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Systematic methodologies are developed for modeling and control of film porosity in thin film deposition.
The deposition process is modeled via kinetic Monte Carlo (kMC) simulation on a triangular lattice. The
microscopic events involve atom adsorption and migration and allow for vacancies and overhangs to
develop. Appropriate definitions of film site occupancy ratio (SOR), i.e., fraction of film sites occupied by
particles over total number of film sites, and its fluctuations are introduced to describe film porosity.
Deterministic and stochastic ordinary differential equation (ODE) models are also derived to describe the
time evolution of film SOR and its fluctuation. The coefficients of the ODE models are estimated on the
basis of data obtained from the kMC simulator of the deposition process using least-square methods and
their dependence on substrate temperature is determined. The developed ODE models are used as the
basis for the design of model predictive control (MPC) algorithms that include penalty on the film SOR
and its variance to regulate the expected value of film SOR at a desired level and reduce run-to-run fluc-
tuations. Simulation results demonstrate the applicability and effectiveness of the proposed film porosity
modeling and control methods in the context of the deposition process under consideration.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, there is an increasing need to improve semiconduc-
tor manufacturing process operation and yield. This need has arisen
due to the increased complexity and density of devices on the wafer,
which is the result of increased wafer size and smaller device di-
mensions. Within this manufacturing environment, thin film mi-
crostructure, including thin film surface roughness and amount of
internal film defects, has emerged as an important film quality vari-
able which strongly influences the electrical and mechanical prop-
erties of microelectronic devices. On one hand, surface roughness
of thin films controls the interfacial layer and properties between
two successively deposited films. On the other hand, the amount of
internal defects, usually expressed as film porosity, plays an impor-
tant role in determining the thin film microstructure. For example,
low-k dielectric films of high porosity are being used in current in-
terconnect technologies to meet resistive-capacitive delay goals and
minimize cross-talk. However, increased porosity negatively affects
the mechanical properties of dielectric films, increasing the risk of
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thermo-mechanical failures (Kloster et al., 2002). Furthermore, in the
case of gate dielectrics, it is important to reduce thin film porosity
as much as possible and eliminate the development of holes close
to the interface.

Most of the previous research efforts on modeling and con-
trol of thin film microstructure have focused on regulation of thin
film surface roughness. This line of research has been motivated
by the development of techniques for on-line surface measure-
ment including scanning tunneling microscopy, spectroscopic el-
lipsometry techniques and grazing-incidence small angle X-ray
scattering. Two fundamental modeling approaches, kinetic Monte
Carlo (kMC) methods (Gillespie, 1976; Fichthorn and Weinberg,
1991; Shitara et al., 1992; Reese et al., 2001; Christofides et al.,
2008) and stochastic differential equation (SDE) models (Edwards
and Wilkinson, 1982; Vvedensky et al., 1993; Cuerno et al., 1995;
Lauritsen et al., 1996), have been developed to describe the evo-
lution of film microscopic configurations and design feedback
control laws. Specifically, kMC models were initially used to de-
velop a methodology for modeling and feedback control of thin
film surface roughness (Lou and Christofides, 2003a,b). Successful
applications of this control methodology include surface rough-
ness control of: (a) a gallium arsenide (GaAs) deposition process
(Lou and Christofides, 2004) and (b) a multi-species deposition
process with long range interactions (Ni and Christofides, 2005a).
Furthermore, a method that couples partial differential equation
(PDE) models and kMC models was developed for computationally
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efficient multiscale optimization of thin film growth (Varshney and
Armaou, 2005). However, kMC models are not available in closed-
form and this limitation precludes the use of kMCmodels for system-
level analysis and the design and implementation of model-based
feedback control systems. Therefore, it is desirable to achieve better
closed-loop performance by designing feedback controllers on the
basis of closed-form process models. Linear deterministic models
were identified in (Siettos et al., 2003; Armaou et al., 2004; Varshney
and Armaou, 2006) from outputs of kMC simulators and were used
in controller design using linear control theory. Deterministic mod-
els are effective in controlling the expected values of macroscopic
variables, which correspond to the first-order statistical moments of
the microscopic distribution. However, to control higher statistical
moments of the microscopic distributions, such as the surface rough-
ness (the second moment of height distribution on a lattice), deter-
ministic models are not sufficient and SDE models may be needed.

SDEs arise naturally in the modeling of surface morphology of ul-
tra thin films in a variety of material preparation processes (Edwards
and Wilkinson, 1982; Villain, 1991; Vvedensky et al., 1993; Cuerno
et al., 1995; Lauritsen et al., 1996) since they contain the surface
morphology information and account for the stochastic nature of
the growth processes. For instance, it has been experimentally veri-
fied by atomic force microscopy (AFM) that the Kardar–Parisi–Zhang
(KPZ) equation (Kardar et al., 1986) describes satisfactorily the evo-
lution of the surface morphology of GaAs thin films (Ballestad et al.,
2002; Kan et al., 2004). However, the construction of SDE models
from kMC simulation data or experimental data is a challenging task.
Compared to deterministic systems, modeling and identification of
dynamical systems of SDEs have received relatively limited atten-
tion. Theoretical foundations on the analysis, parameter optimiza-
tion, and optimal stochastic control for linear stochastic ordinary
differential equation (ODE) systems can be found in the early work
by Åström (1970). More recently, likelihood-based methods for pa-
rameter estimation of stochastic ODE models have been developed
(Bohlin and Graebe, 1995; Kristensen et al., 2004). These methods
determine the model parameters by solving an optimization prob-
lem to maximize a likelihood function or a posterior probability
density function of a given sequence of measurements of a stochastic
process. Recent results employed statistical moments to reformu-
late the parameter estimation problem into one involving deter-
ministic differential equations. The stochastic moments include the
expected value and variance/covariance obtained from the data set
generated by kMC simulations or obtained from experiments. Thus,
the issue of parameter estimation of stochastic models could be
addressed by employing parameter estimation techniques for de-
terministic systems. Specifically, following this idea, a method for
construction of linear stochastic PDE models for thin film growth
was developed and used to construct linear stochastic PDE models
for thin film deposition processes in two-dimensional lattices (Ni
and Christofides, 2005b). Systematic identification approaches were
also developed for linear (Lou and Christofides, 2005a) and non-
linear (Hu et al., 2008b) stochastic PDEs and applied to sputtering
processes.

Advanced control methods based on SDEs have been developed
to address the need of model-based feedback control of thin film
microstructure. Specifically, methods for state feedback control of
surface roughness based on linear (Lou and Christofides, 2005a,b; Ni
and Christofides, 2005b) and nonlinear (Lou and Christofides, 2006;
Lou et al., 2008) SDE models have been developed. However, state
feedback control assumes full knowledge of the surface morphol-
ogy at all times, which may be a restrictive requirement in certain
practical applications. To this end, output feedback control of sur-
face roughness was recently developed (Hu et al., 2008a) by incor-
porating a Kalman–Bucy type filter, which utilizes information from
a finite number of noisy measurements.

In the context of modeling of thin film porosity, kMC models
have been widely used to model the evolution of porous thin films
in many deposition processes, such as the molecular beam epi-
taxial (MBE) growth of silicon films and copper thin film growth
(Wang and Clancy, 1998; Zhang et al., 2004). Both monocrystalline
and polycrystalline kMC models have been developed and simu-
lated (Levine and Clancy, 2000; Wang and Clancy, 2001). The in-
fluence of the macroscopic parameters, i.e., the deposition rate and
temperature, on the porous thin film microstructure has also been
investigated using kMC simulators of deposition processes. Despite
recent significant efforts on surface roughness control, a close study
of the existing literature indicates the lack of general and practi-
cal methods for addressing the challenging issue of achieving de-
sired electrical and mechanical thin film properties by controlling
film porosity to a desired level and reducing run-to-run porosity
variability.

Motivated by these considerations, the present work focuses on
the development of systematic methodologies for modeling and con-
trol of film porosity in thin film deposition processes. Initially, a thin
film deposition process which involves atom adsorption and migra-
tion is introduced and is modeled using a triangular lattice-based
kMC simulator which allows porosity, vacancies and overhangs to
develop and leads to the deposition of a porous film. Subsequently,
appropriate definitions of film site occupancy ratio (SOR), i.e., frac-
tion of film sites occupied by particles over total number of film sites,
and its fluctuation are introduced to describe film porosity. Then,
deterministic and stochastic ODE models are derived that describe
the time evolution of film SOR and its fluctuation. The coefficients of
the ODE models are estimated on the basis of data obtained from the
kMC simulator of the deposition process using least-square methods
and their dependence on substrate temperature is determined. The
developed ODE models are used as the basis for the design of model-
predictive control (MPC) algorithms that include penalty on the film
SOR and its variance to regulate the expected value of film SOR at a
desired level and reduce run-to-run fluctuations. Simulation results
demonstrate the applicability and effectiveness of the proposed film
porosity modeling and control methods in the context of the depo-
sition process under consideration.

2. Thin film deposition process description and modeling

This section is associated with the description of the kMC algo-
rithm of a thin film deposition process. Two microscopic processes
are considered; atom adsorption and surface migration. Vacancies
and overhangs are allowed in the kMC model to introduce porosity
during the thin film growth. Substrate temperature and deposition
rate are the macroscopic parameters which control the deposition
process.

2.1. On-lattice kinetic Monte Carlo model of film growth

The thin film growth process considered in this work includes
two microscopic processes: an adsorption process, in which particles
are incorporated into the film from the gas phase, and a migration
process, in which surface particles move to adjacent sites (Wang and
Clancy, 1998, 2001; Levine and Clancy, 2000; Yang et al., 1997). Solid-
on-solid (SOS) deposition models, in which vacancies and overhangs
are forbidden, are frequently used to model thin film deposition pro-
cesses (Ni and Christofides, 2005a; Lou and Christofides, 2008) and
investigate the surface evolution of thin films. However, vacancies
and overhangs must be incorporated in the process model to ac-
count for film porosity. Since SOS models are inadequate to model
the evolution of thin film internal micro-structure, a ballistic depo-
sition model is chosen to simulate the evolution of film porosity.
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Fig. 1. Thin film growth process on a triangular lattice.

The film growth model used in this work is an on-lattice kMC
model in which all particles occupy discrete lattice sites. The on-
lattice kMC model is valid for temperatures T <0.5Tm, where Tm is
the melting point of the crystal. At high temperatures (T�Tm), the
particles cannot be assumed to be constrained on the lattice sites
and the on-lattice model is not valid. In this work, a triangular lat-
tice is selected to represent the crystalline structure of the film, as
shown in Fig. 1. All particles are modeled as identical hard disks
and the centers of the particles deposited on the film are located on
the lattice sites. The diameter of the particles equals the distance
between two neighboring sites. The width of the lattice is fixed so
that the lattice contains a fixed number of sites in the lateral direc-
tion. The new particles are always deposited from the top side of
the lattice where the gas phase is located; see Fig. 1. Particle de-
position results in film growth in the direction normal to the lat-
eral direction. The direction normal to the lateral direction is thus
designated as the growth direction. The number of sites in the lat-
eral direction is defined as the lattice size and is denoted by L. The
lattice parameter, a, which is defined as the distance between two
neighboring sites and equals the diameter of a particle (all parti-
cles have the same diameter), determines the lateral extent of the
lattice, La.

The number of nearest neighbors of a site ranges from zero to
six, the coordination number of the triangular lattice. A site with no
nearest neighbors indicates an unadsorbed particle in the gas phase
(i.e., a particle which has not been deposited on the film yet). A par-
ticle with six nearest neighbors is associated with an interior parti-
cle that is fully surrounded by other particles and cannot migrate. A
particle with one to five nearest neighbors is possible to diffuse to
an unoccupied neighboring site with a probability that depends on
its local environment. In the triangular lattice, a particle with only
one nearest neighbor is considered unstable and is subject to instan-
taneous surface relaxation. Details of particle surface relaxation and
migration will be discussed in Sections 2.2 and 2.3.

In the simulation, a bottom layer in the lattice is initially set to
be fully packed and fixed, as shown in Fig. 1. There are no vacancies
in this layer and the particles in this layer cannot migrate. This layer
acts as the substrate for the deposition and is not counted in the
computation of the number of the deposited particles, i.e., this fixed
layer does not influence the film porosity (see Section 3).

A

C

D
B

Fig. 2. Schematic of the adsorption event with surface relaxation. In this event,
particle A is the incident particle, particle B is the surface particle that is first hit
by particle A, site C is the nearest vacant site to particle A among the sites that
neighbor particle B, and site D is a stable site where particle A relaxes.

Two types of microscopic processes (Monte Carlo events) are con-
sidered, an adsorption process and a migration process. These Monte
Carlo events are assumed to be Poisson processes. All events occur
randomly with probabilities proportional to their respective rates.
The events are executed instantaneously upon selection and the state
of the lattice remains unchanged between two consecutive events.

2.2. Adsorption process

In an adsorption process, an incident particle comes in contact
with the film and is incorporated onto the film. The microscopic ad-
sorption rate, W , which is in units of layers per unit time, depends
on the gas phase concentration. The layers in the unit of adsorption
rate are densely packed layers, which contain L particles. With this
definition, W is independent of L. In this work, the macroscopic ad-
sorption rate, W , is treated as a process parameter. For the entire
deposition process, the microscopic adsorption rate in terms of in-
cident particles per unit time, which is denoted as ra, is related to
W as follows:

ra = LW (1)

The incident particles are initially placed at random positions
above the film lattice and move toward the lattice in random direc-
tions, as shown in Fig. 1. The initial particle position, x0, which is the
center of an incident particle, is uniformly distributed in the contin-
uous domain, (0, La). The incident angle, �, is defined as the angle
between the incident direction and the direction normal to the film,
with a positive value assigned to the down-right incident direction
and a negative value assigned to the down-left incident direction.
Probability distribution functions of the incident anglemay vary from
a Dirac delta function to a cosine function, for different deposition
processes. In this work, the probability distribution of the angle of
incidence is chosen to be uniform in the interval (−0.5�, 0.5�).

The procedure of an adsorption process is illustrated in Fig. 2.
After the initial position and incident angle are determined, the in-
cident particle, A, travels along a straight line toward the film until
contacting the first particle, B, on the film. Upon contact, particle A
stops and sticks to particle B at the contacting position; see Fig. 2.
Then, particle A moves (relaxes) to the nearest vacant site, C, among
the neighboring sites of particle B. Surface relaxation is conducted
if site C is unstable, i.e., site C has only one neighboring particle, as
shown in Fig. 2. When a particle is subject to surface relaxation, the
particle moves to its most stable neighboring vacant site, which is
defined as the site with the most nearest neighbors. In the case of
multiple neighboring vacant sites with the same number of nearest
neighbors, a random one is chosen from these sites with equal proba-
bility as the objective of the particle surface relaxation process. Note
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that particle surface relaxation is considered as part of the deposition
event, and thus, it does not contribute to the process simulation
time. There is also only one relaxation event per incident particle.

2.3. Migration process

In a migration process, a particle overcomes the energy barrier
of the site and jumps to its vacant neighboring site. The migration
rate (probability) of a particle follows an Arrhenius-type law with
a pre-calculated activation energy barrier that depends on the local
environment of the particle, i.e., the number of the nearest neighbors
of the particle chosen for a migration event. The migration rate of
the ith particle is calculated as follows:

rm,i = �0 exp
(

−niE0
kBT

)
(2)

where �0 denotes the pre-exponential factor, ni is the number of the
nearest neighbors of the ith particle and can take the values of two
to five (rm,i is zero when ni =6 since this particle is fully surrounded
by other particles and cannot migrate), E0 is the contribution to the
activation energy barrier from each nearest neighbor, kB is Boltz-
mann's constant and T is the substrate temperature of the thin film.
Since the film is thin, the temperature is assumed to be uniform
throughout the film and is treated as a time-varying but spatially
invariant process parameter. In this work, the factor and energy bar-
rier contribution in Eq. (2) take the following values �0 = 1013s−1

and E0 =0.6 eV, which are appropriate for a silicon film (Keršulis and
Mitin, 1995).

When a particle is subject to migration, it can jump to either of
its vacant neighboring sites with equal probability, unless the vacant
neighboring site has no nearest neighbors, i.e., the surface particle
cannot jump off the film and it can only migrate on the surface.

2.4. Simulation algorithm

After the rates of surface micro-processes are determined, kMC
simulations can be carried out using an appropriate algorithm. A
comparison between two basic Monte Carlo simulation algorithms,
the null-event algorithm (Ziff et al., 1986) and the continuous-time
Monte Carlo method (Vlachos et al., 1993), can be found in Reese
et al. (2001). The null-event algorithm tries to execute Monte Carlo
events on randomly selected sites with certain probabilities, while
the continuous-time Monte Carlo (CTMC) method selects an event
before the selection of the site on which the event is going to be ex-
ecuted. The existence of null tests makes the null-event algorithm
inefficient compared to the CTMC algorithm, especially when the
rates of the events are close to 0. In this work, the CTMC method
is chosen as the kMC algorithm. With the assumption that all mi-
croscopic processes are Poisson processes, the time increment upon
the execution of a successful event is computed based on the total
rates of all the micro-processes, which can be listed and calculated
from the current state of the lattice. To further improve the compu-
tational efficiency, a grouping algorithm is also used in the selection
of the particle that is subject to migration (Maksym, 1988). In the
grouping algorithm, the events are pre-grouped to improve the exe-
cution speed. In this work, the layer of the film emerges as a natural
grouping criterion, i.e., all particles in the same layer are considered
to be part of one group.

With these considerations, the following kMC simulation algo-
rithm is used to simulate the deposition process:

1. A triangular lattice of lateral extent La, is created to represent
the crystalline structure of the film. All particles in the film are
constrained to be on the discrete sites of the lattice. A substrate

layer, which is fully packed and fixed, is added at the bottom of
the lattice at the beginning (t = 0) of the simulation.

2. A list of events is created (or updated) for all possible events
including adsorption and migration. The rate for each event is
calculated based on the process parameters, i.e., the substrate
temperature and the deposition rate.

3. A random number �1 ∈ (0, ra+∑N
i=1rm,i) is generated to determine

whether the next event is an adsorption event (0< �1<ra) or
a migration event (ra < �1<ra + ∑N

i=1rm,i), where N is the total
number of deposited particles on the lattice at the specific time
instant. Note that the particles being present in the substrate layer
are not counted as deposited particles.

4. If the next event is an adsorption event, an incident particle ini-
tiates from the gas phase above the film. Two random numbers,
�21 ∈ (0, La) and �22 ∈ (−0.5�, 0.5�), are generated following a
uniform probability distribution to determine the initial particle
position and incident angle, respectively. The incident particle is
incorporated into the film following the microscopic rules for ad-
sorption events discussed in Section 2.2.

5. If the next event is a migration event, a random number �3 ∈
(0,
∑N

i=1rm,i) is generated to determine which particle is subject
to migration. The migrating particle is found from the following
rule:

∑n−1
i=1 rm,i < �3<

∑n
i=1rm,i, where n indicates the nth particle

that is subject to migration. The migrating particle jumps to its
neighboring vacant site following the microscopic rules for mi-
gration events discussed in Section 2.3.

6. Upon the execution of an event, a time increment, �t, is computed
by using the following expression:

�t = − ln �4
ra +∑N

i=1 rm,i
(3)

where �4 is a real random number in the (0, 1) interval.
7. If t exceeds a preset deposition duration time, td, the kMC sim-

ulation is terminated. Otherwise the kMC algorithm is repeated
starting from Step 2.

To simulate the process with limited-size lattice and reduce the
boundary effects, periodic boundary conditions (PBCs) are applied to
the kMC model of the deposition process. Note that PBCs are widely
used in molecular level simulations (e.g., Makov and Payne, 1995),
so that the statistical properties of a large scale stochastic process
can be appropriately captured by kMC simulations carried out on a
finite-size lattice.

3. Open-loop simulations

In this section, simulations of the kMC model of a silicon thin
film growth process using the methodology described in the previ-
ous section are presented with the process parameters being kept
constant (i.e., open-loop simulation). Appropriate definitions of film
site occupancy ratio are also introduced to describe the film porosity
and its fluctuation.

3.1. Definition of film site occupancy ratio

Since film porosity is the main objective of modeling and control
design of this work, a new variable, film site occupancy ratio, is
introduced to represent the extent of the porosity inside the thin
film as follows:

� = N
LH

(4)

where � denotes the film SOR, N is the total number of deposited
particles on the lattice, L is the lattice size (i.e., number of sites in
one layer) and H denotes the number of deposited layers. Note that
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Fig. 3. Illustration of the definition of film SOR of Eq. (4).

the deposited layers are the layers that contain deposited particles
and do not include the initial substrate layer. The concept of packing
density, which represents the occupancy ratio of space for a specific
packing method, is not the same as the film SOR defined in Eq. (4),
and thus, it cannot be used to characterize the evolution of film
porosity.

Fig. 3 gives an example showing how film SOR is defined. Since
each layer contains L sites, the total number of sites in the film is
LH. Film SOR is the ratio between the number of deposited particles,
N, and the total number of sites, LH. With this definition, film SOR
ranges from 0 to 1. Specifically, � = 1 denotes a film whose sites
are fully occupied and has a flat surface. At the beginning of the
deposition process when there are no particles deposited on the
lattice and only the substrate layer is present, N and H are both zeros
and the ratio N/(LH) is not defined, and thus, a zero value is assigned
to the film SOR at this state.

Due to the stochastic nature of kMC models of thin film growth
processes, the film SOR, �, fluctuates about a mean value, 〈�〉, at all
times. A quantitative measure of the SOR fluctuations is provided by
the variance of the film SOR as follows:

Var(�) = 〈(� − 〈�〉)2〉 (5)

where 〈·〉 denotes the average (mean) value.

3.2. Film site occupancy ratio evolution profile

In this subsection, the thin film deposition process is simulated
according to the algorithm described in Section 2. The evolution of
film SOR and its variance are computed from Eqs. (4) and (5), re-
spectively. The lattice size L is equal to 100 throughout this work.
The choice of lattice size is determined from a balance between sta-
tistical accuracy and reasonable requirements for computing power.
One thousand independent simulation runs are carried out to obtain
the expected value and the variance of the film SOR. The simulation
time is 1000 s. All simulations start with an identical flat initial con-
dition, i.e., only a substrate layer is present on the lattice without
any deposited particles. Fig. 4 shows the evolution profiles of the
expected value and the variance of the film SOR during the depo-
sition process for the following process parameters: T = 600K and
W = 1 layer/s. In Fig. 4, the film SOR is initially 0 and as particles
begin to deposit on the film, the film SOR increases with respect to
time and quickly reaches a steady-state value. Snapshots of the thin
film microstructure at different times, t = 100, 400, 700 and 1000 s,
of the open-loop simulation are shown in Fig. 5.
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Fig. 4. Mean value (solid lines) and variance (dashed line) of the complete film SOR
versus time for a 1000 s open-loop deposition process with substrate temperature
T = 600K and deposition rate W = 1 layer/s.

In the snapshots of the microstructure, columnar structures are
observed, which is due to the effect of nonlocal shadowing of the
existing particles, which prevents incident particles from adsorbing
to the film sites that are blocked by the particles at higher posi-
tions. Such columnar structures are also observed both in the ex-
periments and in simulations with similar microscopic rules (Wang
and Clancy, 1998, 2001; Levine and Clancy, 2000; Zhang et al., 2004).
Within the columnar structure, there exist small pores in the mi-
crostructure that contribute to the film porosity. Such a structure
(columns with few pores) is the result of certain deposition condi-
tions, i.e., the substrate temperature and the adsorption rate consid-
ered. Different conditions may result in different microstructure. For
example, at the low-temperature region (below 500K), the deposited
thin film shows a tree-like structure with a large number of small
pores.

The evolution profile of the variance starts at zero and jumps to
a peak, after which the variance decays with respect to time. The
variance is used to represent the extent of fluctuation of the film
SOR at a given time. Since all simulations start at the same initial
condition, the initial variance is zero (by convention) at time t = 0.
As particles begin to deposit on the film, the variance of the film
SOR, Var(�), increases at short times and it subsequently decreases
to zero at large times. Note that the film SOR is a cumulative property
since it accounts for all the deposited layers and particles on the film.
In other words, the film SOR from each individual simulation run
approaches its expected value at large times. Thus, at large times,
SOR fluctuations decrease as more layers are included into the film.
It is evident from Fig. 4 that the SOR variance decays and approaches
zero at large times. Fig. 6 shows the probability distribution functions
of the film SOR at different time instants. It can be clearly seen in
Fig. 6 that, as time increases, the probability distribution functions
become sharper and closer to its mean value, which shows the fact
that the fluctuation of film SOR is diminishing (i.e., smaller variance)
at large times. Thus, the film SOR of Eq. (4) and its variance of Eq. (5)
are not suitable variables for the purposes of modeling and control
of film porosity fluctuations. Another variable must be introduced to
represent the fluctuation of the film porosity.

3.3. Partial film site occupancy ratio

In this subsection, a new concept of film SOR is introduced,
termed partial film SOR, which is the film SOR calculated by account-
ing only for the top Hp layers of the film. Mathematically, the partial
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Fig. 5. Snapshots of the film microstructure at t = 100, 400, 700 and 1000 s of the open-loop deposition process with substrate temperature T = 600K and deposition rate
W = 1 layer/s.
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Fig. 6. Probability distribution functions (P.D.F.) of film SOR at t = 100, 400, 700 and 1000 s of the open-loop deposition process.

film SOR is defined as follows:

�p = Np

LHp
(6)

where �p denotes the partial film SOR and Np denotes the number
of particles in the top Hp layers and Hp denotes the number of top
layers of the film included in the computation of the partial film
SOR. The definition of the partial film SOR is shown schematically in
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Fig. 7. Illustration of the definition of partial film SOR of Eq. (6).

Fig. 7. To calculate the partial film SOR of Eq. (6), the number of top
Hp layers must first be determined. As shown in Fig. 7, the top Hp

layers start from the top layer of the lattice and include the (Hp − 1)
layers below the top layer. The number of particles in the top Hp

layers is denoted by Np. The partial film SOR, �p, is then calculated
as the ratio between Np and the total number of sites in the top Hp

layers, LHp. Similar to �, �p is ranging from 0 to 1. �p = 1 denotes
fully occupied top Hp layers.

The choice of Hp affects the value of the partial film SOR, �p, and
furthermore, it results in different modeling results and controller
performance. Specifically, the partial film SOR cannot be correctly
calculated without the existence of Hp layers in the film. This prob-
lem is bypassed by assuming the existence of Hp fully packed sub-
strate layers in the film before the deposition process begins. These
substrate layers are used in the calculation of �p when H<Hp. This
assumption does not affect the deposition process since the parti-
cles in the substrate layers neither migrate nor affect the adsorption
or migration processes of the deposited particles. Therefore, at the
beginning of deposition, the partial film SOR starts from unity since
all Hp layers are substrate layers and are fully occupied. There also
exist alternative choices of Hp at the beginning of deposition, e.g.,
equating Hp with H and hence having �p =� when H<Hp. Different
choices of Hp affect the computation of �p at the initial stages and
result in different initial values. However, the main dynamics of the
partial film SOR remains unchanged, especially at large times.

Although complete film SOR and partial film SOR are defined
similarly, they are different variables, which are used to describe
different aspects of the film. The most notable difference is the de-
nominator of the fractions. In the complete film SOR, the denomi-
nator of the ratio is the number of the sites in the entire deposited
film, and thus, it increases with respect to time, due to the deposi-
tion of new particles. This cumulative property of the complete film
SOR averages the fluctuations of the porosity from different layers
of the film and results in the decay of the variance of the complete
film SOR to zero with respect to time. For the partial film SOR, on
the contrary, the denominator of the ratio is fixed at LHp, and thus,
�p only accounts for the porosity of the newly deposited Hp layers of
the film. Another difference lies in the mechanism of the deposition
process. Due to particle migration, particles in the film interior have
a higher probability of achieving closed–packed configurations than
particles in the top layers. However, newly deposited particles in the
top layers have not experienced enough migration events and are
more active for migrating. For the above reasons, the fluctuation of
�p does not decay with respect to time and is much larger than the
fluctuation of � at large times. Thus, the variance of �p is selected
to represent the porosity fluctuations and is used for modeling and
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Fig. 8. Mean value (solid line) and variance (dashed line) of the partial film SOR
versus time for a 1000 s open-loop deposition process with substrate temperature
T = 600K and deposition rate W = 1 layer/s.

control design. The partial film SOR variance, Var(�p), is computed
by the following expression:

Var(�p) = 〈(�p − 〈�p〉)2〉 (7)

The evolution profiles of the expected partial film SOR and the
variance of partial film SOR are shown in Fig. 8 for the same process
parameters as in Fig. 4. The top 100 layers are chosen in the calcu-
lation of the partial film SOR, i.e., Hp = 100 in Eq. (6). The choice of
Hp depends on the process requirements. Too few layers result in
dramatic fluctuations of the partial film SOR. For a deposition pro-
cess of about 1000 deposited layers, it is found through extensive
simulation tests that 100 top layers constitute a suitable choice for
modeling and control design. The magnitude of the variance of the
partial film SOR depends on the choice of Hp. For problems with
different lattice sizes, a different Hp may be selected to produce a
representative magnitude of the variance.

As shown in Fig. 8, the mean partial film SOR, 〈�p〉, starts from
1 as a result from the use of the initial substrate layer. Then, 〈�p〉
decreases with respect to time and reaches a steady-state value at
large times. Compared to the expected film SOR in Fig. 4, the expected
partial film SOR is smaller at steady state, since the top layers of the
film are newly formed and are more active for particle migration
than the bulk layers, which are already deposited for a longer time
and are stabilized.

The evolution profile of the variance of partial film SOR, Var(�p),
is different from the one of the complete film SOR, Var(�), which de-
cays to zero at large times. Similar to the evolution of Var(�), Var(�p)
starts from zero due to an identical deterministic initial condition
applied to all simulations. However, Var(�p) does not decay to zero
with respect to time, but reaches a steady-state non-zero value. This
steady-state non-zero value can be seen from Fig. 9, which shows
the probability distribution functions of the partial film SOR at dif-
ferent time instants. As time increases, the probability distribution
function of the partial film SOR remains steadily shaped (i.e., steady-
state value of variance) instead of becoming sharper as the one of the
film SOR shown in Fig. 8. Therefore, the variance of partial film SOR
is chosen as the representation of the run-to-run fluctuation of film
porosity. Finally, we note that a careful inspection of Figs. 4 and 8
indicates that the variances of the film SOR are two orders of mag-
nitude less than the corresponding mean values, i.e., the mean value
of the film SORs ∼ O(1) and the variance of the film SORs ∼ O(10−3).
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Fig. 9. Probability distribution functions (PDF) of partial film SOR at t = 100, 400, 700 and 1000 s of the open-loop deposition process.

4. Construction of ODE models for complete and partial film
site occupancy ratio

For control purposes, dynamic models are required that describe
how the film porosity expressed in terms of complete and partial film
SOR varies with respect to potential manipulated input variables like
temperature and deposition rate. In this section, deterministic and
stochastic linear ODE models are derived to describe the evolution of
film SOR. The derivation of these ODE models and the computation
of their parameters is done on the basis of data obtained from the
kMC model of the deposition process.

4.1. Deterministic dynamic model of complete film site occupancy ratio

From the open-loop simulation results, the dynamics of the ex-
pected value of the complete film SOR evolution can be approx-
imately described by a first-order ODE model. Therefore, a linear
first-order deterministic ODE is chosen to describe the dynamics of
the complete film SOR as follows:

�
d〈�(t)〉

dt
= �ss − 〈�(t)〉 (8)

where t is the time, � is the time constant and �ss is the steady-
state value of the complete film SOR. The deterministic ODE system
of Eq. (10) is subject to the following initial condition:

〈�(t0)〉 = �0 (9)

where t0 is the initial time and �0 is the initial value of the complete
film SOR. Note that �0 is a deterministic variable, since �0 refers to
the expected value of the complete film SOR at t = t0. From Eqs. (8)
and (9), it follows that

〈�(t)〉 = �ss + (�0 − �ss)e−(t−t0)/� (10)

The model parameters, � and �ss, depend on substrate tem-
perature. This dependence will be mathematically expressed in
Section 4.3.

4.2. Stochastic dynamic model of partial film site occupancy ratio

To regulate the variance of the partial film SOR, a stochastic model
must be used. For simplicity, a linear stochastic ODE is used to model
the dynamics of the partial film SOR. Similar to the deterministic
ODE model for the expected complete film SOR of Eq. (8), a first-
order stochastic ODE is chosen for the computation of the partial
film SOR as follows:

�p
d�p(t)

dt
= �ss

p − �p(t) + 	p(t) (11)

where �ss
p and �p are the two model parameters which denote the

steady-state value of the partial film SOR and the time constant,
respectively, and 	p(t) is a Gaussian white noise with the following
expressions for its mean and covariance:

〈	p(t)〉 = 0

〈	p(t)	p(t
′)〉 = 
2

p�(t − t′) (12)

where 
p is a parameter which measures the intensity of the
Gaussian white noise and �(·) denotes the standard Dirac delta
function. The model parameters �ss

p , �p and 
p are functions of the
substrate temperature. We note that 	p(t) is taken to be a Gaussian
white noise because the values of �p obtained from 10, 000 inde-
pendent kMC simulations of the deposition process at large times
are in closed accord with a Gaussian distribution law: see Fig. 10
for the histogram of the partial film SOR at t = 1000 s.

The stochastic ODE system of Eq. (11) is subject to the following
initial condition:

�p(t0) = �p0 (13)
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Fig. 10. Histogram from 10, 000 simulation runs of the partial film SOR at the end
(t=1000 s) of the open-loop deposition process with substrate temperature T=600K
and deposition rate W = 1 layer/s.

where �p0 is the initial value of the partial film SOR. Note that �p0
is a random number, which follows a Gaussian distribution.

The following analytical solution to Eq. (11) can be obtained from
a direct computation as follows:

�p(t) = �ss
p + (�p0 − �ss

p )e
−(t−t0)/�p +

∫ t

t0
e−(s−t0)/�p	p ds. (14)

In Eq. (14), �p(t) is a random process, the expected value of which,
〈�p(t)〉, can be obtained as follows:

〈�p(t)〉 = �ss
p + (〈�p0〉 − �ss

p )e
−(t−t0)/�p . (15)

The analytical solution of Var(�p) can be obtained from the solu-
tion to Eq. (14) using the following result (Åström, 1970):

Result 1. If (1) f (x) is a deterministic function, (2) �(x) is a random
process with 〈�(x)〉 = 0 and covariance 〈�(x)�(x′)〉 = 
2�(x − x′), and
(3) �=∫ b

a f (x)�(x)dx, then � is a real random variable with 〈�〉=0 and

variance 〈�2〉 = 
2 ∫ b
a f 2(x)dx.

Using Result 1, the variance of the partial film SOR, Var(�p), can
be obtained from the analytical solution to Eq. (14) as follows:

Var(�p(t)) = �p
2
p

2
+
(
Var(�p0) − �p
2

p

2

)
e−2(t−t0)/�p (16)

where Var(�p0) is the variance of the partial film SOR at time t = 0,
which is calculated as follows:

Var(�p0) = 〈(�p0 − 〈�p0〉)2〉 (17)

A new model parameter, Varssp , is introduced to simplify the so-
lution of Var(�p) in Eq. (16) as follows:

Varssp = �p
2
p

2
(18)

where Varssp stands for the steady-state value of the variance of the
partial film SOR. With the introduction of this newmodel parameter,

the solution of the variance of the partial film SOR, Var(�p), can be
rewritten in the following form:

Var(�p(t)) = Varssp + (Var(�p0) − Varssp )e
−2(t−t0)/�p (19)

4.3. Parameter estimation and dependence on the process parameters

Referring to the deterministic and stochastic ODE models of
Eqs. (8) and (11), we note that they include five parameters, �ss, �,
�ss
p , �s and Varssp . The five parameters describe the dynamics of the

film SOR accounting for the effect of fluctuations. These parameters
must be estimated by comparing the predicted evolution profiles
from the ODE models and the ones from the kMC simulation of the
deposition process. Least-square methods are used to estimate the
model parameters so that the ODE model predictions are close in a
least-square sense to the kMC simulation data.

4.3.1. Parameter estimation
Since the ODE models of Eqs. (8) and (11) are linear, the five pa-

rameters, �ss, �, �ss
p , �p and Varssp , can be estimated from the solu-

tions to Eqs. (10) and (15). Specifically, the parameters �ss
p and �p are

estimated using Eq. (10) and the parameters �ss
p , �p and Varssp are es-

timated using Eq. (15), solving two separate least-square problems.
Specifically, the two least-square problems can be solved indepen-
dently to obtain the first four model parameters. The steady-state
variance, Varssp , is obtained from the values of the variance evolution
profiles at large times.

The parameters �ss and � are estimated by minimizing the sum of
the squared difference between the evolution profiles from the ODE
model prediction and the kMC simulation at different time instants
as follows:

min
�ss ,�

m∑
i=1

[〈�(ti)〉 − (�ss + (�0 − �ss)e−(t−t0)/�)]2 (20)

where m is the number of the data pairs, (ti, 〈�(ti)〉), from the kMC
simulations. Similarly, �ss

p and �p can be obtained by solving the
following least-square optimization problem expressed in terms of
the expected partial film SOR:

min
�ss
p ,�p

m∑
i=1

[〈�p(ti)〉 − (�ss
p + (�p0 − �ss

p )e
−(t−t0)/�p )]2 (21)

The data used for the parameter estimation are obtained from
the open-loop kMC simulation of the thin film growth process. The
process parameters are fixed during each open-loop simulation so
that the dependence of the model parameters on the process param-
eters can be obtained for fixed operation conditions. The complete
film SOR and the partial film SOR are calculated on the basis of the
deposited film at specific time instants. Due to the stochastic nature
of the process, multiple independent simulation runs are performed
to obtain the expected values of the complete film SOR and of the
partial film SOR as well as of the variance of the partial film SOR.

The above parameter estimation process is applied to the open-
loop simulation results. First, the open-loop evolution profiles of the
complete film SOR and of the partial film SOR are obtained from
1000 independent kMC simulation runs with substrate temperature
T = 600K and deposition rate W = 1 layer/s. Subsequently, the de-
terministic and stochastic ODE models of Eqs. (8) and (11) are com-
paredwith the open-loop kMC simulation data to compute themodel
parameters using least-square methods. Figs. 11 and 12 show the
open-loop profiles and the predicted profiles of 〈�〉, 〈�p〉 and Var(�p)
from the ODE models with the estimated parameters as follows:

�ss = 0.8178, � = 1.6564 s

�ss
p = 0.6957, �p = 77.2702 s, Varssp = 1.6937 × 10−3 (22)



G. Hu et al. / Chemical Engineering Science 64 (2009) 3668 -- 3682 3677

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

<ρ
>

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<ρ
p>

<ρ>: kMC output
<ρ>: prediction

<ρp>: kMC output

<ρp>: prediction

Fig. 11. Profiles of the expected value of the complete film SOR (solid line) and
of the partial film SOR (dashed line) with respect to time for a 1000 s open-loop
deposition process and predictions from the deterministic ODE model (solid line
with `+') and the stochastic ODE model (dashed line with `+') with estimated
parameters; T = 600K, W = 1 layer/s.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 10−3

Time (s)

V
ar

 (ρ
p)
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T = 600K, W = 1 layer/s.

The predictions from the ODE models are very close to the open-
loop kMC simulation profiles, which indicates that the dynamics of
the film SOR can be adequately described by first-order ODEs. There
is, however, some mismatch of the predicted ODE-based profiles
from the kMC data, especially for the expected value of the complete
film SOR. This is because the dynamics of the complete film SOR
depend on the total height of the film. A film at initial stages is very
thin and the complete film SOR changes significantly as more layers
are deposited, while a film at large times is much thicker and the
complete film SOR is relatively insensitive to the newly deposited
layers. Since a first-order ODE model is used to capture the dynamics
of the complete film SOR, the time constant, �, is chosen to strike
a balance between the initial and final stages of the film growth.
Therefore, the predictions from the ODE model cannot match the
open-loop profiles, obtained from the kMC models, perfectly at all
times. Overall, the computed first-order ODE models approximate
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Fig. 13. Dependence of �ss and �ss
p on the substrate temperature with deposition

rate W = 1 layer/s.

well the dynamics of the film SOR and its fluctuation, and thus, they
can be used for the purpose of feedback control design. The closed-
loop system simulation results using these first-order models will
be discussed in Section 5.3.

The lattice size dependence of the steady-state value of the com-
plete film SOR is shown in Fig. 16. It can be clearly seen that the film
SOR depends on the lattice size. To achieve near lattice-size indepen-
dence, a very large lattice size is required and cannot be simulated
using the available amount of computing power. The purpose of the
proposed modeling method is to identify the film SOR models from
the output of the given deposition process, which can be from either
a kMC simulator or experimental deposition process data. Note that
the applicability of the proposed modeling method is not limited to
any specific lattice size. In this work, a model with lattice size of
100 captures the film SOR dynamics and allows obtaining sufficient
statistical accuracy in terms of computing the expected values and
variances of film SORs.

4.3.2. Dependence of model parameters on process parameters
The model parameters of the ODE models of Eqs. (8) and (11) de-

pend on two process parameters, temperature and deposition rate.
This dependence is used in the formulation of the model predictive
control design in the next section when solving the optimization
problem. Thus, parameter estimation from open-loop kMC simula-
tion results of the thin film growth process for a variety of process pa-
rameters is performed to obtain the relationship between the model
parameters and the process parameters. In this work, the deposition
rate for all simulations is fixed at 1 layer/s and the only manipu-
lated input considered is the substrate temperature, T. The range of
T is between 300 and 800K, which is from room temperature to the
upper limit of the allowable temperature for a valid on-lattice kMC
model of silicon film. The dependence of the model parameters on
the substrate temperature is shown in Figs. 13–15. In these figures, it
can be clearly seen that the dependence of the model parameters on
temperature is highly nonlinear. For most model parameters, there
are asymptotes at the low temperature region due to the limited
surface migration rates at low temperatures. However, at high tem-
peratures, �ss and �ss

p approach unity, which corresponds to a fully
packed film, i.e., all film sites are occupied by particles.
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5. Model predictive control design

In this section, we design model predictive controllers based on
the deterministic and stochastic ODE models of Eqs. (8) and (11)
to simultaneously control the complete film SOR of the deposition
process to a desired level and minimize the variance of the partial
film SOR. State feedback controllers are considered in this work, i.e.,
the values of the complete film SOR and of the partial film SOR are
assumed to be available for feedback control. Real-time film SOR
can be estimated from in situ thin film thickness measurements
(Buzea and Robbie, 2005) in combination with off-line film porosity
measurements.

5.1. Regulation of complete film site occupancy ratio

Since the film porosity is the main control objective in this work,
we first consider the problem of regulation of the expected com-
plete film SOR to a desired level, �set , within a model predictive
control framework. The substrate temperature is used as the ma-
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Fig. 16. Dependence of steady-state values of film SOR, �ss , on the lattice size for
different temperatures.

nipulated input and the deposition rate is fixed at a certain value,
W0, during the entire closed-loop simulation. To account for a num-
ber of practical considerations, several constraints are added to the
control problem. First, there is a constraint on the range of varia-
tion of the substrate temperature. This constraint ensures validity
of the on-lattice kMC model. Another constraint is imposed on the
rate of change of the substrate temperature to account for actuator
limitations.

We note that classical control schemes like proportional-integral
(PI) control cannot be designed to explicitly account for input/state
constraints, optimality considerations and the batch nature of the
deposition process, and thus, their use will not be pursued in this
work. Furthermore, dynamic open-loop optimization may be used
but it does not provide robustness against the model inaccuracies
and the fluctuations in the deposition process. In the case where
feedback porosity control cannot be attained, dynamic optimization
may be used instead; this is naturally included in the proposedmodel
predictive control framework.

The control action, at a time t and state �, is obtained by solv-
ing a finite-horizon optimal control problem. The optimal tempera-
ture profile is calculated by solving a finite-dimensional optimization
problem in a receding horizon fashion. Specifically, the MPC problem
is formulated based on the deterministic ODE of Eq. (8) as follows:

min
T1,. . .,Ti ,. . .,Tp

J(�(t)) =
p∑

i=1

qsp,i[�set − 〈�(t + i)〉]2

s.t. 〈�(t + i)〉 = �ss(Ti,W0) + (〈�(t + (i − 1))〉
− �ss(Ti,W0))e−/�(Ti ,W0)

Tmin <Ti <Tmax∣∣∣∣Ti+1 − Ti


∣∣∣∣ �LT

i = 1, 2, . . . , p (23)

where t is the current time,  is the sampling time, p is the number
of prediction steps, p is the specified prediction horizon, Ti, i =
1, 2, . . . , p, is the substrate temperature at the ith step (Ti = T(t+ i)),
respectively,W0 is the fixed deposition rate, qsp,i, i=1, 2, . . . , p, are the
weighting penalty factors for the error of the complete film SOR at
the ith prediction step, Tmin and Tmax are the lower and upper bounds
on the substrate temperature, respectively, and LT is the limit on the
rate of change of the substrate temperature. In the MPC formulation
of Eq. (23), J is the cost function, which contains penalty on the



G. Hu et al. / Chemical Engineering Science 64 (2009) 3668 -- 3682 3679

squared difference between the desired value of the complete film
SOR, �set , and the predicted values of this variable at all time steps.

The dynamics of the expected value of the complete film SOR are
described by the deterministic first-order ODE of Eq. (10). The de-
pendence of model parameters on process parameters is obtained
from the parameter estimation at a variety of conditions. Due to
the availability of analytical solutions of the linear ODE model of
Eq. (10), these analytical solutions can be used directly in the MPC
formulation of Eq. (23) for the prediction of 〈�(t)〉. The system state,
�(t), is the complete film SOR at time t. Note that �(t), which is
obtained directly from the simulation in real-time, is considered as
the expected complete film SOR and can be used as an initial con-
dition for the solution of the deterministic ODE of Eq. (10). In the
closed-loop simulations, the instantaneous values of � and �p are
made available to the controller at each sampling time; however, no
statistical information, e.g., the expected value of complete/partial
film SOR, is available for feedback. The optimal set of control actions,
(T1, T2, . . . , Tp), is obtained from the solution of the multi-variable op-
timization problem of Eq. (23), and only the first value of the ma-
nipulated input trajectory, T1, is applied to the deposition process
during the time interval (t, t+). At time t+, a new measurement
of � is received and the MPC problem of Eq. (23) is solved for the
next control input trajectory.

5.2. Fluctuation regulation of partial film site occupancy ratio

Reduction of run-to-run variability is another goal in process con-
trol of a thin film growth process. In this work, the fluctuation of
film SOR is represented by the variance of partial film SOR, Var(�p).
Ideally, a zero value means no fluctuation from run to run. However,
it is impossible to achieve zero variance of partial film SOR due to
the stochastic nature of the thin film growth process. Thus, the con-
trol objective of fluctuation regulation is to minimize the variance
by manipulating the process parameters.

In this work, the fluctuation is included into the cost function
together with the error of the complete film SOR. Specifically, the
MPC formulation with penalty on the error of the expected complete
film SOR and penalty on the variance of the partial film SOR is given
as follows:

min
T1,. . .,Ti ,. . .,Tp

J(�(t)) =
p∑

i=1

{qsp,i[�set − 〈�(t + i)〉]2 (24)

+ qvar,iVar[�p(t + i)]}
s.t. 〈�(t + i)〉 = �ss(Ti,W0) + (〈�(t + (i − 1))〉

− �ss(Ti,W0))e−/�(Ti ,W0)

Var(�p(t + i)) = Varssp (Ti,W0) + (Var[�p(t + (i − 1))]

− Varssp (Ti,W0))e−2/�p(Ti ,W0)

Tmin <Ti <Tmax∣∣∣∣Ti+1 − Ti


∣∣∣∣ �LT

i = 1, 2, . . . , p (25)

where qsp,i and qvar,i, i = 1, 2, . . . , p, are weighting penalty factors on
the error of the complete film SOR and of the variance of the partial
film SOR, respectively. Other variables in Eq. (24) are defined similar
to the ones in Eq. (23). The same constraints as in Eq. (23) are im-
posed on the MPC formulation of Eq. (24). Due to the unavailability
of statistical information of the partial film SOR in real-time, the ini-
tial condition of the partial film SOR is regarded as a deterministic
variable and the initial condition for Var(�p(t)) is considered to be
zero in the MPC formulation.
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Fig. 17. Closed-loop profiles of the complete film SOR (solid line) and of the expected
value of the complete film SOR (dotted line) under the controller of Eq. (23). The
profile of the substrate temperature is also included (dash-dotted line).

5.3. Closed-loop simulations

In this section, the model predictive controllers of Eqs. (23) and
(24) are applied to the kMC model of the thin film growth process
described in Section 2. The value of the substrate temperature is ob-
tained from the solution to the problem of Eqs. (23) and (24) at each
sampling time and is applied to the closed-loop system until the
next sampling time. The complete film SOR and the partial film SOR
are obtained directly from the kMC model of the thin film at each
sampling time as the state of the system and are fed into the con-
trollers. The sampling time is fixed in all closed-loop simulations to
be =5 s, which is in the same order of magnitude of the time con-
stant of the dynamics of the complete film SOR, �. The optimization
problems in the MPC formulations of Eqs. (23) and (24) are solved
using a local constrained minimization algorithm.

The constraint on the rate of change of the substrate temperature
is imposed onto the optimization problem, which is realized in the
optimization process in the following way:

∣∣∣∣Ti+1 − Ti


∣∣∣∣ �LT ⇒ |Ti+1 − Ti|�LT ⇒ Ti − LT�Ti+1�Ti + LT,

i = 1, 2, . . . , p. (26)

The desired value (set-point) for the complete film SOR in the closed-
loop simulations is 0.9. The number of prediction steps is 5. The
deposition rate is fixed at 1 layer/s and all closed-loop simulations
are initialized with an initial temperature of 300K. The maximal rate
of change of the temperature is 10K/s. Expected values and variances
are calculated from 1000 independent simulation runs.

5.3.1. Regulation of complete film site occupancy ratio
First, the closed-loop simulation results of complete film SOR reg-

ulation using the model predictive control formulation of Eq. (23) are
provided. In this MPC formulation, the cost function contains only
penalty on the difference of the complete film SOR from the set-point
value. Specifically, the optimization problem is formulated to min-
imize the difference between the complete film SOR set-point and
the prediction of the expected complete film SOR at the end of each
prediction step. All weighting penalty factors, qsp,i, i = 1, 2, . . . , p, are
assigned to be equal. Fig. 17 shows the profiles of the expected value
of the complete film SOR in the closed-loop system simulation. The
profiles of the complete film SOR and of the substrate temperature
from a single simulation run are also included in Fig. 17.
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Fig. 18. Snapshots of the film microstructure at t= 100, 400, 700 and 1000 s of the closed-loop simulation under the feedback controller of Eq. (23) with qsp,i = 1, i= 1, . . . , 5.
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Fig. 19. Closed-loop profiles of the complete film SOR (solid line) and of the expected
value of the complete film SOR (dotted line) under the controller of Eq. (24). The
profile of the substrate temperature is also included (dash-dotted line).

In Fig. 17, the substrate temperature increases linearly at the
initial stages due to the constraint on the rate of change, and it ap-
proaches to a value around 650K, which is calculated from the op-
timization problem based on the current complete film SOR. The
expected complete film SOR reaches the value of 0.87 at the end
of the simulation. There is a difference of 0.03 from the set point,
which is due to the fact that the first-order ODE model is not an
exact description of the film SOR dynamics, but rather an approxi-
mation. However, for the purpose of control design, the first-order
ODE model is acceptable. Another reason for the difference is the
cumulative nature of the complete film SOR. Since the initial tem-
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Fig. 20. Comparison of the variance of the partial film SOR for different weights:
qvar,i = 0 (solid line) and qvar,i = 10 (dashed line).

perature, 300K, is far below the optimal temperature for the desired
film SOR, it takes some time for the substrate temperature to reach
the optimal temperature. The initial condition of the substrate tem-
perature results in a period of low temperature at the initial stages.
In this period, layers with higher porosity are deposited onto the
film and, as a result, the complete film SOR is lowered. Thus, it takes
longer time for the complete film SOR to reach its steady-state value.
The difference between the set-point and the closed-loop steady-
state value can be overcome by pre-setting a higher initial substrate
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Fig. 21. Snapshots of the film microstructure at t = 100, 400, 700 and 1000 s of the closed-loop simulation under the feedback controller of Eq. (24) with qsp,i = 1, qvar,i = 10,
i = 1, . . . , 5.

temperature. Another possible method to improve the closed-loop
performance is to replace the quadratic cost function that penalizes
the deviation of the SORs from the desired values with other func-
tions, since quadratic terms slow down the convergence speed in
the vicinity of the set point. Snapshots of the film microstructure
at different times, t = 100, 400, 700 and 1000 s, of the closed-loop
simulation are shown in Fig. 18.

5.3.2. Fluctuation regulation of partial film site occupancy ratio
To reduce the run-to-run variability of the film porosity, the vari-

ance of the partial film SOR is added into the cost function in the
model predictive controller of Eq. (24). There are two weighting fac-
tors, qsp,i and qvar,i, which represent the weights on the complete
film SOR and on the variance of the partial film SOR prediction, re-
spectively. Fig. 19 shows the profiles of the expected complete film
SOR and of the substrate temperature in the closed-loop simulation,
with the following values assigned to the weighting factors:

qsp,i = 1, qvar,i = 10, i = 1–5. (27)

As shown in Fig. 19, the complete film SOR and the substrate
temperature evolve similarly as in Fig. 17. However, with the cost
function including penalty on the variance of the partial film SOR,
the optimal temperature is higher than the one in Fig. 17, since a
higher substrate temperature is in favor of decreasing run-to-run
fluctuations. Fig. 20 shows a comparison of the variance of the partial
film SOR between the two model predictive controllers with qvar,i =
0 and qvar,i = 10, i = 1–5. It can be seen that the variance of the
partial film SOR is lowered with penalty on this variable included
into the cost function of the MPC formulation. Snapshots of the film
microstructure at different times, t=100, 400, 700 and 1000 s, of the
closed-loop simulation are shown in Fig. 21.

6. Conclusions

In this work, systematic methodologies were developed for mod-
eling and control of film porosity in thin film deposition. A thin film
deposition process which involves atom adsorption and migration
was introduced and was modeled using a triangular lattice-based
kMC simulator which allows porosity, vacancies and overhangs to
develop and leads to the deposition of a porous film. Appropriate
definitions of film SOR and its fluctuation were introduced to de-
scribe film porosity. Deterministic and stochastic ODE models were
derived that describe the time evolution of film SOR and its fluctua-
tion. The coefficients of the ODE models were estimated on the basis
of data obtained from the kMC simulator of the deposition process
using least-square methods and their dependence on substrate tem-
perature was determined. The developed ODE models were used as
the basis for the design of MPC algorithms that include penalty on
the film SOR and its variance to regulate the expected value of film
SOR at a desired level and reduce run-to-run fluctuations. The ap-
plicability and effectiveness of the proposed modeling and control
methods were demonstrated by simulation results in the context of
the deposition process under consideration.

Acknowledgment

Financial support fromNSF, CBET-0652131, is gratefully acknowl-
edged.

References

Åström, K.J., 1970. Introduction to Stochastic Control Theory. Academic Press,
New York.

Armaou, A., Siettos, C.I., Kevrekidis, I.G., 2004. Time-steppers and `coarse' control of
distributed microscopic processes. International Journal of Robust and Nonlinear
Control 14, 89–111.



3682 G. Hu et al. / Chemical Engineering Science 64 (2009) 3668 -- 3682

Ballestad, A., Ruck, B.J., Schmid, J.H., Adamcyk, M., Nodwell, E., Nicoll, C., Tiedje,
T., 2002. Surface morphology of GaAs during molecular beam epitaxy growth:
comparison of experimental data with simulations based on continuum growth
equations. Physical Review B 65, 205302.

Bohlin, T., Graebe, S.F., 1995. Issues in nonlinear stochastic grey-box
identification. International Journal of Adaptive Control and Signal Processing 9,
465–490.

Buzea, C., Robbie, K., 2005. State of the art in thin film thickness and deposition
rate monitoring sensors. Reports on Progress in Physics 68, 385–409.

Christofides, P.D., Armaou, A., Lou, Y., Varshney, A., 2008. Control and Optimization
of Multiscale Process Systems. Birkhäuser, Boston.
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