect on its performance. 
This can be attributed to XGBoost’s tree-based architecture, which relies 
on robust splitting criteria and inherent regularization mechanisms that 
make it less sensitive to interpolated synthetic data.

In contrast, the FNN model shows more pronounced effects from 
Mixup. In single-tool training, Mixup leads to notable improvements 
in both MAE and 𝑅2, with performance enhancing as more synthetic 
data points are added (Scheme 1). This could be due to Mixup acting 
as an effective regularizer, improving generalization by encouraging 
the model to learn smoother decision boundaries and reducing over-
fitting to noisy patterns in the original data. However, in dual-tool 
training, Mixup with a smaller synthetic dataset (Scheme 2) yields 
better results. This could be because Mixup operates directly at the data 
level, interpolating between samples from two potentially different data 
distributions. When the distributions diverge significantly, excessive 
synthetic data may introduce conflicting patterns, making it harder 
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for the model to generalize effectively. Thus, a smaller Mixup dataset 
can preserve the distinct characteristics of each tool’s data while still 
providing regularization benefits to achieve lower MAE.

4. Conclusion

This paper presents an analysis of the data quality and engineering 
requirements for machine learning-based virtual metrology for common 
machine tools in the semiconductor industry. The virtual metrology 
application studied was the binary PASS/FAIL classification of the 
product quality at the end of a machine tool step. Two multi-line, multi-
machine semiconductor manufacturing operations were studied: five 
plasma etching tools used in separate wafer production lines and seven 
milling tools used in separate slider production lines. The study focused 
on optimum processing of the data by considering the conditions, 
functions, and data requirements of the machines together and how to 
leverage commonality.

Feedforward Neural Network (FNN) and XGBoost algorithms were 
used and compared for both the wafer and slider production ma-
chines. For wafer production the algorithms were applied directly for 
PASS/FAIL classification. For slider production the algorithms were for-
mulated as regression models to predict product thickness that stratified 
into three clusters for different products. Outlier identification was used 
to then classify PASS or FAIL. The following data processing/engineer-
ing approaches were examined:

• Data aggregation across one or more machines to increase varia-
tion and operational coverage.

• Dimensionality reduction techniques were applied to reduce noise 
and enhance feature extraction.

• A separate scaling approach was implemented during data ag-
gregation to improve model performance by aligning the fea-
ture distributions of different datasets and to mitigate discrepan-
cies caused by varying single-feature distributions despite similar 
feature dependencies.

• Linear Mixup algorithm was applied to augment data and address 
the scarcity of collected data from slider production tools

• FNN with transfer learning with live model update was used for 
plasma etching to address process drift. Varying train/test and 
data length ratios were also tested.

For the wafer production machines, the XGBoost algorithm demon-
strated better or comparable performance to FNN in both single-tool 
and dual-tool training while requiring fewer computational resources 
and offering greater robustness, making it the better choice for this 
solution objective. Transfer learning significantly improved model per-
formance across all tested datasets, demonstrating the effectiveness of 
live updating. Notably, using only 20% of new online data for updates 
led to substantial performance gains, reducing the need for frequent 
offline physical measurements and associated costs. Transfer learning 
also overrode the advantages of data aggregation. In general, given 
the operational drift with the wafer production tools, transfer learning 
proved to be a fruitful endeavor.

For the slider tools, XGBoost consistently outperformed or matched 
FNN in regression tasks in terms of Median Absolute Error (MAE) and 
R2. Given better performance for both slider and wafer production, 
XGBoost demonstrated versatility for both classification and regression 
tasks. Due to its tree-based structure and inherent regularization from 
ensemble learning, XGBoost was less sensitive to data aggregation com-
pared to the FNNs, though data aggregation still yielded positive effects 
across all datasets. Mixup strategies demonstrated notable performance 
improvements for the FNN models, particularly for single-tool training, 
due to its regularization effect which promoted better generalization. 
In contrast, Mixup impact on XGBoost was minimal likely because of 
XGBoost’s tree-based architecture and robust splitting criteria. With 
respect to dual-tool aggregation, FNN performed better with smaller 
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synthetic datasets, possibly due to distribution differences between 
datasets that can introduce conflicting patterns when overly mixed. 
For XGBoost, modest MAE improvements were observed, indicating 
a resilience to data variations. Overall, the effectiveness of Mixup 
depends on model architecture and data characteristics.

While no single method universally outperforms others, the com-
bination of Mixup, data aggregation, and transfer learning generally 
enhanced model performance. When systematically applied as a data 
engineering procedure, the combination of methods offered significant 
improvement to this in industrial virtual metrology PASS/FAIL applica-
tion. The main usage for the virtual metrology models developed in this 
paper is to automatically detect faulty product and reduce the number 
of metrology steps. This would greatly decrease the overall manufac-
turing time for each product and increase overall product throughput 
to meet the inevitable increase in demand for semiconductor products.
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