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Investigation of film surface roughness and porosity dependence on lattice size
in a porous thin film deposition process
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The dependence of film surface roughness and porosity on lattice size in a porous thin film deposition
process is studied via kinetic Monte Carlo simulations on a triangular lattice. For sufficiently large lattice size
the steady-state value of the expected film porosity has a weak dependence on the lattice size and the steady-
state value of the expected surface roughness square varies linearly with lattice size. An analysis of the film
morphology based on a stochastic partial differential equation description of the film surface morphology
supports and explains the findings of the numerical simulations.
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I. INTRODUCTION

Thin film growth processes are significant in many areas,
e.g., manufacturing of microelectronic devices and solar
cells. To understand the mechanisms and further improve the
operating conditions and yield, extensive research work has
focused on the study of thin film growth processes via both
experiments and simulations.

Many research efforts on modeling and control of thin
film surface roughness focus on the microscopic thin film
growth models which utilize a square lattice with solid-on-
solid (SOS) approximation that excludes vacancies and over-
hangs from the film microstructure [1]. The SOS models for
thin film deposition processes are effective in the develop-
ment of a methodology to describe the evolution of film
microstructure and design feedback control laws for thin film
surface roughness [2,3]. However, SOS models are incapable
of capturing the evolution of film porosity since vacancies
and overhangs are forbidden in the SOS models. In previous
work, triangular lattice models that allow for vacancies and
overhangs inside the film were introduced to simulate the
evolution of porous thin films [4-7] and design model pre-
dictive controllers to regulate the film porosity, surface
roughness, and/or film thickness [8,9].

Stochastic differential equation (SDE) models are con-
tinuum models that can be derived from the thin film growth
processes to describe the evolution of thin film morphologies
[10-13]. The SDE models contain the morphology informa-
tion of the thin films and account for the stochastic nature of
the microscopic processes. Methodologies have been devel-
oped to construct the SDE models and estimate the param-
eters from first principles [13—-15] and numerical simulations
[16].

Due to limitations of the currently available computing
power, numerical simulations utilize small system sizes and
thus cannot access realistic wafer dimensions. However,
simulation results on systems of finite (and small) size pro-
vide insights to the growth processes and evolution of film
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microstructure. The dependence of film morphology on sys-
tem size has attracted many research efforts, both numeri-
cally and theoretically [10,17,18]. However, most studies of
lattice size dependence focus on the surface height evolution
of SOS models [17] or ballistic deposition models [19-21].
The investigation of lattice size dependence for triangular
lattice models of porous thin films that involve a thermal
balance between adsorption and migration processes has re-
ceived limited attention.

Motivated by these considerations, this work focuses on
the study of the dependence of film surface roughness and
porosity on lattice size in a porous thin film deposition pro-
cess. Specifically, a porous thin film deposition process
which includes atom adsorption and migration is considered
and is modeled via kinetic Monte Carlo (kMC) simulation on
a one-dimensional triangular lattice. Extensive numerical
simulations are carried out to determine the variation in the
film surface roughness and porosity with lattice size. For
sufficiently large lattice size, the steady-state value of the
expected film porosity has a weak dependence on the lattice
size and the steady-state value of the expected surface rough-
ness square varies linearly with lattice size. A theoretical
analysis based on stochastic partial differential equation
(PDE) descriptions of the film surface morphology is carried
out to support and explain the computational findings.

II. PROCESS DESCRIPTION AND DEFINITIONS
OF VARIABLES

In this section, a thin film deposition process is modeled
and simulated by using an on-lattice kinetic Monte Carlo
model, which allows vacancies and overhangs to develop
inside the film. Definitions of film site occupancy ratio and
film surface roughness are introduced for the convenience of
discussions on the lattice size dependence in later sections.

A. On-lattice kinetic Monte Carlo model
of deposition process

The thin film deposition process considered in this work
is modeled on a two-dimensional triangular lattice (one di-
mension on the growth direction) via kMC methods; see Fig.
1 [9]. In the simulation of the deposition process, it is as-
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FIG. 1. Thin film growth process on a triangular lattice.

sumed that all particles occupy discrete lattice sites. This
assumption is valid for low temperatures, 7<<0.5T,,, where
T,, is the melting point of the crystal [4]. The lattice size is
the number of sites in the direction perpendicular to the
growth direction (i.e., the horizontal direction, see Fig. 1).
The number of nearest neighbors of a site ranges from zero
to six, the coordination number of the triangular lattice. In
the lattice, a bottom layer acts as the substrate for the depo-
sition process. The substrate layer is initially set to be fully
packed and fixed, as shown in Fig. 1.

Two types of microscopic processes (Monte Carlo events
in the kMC simulation) are considered: an adsorption pro-
cess, in which particles are incorporated into the film from
the gas phase, and a migration process, in which particles
move to their adjacent sites [4,6,7,22]. The microstructure of
the thin film is the result of the complex interaction between
the two microscopic processes. The macroscopic parameters
that influence the deposition process are the adsorption rate,
W, and the substrate temperature, 7. Both the adsorption rate
and the substrate temperature are assumed to be uniform
throughout the film and are treated as time varying but spa-
tially invariant process parameters. The incident angle (in-
cluding its probability distribution) is another important pro-
cess parameter that affects the deposition process. Only the
vertical incidence is considered in this work to minimize the
non-local shadowing effect [9]. A brief description of the
adsorption and migration processes is given below.

In an adsorption process, a particle from the gas phase
comes in contact with the film and is incorporated onto the
film. The macroscopic adsorption rate, W, is defined as the
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FIG. 2. Definition of surface height profile. A surface particle is
a particle that is not blocked by particles from both of its neighbor-
ing columns in the vertical direction.
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number of deposited layers per second. A particle is initially
placed at a random position above the thin film, as shown in
Fig. 1. After the initial position is determined, the incident
particle travels vertically toward the film and sticks to the
first particle on the film that it contacts. The incident particle
then moves to the nearest vacant site and is subject to instan-
taneous surface relaxation if the new site is unstable, i.e., the
new site has only one neighboring particle [9]. When a par-
ticle is subject to surface relaxation, the particle moves to its
most stable neighboring vacant site, which is defined as the
site with the most nearest neighbors. In the case of multiple
neighboring vacant sites with the same number of nearest
neighbors, a random one is chosen from these sites with
equal probability. Note that particle surface relaxation is con-
sidered as part of the deposition event, and thus, it does not
contribute to the process simulation time. There is at most
one relaxation event per incident particle.

In a migration process, a particle overcomes the energy
barrier of the site and jumps to its vacant neighboring site
with a migration rate (probability) that depends on its local
environment (i.e., the number of nearest neighbors) and the
substrate temperature. The migration rate follows an
Arrhenius-type law:

nEy
rm,i=V0 exp(— k T>v (l)
B

where v, is a pre-exponential factor, n;=1, 2, 3, 4, and 5, is
the number of the nearest neighbors of the ith particle, E is
the contribution to the activation energy barrier from each
nearest neighbor and kg is the Boltzmann’s constant. The
diffusion rate is zero when n;=6 since this particle is fully
surrounded by other particles and cannot migrate. When a
particle is subject to migration, it can jump to either of its
vacant neighboring sites that have at least one nearest neigh-
bor with equal probability. Particles cannot migrate to vacant
neighboring sites that have no nearest neighbors.

In this work, the continuous-time Monte Carlo (CTMC)
method [23] is used in the KMC simulations of the thin film
deposition process due to its high efficiency in simulations of
rare events. According to the CTMC algorithm, a list of
events is constructed and an event is selected randomly with
its respective probability. After the execution of the selected
event, the list is updated based on the new lattice structure.
The computational efficiency of the kMC simulation is fur-
ther improved by utilizing a grouping algorithm [24] to
speed up the selection process of the particle that is subject
to a migration process.

Determination of the migration rate requires specification
of the parameters v, and E, in Eq. (1). In this work, we select
vy=10"% s7! and Ey=0.6 eV that are appropriate for a sili-
con film [25].

B. Definitions of surface roughness and film site
occupancy ratio

Following our previous work [9], the film microstructure
is described by two variables: surface roughness and film
porosity, respectively. Surface roughness is a measure of thin
film surface texture and is represented by the root mean
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FIG. 3. Illustration of the definition of film site occupancy ratio
(SOR) of Eq. (3).

square (rms) of the surface height profile of the thin film. The
profile of the surface height is found by connecting the sites
that are occupied by surface particles; see Fig. 2. Surface
particles are the particles that are not blocked by particles in
both neighboring columns and can be reached in the vertical
direction, as shown in Fig. 2. Surface roughness, r, is defined
as the standard deviation of the surface height profile from
its average height as follows [9]:

L
1 _
r= \/Zz (hi = h)?, (2)

where h= %Ef:lhi is the average surface height. Note that r
=0 and r=0 corresponds to a flat surface.

Film site occupancy ratio (SOR) measures the porosity of
the thin film and is defined as the fraction of sites that are
occupied by particles as follows [8,9]:

N
=—, 3
I, 3)
where p denotes the film SOR, N is the total number of
deposited particles on the lattice, L is the lattice size, and H
is the number of deposited layers; see Fig. 3. Note that the
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FIG. 4. (Color online) Profiles of the expected surface rough-
ness square from kMC simulations with different lattice sizes;
W=1 layer/s and T=300 K.
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TABLE 1. Number of simulation runs (surface roughness) for
different lattice sizes.

L T=300 K T=400 K =500 K
20 5000 5000 5000
50 5000 5000 5000
100 5000 5000 5000
200 20000 15000 10000
300 20000 15000 15000
400 15000
500 15000

deposited layers are the layers that contain only deposited
particles and do not include the initial substrate layers. Since
each layer contains L sites, the total number of available sites
in the H layers is LH. Thus, film SOR is the ratio of the
occupied lattice sites, N, over the total number of available
sites, LH. With this definition, film SOR ranges from O to 1.
Specifically, p=1 denotes a fully occupied film. The value of
zero is assigned to p at the beginning of the deposition pro-
cess since there are no particles deposited on the lattice.

The two film properties, film surface roughness and SOR,
are not independent. The main reason for which surface
roughness and SOR are coupled is that they are both affected
by the adsorption and migration processes in a similar fash-
ion. At high temperature or low adsorption rate, the relatively
stronger influence of migration process tends to produce a
denser and smoother film with less holes and thus it results in
a higher SOR and a smaller roughness; and vice versa. More-
over, the layers containing the rough surface are newly de-
posited and have not experienced enough time for migration.
Thus, these layers generally have higher porosity than the
layers in the bulk film. According to the definition of film
SOR of Eq. (3) and the illustration of film SOR of Fig. 3, all
layers below the top layer (including the more porous layers
that contain the rough surface) are counted for the calcula-
tion of film SOR. In this way, surface roughness contributes
to film SOR. This contribution is significant at the beginning
of film growth, since the film thickness is relatively small.
However, at large times, the film thickness is sufficiently
large, and thus, the contribution from a rough surface to the
SOR is negligible. Different definitions of surface roughness
and porosity may be used but do not affect the main conclu-
sions in this work, especially at large times.

Due to the stochastic nature of microscopic processes, a
profile from a single simulation cannot give meaningful re-
sults. Therefore, the expected values of the film surface
roughness and SOR are obtained as averages over multiple
independent simulations. The specific numbers of simulation
runs depend on the operating conditions, as it will be ex-
plained below.

III. LATTICE SIZE DEPENDENCE OF SURFACE
ROUGHNESS

In this section, the dependence of film surface roughness
on lattice size is investigated via numerical simulations and
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FIG. 5. (Color online) Profiles of the expected surface roughness square from kMC simulations (solid lines) and the fitted power-law time
dependence with an exponent of 0.5 for short times ((r2)=ry\z, dashed lines), with different lattice sizes (a) L=400 and (b) L=500;

W=1 layer/s and T=300 K.

theoretical methods that are based on stochastic partial dif-
ferential equation models for the evolution of the surface
height profile.

A. Computational results from the kinetic Monte Carlo model

To investigate the dependence of surface roughness on the
lattice size, kMC simulations of the thin film deposition pro-
cess with different lattice sizes are carried out. The substrate
temperature and the adsorption rate are kept fixed throughout
the entire simulation. The simulation time is set to be suffi-
ciently long so that the profile of surface roughness has
reached the steady-state regime. Simulation results are
averaged from multiple independent simulation runs
(5000-20 000) to obtain smooth profiles. The specific num-
bers of independent simulation runs are listed in Table 1.

Figure 4 shows the profiles of the expected surface rough-
ness square with different lattice sizes (from 20 to 300) at an
adsorption rate of 1 layer/s and a substrate temperature of
300 K. The profiles of the two larger lattice sizes, L=400 and
500, are shown in Fig. 5 since it takes longer time to reach
the steady state. From Figs. 4 and 5, it can been seen that,
regardless of the lattice size, the expected surface roughness
square increases from zero and finally reaches a steady-state
value at large times. Figures 5 and 6 also show that the
increase in the roughness square follows a power law on time
with an exponent of 0.5, which indicates (r?)=ry\1, at short
times. Figures 4 and 5 further show that as L increases, the
time required to reach the steady-state regime also increases.

Analysis of the simulation data indicates that the depen-
dence of surface roughness dynamics on the lattice size is
quasiquadratic; see Fig. 7 for the lattice size dependence of
the saturation time of the roughness square profiles for 7
=300 K, where the saturation time of the roughness square,

Tzf2’>, is defined as the time required for the expected surface
roughness square to reach very close to its steady-state value.
To reduce the influence of the fluctuation, Yzfzg is obtained
from the average of the time instants when the expected
roughness square reaches 98.0%, 98.5%, 99.0%, and 99.5%
of the steady-state value. From Fig. 7, it can be seen that the
saturation time is proportional to the square of the lattice size

for T7=300 K. This quadratic dependence of the dynamics
on the lattice size significantly limits the range of lattice
sizes that can be studied since a large lattice-size system (L
>500) may require a much longer time (> 10 000 s) to
achieve steady state. Such computational requirements are
beyond our current available computing power. However, the
range of lattice size that can be studied is sufficient to dem-
onstrate the dependence of surface roughness on the lattice
size.

The steady-state values of the expected surface roughness
square also exhibit strong dependence on the lattice size.
This dependence can be better addressed by plotting the
steady-state values, (r?),,, with respect to lattice size; see Fig.
8. The error bars in Fig. 8 represent the range (r?), * o,,
where o, denotes the standard deviation of (+?), and is cal-
culated from 10 averages of evenly divided groups of all
simulation runs. The steady-state values of the expected sur-
face roughness square are determined from the evolution

(@) (b)

60 100
< <
g 40 2 >
2 & 50
o 20 o
Vv Vv
—o-L=100
0 0
0 100 200 300 0 500 1000
Time (s) Time (s)
(c) (d)
150 200
Na;100 7 g 190
2 < 100
A A
% 50 Y 50
——L=200 ——L=300
0 0
0 1000 2000 0 2000 4000
Time (s) Time (s)

FIG. 6. (Color online) Profiles of the expected surface rough-
ness square from kMC simulations (solid lines) and the fitted
power-law time dependence with an exponent of 0.5 for short times
({r®y=r\1, dashed lines), with different lattice sizes (a) L=50, (b)
L=100, (c) L=200, and (d) L=300; W=1 layer/s and T=300 K.
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FIG. 7. (Color online) Dependence of the saturation time of the
expected surface roughness square, T?fzg, (symbols) on the lattice
size square, and the quadratic regression, T(yfz[>=kL2+b, of the points
corresponding to L=100 (line); W=1 layer/s and 7=300 K.

profiles of Figs. 4 and 5 by averaging over the last 1000
points where steady state has been clearly reached. A linear
dependence on the lattice size is clearly shown in Fig. 8 for
large lattice sizes, where the linear regression is obtained
from the data points of lattice sizes L= 100 and the regres-
sion coefficient is 0.9997.

The numerical findings from the kMC model at T
=300 K, e.g., the quadratic dependence of Tg;’z’) on lattice
size, the linear dependence of {r?),, on lattice size, and the
power-law dependence with 0.5 exponent of roughness
square on time for short times, are in accord with the predic-
tions of the Edwards-Wilkinson (EW) equation, which is
valid for large lattice sizes (L— ). The detailed derivation
is given in Sec. III C later.

B. Influence of substrate temperature on surface roughness

Simulations under different operating conditions are also
carried out. According to the Arrhenius-type law of Eq. (1),
the substrate temperature, 7, may affect the intensity of the
migration process, which in turn results in a different evolu-
tion of the thin film growth process. Figure 9 shows the
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FIG. 8. (Color online) Dependence of the steady-state values of
the expected surface roughness square, (1), (symbols with error
bars) on the lattice size, and the linear regression, (r?) =k’ L+b’, of
the points corresponding to L=100 (dashed line); W=1 layer/s
and 7=300 K.

evolution profiles of (%), with lattice size at substrate tem-
peratures 7=400 and 500 K. The adsorption rate is W
=1 layer/s for all simulations. Although different substrate
temperatures may result in different dynamics and steady-
state values, the lattice-size dependence of the saturation
time and of the steady-state value, shown in Figs. 10 and 11,
is still quadratic and linear, respectively, as it was at T
=300 K.

To further understand the influence of substrate tempera-
ture on surface roughness, a series of kMC simulations was
carried out at different temperatures. Figure 12 shows the
profiles of the expected surface roughness square at different
substrate temperatures. A lattice size of 100 sites is used in
all simulations of Fig. 12 for a meaningful comparison. De-
pendence of the steady-state surface roughness square on the
substrate temperature is shown in Fig. 13. It can be clearly
seen from Fig. 13 that the substrate temperature has a strong
influence on the evolution of surface roughness. Figures 14
and 15 show, respectively, the snapshots of film microstruc-
ture and surface morphology of thin films at the end of the
simulations (r=5000 s) with different substrate tempera-
tures.
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FIG. 9. (Color online) Profiles of the expected surface roughness square from kMC simulations with different lattice sizes at

(a) T=400 K and (b) T=500 K; W=1 layer/s.
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At low temperatures (T=400 K), it can be seen from
Fig. 14 that a porous microstructure is formed in the thin
film, which is due to the lack of particle mobility owing to
the very small particle migration rates relative to the adsorp-
tion rate. As a result, surface roughness profiles are insensi-
tive to the substrate temperature. As the temperature in-
creases above 400 K, the thin film microstructure evolves
differently. Specifically, the increased particle mobility (mi-
gration) at higher temperatures results in higher numbers of
nearest neighbors, which lowers the film porosity and results
in a denser film and smaller film thickness; see Fig. 14. Also,
this aggregation of surface particles first leads to a grainy
surface morphology and a higher surface roughness; see Fig.
15. Thus, it can be seen from Fig. 13 that the steady-state
values of the expected surface roughness square increase and
reach a maximum at around 600 K. When the temperature
further increases above 600 K, however, the steady-state val-
ues of the expected surface roughness square start decreas-
ing. This is due to the domination of the migration process,
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FIG. 11. (Color online) Dependence of the steady-state values of
the expected surface roughness square, (%), (symbols with error
bars) on the lattice size, and the linear regression, (r?),,;=k'L+b’, of
the points corresponding to L=100 (lines), at different substrate
temperatures; W=1 layer/s.
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FIG. 12. (Color online) Profiles of the expected surface rough-
ness square at different substrate temperatures; W=1 layer/s and
L=100.

which tends to smooth the film surface. Ultimately, at high
temperatures (=700 K), the film surface is flat with the
expected surface roughness approaching zero. Furthermore,
for T=700 K, the film body is almost fully packed with
very little porosity. The flat surface and the dense film at high
temperatures can be also seen in the surface morphology in
Fig. 15 and in the film microstructure in Fig. 14, respectively.
Please note that even the high temperature limit used in the
simulations, 7=700 K, is still within the valid range of tem-
perature for an on-lattice kMC model (T=T,,/2=844 K for
a silicon film).

Remark 1. Similar to the substrate temperature, another
process parameter, the adsorption rate, also influences the
deposition process and the evolution of surface roughness.
Different adsorption rates result in different balances be-
tween the adsorption process and the migration process. In
general, a higher adsorption rate may enhance the thin film
growth but result in higher surface roughness and porosity.
Such influences are similar to the ones induced by a lower
substrate temperature. Therefore, the influence of the adsorp-
tion rate can be inferred from the results of the substrate
temperature and is not included here.

Remark 2. The initial dynamics of the expect surface
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FIG. 13. (Color online) Dependence of the steady-state values
of the expected surface roughness square on the substrate tempera-
ture; W=1 layer/s and L=100.
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FIG. 14. Snapshots of film microstructure at different substrate
temperatures (a) 7=400 K, (b) T=500 K, (¢) T=600 K, and (d)
T=700 K at t=5000 s; W=1 layer/s and L=100.

roughness square at different substrate temperatures do not
follow the same power law as at T=300 K; see Fig. 16. For
example, the roughness square increases almost linearly with
respect to time at 7=600 K at short times, which differs
from the power law with an exponent of 0.5 at low tempera-
tures. The different short-time dynamics at higher tempera-
tures indicates crossover behavior of the kMC model. This
crossover behavior is due to the competition of different pro-
cesses at different growth conditions and may be described
by other dynamic equations instead of the EW equation. At
high temperatures, the high migration rate results in a dense
film with little or no porosity, and thus, the current model can
be approximated by a solid-on-solid model on a square lat-
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FIG. 15. Snapshots of film surface morphology (60 layers right
below the top surface layer are shown) at different substrate tem-
peratures (a) T=400 K, (b) 7=500 K, (c) T=600 K, and (d) T
=700 K at r=5000 s; W=1 layer/s and L=100.
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FIG. 16. (Color online) Profiles of the expected surface rough-
ness square from kMC simulations (solid lines) and the fitted
power-law time dependence with an exponent of 0.5 at short times
({r*)=ryVt, dashed lines), at different substrate temperatures
(a) T=300 K, (b) T=500 K, (c) T=600 K, and (d) 7=700 K,
W=1 layer/s and L=100.

tice, of which the governing equations and the scaling behav-
iors have been intensively investigated (e.g., [26,27]). How-
ever, the triangular lattice model used in this work differs
from the solid-on-slid model in several aspects even at the
high temperature limit, e.g., the isotropy of the migration
process. Such difference may result in deviation from EW
behavior. Further study of the growth dynamics at higher
temperatures will be the subject of future work.

C. Analytical results from the Edwards-Wilkinson equation

The EW-type equation, which is a second-order stochastic
PDE, can be used to describe the surface height evolution in
many microscopic processes that involve a thermal balance
between adsorption (deposition) and migration (diffusion)
[10,17]. The dynamic scaling properties of the EW equation
have been investigated previously by other researchers [28].
In this section, the EW equation subject to periodic boundary
conditions (this choice is made for consistency with the
boundary conditions used in the kKMC simulation) is solved
analytically using modal decomposition. The theoretical re-
sults from the analytical solution of the EW equation cor-
roborate the computational findings described above on the
dependence of the dynamics of (r%) on the lattice size and on
the deposition time at low substrate temperature (T
=500 K). This corroboration supports the use of the EW
equation with appropriate parameters as a continuum model
to describe the surface height evolution in the thin film
growth process under consideration [9,29]. Using the nota-
tion h(x,t) to describe the surface height in the continuum
case, the EW equation takes the following form [10]:

2
Z—il =r,+ sz_x/; + &(x,1), 4)

subject to the following periodic boundary conditions:
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oh oh
h(— Lo,t) = I’l(Lo,t), _(— Lo, t) = _(Lo,t) (5)
ox ox
and the initial condition
h(x,0) = hy(x), (6)

where x € [-L, L] is the spatial coordinate, ¢ is the time, r,,
and v are the model parameters, specifically, r;, is related to
the average growth rate of film surface and v is related to the
effect of particle relaxation and migration, and &(x,7) is a
Gaussian white noise with the following expressions for its
mean and covariance:

(&(x,1) =0,
(€, 1))y = 0 Blx—x") St 1), (7

where (-) denotes the mean value, o2 is a parameter which
measures the intensity of the Gaussian white noise and &(-)
denotes the standard Dirac delta function. The choice of the
Gaussian white noise can be validated by the histogram of
surface height at sufficiently large times, which follows
closely a Gaussian probability distribution [9]. In Eq. (4),
time ¢ and the spatial coordinate x are treated as continuous
variables. Thus, the EW equation is valid for large time and
large lattice sizes.

To proceed with model parameter estimation, a stochastic
ordinary differential equation (ODE) approximation of Eq.
(4) is first derived using modal decomposition. Consider the
eigenvalue problem of the linear operator of Eq. (4), which
takes the form

2
V0 X0,
bal=Lo) = bo(Lo). "’"( Ly) = ""’”(Lo> (8)

where A, denotes an eigenvalue and ¢, denotes an eigen-
function. A direct computation yields the eigenvalues, {0,

Pl Pl 472 4 . .
VTV TV v—; ,...;, and the eigenfunctions,
R 1 . 2mx 1 2’7T.)C
TR P A o cosL S TSI Eeos T ..}. The set of

eigenfunctions is orthonormal Note that the elgenvalues are
=--- and thus, for fixed v<<0,
Np=0, and N, <0, for n=1,2,.... From the eigenvalue prob-
lem, it can be inferred that the eigenvalues have the follow-
ing dependence on the domain size, L,

N, =0(Ly%), n=1.2,...,. (9)

The solution of Eq. (4) is then expanded in an infinite
series in terms of the eigenfunctions of the operator of Eq.
(8) as follows:

h(x0) =2 a,() (), (10)
n=0

where a,(r) are time-varying coefficients. Substituting the

above expansion for the solution, A(x,t), into Eq. (4) and

taking the inner product with the adjoint eigenfunction [i.e.,

i) f‘ioh(x,t) ¢, (x)dx, the adjoint eigenfunction is the same as
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¢,(x)], the following system of infinite stochastic ODEs is
obtained:

d
CZn:Cn+)\nan+§,ulz(t)’ n=0,1,...,%, (11)

where

Ly
an=f h(x,0) ¢, (x)dx, n=0,1,...,%°,

_LO

Lo
C}l=f rh¢n(x)dx, n =071’ e, (12)

_LO

Due to the properties of the eigenfunctions, ¢ is a constant
and ¢, is zero, for n=1,2,...,%, and

Loy
f’;(t)zf &x, 0, (x)dx, n=0,1,...,0. (13)
_LO

with the following stochastic characteristics: (£(¢))=0 and
(ENE )= 81~1").

Since the stochastic ODE system is linear, the analytical
solution of state variance can be obtained from a direct com-
putation as follows:

o’ o’
(an(t) =~ ot (ap(ty)) + . Ml =12, ... o,

(14)
where (ai(to)) is the state variance at time .
Similar to the lattice case, the surface roughness is the

standard deviation of the surface height from its average
value and is defined as follows:

1 (ko

r(t) = \/ 3 [h(x,1) — h(r)Pdx, (15)
0J -1,

where E(t):z%o I fgoh(x,t)dx is the average surface height.

According to Eq. (10), we have h(r)=aq(r) ). Therefore,
(r*(1)) can be rewritten in terms of the state variance as fol-
lows:

<r2(t)>——< f [h(x,1) - h(t)]zdx>

[’

L, 2
L f [2 aiam(x)—ao(r)qso] dx
_LO

[\

Ly i=0

1 Ly =
— >

_ 20N 42
=L L2 a; (1) ¢ (x)dx
— L i 2( )
Tag\ 5 M
_lg,
2L0§ (a; (1)). (16)

Equation (16) provides a direct link between the state
variance of the infinite stochastic ODEs of Eq. (11) and the
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expected surface roughness of the thin film. Note that the
model parameter r, does not appear in the expression of
surface roughness since the zeroth state, «, is canceled out
in the computation of the surface roughness.

The steady-state value of the expected surface roughness
is obtained at the large-time limit (t—) of Eq. (16) and
using Egs. (14) and (9) we obtain:

R IR DIP YN SRy
(r') s =(r( )>_2Lo,~:21<ai( )= 2L0§ ZM—O(Lo).

(17)

From Eq. (17), the steady-state value of the expected surface
roughness square depends linearly on the domain size, L.
This linear dependence is consistent with the large-L numeri-
cal results in Sec. III A.

The dynamics of the evolution of surface roughness also
has a strong dependence on the domain size. By substituting
the eigenvalues and manipulating the solution of Eq. (14), it
follows that

(@(0) = - g " (<a§(to)> . §>e_zmzﬂz<,_to)mg’

n=1,2,... 0. (18)

It can be concluded from Eq. (18) that the dynamics of the
surface roughness square scale quadratically with respect to
the domain size.

The previous analytical results are consistent with the
simulation results of Sec. III A. Hence, the EW equation is
an appropriate stochastic PDE model that can be used in the
modeling and control of film surface roughness of the thin
film deposition process in question.

Remark 3. A typical ballistic deposition model can be de-
scribed by the Kardar-Parisi-Zhang (KPZ) equation, which
gives different scaling properties of the roughening surface
from the EW equation [30]. However, the deposition model
studied in this work is not a typical ballistic deposition
model, e.g., the particles on the film are subject to migration
process due to the thermal effect. Thus, the scaling properties
of the triangular lattice model cannot be described accurately
by the KPZ equation at low temperatures (7<500 K). This
conclusion can be verified by the computational findings in
Sec. IIT A. The roughness square follows a power growth law
dependence with an exponent of 0.5 with respect to time at
short times and the saturation time of the roughness square
depends quadratically on the lattice size, which, respectively,
indicates S=1/4 and z=2 in the following scaling equation
[20]:

(r?y = L*f(tL™),

- { 2B,

t—0
. (19)

L2a’ {—
where « is the static scaling exponent, 8 is the growth ex-
ponent, z is the dynamical scaling exponent, and S=«a/z. The
exponents of z=2 and S=1/4 of the triangular lattice model,
computed from our simulations for 7=500 K, are not con-
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FIG. 17. (Color online) Profiles of the expected film SOR from
kMC simulations with different lattice sizes; W=1 layer/s and
T=400 K.

sistent with the KPZ equation, where z=3/2 and B=1/3 for
the one-dimensional case [30].

IV. LATTICE-SIZE DEPENDENCE OF FILM POROSITY

In this section, the dependence of film porosity (i.e., film
SOR) on the lattice size at different substrate temperatures is
investigated through kMC simulations. An integral model of
film SOR is derived and is used to estimate the steady-state
values.

A. Integral model of film site occupancy ratio evolution

Figure 17 shows the evolution profile of the expected film
SOR at W=1 layer/s and T=400 K. Since the film SOR is
a cumulative property, i.e., the denominator in the ratio in-
creases with respect to time, the fluctuation of the film SOR
decays to zero at large times [8]. Consequently, the required
independent simulation runs to compute expected evolution
profiles (especially for steady states at large times) can be
much less than the necessary simulation runs for surface
roughness. For a lattice size of 20, 1000 independent runs are
sufficient to obtain accurate steady-state values. For larger
lattice sizes, the fluctuations of film SOR further decrease
due to the increased denominator in the ratio, and thus, fewer
independent simulations are needed. Therefore, a wide range
of lattice size (from 20 to 100 000) can be investigated for
film SOR, as shown in Fig. 17. The specific numbers of
independent simulation runs are listed in Table II.

From Fig. 17, it can be seen that the evolution profiles of
the film SOR are similar to the ones of the surface rough-
ness. The film SOR profiles increase from zero and reach
steady-state values at sufficient large times. However, the
steady-state values of the film SOR can be achieved within
2000 s only for small lattice sizes (L<<100). For a large
lattice size, the evolution of film SOR slows down and re-
quires a longer simulation time to reach steady state. To
overcome these enormous computational requirements, an
integral model can be derived to estimate the steady-state
values of film SOR with simulation data from limited simu-
lation times.
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TABLE II. Number of simulation runs (film SOR) for different
lattice sizes.

L T=400 K =500 K
20 1000 1000
50 1000 1000
100 1000 1000
200 1000 1000
500 1000 1000
1000 1000 1000
2000 200 200
5000 100 100
10000 100 50
20000 100 50
50000 50 50
100000 20 20

In the integrands, a concept of instantaneous film SOR,
pa» 1s first introduced and is defined as the spatial derivative
of the number of deposited particles in the growth direction
as follows [29]:

dN

= XHD (HL) (20)

Pa

According to the definition of the adsorption rate, W, in

Sec. IT A, the infinitesimal variation in deposited particles,
dN, can be written as follows:

dN = WLdt. (21)

Since the lattice size, L, is constant, the expression of the
derivative of the deposited layers, dH, can be obtained in the
following form:

dH = — = —dt. (22)
Pa Pa
With the definition of p of Eq. (3) and the expressions of
dN and dH of Egs. (21) and (22), the film SOR can be
rewritten in an integral form as follows:

t
N0+f WLds
)

1= ,
p(?) W
H0+ _dS L
1o Pd

where N, and H, denote the number of deposited particles
and deposited layers at time ¢,.

To simplify the integral form of film SOR in Eq. (23), it is
necessary to investigate the time dependence of the inte-
grands, i.e., the adsorption rate, W, and the instantaneous
film SOR, p,. In kKMC simulations of the deposition process,
W remains time-invariant. Figure 18 shows the evolution
profile of p, [obtained directly from the kKMC simulation us-
ing Eq. (20)], which quickly approaches steady state and
remains constant. From the evolution profile of p, in Fig. 18,
we infer that for sufficiently large times (1=1,, where f, is

(23)
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FIG. 18. (Color online) Profiles of the instantaneous film SOR
from kMC simulations at different substrate temperatures,
T=400 K and 500 K; W=1 layer/s and L=100.

the threshold of sufficiently large time), p; can be approxi-
mated by its steady state value, p. Using that p,=p, the
integral form of film SOR of Eq. (23) can be simplified as
follows:

Ny + WL(t - 1)

p(1) = W : (24)
\‘HO + :(l‘— to)JL
Pa

From Eq. (24), it follows that at large times, the film SOR
approaches a steady-state value, p**, which equals the steady-
state value of the instantaneous film SOR, pJ. Equation (24)
can be used to estimate p(r) for large times (in particular, ¢
=2000 s) that cannot be accessed with the available com-
puting power and compute p*. To achieve this, a least-
squares method is used to estimate the steady-state value of
py by fitting Eq. (24) to p(¢) data at finite times (400 s=<¢
=2000 s) obtained from the kMC simulation. In the least-
squares formulation, the threshold for sufficiently large
times, #,=400 s, is estimated from the evolution profile of p,
of Fig. 18. Subsequently, the evolution of p(r) for ¢
=2000 s is computed via Eq. (24).

Figure 19 shows that the evolution profiles and the pre-
dicted profiles of film SOR are very close to each other. The
agreement between the predictions and the kKMC data indi-
cates that the integral model of Eq. (24) can describe the
evolution of film SOR at large times and provide reasonable
estimates of the steady-state value of film SOR.

Figure 20 shows the steady-state values of film SOR, p*,
for different lattice sizes at T=400 K and W=1 layer/s.
Figure 20 also includes the values of film SOR at ¢
=1000 s and r=2000 s. The error bars of the film SOR are
calculated from 5 averages of evenly divided groups of all
simulation runs. Since the steady-state values are estimates
from the evolution profiles, no error bars are presented with
p**. For small lattice sizes, p* is very close to the values of
film SOR at 1000 and 2000 s, which indicates that the film
SOR has reached its steady state. However, for large lattice
sizes, the time r=2000 s is not long enough for the film SOR
to approach its steady state. A weak dependence of the
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FIG. 19. (Color online) Profiles of the expected film SOR (dis-
crete symbols) and of the predictions (continuous lines) from the
integral model of Eq. (24); W=1 layer/s and T=400 K.

steady-state film SOR is observed in Fig. 20 (a logarithmic
scale is used to show the large range of lattice sizes investi-
gated in this work), where it can be seen that the steady-state
value of the expected film SOR decays as the lattice size
increases. The dynamics of film SOR also depends on the
lattice size: large lattice sizes result in slow evolutions of the
film SOR.

Remark 4. In previous work on modeling and control of
film porosity, various dynamic models were derived to cap-
ture the evolution of film porosity, e.g., first-order ODE mod-
els [8,29]. These models were developed for the purpose of
modeling and control of film porosity and its fluctuations.
However, first-order ODE models are not suitable to estimate
the steady-state values of film SOR. The film SOR is a cu-
mulative property, which has different dynamics at small and
large times and cannot be accurately represented by first-
order ODE models for all times. On the contrary, the integral
model of Eq. (24) is based on the steady-state approximation
of the instantaneous film SOR at sufficiently large times, and
thus, it can be used to better estimate the steady-state values
of film SOR. It is important to note that the model of Eq.
(24) cannot be used to describe the evolution of film SOR for

0.68
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FIG. 20. (Color online) Profiles of the predicted steady-state
values, the values at r=1000 s and r=2000 s of the expected film
SOR for different lattice sizes; W=1 layer/s and 7=400 K.
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FIG. 21. (Color online) Profiles of the predicted steady-state
values, the values at r=1000 s and r=2000 s of the expected film
SOR for different lattice sizes; W=1 layer/s and 7=500 K.

all times; it is not appropriate for short times and may result
in deviations of the predicted profiles from the kMC data, as
shown in Fig. 19.

B. Influence of substrate temperature on film SOR

Process parameters also influence the evolution of film
SOR. Simulations with different substrate temperatures, T
=400 and 500 K, are carried out with an identical adsorption
rate, W=1 layer/s. Figure 21 shows the dependence of
steady-state values of expected film SOR on the lattice size
at 7=500 K and W=1 layer/s. Similar weak dependence is
observed at both temperatures. It can also be seen that the
steady-state film SOR is higher at 500 K, which corresponds
to lower porosity.

The influence of substrate temperature on film SOR can
be further observed in Fig. 22, which shows the evolution
profiles of film SOR at different substrate temperatures. A
lattice size of 100 sites is used in all simulations. The steady-
state values can be estimated using the integral model de-
rived in Sec. IV A. Figure 23 shows the model-predicted
steady-state values of film SOR at different substrate tem-

;
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FIG. 22. (Color online) Profiles of the expected film SOR at
different substrate temperatures; W=1 layer/s and L=100.
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FIG. 23. (Color online) Dependence of the steady-state values
of the expected film SOR on the substrate temperature;
W=1 layer/s and L=100.

peratures. No error bars are presented in Fig. 23 since these
values are model-predicted steady-state values. In Fig. 23,
there are asymptotes at both low and high temperatures.
When the substrate temperature is low, the film microstruc-
ture is mostly determined by the adsorption process due to
the limited surface migration rates. However, at high tem-
peratures, p** approaches unity since the film is fully packed
due to the fact that particle migration is dominant. The influ-
ence of substrate temperature can be also seen in Fig. 14,

PHYSICAL REVIEW E 80, 041122 (2009)

where the increased temperature leads to a denser film with a
lower porosity.

V. CONCLUSIONS

A thorough study of the dependence of film surface
roughness and porosity on lattice size in a porous thin film
deposition process was conducted. Specifically, a porous thin
film deposition process which includes atom adsorption and
migration was considered and was modeled via kMC simu-
lations on a one-dimensional triangular lattice. Extensive nu-
merical simulations were carried out to determine the varia-
tion in the film surface roughness and porosity with lattice
size. For sufficiently large lattice size the steady-state value
of the expected film porosity has a weak dependence on the
lattice size and the steady-state value of the expected surface
roughness square varies linearly with lattice size. A theoret-
ical analysis based on stochastic PDE descriptions of film
morphology was carried out to support and explain the com-
putational findings.
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