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This work focuses on stochastic modeling and simultaneous regulation of surface roughness and porosity for
a porous thin film deposition process modeled via kinetic Monte Carlo (kMC) simulation on a triangular
lattice. The microscopic model of the thin film growth process includes adsorption and migration processes.
Vacancies and overhangs are allowed inside the film for the purpose of modeling thin film porosity. The
definition of the surface height profile is first introduced for a porous thin film deposition taking place in a
triangular lattice. The dynamics of surface height of the thin film are described by an Edwards-Wilkinson
(EW) type equation, which is a second-order linear stochastic partial differential equation (PDE). The root-
mean-square (RMS) surface roughness is chosen as one of the controlled variables. Subsequently, an appropriate
definition of film site occupancy ratio (SOR) is introduced to represent the extent of porosity inside the film
and is chosen as the second to-be-controlled variable. A deterministic ordinary differential equation (ODE)
model is postulated to describe the time evolution of the film SOR. The coefficients of the EW equation of
surface height and of the deterministic ODE model of the film SOR are estimated on the basis of data obtained
from the kMC simulator of the deposition process using least-squares methods, and their dependence on
substrate temperature is determined. The developed dynamic models are used as the basis for the design of
a model predictive control algorithm that includes a penalty on the deviation of the surface roughness square
and film SOR from their respective set-point values. Simulation results demonstrate the applicability and
effectiveness of the proposed modeling and control approach in the context of the deposition process under
consideration. When simultaneous control of surface roughness and porosity is carried out, a balanced trade-
off is obtained in the closed-loop system between the two control objectives of surface roughness and porosity
regulation.

1. Introduction

Thin film deposition processes play an important role in the
semiconductor industry. In recent years, increasing complexity
and density of microelectronic devices on wafers require
significant improvement of thin film deposition process opera-
tion and yield. Thin film microstructure, including surface
roughness and film porosity, strongly affects the electrical and
mechanical properties of the thin films and of the resulting
devices. Failure to manufacture thin films with the desired
microstructure can only be detected at the end of the manufac-
turing process which results in high costs. Therefore, it is
necessary to develop real-time monitoring and feedback control
of thin film deposition processes.

Motivated by recent development of measurement techniques
for online surface roughness measurements,1-3 recent research
efforts on modeling and control of thin film microstructure have
been focused mostly on thin film surface roughness on the basis
of microscopic thin film growth models which utilize a square
lattice. Specifically, kinetic Monte Carlo (kMC) models based
on a square lattice and utilizing the solid-on-solid (SOS)
approximation for deposition were initially employed to develop
an effective methodology to describe the evolution of film
microstructure and design feedback control laws for thin film
surface roughness.4-6 This control methodology was success-
fully applied via computer simulations to surface roughness
control of the following: (a) a gallium arsenide (GaAs) deposi-

tion process7 and (b) a multispecies deposition process with
long-range interactions.8 Furthermore, a method that couples
partial differential equation (PDE) models and kMC models was
developed for computationally efficient multiscale optimization
of thin film growth.9 However, kMC models are not available
in closed-form, and this limitation restricts the use of kMC
models for system-level analysis and design of model-based
feedback control systems. To overcome this problem, model
identification of linear deterministic models from outputs of
kMC simulators was used for controller design using linear
control theory.10-12 However, deterministic models are only
effective in controlling the expected values of macroscopic
variables, i.e., the first-order statistical moments of the micro-
scopic distribution. For higher statistical moments of the
microscopic distributions such as the surface roughness (the
second moment of height distribution on a lattice), deterministic
models may not be sufficient, and stochastic differential equation
(SDE) models may be needed.

While the evolution of surface morphology of ultrathin films
in several thin film preparation processes can be modeled by
SDEs (this point has been demonstrated theoretically, computa-
tionally,13-17 and experimentally),18-20 the construction of SDE
models from kMC simulation data or experimental data is not
a trivial task. With respect to previous results on parameter
estimation for stochastic dynamic models, early results on the
analysis, parameter optimization, and optimal stochastic control
for linear stochastic ordinary differential equation (ODE)
systems can be found in the work by Åström.21 More recently,
likelihood-based methods for parameter estimation of stochastic
ODE models have been developed.22,23 In the context of
parameter estimation for stochastic PDEs, recent results24-27
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employed statistical moments to reformulate the parameter
estimation problem into one involving deterministic differential
equations. The stochastic moments include the expected value
and variance/covariance obtained from the data set generated
by kMC simulations or obtained from experiments. Thus, the
issue of parameter estimation of stochastic models could be
addressed by employing parameter estimation techniques for
deterministic systems. In the context of control of thin film
surface roughness in square lattice models, systematic controller
design methods based on linear28,25,24,29 and nonlinear26,30 SDE
models have been developed, covering both state feedback and
output feedback control considerations. These methods have
been applied to modeling and surface roughness control in
deposition and sputtering processes defined on a square lattice
via simulations.

In the context of modeling of thin film porosity, kMC models
have been widely used to model the evolution of porous thin
films in many deposition processes, such as the molecular beam
epitaxial (MBE) growth of silicon films and copper thin film
growth.31,32 Both monocrystalline and polycrystalline kMC
models have been developed and simulated.33,34 The influence
of the macroscopic parameters, i.e., the deposition rate and
temperature, on the porous thin film microstructure has also been
investigated using kMC simulators of deposition processes.
Deterministic and stochastic ODE models of film porosity were
recently developed35 to model the evolution of film porosity
and its fluctuation and design model predictive control (MPC)
algorithms to control film porosity to a desired level and reduce
run-to-run porosity variability. Despite recent significant efforts
on modeling and control of surface roughness and film porosity,
simultaneous regulation of surface roughness and film porosity
within a unified control framework has not been investigated.

Motivated by these considerations, the present work focuses
on stochastic modeling and simultaneous regulation of surface
roughness and film porosity in a porous thin film deposition
process modeled via kMC simulation on a triangular lattice.
The microscopic model of the thin film growth process includes
adsorption and migration processes. Vacancies and overhangs
are allowed inside the film for the purpose of modeling thin
film porosity. The definition of surface height profile is first
introduced for a porous thin film deposition taking place in a
triangular lattice. The dynamics of surface height of the thin
film are described by an Edwards-Wilkinson (EW) type equa-
tion, which is a second-order linear stochastic PDE model. The
root-mean-square (RMS) surface roughness is chosen as one
of the controlled variables. Subsequently, an appropriate defini-
tion of film site occupancy ratio (SOR) is introduced to re-
present the extent of porosity inside the film and is chosen as
the second to-be-controlled variable. A deterministic ODE model
is postulated to describe the time evolution of film SOR. The
coefficients of the EW equation of surface height and of the
deterministic ODE model of film SOR are estimated on the basis
of data obtained from the kMC simulator of the deposition
process using least-squares methods, and their dependence on
substrate temperature is determined. The developed dynamic
models are used as the basis for the design of a model predictive
control algorithm that includes penalty on the deviation of
surface roughness square and film SOR from their respective
set-point values. Simulation results demonstrate the applicability
and effectiveness of the proposed modeling and control approach
in the context of the deposition process under consideration.

2. Thin Film Deposition Process

2.1. Description and Modeling. The thin film growth
process considered in this work includes two microscopic
processes: an adsorption process, in which particles are in-
corporated into the film from the gas phase, and a migration
process, in which surface particles move to adjacent sites.31,33,34,36

Solid-on-solid (SOS) deposition models, in which vacancies and
overhangs are forbidden, are frequently used to model thin film
deposition processes8,26 and investigate the surface evolution
of thin films. However, vacancies and overhangs must be
incorporated in the process model to account for film porosity.
Since SOS models are inadequate to model the evolution of
thin film internal microstructure, a ballistic deposition model
taking place in a triangular lattice is chosen to simulate the
evolution of film porosity. Below, we discuss the main aspects
of this thin film growth process; more details can be found in
ref 35.

The film growth model used in this work is an on-lattice kMC
model in which all particles occupy discrete lattice sites. The
on-lattice kMC model is valid for temperatures T < 0.5Tm, where
Tm is the melting point of the crystal.31 All particles are modeled
as identical hard disks and the centers of the particles deposited
on the film are located on the lattice sites. The diameter of the
particles equals the distance between two neighboring sites. The
width of the lattice is fixed so that the lattice contains a fixed
number of sites in the lateral direction. The new particles are
always deposited from the top side of the lattice where the gas
phase is located; see Figure 1. Particle deposition results in film
growth in the direction normal to the lateral direction. The
direction normal to the lateral direction is thus designated as
the growth direction. The number of sites in the lateral direction
is defined as the lattice size and is denoted by L. The lattice
parameter, a, which is defined as the distance between two
neighboring sites and equals the diameter of a particle (all
particles have the same diameter), determines the lateral extent
of the lattice, La.

The number of nearest neighbors of a site ranges from zero
to six, the coordination number of the triangular lattice. A site
with no nearest neighbors indicates an unadsorbed particle in
the gas phase (i.e., a particle which has not been deposited on
the film yet). A particle with six nearest neighbors is associated
with an interior particle that is fully surrounded by other particles
and cannot migrate. A particle with one to five nearest neighbors
is possible to diffuse to an unoccupied neighboring site with a
probability that depends on its local environment. In the
triangular lattice, a particle with only one nearest neighbor is
considered unstable and is subject to instantaneous surface
relaxation. Details of particle surface relaxation and migration
will be discussed below.

In the simulation, a bottom layer in the lattice is initially set
to be fully packed and fixed, as shown in Figure 1. There are

Figure 1. Thin film growth process on a triangular lattice.

Ind. Eng. Chem. Res., Vol. 48, No. 14, 2009 6691

D
ow

nl
oa

de
d 

by
 U

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 J

ul
y 

8,
 2

00
9

Pu
bl

is
he

d 
on

 J
un

e 
18

, 2
00

9 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ie
90

07
08

v



no vacancies in this layer, and the particles in this layer cannot
migrate. This layer acts as the substrate for the deposition and
is not counted in the computation of the number of the deposited
particles, i.e., this fixed layer does not influence the film porosity
(see section 2.2 below). Two types of microscopic processes
(Monte Carlo events) are considered: an adsorption process and
a migration process.

In the adsorption process, an incident particle comes in contact
with the film and is incorporated onto the film. The microscopic
adsorption rate, W, which is in units of layers per unit time,
depends on the gas phase concentration. The layers in the unit
of adsorption rate are densely packed layers, which contain L
particles. With this definition, W is independent of L. In this
work, the macroscopic adsorption rate, W, is treated as a process
parameter. For the entire deposition process, the microscopic
adsorption rate in terms of incident particles per unit time, which
is denoted as ra, is related to W as follows:

The incident particles are initially placed at random positions
above the film lattice and move toward the lattice in the vertical
direction, as shown in Figure 1. The random initial particle
position, x0, which is the center of an incident particle, follows
a uniform probability distribution in the continuous domain, (0,
La). The procedure of an adsorption process is illustrated in
Figure 2. After the initial position is determined, the incident
particle, A, travels along a straight line toward the film until
contacting the first particle, B, on the film (this is a main
difference compared to the process considered in ref 35 where
the particle angle of incidence to the surface is allowed to vary
and this leads to substantially different process physics and
porosity patterns). Upon contact, particle A stops and sticks to
particle B at the contacting position; see Figure 2. Then, particle
A moves (relaxes) to the nearest vacant site, C, among the
neighboring sites of particle B. Surface relaxation is conducted
if site C is unstable, i.e., site C has only one neighboring particle,
as shown in Figure 2. When a particle is subject to surface
relaxation, the particle moves to its most stable neighboring
vacant site, which is defined as the site with the most nearest
neighbors. In the case of multiple neighboring vacant sites with
the same number of nearest neighbors, a random one is chosen
from these sites with equal probability as the objective of the
particle surface relaxation process. Note that particle surface
relaxation is considered as part of the deposition event, and thus,
it does not contribute to the process simulation time. There is
also only one relaxation event per incident particle.

In the migration process, a particle overcomes the energy barrier
of the site and jumps to its vacant neighboring site. The migration
rate (probability) of a particle follows an Arrhenius-type law with
a precalculated activation energy barrier that depends on the local
environment of the particle, i.e., the number of the nearest neighbors
of the particle chosen for a migration event. The migration rate of
the ith particle is calculated as follows:

where ν0 denotes the pre-exponential factor, ni is the number of
the nearest neighbors of the ith particle and can take values of 2,
3, 4, and 5 (rm,i is zero when ni ) 6 since this particle is fully
surrounded by other particles and cannot migrate), E0 is the
contribution to the activation energy barrier from each nearest
neighbor, kB is the Boltzmann constant, and T is the substrate
temperature of the thin film. Since the film is thin, the temperature
is assumed to be uniform throughout the film and is treated as a
time-varying but spatially invariant process parameter. In this work,
the factor and energy barrier contribution in eq 2 take the following
values ν0 ) 1013 s-1 and E0 ) 0.6 eV, which are appropriate for
a silicon film.37 When a particle is subject to migration, it can jump
to either of its vacant neighboring sites with equal probability,
unless the vacant neighboring site has no nearest neighbors, i.e.,
the surface particle cannot jump off the film and it can only migrate
on the surface.

The above-described thin film growth process has been
simulated using a continuous-time Monte Carlo (CTMC) method
via periodic boundary conditions (PBCs).38 The details of the
simulation algorithm can be found in ref 35; the reader may
also refer to refs 39-42 for more details on Monte Carlo
simulation algorithms.

2.2. Definitions of Surface Roughness and Film Site
Occupancy Ratio. Utilizing the continuous-time Monte Carlo
algorithm, simulations of the kMC model of a porous silicon
thin film growth process are carried out. Snapshots of film
microstructure, i.e., the configurations of particles within the
triangular lattice, are obtained from the kMC model at various
time instants during process evolution. To quantitatively evaluate
the thin film microstructure, two variables, surface roughness
and film porosity, are introduced in this subsection.

Surface roughness, which measures the texture of thin film
surface, is represented by the root-mean-square (RMS) of the
surface height profile of the thin film. Determination of a surface
height profile is different in the triangular lattice model
compared to an SOS model. In the SOS model, the surface of
a thin film is naturally described by the positions of the top
particles of each column. In the triangular lattice model,
however, due to the existence of vacancies and overhangs, the
definition of film surface needs further clarification. Specifically,
taking into account practical considerations of surface roughness
measurements, the surface height profile of a triangular lattice
model is defined based on the particles that can be reached in
the vertical direction, as shown in Figure 3. In this definition,
a particle is considered as a surface particle only if it is not
blocked by the particles of both of its neighboring columns.
Therefore, the surface height profile of a porous thin film is the
line that connects the sites that are occupied by the surface
particles. With this definition, the surface height profile can be
treated as a function of the spatial coordinate. Surface roughness,
as a measurement of the surface texture, is defined as the
standard deviation of the surface height profile from its average
height. The mathematical expression of surface roughness is
given later in section 3.1.

Figure 2. Schematic of the adsorption event with surface relaxation. In
this event, particle A is the incident particle, particle B is the surface particle
that is first hit by particle A, site C is the nearest vacant site to particle A
among the sites that neighbor particle B, and site D is a stable site where
particle A relaxes.

ra ) LW (1)

rm,i ) ν0 exp(-niE0

kBT ) (2)
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In addition to film surface roughness, the film site occupancy
ratio (SOR) is introduced to represent the extent of the porosity
inside the thin film. The mathematical expression of the film
SOR is defined as follows:

where F denotes the film SOR, N is the total number of deposited
particles on the lattice, L is the lattice size, and H denotes the
number of deposited layers. Note that the deposited layers are
the layers that contain only deposited particles and do not
include the initial substrate layers. The variables in the definition
expression of eq 3 can be found in Figure 4. Since each layer
contains L sites, the total number of sites in the film that can
be contained within the H layers is LH. Thus, film SOR is the
ratio of the occupied lattice sites, N, over the total number of
available sites, LH. The film SOR ranges from 0 to 1.
Specifically, F ) 1 denotes a fully occupied film with a flat
surface. The value of zero is assigned to F at the beginning of
the deposition process since there are no particles deposited on
the lattice.

It is important to note that film surface roughness and porosity
are correlated to some extent in the deposition process. A film
with lower porosity tends to have a smoother surface, since the
conditions to produce a dense film (higher substrate temperature
or lower adsorption rate) also help reduce the surface roughness
and vice versa. However, even though they are related to each
other, roughness and porosity are separate variables that describe
different aspects of the thin film. Films with the same film site
occupancy ratio may have different surface roughnesses.

3. Dynamic Model Construction and Parameter
Estimation

3.1. Edwards-Wilkinson-type Equation of Surface Height.
An EW-type equation, a second-order stochastic PDE, can be
used to describe the surface height evolution in many micro-

scopic processes that involve thermal balance between adsorp-
tion (deposition) and migration (diffusion). In this work, an EW-
type equation is chosen to describe the dynamics of the
fluctuation of surface height (the validation of this choice will
be made clear below):

subject to PBCs

and the initial condition

where x ∈ [-π,π] is the projected spatial coordinate, t is the
time, rh and ν are the model parameters, and �(x,t) is a Gaussian
white noise with the following expressions for its mean and
covariance

where σ2 is a parameter which measures the intensity of the
Gaussian white noise and δ( · ) denotes the standard Dirac delta
function. To validate the choice of �(x,t) as Gaussian white
noise, uncorrelated in both time and space, we present in Figures
5 and 6 the histograms of surface height, obtained from 10 000
independent open-loop simulation runs at sufficiently large
simulation times, at different positions and times. Specifically,
Figure 5 shows the histogram of surface height at different sites
(x ) 0a, 25a, 50a, 75a) at t ) 400 s, and Figure 6 shows the
histogram of surface height at x ) 50a for different time instants
(t ) 100, 200, 300, 400 s). It can be clearly seen in Figures 5
and 6 that the surface height follows Gaussian probability
distribution at sufficiently large times and that the noise is
uncorrelated in both time and space, which indicates that the
choice of white noise is a reasonable one.

To proceed with model parameter estimation and control
design, a stochastic ODE approximation of eq 4 is first derived
using Galerkin’s method. Consider the eigenvalue problem of
the linear operator of eq 4, which takes the form:

Figure 3. Definition of surface height profile. A surface particle is a particle
that is not blocked by particles from both of its neighboring columns in the
vertical direction.

Figure 4. Illustration of the definition of the film SOR of eq 3.

F ) N
LH

(3)

Figure 5. Histogram of surface height at different sites (x ) 0a, 25a, 50a,
75a) at t ) 400 s.

∂h
∂t

) rh + ν ∂
2h

∂x2
+ �(x, t) (4)

h(-π, t) ) h(π, t),
∂h
∂x

(-π, t) ) ∂h
∂x

(π, t) (5)

h(x, 0) ) h0(x) (6)

〈�(x, t)〉 ) 0
〈�(x, t)�(x', t')〉 ) σ2δ(x - x')δ(t - t') (7)

Ind. Eng. Chem. Res., Vol. 48, No. 14, 2009 6693

D
ow

nl
oa

de
d 

by
 U

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 J

ul
y 

8,
 2

00
9

Pu
bl

is
he

d 
on

 J
un

e 
18

, 2
00

9 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ie
90

07
08

v



where λn denotes an eigenvalue and φjn denotes an eigenfunction.
A direct computation of the solution of the above eigenvalue
problem yields λ0 ) 0 with ψ0 ) 1/(2π)1/2, and λn ) -νn2 (λn

is an eigenvalue of multiplicity two) with eigenfunctions φn )
(1/π1/2) sin(nx) and ψn ) (1/π1/2) cos(nx) for n ) 1, ..., ∞. Note
that the φjn in eq 8 denotes either φn or ψn. For a fixed positive
value of ν, all eigenvalues (except the zeroth eigenvalue) are
negative, and the distance between two consecutive eigenvalues
(i.e., λn and λn+1) increases as n increases.

To this end, the solution of eq 4 is expanded in an infinite
series in terms of the eigenfunctions of the operator of eq 8 as
follows:

where Rn(t) and �n(t) are time-varying coefficients. Substituting
the above expansion for the solution, h(x,t), into eq 4 and taking
the inner product with the adjoint eigenfunctions, φn*(x) ) (1/
π1/2) sin(nx) and ψn*(x) ) (1/π1/2) cos(nx), the following system
of infinite stochastic ODEs is obtained:

where

The covariances of �R
n(t) and ��

n(t) can be computed by using
the following result:

Result 1: If (1) f(x) is a deterministic function, (2) η(x) is a
random variable with 〈η(x)〉 ) 0 and covariance 〈η(x)η(x′)〉 )

σ2δ(x - x′), and (3) ε ) ∫a
b f (x)η(x) dx, then ε is a real random

number with 〈ε〉 ) 0 and covariance 〈ε2〉 ) σ2∫a
b f 2(x) dx.21

Using result 1, we obtain 〈�R
n(t)�R

n(t′)〉 ) σ2δ(t - t′) and
〈��

n(t)��
n(t′)〉 ) σ2δ(t - t′).

Since the stochastic ODE system is linear, the analytical
solution of state variance can be obtained from a direct
computation as follows:

where 〈Rn
2(t0)〉 and 〈�n

2(t0)〉 are the state variances at time t0.
The analytical solution of the state variance of eq 12 will be
used in the parameter estimation and the MPC design in sections
3.3 and 4.2

When the dynamic model of surface height profile is
determined, surface roughness of the thin film is defined as the
standard deviation of the surface height profile from its average
height and is computed as follows:

where hj(t) ) (1/2π)∫-π
π h(x,t) dx is the average surface height.

According to eq 9, we have hj(t) ) �0(t)ψ0. Therefore, 〈r2(t)〉
can be rewritten in terms of 〈Rn

2(t)〉 and 〈�n
2(t)〉 as follows:

Thus, eq 14 provides a direct link between the state variance of
the infinite stochastic ODEs of eq 10 and the expected surface
roughness of the thin film. Note that the model parameter rh

does not appear in the expression of surface roughness, since
the zeroth state, �0, is only affected by rh, but this state is not
included in the computation of the expected surface roughness
square of eq 14.

3.2. Deterministic Dynamic Model of Film Site Oc-
cupancy Ratio. Since film porosity is another control objective,
a dynamic model is necessary in the MPC formulation to
describe the evolution of film porosity, which is represented
by the film SOR of eq 3. The dynamics of the expected value
of the film SOR evolution are approximately described by a
linear first-order deterministic ODE as follows:35

Figure 6. Histogram of surface height at x ) 50a for different time instants
(t ) 100, 200, 300, 400 s).

Aφ̄n(x) ) ν
d2

φ̄n(x)

dx2
) λnφ̄n(x)

φ̄n(-π) ) φ̄n(π),
dφ̄n

dx
(-π) )

dφ̄n

dx
(π)

(8)

h(x, t) ) ∑
n)1

∞

Rn(t)φn(x) + ∑
n)0

∞

�n(t)ψn(x) (9)

d�0

dt
) √2πrh + ��

0(t)

dRn

dt
) λnRn + �R

n(t),
d�n

dt
) λn�n + ��

n(t), n ) 1, ..., ∞
(10)

�R
n(t) ) ∫-π

π
�(x, t)φn*(x) dx, ��

n(t) ) ∫-π

π
�(x, t)ψn*(x) dx

(11)

〈Rn
2(t)〉 ) σ2

2νn2
+ (〈Rn

2(t0)〉 -
σ2

2νn2)e-2νn2(t-t0)

〈�n
2(t)〉 ) σ2

2νn2
+ (〈�n

2(t0)〉 -
σ2

2νn2)e-2νn2(t-t0)

n ) 1, 2, ..., ∞

(12)

r(t) ) � 1
2π ∫-π

π
[h(x, t) - hj(t)]2 dx (13)

〈r2(t)〉 ) 1
2π

〈∫-π

π
(h(x, t) - hj(t))2 dx〉

) 1
2π

〈∫-π

π
[ ∑

i)1

∞

Ri(t)φi(x) + ∑
i)0

∞

�i(t)ψi(x) -

�0(t)ψ0]
2 dx〉

) 1
2π

〈∫-π

π ∑
i)1

∞

[Ri
2(t)φi

2(x) + �i
2(t)ψi

2(x)] dx〉

) 1
2π

〈 ∑
i)1

∞

(Ri
2(t) + �i

2(t))〉

) 1
2π ∑

i)1

∞

[〈Ri
2(t)〉 + 〈�i

2(t)〉]

(14)

τ d〈F(t)〉
dt

) Fss - 〈F(t)〉 (15)

6694 Ind. Eng. Chem. Res., Vol. 48, No. 14, 2009

D
ow

nl
oa

de
d 

by
 U

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 J

ul
y 

8,
 2

00
9

Pu
bl

is
he

d 
on

 J
un

e 
18

, 2
00

9 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ie
90

07
08

v



where t is the time, τ is the time constant, and Fss is the steady-
state value of the film SOR. The deterministic ODE system of
eq 15 is subject to the following initial condition:

where t0 is the initial time and F0 is the initial value of the film
SOR. Note that F0 is a deterministic variable, since F0 refers to
the film SOR at t ) t0. From eqs 15 and 16, it follows that

The choice of a deterministic linear ODE for 〈F(t)〉 (eq 15)
is made based on open-loop process data, and it adequately
describes the dynamics of the film SOR. Validation of the linear
model of eq 15 is provided in another work35 which focuses on
porosity control and variance reduction in a deposition process
with similar microscopic rules.

3.3. Parameter Estimation. Referring to the EW equation
of eq 4 and the deterministic ODE model of eq 15, there are
several model parameters, ν, σ2, Fss, and τ, that need to be
determined as functions of the substrate temperature. These
parameters describe the dynamics of surface height and of film
SOR and can be estimated by comparing the predicted evolution
profiles for roughness and SOR from the dynamic models of
eqs 4 and 15 and the ones from the kMC simulation of the
deposition process. Least-square methods are used to estimate
the model parameters so that the model predictions are close in
a least-squares sense to the kMC simulation data.

Since surface roughness is a control objective, we choose
the expected surface roughness square as the output for the
parameter estimation of the EW equation of eq 4. Thus, the
model coefficients, ν and σ2 can be obtained by solving
the problem of minimizing the prediction of the expected surface
roughness square of eq 14 to the one from the kMC simulation
at different time instants as follows:

where n1 is the number of the data samplings of surface height
profile and surface roughness from the kMC simulations. The
predictions of model state variance, 〈Ri

2(tk)〉 and 〈�i
2(tk)〉, can

be solved from the analytical solution of eq 12.
With respect to the parameters of the equation for film

porosity, since the ODE model of eq 15 is linear, Fss and τ can
be estimated from the solutions of eq 17 by minimizing the
sum of the squared difference between the evolution profiles
from the ODE model prediction and the kMC simulation at
different time instants as follows:

where n2 is the number of the data pairs, (tk, 〈F(tk)〉), from the
kMC simulations.

The data used for the parameter estimation are obtained from
the open-loop kMC simulation of the thin film growth process.
The process parameters are fixed during each open-loop
simulation so that the dependence of the model parameters on
the process parameters can be obtained. Due to the stochastic
nature of the process, multiple independent simulation runs are
performed to obtain the expected values of surface roughness
and film SOR.

The above parameter estimation process is applied to the
open-loop simulation results with 100 lattice size. First, the
open-loop evolution profiles of surface roughness and film SOR
are obtained from 1000 independent kMC simulation runs with
substrate temperature T ) 600 K and deposition rate W ) 1
layer/s. Model coefficients are estimated by solving the least-
squares problems of eqs 18 and 19 as follows:

The EW-type equation with parameters estimated under time-
invariant operating conditions is suitable for the purpose of MPC
design. This is because the control input in the MPC formulation
is piecewise, i.e., the manipulated substrate temperature remains
constant between two consecutive sampling times, and thus, the
dynamics of the microscopic process can be predicted using
the dynamic models with estimated parameters. Eventually, the
validation of the constructed models is demonstrated via closed-
loop simulations (where the controller which utilizes the
approximate models is applied to the kMC simulation of the
process) which demonstrate that the desired control objectives
are achieved. The simulation results will be shown in section 5
below.

The dependence of the model coefficients on substrate
temperature is used in the formulation of the model predictive
controller in the next section. Thus, parameter estimation from
open-loop kMC simulation results of the thin film growth
process for a variety of operation conditions is performed to
obtain the dependence of the model coefficients on substrate
temperature. In this work, the deposition rate for all simulations
is fixed at 1 layer/s. The range of T is between 300 and 800 K,
which is from room temperature to the upper limit of the
allowable temperature for a valid on-lattice kMC model of
silicon film. The dependence of the model parameters on the
substrate temperature is shown in Figures 7 and 8. In these
figures, it can be clearly seen that the dependence of the model
parameters on temperature is highly nonlinear. Specifically, as
substrate temperature increases, the migration rate becomes
larger due to the Arrhenius-type dependence of the migration
rate on temperature. Thus, higher temperature tends to result in
a thin film with less pores (higher film SOR) and a smoother
surface (lower surface roughness).

〈F(t0)〉 ) F0 (16)

〈F(t)〉 ) Fss + (F0 - Fss)e-(t-t0)/τ (17)

min
ν,σ2

∑
k)1

n1 [〈r2(tk)〉 -
1

2π ∑
i)1

∞

(〈Ri
2(tk)〉 + 〈�i

2(tk)〉)]2

(18)

min
Fss,τ

∑
k)1

n2

[〈F(tk)〉 - (Fss + (F0 - Fss)e-(tk-t0)/τ)]2 (19)

Figure 7. Dependence of log(ν) and σ2 on the substrate temperature with
deposition rate W ) 1 layer/s.

Fss ) 0.9823, τ ) 2.9746 s, ν ) 2.6570 × 10-4,
σ2 ) 0.1757 (20)
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4. Model Predictive Control

In this section, we design a model predictive controller based
on the dynamic models of surface roughness and film SOR to
simultaneously control the expected values of roughness square
and film SOR to a desired level. The dynamics of surface
roughness of the thin film are described by the EW equation of
the surface height of eq 4 with appropriately computed
parameters. Film SOR is modeled by a first-order deterministic
ODE model. State feedback control is considered in this work,
i.e., the surface height profile and the value of film SOR are
assumed to be available to the controller and no sensor noise is
introduced. Measurements of the film may be obtained in real-
time through a combination of real-time gas phase measurements
and empirical models that predict film porosity from gas phase
measurements.

4.1. MPC Formulation for Regulation of Roughness
and Porosity. We consider the problem of regulation of surface
roughness and of film SOR to desired levels within a model
predictive control framework. Since surface roughness and film
SOR are stochastic variables, the expected values, 〈r2(t)〉 and
〈F〉, are chosen as the control objectives. The substrate temper-
ature is used as the manipulated input and the deposition rate
is fixed at a certain value, W0, during the entire closed-loop
simulation. To account for a number of practical considerations,
several constraints are added to the control problem. First, there
is a constraint on the range of variation of the substrate tem-
perature. This constraint ensures validity of the on-lattice kMC
model. Another constraint is imposed on the rate of change of
the substrate temperature to account for actuator limitations.
The control action at time t is obtained by solving a finite-
horizon optimal control problem. The cost function in the
optimal control problem includes penalty on the deviation of
〈r2〉 and 〈F〉 from their respective set-point values. Different
weighting factors are assigned to the penalties of the surface
roughness and of the film SOR. Surface roughness and film
SOR have very different magnitudes, (〈r2〉 ranges from 1 to 102

and 〈F〉 ranges from 0 to 1). Therefore, relative deviations are
used in the formulation of the cost function to make the
magnitude of the two terms comparable. The optimization
problem is subject to the dynamics of the surface height of eq
4 of and of the film SOR of eq 15. The optimal temperature
profile is calculated by solving a finite-dimensional optimization
problem in a receding horizon fashion. Specifically, the MPC
problem is formulated as follows:

where t is the current time, ∆ is the sampling time, p is the
number of prediction steps, p∆ is the specified prediction
horizon, ti, i ) 1, 2, ..., p, is the time of the ith prediction step
(ti ) t + i∆), respectively, Ti, i ) 1, 2, ..., p, is the substrate
temperature at the ith step (Ti ) T(t + i∆)), respectively, W0 is
the fixed deposition rate, qr2,i and qF,i, i ) 1, 2, ..., p, are the
weighting penalty factors for the deviations of 〈r2〉 and 〈F〉 from
their respective set-points at the ith prediction step, Tmin and
Tmax are the lower and upper bounds on the substrate temper-
ature, respectively, and LT is the limit on the rate of change of
the substrate temperature.

The optimal set of control actions, (T1, T2, ..., Tp), is obtained
from the solution of the multivariable optimization problem of
eq 21, and only the first value of the manipulated input
trajectory, T1, is applied to the deposition process (i.e., kMC
model) during the time interval (t, t + ∆). At time t + ∆, new
measurements of F and h are received and the MPC problem
of eq 21 is solved for the next control input trajectory.

4.2. MPC Formulation Based on a Reduced-Order
Model. The MPC formulation proposed in eq 21 is developed
on the basis of the EW equation of surface height and the
deterministic ODE model of the film SOR. The EW equation,
which is a distributed parameter dynamic model, contains infinite
dimensional stochastic states. Therefore, it leads to a model
predictive controller of infinite order that cannot be realized in
practice (i.e., the practical implementation of such a control
algorithm will require the computation of infinite sums which
cannot be done by a computer). To this end, a finite dimensional
approximation of the EW equation of order 2m is used; this
approximation is obtained by using the first 2m modes in eq
10.

Due to the structure of the eigenspectrum of the linear
operator of the EW equation of eq 4, the dynamics of the EW
equation are characterized by a finite number of dominant
modes. By neglecting the high-order modes (n g m + 1), we
rewrite the system of eq 10 into a finite-dimensional approxima-
tion as follows:

Using the finite-dimensional system of eq 22, the expected
surface roughness square, 〈r2(t)〉, can be approximated with the
finite-dimensional state variance as follows:

where the tilde symbol in 〈r̃2(t)〉 denotes its association with a
finite-dimensional system.

Figure 8. Dependence of Fss and τ on the substrate temperature with
deposition rate W ) 1 layer/s.

min
T1,...,Ti,...,Tp

J ) ∑
i)1

p {qr2,i[rset
2 - 〈r2(ti)〉

rset
2 ]2

+ qF,i[Fset - 〈F(ti)〉
Fset

]2}
subject to

∂h
∂t

) rh + ν ∂
2h

∂x2
+ �(x, t)

τ d〈F(t)〉
dt

) Fss - 〈F(t)〉

Tmin < Ti < Tmax, |Ti+1 - Ti

∆ | e LT

i ) 1, 2, ..., p
(21)

dRn

dt
) λnRn + �R

n(t) n ) 1, ..., m

d�n

dt
) λn�n + ��

n(t) n ) 1, ..., m
(22)

〈r̃2(t)〉 ) 1
2π ∑

i)1

m

[〈Ri
2(t)〉 + 〈�i

2(t)〉] (23)

6696 Ind. Eng. Chem. Res., Vol. 48, No. 14, 2009

D
ow

nl
oa

de
d 

by
 U

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 J

ul
y 

8,
 2

00
9

Pu
bl

is
he

d 
on

 J
un

e 
18

, 2
00

9 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ie
90

07
08

v



Thus, the MPC formulation on the basis of the finite-
dimensional system of eq 22 and of the expected film SOR of
eq 17 is shown as follows:

In the MPC formulation based on the reduced-order model of
eq 24, the expected value of film SOR, 〈F〉, and the variance of
the modal states, 〈Rn

2(t)〉 and 〈�n
2(t)〉, are needed to calculate

the variables included in the cost over the prediction horizon.
In the closed-loop simulations, the instantaneous values of F,
Rn

2(t), and �n
2(t) are made available to the controller at each

sampling time; however, no statistical information, e.g., the
expected value and variances, is available for feedback.
Therefore, these instantaneous values at the sampling times,
which are obtained directly from the simulation in real-time,
are considered as the expected value of film SOR and height
and the variances of the modal states and can be used as initial
conditions for the solution of the dynamic models employed in
the MPC formulation of eq 24. Specifically, Rn

2(t) and �n
2(t)

are computed from the surface height profile by taking the inner
product with the adjoint eigenfunctions as follows:

where h(x,t) is obtained at each sampling time from the kMC
simulation.

5. Simulation Results

In this section, the proposed model predictive controller of
eq 24 is applied to the kMC model of the thin film growth
process described in section 2. The value of the substrate
temperature is obtained from the solution of the problem of eq
24 at each sampling time and is applied to the closed-loop
system until the next sampling time. The optimization problem
in the MPC formulation of eq 24 is solved via a local constrained
minimization algorithm using a broad set of initial guesses.

The constraint on the rate of change of the substrate
temperature is imposed onto the optimization problem, which
is realized in the optimization process in the following way:

The desired values (set-point values) in the closed-loop
simulations are rset

2 ) 10.0 and Fset ) 0.95. The order of finite-
dimensional approximation of the EW equation in the MPC

formulation is m ) 20. The deposition rate is fixed at 1 layer/s
and an initial temperature of 600 K is used. The variation of
temperature is from 400 to 700 K. The maximum rate of change
of the temperature is LT ) 10 K/s. The sampling time is fixed
at ∆ ) 1 s. The number of prediction steps is set to be p ) 5.
The closed-loop simulation duration is 1000 s. All expected
values are obtained from 1000 independent simulation runs.

The estimated parameters and the dependence of the param-
eters on substrate temperature is used in the model predictive
control design, which is applied to the kMC simulations with
the same lattice size, L ) 100. We note that the 100 lattice size
in the kMC simulations is small compared to real wafers in the
deposition process. However, it is not possible with currently
available computing power to simulate molecular processes
covering a realistic wafer size. However, developing modeling
and control techniques for regulating thin film microstructure
(surface roughness and porosity) is an important research area
because we need to understand how to regulate film surface
roughness and porosity in industrial systems. The proposed
modeling and control methods can be applied to any lattice size.
Furthermore, the dynamic models used in the controller can be
constructed directly from experimental surface roughness and
porosity measurements.

Closed-loop simulations of separately regulating film surface
roughness and porosity are first carried out. In these control
problems, the control objective is to regulate one of the control
variables, i.e., either surface roughness or film SOR, to a desired
level. The cost functions of these problems contain only penalty
on the error of the expected surface roughness square or of the
expected film SOR from their set-point values. The correspond-
ing MPC formulations can be realized by assigning different
values to the penalty weighting factors, qr2,i and qF,i.

In the roughness-only control problem, the weighting factors
take the following values: qr2,i ) 1 and qF,i ) 0, i ) 1, 2, ..., p.
Figures 9 and 10 show the closed-loop simulation results of
the roughness-only control problem. From Figure 9, we can see
that the expected surface roughness square is successfully
regulated at the desired level, 10. Since no penalty is included
on the error of the expected film SOR, the final value of
expected film SOR at the end of the simulation, t ) 1000 s, is
0.988, which is far from the desired film SOR, 0.95.

In the SOR-only control problem, the weighting factors are
assigned as: qr2,i ) 0 and qF,i ) 1, i ) 1, 2, ..., p. Figures 10
and 11 show the closed-loop simulation results of the SOR-
only control problem. Similar to the results of the roughness-
only control problem, the desired value of expected film SOR,

min
T1,...,Ti,...,Tp

J ) ∑
i)1

p {qr2,i[rset
2 - 〈r̃2(ti)〉

rset
2 ]2

+ qF,i[Fset - 〈F(ti)〉
Fset

]2}
subject to

〈Rn
2(ti)〉 )

σ2

2νn2
+ (〈Rn

2(ti-1)〉 -
σ2

2νn2)e-2νn2∆

〈�n
2(ti)〉 )

σ2

2νn2
+ (〈�n

2(ti-1)〉 -
σ2

2νn2)e-2νn2∆

〈F(ti)〉 ) Fss + (〈F(ti-1)〉 - Fss)e-∆/τ

Tmin < Ti < Tmax, |Ti+1 - Ti

∆ | e LT

n ) 1, 2, ..., m i ) 1, 2, ..., p
(24)

Rn(t) ) ∫-π

π
h(x, t)φn*(x) dx

�n(t) ) ∫-π
h(x, t)ψn*(x) dx

n ) 1, 2, ..., m

(25)

|Ti+1 - Ti

∆ | e LT ⇒ |Ti+1 - Ti| e LT∆ ⇒

Ti - LT∆ e Ti+1 e Ti + LT∆
i ) 1, 2, ..., p

(26)

Figure 9. Profiles of the expected values of surface roughness square (solid
line) and of the film SOR (dash-dotted line) under closed-loop operation
with a cost function including only a penalty on surface roughness.
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0.95, is approached at large times. However, since the error
from the expected surface roughness square is not considered
in the cost function, 〈r2〉 reaches a very high level around 125
at the end of the simulation.

Finally, closed-loop simulations of simultaneous regulation
of surface roughness and film SOR are carried out by assigning
nonzero values to both penalty weighting factors. Specifically,
qr2,1 ) qr2,2 ) ... ) qr2,p ) 1 and qF,1 ) qF,2 ) ... ) qF,p ) qSOR,
and qSOR varies from 1 to 104. Since substrate temperature is
the only manipulated input, the desired values of rset

2 and Fset

cannot be achieved simultaneously. With different assignments
of penalty weighting factors, the model predictive controller of
eq 24 evaluates and strikes a balance between the two set-points.
Figure 13 shows the expected values of rset

2 and Fset at the end
of closed-loop simulations of the simultaneous control problem
with respect to different weighting factors. It is clear from Figure
13 that as the weighting on expected film SOR increases, the
expected film SOR approaches its set-point value of 0.95, while
the expected surface roughness square deviates from its set-
point value of 10.

Snapshots of the film microstructure at the end of the
simulations (i.e., t ) 1000 s) under open-loop and closed-loop
operations are shown in Figure 14. The open-loop simulation
is carried out at fixed process parameters of substrate temper-
ature, 500 K, and adsorption rate, 1.0 layer/s. The thin film
obtained at the end of the open-loop simulation has higher

surface roughness and film porosity, with the expected values
of surface roughness square at 106 and film SOR at 0.78.
Columnar/pillar structures can be seen in the film microstructure
in the open-loop simulation (Figure 14). Similar columnar
structures have been also reported by other researchers in kMC
simulations with a triangular lattice and similar microscopic rules
as well as in experimental works.36,43,31

In the closed-loop simulations shown in Figure 14, three
control schemes are compared: roughness-only control (I), SOR-
only control (II), and simultaneous regulation of both roughness
and porosity (III). As it was demonstrated by the evolution
profiles of surface roughness and film SOR of the closed-loop
simulations in Figures 9 and 11, the film microstructure under
roughness-only control (I) has the lowest surface roughness
square, which is close to the set-point value of 10.0, but the
corresponding film SOR is 0.99, which is far from the desired
value of 0.95. On the other hand, the film SOR under SOR-
only control (II) is lower than under roughness-only control (I)
and reaches the set-point of 0.95, which can be also seen by
comparing the porosity of the thin film under closed-loop control
(I and II) in Figure 14. However, the surface roughness square
under SOR-only control (II) is much higher than the set-point
value of 10.0 since no penalty is included on the deviation of
surface roughness square from the set-point value in this case,

Figure 10. Profile of the instantaneous substrate temperature under closed-
loop operation with a cost function including only a penalty on surface
roughness.

Figure 11. Profiles of the expected values of surface roughness square (solid
line) and of the film SOR (dashed-dotted line) under closed-loop operation
with a cost function including only a penalty on the film SOR.

Figure 12. Profile of the instantaneous substrate temperature under closed-
loop operation with a cost function including only a penalty on the film
SOR.

Figure 13. Profiles of the expected values of surface roughness square (solid
line) and of the film SOR (dashed-dotted line) at the end of the closed-
loop simulations (t ) 1000 s) with the following penalty weighting factors:
qr2,i fixed at 1 for all i and for different values of qSOR.
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and thus, the snapshot of the film microstructure has the roughest
surface. Finally, under control scheme III, surface roughness
and film porosity strike a balance from their respective set-points
by including a penalty on both deviations of surface roughness
square and film SOR.

Remark 1. The thin film growth process is a batch process
and the process objective, addressed in the present work, is to
produce a thin film at the end of the batch that meets specific
surface roughness and internal porosity requirements using
substrate temperature as the manipulated input. The initial state
of the deposition system (at time t ) 0) is to consider a clean
initial surface and a nominal initial temperature; both choices
are natural for a deposition process, and as can be clearly seen
in Figures 10 and 12, the substrate temperature varies signifi-
cantly and in a highly nonlinear fashion from its initial value.
Thus, it is not possible to improve the closed-loop performance
with a better choice of the initial substrate temperature or by
using a constant substrate temperature. Then, the objective of
the model predictive controller is to compute in real-time the
substrate temperature profile (subject to magnitude and rate of
change constraints) needed to produce a thin film with the
desired surface roughness and internal porosity requirements
at the end of the batch. It is also important to note that the
proposed reduced-order modeling and MPC strategy can be
readily used off-line to compute a recipe for varying the
substrate temperature with respect to time (simply set the MPC
prediction horizon equal to the entire deposition time) and then
the MPC can be used in real-time to correct this input trajectory.
Note here that if the optimization problem for computing the
time-varying policy for the substrate temperature is formulated
on the basis of the kinetic Monte Carlo model of the deposition
process, it leads to dynamic optimization problems with
intractable computational times for their solution (on the order
of months) and this is where the true value of the reduced-
order models used in the MPC lies. Finally, in the absence of
real-time measurements, the MPC strategy can be still be used
in an open-loop fashion to compute the operating policy for
the substrate temperature.

6. Conclusions

In this work, stochastic modeling and simultaneous regulation
of surface roughness and film porosity was studied for a porous
thin film deposition process modeled via kMC simulation on a
triangular lattice with two microscopic processes. The definition
of surface height profile of a porous thin film in a triangular
lattice was first introduced. An EW-type equation was used to
describe the dynamics of surface height and the evolution of
the RMS surface roughness, which is one of the controlled
variables. Subsequently, an appropriate definition of film SOR
was introduced to represent the extent of porosity inside the
film and was used as the second to-be-controlled variable. A
deterministic ODE model was postulated to describe the time
evolution of film SOR. The coefficients of the EW equation of
surface height and of the deterministic ODE model of the film
SOR were estimated on the basis of data obtained from the kMC
simulator of the deposition process using least-squares methods,
and their dependence on substrate temperature was determined.
The developed dynamic models were used as the basis for the
design of a model predictive control algorithm that includes a
penalty on the deviation of surface roughness square and film
SOR from their respective set-point values. Simulation results
demonstrated the applicability and effectiveness of the proposed
modeling and control approach in the context of the deposition
process under consideration. When simultaneous control of
surface roughness and porosity was carried out, a balanced trade-
off was obtained in the closed-loop system between the two
control objectives of surface roughness and porosity regulation.
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