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In this work, we develop a method for dynamic output feedback covariance control of the state covariance
of linear dissipative stochastic partial differential equations (PDEs) using spatially distributed control
actuation and sensing with noise. Such stochastic PDEs arise naturally in the modeling of surface height
profile evolution in thin film growth and sputtering processes. We begin with the formulation of the
stochastic PDE into a system of infinite stochastic ordinary differential equations (ODEs) by using modal
decomposition. A finite-dimensional approximation is then obtained to capture the dominant mode con-
tribution to the surface roughness profile (i.e., the covariance of the surface height profile). Subsequently,
a state feedback controller and a Kalman–Bucy filter are designed on the basis of the finite-dimensional
approximation. The dynamic output feedback covariance controller is subsequently obtained by combin-
ing the state feedback controller and the state estimator. The steady-state expected surface covariance
under the dynamic output feedback controller is then estimated on the basis of the closed-loop finite-
dimensional system. An analysis is performed to obtain a theoretical estimate of the expected surface
covariance of the closed-loop infinite-dimensional system. Applications of the linear dynamic output
feedback controller to both the linearized and the nonlinear stochastic Kuramoto–Sivashinsky equations
(KSEs) are presented. Finally, nonlinear state feedback controller and nonlinear output feedback controller
designs are also presented and applied to the nonlinear stochastic KSE.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The recent efforts on feedback control and optimization of thin
film growth processes to achieve desired material microstructure
(see, for example, Choo et al., 2005; Christofides and Armaou, 2006;
Christofides et al., 2008 and the references therein) have been moti-
vated by the fact that the electrical and mechanical properties of thin
films strongly depend on microstructural features such as interface
width, island density and size distributions (Akiyama et al., 2002;
Lee et al., 1999), which significantly affect device performance. To
fabricate thin film devices with high and consistent performance, it
is desirable that the operation of thin film growth processes is tightly
controlled.

In terms of results on control of thin film surface microstructure,
kinetic Monte-Carlo (kMC) models were initially used to develop
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a methodology for feedback control of thin film surface roughness
(Lou and Christofides, 2003a,b). Themethodwas successfully applied
to control surface roughness in a gallium arsenide (GaAs) deposition
process model (Lou and Christofides, 2004) and to control complex
deposition processes including multiple components with both
short-range and long-range interactions (Ni and Christofides, 2005a).
Furthermore, a method for computationally efficient optimization of
thin film growth using coupled macroscopic and microscopic models
was developed (Varshey and Armaou, 2005). However, the fact that
kMC models are not available in closed-form makes it very difficult
to use them for system-level analysis and the design and implemen-
tation of model-based feedback control systems. To achieve better
closed-loop performance, it is desirable to design feedback con-
trollers on the basis of closed-form process models, which account
for the stochastic nature of the microscopic events. An approach was
reported in Siettos et al. (2003), Armaou et al. (2004) and Varshney
and Armaou (2006) to identify linear deterministic models from out-
puts of kMC simulators and design controllers using linear control
theory. This approach is effective in controlling macroscopic vari-
ables which are low statistical moments of the microscopic distri-
butions (e.g., surface coverage, which is the first moment of species
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distribution on a lattice). However, to control higher statistical mo-
ments of the microscopic distributions, such as the surface rough-
ness (the second moment of height distribution on a lattice) or even
the microscopic configuration (such as the surface morphology), de-
terministic models may not be sufficient and stochastic partial dif-
ferential equation (PDE) models may be needed. In this area, other
results include the construction of reduced-order approximations
of the master equation (Gallivan and Murray, 2004) and control
of a coupled kMC and finite-difference simulation code of a cop-
per electro-deposition process using empirical input–output models
(Rusli et al., 2006).

Stochastic PDEs arise naturally in the modeling of surface mor-
phology of ultra thin films in a variety of material preparation pro-
cesses (Edwards andWilkinson, 1982; Villain, 1991; Vvedensky et al.,
1993; Cuerno et al., 1995; Lauritsen et al., 1996). For example, it
has been experimentally verified that the Kardar–Parisi–Zhang (KPZ)
equation (Kardar et al., 1986) can describe the evolution of the sur-
face morphology of GaAs thin films (Ballestad et al., 2002; Kan et al.,
2004). When a stochastic PDE is used to model the height of the sur-
face in a thin film growth process, there is a clear physical meaning
of the state covariance of the solution of the stochastic PDE, which
is the expected surface roughness of the thin film. It was demon-
strated that this link between the state covariance of the stochastic
PDE model and the material microstructure can be used to design
model-based feedback controllers for real-time regulation of ma-
terial microstructure (Lou and Christofides, 2005a,b). This practical
consideration has motivated recent efforts on covariance control of
stochastic PDEs. Specifically, methods for state feedback covariance
control for linear (Lou and Christofides, 2005a,b; Ni and Christofides,
2005b) and nonlinear (Lou and Christofides, 2006) stochastic PDEs
have been developed. The methods involve the reformulation of a
stochastic PDE into a system of infinite linear/nonlinear stochastic
ordinary differential equations (ODEs) by using modal decomposi-
tion, derivation of a finite-dimensional approximation that captures
the dominant mode contribution to the surface roughness, and state
feedback controller design based on the finite-dimensional approx-
imation. Modal decomposition is advantageous for model reduction
of dissipative PDEs, because one of the characteristics of dissipative
PDEs is the separation of the eigenspectrum of the spatial differen-
tial operator into fast and slow modes. Modal decomposition takes
advantage of this characteristic of the system and results in a com-
putationally efficient way to derive a low-order, finite-dimensional
system that captures the dominant modal contribution to the sur-
face roughness and can be used as a basis for feedback controller
design. As a comparison, finite element methods (FEMs) are brute-
force local discretization methods, which result in high-order finite-
dimensional approximations and very high-order controllers that
cannot be practically implemented in real-time control applications
(Christofides, 2001).

Furthermore, although stochastic PDE models are suitable for
model-based controller design, the construction of stochastic PDE
models directly based on microscopic process rules is, in general,
a very difficult task. This has motivated the development of sys-
tem identification methods for stochastic PDEs. Compared to deter-
ministic systems, modeling and identification of dynamical systems
described by stochastic ordinary/partial differential equations has
received relatively limited attention and most of the results focus
on stochastic ODE systems using likelihood-based methods (Åström,
1970; Bohlin and Graebe, 1995; Kristensen et al., 2004). In our re-
cent research, we found that the dynamics of the statistical mo-
ments of the state of a stochastic process may be described by a
deterministic differential equation, and the issues of parameter es-
timation for stochastic models could be addressed by employing
parameter estimation techniques for deterministic systems. Follow-
ing this idea, methods for identification and construction of linear

stochastic PDE models were developed (Lou and Christofides, 2005a;
Ni and Christofides, 2005b). More recently, a method for construction
of nonlinear stochastic PDEs was also developed (Hu et al., 2008).
Using these methods, linear/nonlinear stochastic PDE models can be
constructed from the kinetic Monte-Carlo simulation data of the mi-
croscopic process.

However, so far, only state feedback covariance controllers have
been developed for stochastic PDEs. In the design of a state feedback
controller, it is assumed that the full state of the PDE can be mea-
sured in real-time at all positions and times. This assumption is not
practical in many applications, where process output measurements
are typically available from a finite (usually small) number of mea-
surement sensors. Therefore, there is a strong motivation to develop
dynamic output feedback covariance control methods for stochastic
PDEs, which couple a state feedback control law to a dynamic state
observer that utilizes information from few measurement sensors.
The observer-based covariance control structure for linear stochastic
ODE systems was proposed in Hotz and Skelton (1987), Iwasaki and
Skelton (1994), in which a Kalman filter is used as a state estimator
and the estimated state is used by the feedback controller. However,
the problem of output feedback covariance control for nonlinear sys-
tems and infinite-dimensional systems has not been studied.

In this work, a method is developed for dynamic output feed-
back covariance control of the state covariance of linear dissipative
stochastic PDEs. Spatially distributed control actuation and sen-
sor measurements with noise are considered when designing the
dynamic output feedback controller. We initially formulate the
stochastic PDE into a system of infinite stochastic ODEs by
using modal decomposition and construct a finite-dimensional
approximation to capture the dominant mode contribution to
the surface covariance of the height profile. Subsequently, a
state feedback controller and a Kalman–Bucy filter are de-
signed on the basis of the finite-dimensional approximation. The
dynamic output feedback controller is obtained by combining
the state feedback controller and the state estimator. Anal-
ysis of the closed-loop stability and the steady-state surface
covariance under the dynamic output feedback controller are
provided for the finite-dimensional approximation and the infinite-
dimensional system. Applications of the linear dynamic output
feedback controller to both the linearized and the nonlinear
stochastic Kuramoto–Sivashinsky equation (KSE) are presented.
We also present nonlinear state feedback controller and nonlinear
output feedback controller designs and apply them to the nonlinear
stochastic KSE.

2. Preliminaries

2.1. Stochastic PDEs with distributed control

We focus on linear dissipative stochastic PDEs with distributed
control of the following form:

�h
�t

=Ah +
p∑

i=1

bi(x)ui(t) + �(x, t) (1)

subject to homogeneous boundary conditions and the initial condi-
tion h(x, 0)=h0(x), where x ∈ [−�,�] is the spatial coordinate, t is the
time, h(x, t) is the state of the PDE which corresponds to the height
of the surface in a thin film growth process at position x and time
t, A is a dissipative, self-adjoint spatial differential operator, ui(t) is
the ith manipulated input, p is the number of manipulated inputs
and bi(x) is the ith actuator distribution function (i.e., bi(x) deter-
mines how the control action computed by the ith control actuator,
ui(t), is distributed (e.g., point or distributed actuation) in the spatial
interval [−�,�]). �(x, t) is a Gaussian white noise with the following
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expressions for its mean and covariance:

〈�(x, t)〉 = 0

〈�(x, t)�(x′, t′)〉 = �2�(x − x′)�(t − t′) (2)

where � is a real number, �(·) is the Dirac delta function and 〈·〉 de-
notes the expected value. Gaussian white noise is chosen as the noise
term in the stochastic PDE. The Gaussian white noise is a natural
choice andworkswell inmany processmodels. For example, stochas-
tic PDEs with Gaussian white noise are reported in the modeling
of surface height evolution of many microscopic processes, such as
random deposition with surface relaxation, ballistic deposition and
sputtering processes (Edwards and Wilkinson, 1982; Cuerno et al.,
1995; Lauritsen et al., 1996).

Our objective is to control the surface covariance of the process,
Covh, which is represented by the expected value of the standard
deviation of the surface height from the desired height and is given
as follows:

Covh(t) =
〈∫ �

−�
[h(x, t) − hd]

2 dx
〉

(3)

where hd(t) is the desired surface height.
To study the dynamics of Eq. (1), we initially consider the eigen-

value problem of the linear spatial differential operator of Eq. (1) sub-
ject to the operator homogenous boundary conditions, which takes
the form

A�̄n(x) = �n�̄n(x), n = 1, 2, . . . (4)

where �n and �̄n denote the nth eigenvalue and eigenfunction, re-
spectively. To simplify our development and motivated by most
practical applications, we consider stochastic PDEs for which A is
a highly dissipative, self-adjoint operator (i.e., a second-order or
fourth-order linear self-adjoint operator) and has eigenvalues which
are real and satisfy �1��2 · · · and the sum

∑∞
i=1,�i �=0|1/�i| con-

verges to a finite positive number. Furthermore, the eigenfunctions
{�̄1(x), �̄2(x), . . .} form a complete orthonormal set.

To present the method for feedback controller design, we initially
formulate Eq. (1) into an infinite-dimensional stochastic ODE system
using modal decomposition. To this end, we first expand the solution
of Eq. (1) into an infinite series in terms of the eigenfunctions of the
operator A as follows:

h(x, t) =
∞∑
n=1

�n(t)�̄n(x) (5)

where �n(t) (n= 1, 2, . . . ,∞) are time-varying coefficients. Substitut-
ing the above expansion for the solution, h(x, t), into Eq. (1) and tak-
ing the inner product with �̄n(x), the following system of infinite
stochastic ODEs is obtained:

d�n
dt

= �n�n +
p∑

i=1

bni ui(t) + �n(t), n = 1, . . . ,∞ (6)

where

bni =
∫ �

−�
�̄n(x)bi(x) dx (7)

and

�n(t) =
∫ �

−�
�(x, t)�̄n(x) dx (8)

The covariance of �n�(t) can be computed by using the following
result:

Result 1. If (1) f (x) is a deterministic function, (2) 	(x) is a random
variable with 〈	(x)〉 = 0 and covariance 〈	(x)	(x′)〉 = �2�(x − x′) and
(3) 
=∫ b

a f (x)	(x) dx, then 
 is a real random number with 〈
〉=0 and

covariance 〈
2〉 = �2 ∫ b
a f2(x) dx (Åström, 1970).

Using Result 1, we obtain 〈�n(t)�n(t′)〉 = �2�(t − t′).
In this work, the controlled variable is the surface covariance

defined in Eq. (3). Without loss of generality, we pick hd(t) = 0.
Therefore, Covh(t) can be rewritten in terms of �n(t) as follows (Lou
and Christofides, 2005b):

Covh(t) =
〈∫ �

−�
[h(x, t) − 0]2 dx

〉
=

〈∫ �

−�

⎡⎣ ∞∑
n=1

�n(t)�̄n(x)

⎤⎦2

dx

〉

=
〈 ∞∑
n=1

�n(t)2
〉

=
∞∑
n=1

〈�n(t)2〉 (9)

Eq. (9) provides a direct link between the surface covariance and the
state covariance of the system of infinite stochastic ODEs of Eq. (6).

2.2. Model reduction

Owing to its infinite-dimensional nature, the system of Eq. (6)
cannot be directly used as a basis for feedback controller design that
can be implemented in practice (i.e., the practical implementation
of such a controller will require the computation of infinite sums
which cannot be done by a computer). Instead, we will use finite-
dimensional approximations of the system of Eq. (6) for the purpose
of model-based output feedback controller design. Specifically, we
rewrite the system of Eq. (6) as follows:

dxs
dt

= �sxs + Bsu + �s

dxf
dt

= �f xf + Bf u + �f (10)

where

xs = [�1 · · · �m]T, xf = [�m+1 �m+2 · · · ]T
�s = diag[�1 · · · �m], �f = diag[�m+1 �m+2 · · ·]
�s = [�1 · · · �m]T, �f = [�m+1�m+2 · · · ]T (11)

and

Bs =

⎡⎢⎢⎣
b11 · · · b1p
...

. . .
...

bm1 · · · bmp

⎤⎥⎥⎦ , Bf =

⎡⎢⎢⎣
bm+1
1 · · · bm+1

p

bm+2
1 · · · bm+2

p
...

...
...

⎤⎥⎥⎦ (12)

Note that the xs subsystem is mth-order and the xf subsystem is
infinite-dimensional.

The expression of Covh in Eq. (9) can be rewritten in the following
form:

Covh(t) =
m∑

n=1

〈�n(t)2〉 +
∞∑

n=m+1

〈�n(t)2〉

= Tr[Ps(t)] + Tr[Pf (t)] (13)

where Ps and Pf are covariance matrices of xs and xf which are

defined as Ps = 〈xsxTs 〉 and Pf = 〈xf xTf 〉, respectively. Tr[·] denotes the

trace of a matrix.
Neglecting the xf subsystem, the following finite-dimensional ap-

proximation is obtained:

dx̃s
dt

= �sx̃s + Bsu + �s (14)
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and the surface covariance of the infinite-dimensional stochastic sys-
tem, Covh, can be approximated by C̃ovh, which is computed from
the state of the finite-dimensional approximation of Eq. (14) as fol-
lows:

C̃ovh(t) = Tr[P̃s(t)] (15)

where the tilde symbol denotes that the variable is associated with
the finite-dimensional system. The reader may refer to Christofides
and Daoutidis (1997), Theodotopoulou et al. (1998) and Christofides
(2001) for further results on model reduction of dissipative PDEs.

2.3. State feedback control

When the state of the finite-dimensional system of Eq. (14) is
available, a linear state feedback controller can be designed to regu-
late the surface covariance. The closed-loop finite-dimensional sys-
tem takes the following form:

dx̃s
dt

= �sx̃s + Bsu + �s

u = Gx̃s (16)

where G is the gain matrix, which should be carefully designed so
as to stabilize the closed-loop finite-dimensional system and obtain
the desired closed-loop surface covariance. Note that the linear state
feedback controller of Eq. (16) has been used, in our previous work,
to control the surface covariance in both thin film growth and ion-
sputtering processes (Lou and Christobides, 2005a,b).

Since the above state feedback control assumes a full knowledge
of the states of the process at all positions and times, which may
be a restrictive requirement for certain practical applications, we
proceed to design output feedback controllers by combining the state
feedback control law and a state observer.

3. Output feedback control

In this section, we design linear output feedback controllers by
combining the state feedback control law of Eq. (16) and a dynamic
state observer which estimates the state of the finite-dimensional
system of Eq. (14) using the measured process output with sen-
sor noise. First, a dynamic state observer is developed using a
Kalman–Bucy filter approach, which yields an optimal estimate of
the state of the finite-dimensional system by minimizing the mean
square estimation error. The dynamic state observer is then coupled
to the state feedback controller of Eq. (16) to construct a dynamic
output feedback controller. For the special case where the number of
measurement sensors is equal to the order of the finite-dimensional
system, a static output feedback controller may be designed by
following a static state estimation approach proposed in Baker and
Christofides (1999) and Christofides and Baker (1999).

3.1. Measured output with sensor noise

The state feedback controller of Eq. (16) requires the availability of
the state x̃s, which implies that the value of the surface height profile,
h(x, t), is available at any location and time. However, from a practical
point of view, measurements of the surface height profile are only
available at a finite number of locations. Motivated by this, we design
an output feedback controller that uses measurements of the surface
height at distinct locations to enforce a desired closed-loop surface
covariance. The sensor noise is modeled as a Gaussian white noise
and is added to the surface height measurements. Specifically, the
measured process output is expressed as follows:

y(t) = [h(x1, t) + �1y(t) h(x2, t) + �2y(t) · · · h(xq, t) + �qy(t)]
T (17)

where xi (i = 1, 2, . . . , q) denotes a location of a point measure-
ment sensor and q is the number of measurement sensors. �1y(t),

�2y(t), . . . ,�
q
y(t) are independent Gaussian white noises with the

following expressions for their means and covariances:

〈�iy(t)〉 = 0, i = 1, 2, . . . , q

〈�iy(t)�jy(t′)〉 = �2�ij�(t − t′), i = 1, 2, . . . , q, j = 1, 2, . . . , q (18)

where � is a constant and �ij is the Kronecker delta function. Note
that the sensor noises are independent of the system noises, �s
and �f .

Using Eq. (5), the vector of measured outputs, y(t), can be written
in terms of xs and xf as follows:

y(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
n=1

�n(t)�n(x1) + �1y(t)

∞∑
n=1

�n(t)�n(x2) + �2y(t)

...∞∑
n=1

�n(t)�n(xq) + �qy(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Csxs(t) + Cf xf (t) + �y(t) (19)

where

Cs =

⎡⎢⎢⎢⎣
�1(x1) �2(x1) · · · �m(x1)
�1(x2) �2(x2) · · · �m(x2)

...
...

. . .
...

�1(xq) �2(xq) · · · �m(xq)

⎤⎥⎥⎥⎦

Cf =

⎡⎢⎢⎢⎣
�m+1(x1) �m+2(x1) · · ·
�m+1(x2) �m+2(x2) · · ·

...
...

. . .
�m+1(xq) �m+2(xq) · · ·

⎤⎥⎥⎥⎦ (20)

and

�y(t) = [�1y(t) �2y(t) · · · �qy(t)]
T (21)

Consequently, the system of Eq. (10) with the measured process
output vector can be written as follows:

dxs
dt

= �sxs + Bsu + �s

dxf
dt

= �f xf + Bf u + �f

y = Csxs + Cf xf + �y (22)

Neglecting the xf subsystem, the following finite-dimensional
stochastic ODE system can be obtained:

dx̃s
dt

= �sx̃s + Bsu + �s

ỹ = Csx̃s + �y (23)

where the tilde symbols in x̃s and ỹ denote the correspondence to
a reduced-order system. The system of Eq. (23) is used as the basis
for output feedback controller design.

3.2. Dynamic output feedback control

To design a dynamic output feedback controller, we first construct
a dynamic state estimator using information from the measured
output vector. Specifically, a Kalman–Bucy filter is designed for the
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optimal estimation of the state of the finite-dimensional system of
Eq. (23) as follows (Hotz and Skelton, 1987):

dx̂s
dt

= �sx̂s + Bsu + K(y − Csx̂s), x̂s(0) = x̂s0 (24)

where x̂s is the estimate of the state and K is a gain matrix, which
is computed as follows (Hotz and Skelton, 1987):

K = QCTs V
−1
y (25)

where Vy is the sensor noise intensity matrix and satisfies

〈�y(t)�y(t′)T〉 = Vy�(t − t′) (26)

and Q is the covariance matrix for the state estimation error and is
defined as

Q = lim
t→∞〈ẽ(t)ẽ(t)T〉 (27)

where ẽ(t) is the estimation error:

ẽ = x̃s − x̂s. (28)

The covariance matrix for the state estimation error, Q , is the
unique nonnegative definite solution of the following algebraic Ric-
cati equation (Hotz and Skelton, 1987):

�sQ + Q�s − QCTs V
−1
y CsQ + Vs = 0 (29)

where Vs is the noise intensity matrix of the �s and satisfies

〈�s(t)�s(t′)T〉 = Vs�(t − t′) (30)

The dynamic output feedback controller is designed by combining
the state feedback controller of Eq. (16) and the state estimator of
Eq. (24) and takes the form

dx̂s
dt

= �sx̂s + Bsu + K(y − Csx̂s), x̂s(0) = x̂s0

u = Gx̂s (31)

By applying the dynamic output feedback controller of Eq. (31) to
the finite-dimensional system of Eq. (23), the following closed-loop
finite dimensional system can be obtained:

dx̃s
dt

= �sx̃s + Bsu + �s

ỹ = Csx̃s + �y
dx̂s
dt

= �sx̂s + Bsu + K(ỹ − Csx̂s)

u = Gx̂s (32)

The closed-loop finite dimensional system of Eq. (32) can be written
in terms of x̃s and e using Eq. (28) as follows:

dx̃s
dt

= (�s + BsG)x̃s − BsGẽ + �s

dẽ
dt

= (�s − KCs)ẽ + �s − K�y (33)

The stability of the closed-loop finite-dimensional system of Eq. (33)
depends on the stability properties of the matrices (�s + BsG) and
(�s−KCs). Specifically, the stability of (�s+BsG) depends on the ap-
propriate design of the state feedback controller and the stability of
(�s−KCs) depends on the appropriate design of the Kalman–Bucy fil-
ter. Owing to its cascaded structure, the system of Eq. (33) is asymp-
totically stable if both (�s + BsG) and (�s −KCs) are stable matrices.
A stable matrix is a matrix whose eigenvalues have all negative real
part. This results in the existence of a steady-state covariance matrix
(e.g., a covariance matrix as t → ∞) of the closed-loop stochastic

system (Hotz and Skelton, 1987). To investigate the steady-state co-
variance matrix of the closed-loop system of Eq. (33), we rewrite
Eq. (33) as follows:

d
dt

[
x̃s
ẽ

]
=

[
�s + BsG −BsG

0 �s − KCs

] [
x̃s
ẽ

]
+

[
Is 0
Is −K

] [
�s
�y

]
(34)

where Is is an mth-order elementary matrix and 0 denotes a zero
matrix with an appropriate size.

The steady-state covariance matrix of the system of Eq. (34) is
defined as follows:

P̃ = lim
t→∞

〈[
x̃s(t)
ẽ(t)

]
[x̃s(t)T ẽ(t)T]

〉
=

[
P̃s P̃se
P̃es P̃e

]
(35)

where P̃s, P̃e, P̃se and P̃es are covariance matrices of the form

P̃s = lim
t→∞〈x̃s(t)x̃s(t)T〉

P̃e = lim
t→∞〈ẽ(t)ẽ(t)T〉

P̃se = P̃Tes = lim
t→∞〈x̃s(t)ẽ(t)T〉 (36)

P̃ is the unique positive-definite solution of the following Lyapunov
equation (Hotz and Skelton, 1987):[

�s + BsG −BsG
0 �s − KCs

]
P̃ + P̃

[
�s + BsG −BsG

0 �s − KCs

]T
+

[
Is 0
Is −K

] [
Vs 0
0 Vy

] [
Is 0
Is −K

]T
= 0 (37)

When the solution of P̃ is available, the surface covariance of the
finite-dimensional system, C̃ovh, can be obtained by using only P̃s.

Remark 1. The surface covariance of the closed-loop finite-
dimensional system, C̃ovh, under the linear output feedback con-
troller of Eq. (31), can be solved from the Lyapunov equation of
Eq. (37) with gain matrices G and K obtained from the separate
designs of the state feedback control law of Eq. (16) and of the
Kalman–Bucy filter of Eqs. (25) and (29). However, for a set-point
regulation problem with a pre-specified desired surface covariance,
C̃ovd, the above procedure is not directly applicable. Instead, an
iterative procedure can be adopted to design the matrices G and K
to approach a desired set-point in the closed-loop system. Specifi-
cally, the state feedback controller can be first designed so that the
set-point value can be achieved when the full state of the finite-
dimensional system is accessible by the controller (see Section 3.2 in
Lou and Christofides, 2005a, for more details on the state feedback
gain design). This design will result in a control gain matrix, G1 in
the state feedback controller. Then, a Kalman filter can be designed
separately to compute the Kalman filter gain matrix, K1, by solving
the Riccati equation. Subsequently, the surface covariance under the
resulting output feedback controller (K1,G1), C̃ovh,1, can be obtained
by solving the Lyapunov equation of Eq. (37). Due to the fact that
less information of the surface state is used in the output feedback
controller compared to the corresponding state feedback controller,
estimation error always exists. Therefore, the closed-loop surface
covariance, C̃ovh,1, will be different from the set-point value, C̃ovd.
To enable the use of an iterative procedure to improve upon C̃ovh,1,
a second set-point value for surface covariance, C̃ovd,2, is used to
solve for another pair of gain matrices G2 and K2. A new C̃ovh,2
under the output feedback controller with gain matrices G2 and K2
is then obtained, which results in a different closed-loop surface
covariance, C̃ovh,2. With the two sets of data as initial guesses, we
can start an iterative procedure using, for example, Secant's method
to solve for Ki, Gi that results in a closed-loop surface covariance,
C̃ovh,i, sufficiently close to the desired surface covariance, C̃ovd.
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The iterative procedure terminates when the difference between
the closed-loop finite-dimensional surface covariance under output
feedback control is sufficiently close to the desired value C̃ovd.

3.3. Analysis of closed-loop infinite-dimensional system

We now proceed to characterize the accuracy with which the
surface covariance in the closed-loop infinite-dimensional system
is controlled by the finite-dimensional linear dynamic output feed-
back controller. By applying the controller of Eq. (31) to the infinite-
dimensional system of Eq. (10) and substituting the estimation error
in Eq. (28), the infinite-dimensional closed-loop system takes the
following form:

dxs
dt

= (�s + BsG)xs − BsGe + �s

de
dt

= (�s − KCs)e − KCf xf + �s − K�y



dxf
dt

= �f
xf + 
(Bf Gxs − Bf Ge) + 
�f (38)

where e is the estimation error from the full-order system and is
defined as e = xs − x̂s, 
 = |�1|/|�m+1|, and �f
 = 
�f is an infinite-
dimensional stable matrix.

The infinite-dimensional system of Eq. (38) is then a singularly-
perturbed system driven by white noise. We now proceed to charac-
terize the accuracy with which the surface covariance is controlled
in the closed-loop infinite-dimensional system. Theorem 1 provides
a characterization of the surface covariance enforced by the dynamic
output feedback controller in the closed-loop infinite dimensional
system. The proof of Theorem 1 is given in Appendix.

Theorem 1. Consider the surface covariance of the finite-dimensional
system of Eq. (33), C̃ovh

P̃s = lim
t→∞〈x̃s(t)x̃s(t)T〉, C̃ovh = Tr{P̃s} (39)

and the surface covariance of the infinite-dimensional system of
Eq. (38), Covh

x = [xTs xTf ]
T, P = lim

t→∞〈x(t)x(t)T〉, Covh = Tr{P} (40)

where 〈·〉 denotes the expected value. Then, there exists 
∗ >0 such that
if 
 ∈ (0, 
∗], C̃ovh and Covh satisfy

Covh = C̃ovh + O(
√


) (41)

Remark 2. The minimum number of sensors required for the op-
eration of the Kalman–Bucy filter is the number that satisfies the
observability requirement of the system, which is typically a small
number. If more measurement sensors are available, it may result in
improved state estimation and closed-loop performance since more
information of the surface profile is available for state estimation.
However, a small number of measurement sensors is favorable in
many applications when the cost and complexity of the overall con-
trol system is a concern. Further discussion regarding the selection
of measurement sensors is provided in the simulation section.

Remark 3. In the special case where the number of sensors is equal
to the order of the xs subsystem, i.e., q=m, a static output feedback
controller can be designed, by following the state estimation method
developed in Baker and Christofides (1999), Christofides and Baker
(1999) and Christofides (2001), to estimate the state of the finite-
dimensional system, x̃s, directly from the measured output, y, and

the resulting static output feedback controller takes the form

x̂s = C−1
s y

u = Gx̂s (42)

Note that the same state feedback control law of Eq. (16) is used in
the static output feedback controller of Eq. (42).

4. Simulation results

In this section, we first present applications of the proposed lin-
ear output feedback covariance controller to the linearized stochas-
tic KSE to demonstrate the effectiveness of the proposed output
feedback covariance controllers. Then, both linear and nonlinear co-
variance control of the nonlinear stochastic KSE are considered. A
nonlinear output feedback covariance controller is first developed
by combining the linear state feedback control law and a nonlinear
state observer and is applied to the nonlinear stochastic KSE. Finally,
nonlinear state feedback controller and nonlinear output feedback
controller designs are presented and applied to the nonlinear KSE.

4.1. The linearized stochastic KSE

The stochastic KSE is a fourth-order nonlinear stochastic partial
differential equation that describes the evolution of the height fluc-
tuation for surfaces in a variety of material preparation processes
including surface erosion by ion sputtering (Cuerno et al., 1995;
Lauritsen et al., 1996), surface smoothing by energetic clusters
(Insepov et al., 1997) and ZrO2 thin film growth by reactive ion
beam sputtering (Qi et al., 2003). The linearized stochastic KSE
around the zero solution (h(x, t) = 0) takes the following form:

�h
�t

= −�2h
�x2

− 
�4h
�x4

+
p∑

i=1

bi(x)ui(t) + �(x, t)

y(t) = [h(x1, t) + �1y(t) h(x2, t) + �2y(t) · · · h(xq, t) + �qy(t)]
T (43)

subject to periodic boundary conditions

�jh
�xj

(−�, t) = �jh
�xj

(�, t), j = 0, . . . , 3 (44)

and the initial condition h(x, 0)=h0(x), where x ∈ [−�,�] is the spatial
coordinate and  >0 is the instability parameter of the stochastic KSE.

The eigenvalue problem of the linear operator of Eq. (43) takes
the form

A�̄n(x) = −d2�̄n(x)
dx2

− 
d4�̄n(x)

dx4
= �n�̄n(x)

dj�̄n

dxj
(−�) = dj�̄n

dxj
(+�), j = 0, . . . , 3, n = 1, . . . ,∞ (45)

A direct computation of the solution of the above eigenvalue prob-
lem yields �0=0 with �0=1/

√
2�, and �n=n2−n4 (�n is an eigen-

value of multiplicity two) with eigenfunctions �n = (1/
√

�) sin(nx)
and �n = (1/

√
�) cos(nx) for n=1, . . . ,∞. Note that the �̄n in the gen-

eral eigenvalue problem formulation of Eq. (4) denotes either �n or
�n. From the expression of the eigenvalues, it follows that for a fixed
value of  >0, the number of unstable eigenvalues of the operator
A in Eq. (45) is finite and the distance between two consecutive
eigenvalues (i.e., �n and �n+1) increases as n increases.

For 0 < <1, the operator of Eq. (4) possesses unstable eigenval-
ues. Thus, the zero solution of the open-loop system of Eq. (43) is
unstable, which implies that the surface covariance increases with
time due to the open-loop instability of the zero solution. An ap-
propriately designed feedback controller is necessary to regulate the
surface covariance to a desired value.
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Using modal decomposition, the linearized stochastic KSE is for-
mulated into an infinite-dimensional stochastic ODE system as fol-
lows:

d�n
dt

= (n2 − n4)�n +
p∑

i=1

bi�nui(t) + �n�(t), n = 1, . . . ,∞

d�n
dt

= (n2 − n4)�n +
p∑

i=1

bi�n
ui(t) + �n�(t), n = 0, 1, . . . ,∞ (46)

A finite-dimensional approximation of Eq. (46) can be then derived
by neglecting the fast modes (i.e., modes of order m+ 1 and higher)
and a system of the form of Eq. (14) is obtained for covariance con-
troller design.

A linear state feedback controller is initially designed on the basis
of the finite-dimensional approximation by following the method
proposed by Lou and Christofides (2005a), which takes the following
form:

u = B−1
s (�cs − �s)x̃s (47)

where the matrix �cs contains the desired poles of the closed-loop
system; �cs = diag[�c�0 �c�1 · · · �c�m �c�1 · · · �c�m]. �c�0, �c�i
and �c�i (i = 1, . . . ,m) are desired poles of the closed-loop finite-

dimensional system, which satisfy Re{�c�i} <0 for i = 1, . . . ,m and
Re{�c�i} <0 for i = 0, 1, . . . ,m. By applying the controller in Eq. (47),
the dynamics of the closed-loop finite-dimensional system is fully
described by the matrix �cs.

To simplify the development, we assume that p=2m+1 (i.e., the
number of control actuators is equal to the dimension of the finite
dimensional system) and pick the actuator distribution functions,
bi(x), to have the following form:

bi(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
2�

, i = 1

1√
�
sin[(i − 1)x], i = 2, . . . ,m + 1

1√
�
cos[(i − m − 1)x], i = m + 2, . . . , 2m + 1

(48)

Note that the actuator distribution functions are selected such that
B−1
s exists. The following parameters are used in the simulation:

 = 0. 1, � = 1. 0, � = 0. 1, m = 5 (49)

We design the linear state feedback controller such that all the de-
sired poles in �cs are equal to −10. 0. The surface covariance of the
infinite-dimensional system under the state feedback controller is
0.55. The method to determine the values of the closed-loop poles
to regulate the surface covariance to a set-point value can be found
in Lou and Christofides (2005a) and is omitted here for brevity.

Eleven measurement sensors are used and are evenly placed on
the spatial domain [−�,�]. A perfect initial surface is assumed and
zero initial state estimates are used for all simulations:

h0(x) = 0, xs(0) = x̂s(0) = 0, xf (0) = 0 (50)

A 50th order stochastic ODE approximation of Eq. (43) is used
to simulate the process. The stochastic ODEs are solved using
Euler–Maruyama approximation with time discretization size of
�t = 10−4. The choices of the truncation order and time discretiza-
tion size lead to the convergence of the solution. Since it is a
stochastic process, the surface covariance profile is obtained by av-
eraging the results of 1000 independent simulation runs using the
same parameters to produce a smooth profile of surface covariance
evolution.

Remark 4. In this work, the sensors are uniformly placed in the
whole spatial domain and the simulation results show that this is a
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Fig. 1. The closed-loop surface covariance under linear dynamic output feedback
control using 11 measurement sensors. The horizontal dashed lines represent the
range in which the surface covariance Covh is expected to be based on the theoretical
estimates of Theorem 1.

good choice in the sense that the placement results in good closed-
loop performance under output feedback control. In general, the
optimal sensor placement should be determined so that the state
estimation error is minimized. A systematic solution for the problem
for optimal sensor placement for stochastic distributed parameter
systems is current lacking but is outside of the scope of the current
work.

4.2. Linear dynamic output feedback control of linearized stochastic KSE

In the closed-loop simulation under linear dynamic output feed-
back control, a Kalman–Bucy filter is designed to estimate the state of
the finite-dimensional system. The gainmatrix K is obtained from the
solution of the algebraic Riccati equation of Eqs. (25) and (29). C̃ovh is
the surface covariance of the closed-loop finite-dimensional system
under the finite-dimensional output feedback covariance controller
and is the solution of the Lyapunov equation of Eq. (37). According
to Theorem 1, C̃ovh is an O(

√

) approximation of the closed-loop

surface covariance of the infinite-dimensional system, Covh, i.e., the
closed-loop surface covariance of the infinite-dimensional system is
an O(

√

) approximation of the desired value. To regulate the sur-

face covariance to a desired value, the 
 should be sufficiently small,
which can be achieved by appropriately selecting the size of the
finite-dimensional approximation used for covariance controller de-
sign. In this design, whenm=5, 
=0. 01, which is a sufficiently small
number compared to the desired closed-loop surface covariance.

Since we use 11 measurement sensors, q = 2m + 1 and the ob-
server gain matrix is a square matrix. The desired surface covariance
is 1.1347. Based on this desired surface covariance, the gain matri-
ces for both the state observer, K, and the state feedback control
law, G, are determined via the iterative procedure of Remark 1. Note
that because of the existence of the sensor noise, the surface covari-
ance under the output feedback covariance controller is higher than
the one under state feedback control where the same gain matrix,
G, is used and the full state of the surface is accessible. The closed-
loop simulation result under the dynamic output feedback controller
with 11 measurement sensors is shown in Fig. 1. The controller
successfully drives the surface covariance of the closed-loop infinite-
dimensional system to a level which is within the range of the theo-
retical estimate of Theorem 1, i.e.,

√

 � 0. 1 and Covh=C̃ovh+O(0. 1).
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Fig. 2. Comparison of the surface covariance under linear dynamic output feedback
controllers with 7, 11 and 15 measurement sensors.

The result shown in Fig. 1 also confirms that the surface covariance
contribution from the xf subsystem is negligible and that the con-
tribution from the xs subsystem is dominant. Therefore, the design
of the output feedback covariance controller based on the xs subsys-
tem can regulate the surface covariance of the infinite-dimensional
closed-loop system to the desired level.

For dynamic output feedback control design, the number of the
measurements is not needed to be equal to the dimension of the
finite-dimensional system. A number of measurement sensors that
is larger than the dimension of the finite-dimensional system results
in a more accurate state estimation from the Kalman–Bucy filter.
Therefore, the closed-loop surface covariance can be closer to the
set-point value compared to the one in which the number of mea-
surement sensors is equal to the dimension of the finite-dimensional
system. On the other hand, when the number of the measurement
sensors is smaller than the dimension of the finite-dimensional sys-
tem but is equal to or larger than the number of unstable modes
of the system, it is still possible to design a stable Kalman–Bucy fil-
ter for state estimation. Fig. 2 shows the comparison of closed-loop
simulation results when different numbers of measurement sen-
sors are used for state estimation. The feedback control law is the
same for all simulations. Specifically, Fig. 2 shows results from three
closed-loop simulation runs with 7, 11 and 15 measurement sen-
sors. It is clear that the control system which uses a larger number
of measurement sensors is capable of controlling the surface covari-
ance to a lower level. On the other hand, since the dimension of
the finite-dimensional system is 11, it is possible to stabilize the
surface covariance to a finite value when the number of measure-
ment sensors is smaller than the dimension of the finite-dimensional
system.

However, there is a minimum number of measurement sensors
required by the dynamic output feedback controller to stabilize the
system. In this study, a minimum of seven measurement sensors
are required. When the number of measurement sensors is fewer
than the minimum number, seven, the output feedback controller
cannot stabilize the closed-loop system. In Fig. 3, we show the
closed-loop simulation result under a linear dynamic output
feedback controller using six measurement sensors. The surface
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Fig. 3. The closed-loop profile of the surface covariance under linear dynamic output
feedback control with six measurement sensors.

covariance of the closed-loop system under such a controller is not
stabilized to a finite value.

4.3. Dynamic output feedback control of nonlinear stochastic KSE

In this subsection, the application of dynamic output feedback
controllers to the nonlinear stochastic KSE is considered. We first
formulate the nonlinear stochastic KSE into an infinite-dimensional
nonlinear stochastic ODE system and a finite-dimensional approx-
imation is derived as a basis for controller design. In addition to
the linear output feedback controller, a nonlinear dynamic out-
put feedback controller is also designed by combining a nonlinear
state feedback controller developed in our previous work (Lou and
Christofides, 2006) and an appropriate nonlinear state estimator.
Both linear and nonlinear dynamic output feedback controllers
are applied to the nonlinear stochastic KSE and the closed-loop
performance under both controllers is compared.

The nonlinear stochastic KSE with distributed control and mea-
sured output with sensor noise takes the following form:

�h
�t

= −�2h
�x2

− 
�4h
�x4

+
(

�h
�x

)2
+

p∑
i=1

bi(x)ui(t) + �(x, t)

y(t) = [h(x1, t) + �1y(t) h(x2, t) + �2y(t) · · · h(xq, t) + �qy(t)]
T (51)

subject to periodic boundary conditions

�jh
�xj

(−�, t) = �jh
�xj

(�, t), j = 0, . . . , 3 (52)

and the initial condition

h(x, 0) = h0(x) (53)

The variables are defined in the same way as those in Eq. (43). Fol-
lowing a similar approach to the one presented in Section 4.1, the fol-
lowing system of infinite nonlinear stochastic ODEs with distributed
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control can be obtained:

d�n
dt

= (n2 − n4)�n + fn� +
p∑

i=1

bi�nui(t) + �n�(t), n = 1, . . . ,∞

d�n
dt

= (n2 − n4)�n + fn� +
p∑

i=1

bi�n
ui(t) + �n�(t),

n = 0, 1, . . . ,∞
(54)

where

fn� =
∫ �

−�
�n(x)

×
⎛⎝ ∞∑
j=1

�j(t)
d�j

dx
(x) +

∞∑
j=0

�j(t)
d�j

dx
(x)

⎞⎠2

dx

fn� =
∫ �

−�
�n(x)

×
⎛⎝ ∞∑
j=1

�j(t)
d�j

dx
(x) +

∞∑
j=0

�j(t)
d�j

dx
(x)

⎞⎠2

dx (55)

The system of Eq. (54) can be rewritten in the following form with
the measured output:

dxs
dt

= �sxs + fs(xs, xf ) + Bsu + �s

dxf
dt

= �f xf + ff (xs, xf ) + Bf u + �f

y = Csxs + Cf xf + �y (56)

Note that the dimension of the xs subsystem is 2m + 1 and the xf
subsystem is infinite-dimensional.

In the closed-loop simulation of the nonlinear stochastic KSE, we
use the same actuator distribution functions, same value of themodel
parameter, , and same initial conditions as those used in the closed-
loop simulation of the linearized stochastic KSE. The linear dynamic
output feedback controller developed in Section 4.2 is applied to
the nonlinear stochastic KSE using 11 measurement sensors. A 50th
order stochastic ODE approximation of Eq. (43) is used to simulate
the nonlinear process.

The closed-loop simulation result of the nonlinear stochastic KSE
under the linear dynamic output feedback controller is shown in
Fig. 4. The surface covariance is stabilized to a finite-value under the
linear output feedback covariance controller, since the controller is
designed to stabilize the linear part of the system of Eq. (22). There-
fore, whenwe apply the linear controller to the nonlinear system, the
closed-loop system is locally stable. Although the nonlinear system
is stabilized, there is a relatively big error between the closed-loop
surface covariance and the set-point value, C̃ovh. As shown in Fig. 4,
this error is outside of the approximation error boundaries, O(

√

),

and thus it is not due to the use of a finite-dimensional approxima-
tion of the stochastic KSE for control design. This error is due to the
nonlinearity of the system, which is not explicitly accounted for in
the controller design. Therefore, a nonlinear controller is necessary
to improve the closed-loop performance.

4.3.1. Nonlinear state feedback control design
In this subsection, the goal is to design a nonlinear output feed-

back controller which explicitly accounts for the nonlinearity of the
stochastic KSE model of Eq. (51). Neglecting the xf subsystem, the
following 2m-dimensional system is obtained:

dx̃s
dt

= �sx̃s + fs(x̃s, 0) + Bsu + �s (57)
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Fig. 4. The closed-loop surface covariance profile of the nonlinear stochastic KSE
under linear dynamic output feedback control with 11 measurement sensors. The
horizontal dashed lines represent the range in which the surface covariance Covh
is expected to be based on the theoretical estimates of Theorem 1.

where the tilde symbol denotes that the state variable is associated
with a finite-dimensional system.

Following the method proposed in our previous work (Lou and
Christofides, 2006), a nonlinear state feedback controller is first
designed on the basis of the finite-dimensional approximation of
Eq. (57) as follows:

u = B−1
s {(�cs − �s)x̃s − fs(x̃s, 0)} (58)

Note that the nonlinear term, fs(x̃s, 0), is explicitly accounted for in
the nonlinear controller design. The choice of �cs is similar to the
choice in Eq. (47) and determines the dynamics of the closed-loop
finite-dimensional system.

Under the nonlinear state feedback controller, the closed-loop
finite-dimensional system is an approximate (O(

√

) approxima-

tion) linear stochastic system (see the proof of Theorem 1 in Lou
and Christofides, 2006). The steady-state surface covariance of the
closed-loop finite-dimensional system under the nonlinear state
feedback controller can be obtained by following the method
presented in Section 3.1. An analysis of the performance of the
closed-loop nonlinear infinite-dimensional system enforced by the
nonlinear state feedback controller of Eq. (58) can also been found
in Lou and Christofides (2006). To show the effectiveness of the
nonlinear state feedback controller, we apply both the linear state
feedback controller of Eq. (47) and the nonlinear state feedback
controller of Eq. (58) to the nonlinear stochastic KSE. The results
are presented in Fig. 5. Both the linear and nonlinear state feed-
back controllers stabilize the surface covariance to a finite value.
However, the steady state surface covariance under the nonlinear
controller is much closer to the set-point value compared to the
one under the linear controller. The nonlinear state feedback con-
troller successfully drives the surface covariance of the closed-loop
infinite-dimensional system of nonlinear KSE to the set-point value
C̃ovh, which is within the range of the theoretical estimate (for the
theoretical estimation of the surface covariance of the closed-loop
infinite-dimensional nonlinear system under the nonlinear state
feedback controller, see Theorem 1 in Lou and Christofides, 2006).
The surface covariance under the linear state feedback controller
falls outside of the range of the theoretical estimate. The improved
performance of the nonlinear state feedback controller is due to the
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Fig. 5. Comparison of the closed-loop surface covariance profiles of the nonlinear
stochastic KSE under linear and nonlinear state feedback control. The horizontal
dashed lines represent the range in which the surface covariance Covh is expected to
be based on the theoretical estimates of Theorem 1 in Lou and Christofides (2006).

fact that the nonlinearity of the process model is explicitly accounted
for in the controller design.

4.3.2. Nonlinear dynamic output feedback control of nonlinear
stochastic KSE

In this subsection, we design a nonlinear dynamic output feed-
back controller by combining the nonlinear state feedback controller
of Eq. (58) and a dynamic nonlinear state estimator. An appropriate
nonlinear state estimator is considered of the form

dx̂s
dt

= �sx̂s + fs(x̂s, 0) + Bsu + K(y − Csx̂s) (59)

where the gain matrix, K, is determined by using Eq. (25).
The resulting nonlinear dynamic output feedback controller takes

then the form

dx̂s
dt

= �sx̂s + fs(x̂s, 0) + Bsu + K(y − Csx̂s), x̂s(0) = x̂s0

u = B−1
s {(�cs − �s)x̂s − fs(x̂s, 0)} (60)

Fig. 6 shows the surface covariance profiles of the closed-loop sys-
tem under nonlinear dynamic output feedback control with different
numbers of measurement sensors. For comparison, the closed-loop
surface covariance under the nonlinear state feedback controller is
also shown in Fig. 6. There are differences between the steady-state
surface covariance under the nonlinear dynamic output feedback
controller and under the state feedback controller. A higher num-
ber of measurement sensors leads to a smaller difference since more
information of the surface is available to the state estimator. This
is consistent with the fact that a higher number of measurement
sensors is capable of achieving a lower closed-loop surface covari-
ance under output feedback covariance control. Note that the state
feedback controller gives the lowest steady-state surface covariance
since there is no estimation error involved in its implementation.

5. Conclusions

In this work, we developed a method for dynamic output feed-
back covariance control of the state covariance of linear dissipa-
tive stochastic PDEs using spatially distributed control actuation and
sensing with measurement noise. The stochastic PDE was initially
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Fig. 6. The surface covariance of nonlinear KSE under nonlinear dynamic output
feedback controls with different numbers of measurement sensors.

formulated into a system of infinite stochastic ODEs by using modal
decomposition. A finite-dimensional approximation was then ob-
tained to capture the dominant mode contribution to the surface
roughness profile (i.e., the covariance of the surface height profile).
Subsequently, a state feedback controller and a Kalman–Bucy filter
were designed on the basis of the finite-dimensional approximation.
The resulting linear dynamic output feedback controller is the one
that couples the state feedback controller and the state estimator.
The steady-state expected surface covariance under the linear dy-
namic output feedback controller was then estimated on the basis
of the closed-loop finite-dimensional system. An analysis was per-
formed to obtain an estimate of the expected surface covariance
of the closed-loop infinite-dimensional system. Applications of the
linear dynamic output feedback controller to the linearized and non-
linear stochastic Kuramoto–Sivashinsky equations were presented.
Finally, nonlinear state feedback controller and nonlinear output
feedback controller designs were also presented and applied to the
nonlinear KSE.
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Appendix

Proof of Theorem 1. The proof of Theorem 1 includes several steps.
First, we prove that the closed-loop infinite-dimensional system of
Eq. (38) is exponentially stable for sufficiently small 
. Second, we
prove that the contribution to the surface covariance from the xf
subsystem of Eq. (38) is O(
), i.e.,

Covhf = Tr{Pf } = O(
) (61)

where Covhf is the contribution to the surface covariance from the
xf subsystem of Eq. (38) and Pf is the covariance matrix defined as

Pf = lim
t→∞〈xf (t)xf (t)T〉 (62)

Then, we prove that the contribution to the surface covariance from
the xs subsystem of Eq. (38) is as follows:

Covhs = Tr{Ps} = Covh + O(
√


) (63)
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where Covh, defined in Eq. (15), is the surface covariance of the
closed-loop finite-dimensional system of Eq. (33), and Ps is the co-
variance matrix of xs in Eq. (38), which is defined as

Ps = lim
t→∞〈xs(t)xs(t)T〉 (64)

Finally, the proof of Theorem 1 is completed by proving Eq. (41)
based on the results in Eqs. (61) and (63).

Closed-loop infinite dimensional system stability. Referring to the
closed-loop infinite-dimensional system of Eq. (38), we note that
the fast subsystem (obtained by rewriting the system of Eq. (38) in
the fast time scale � = t/
 and setting 
 = 0) takes the form

dx̄f
d�

= �f
x̄f (65)

Due to the eigenspectrum of the linear operator of Eq. (1), all eigen-
values of �f
 have negative real parts. Thus, the system of Eq. (65)
is exponentially stable. Setting 
 = 0 in the system of Eq. (38), the
closed-loop finite dimensional system is obtained:

dx̃s
dt

= (�s + BsG)x̃s − BsGẽ + �s

dẽ
dt

= (�s − KCs)ẽ + �s − K�y (66)

which is exponentially stable since the matrices (�s+BsG) and (�s−
KCs) are stable matrices by design. Therefore, there exists (following
similar arguments to Kokotovic et al., 1986, Theorem A.1, p. 361) a
positive real number 
̂ such that ∀
 ∈ (0, 
̂], the zero solution of the
closed-loop infinite-dimensional system of Eq. (38) is exponentially
stable. �

Proof of Eq. (61). We first note that the terms in the right-hand-
side of the xf subsystem of Eq. (38) constitute an O(
) approximation
to the term �f
xf . Consider also the following linear system:



dx̄f
dt

= �f
x̄f + 
�f (67)

which is exponentially stable. The exponential stability of the closed-
loop infinite-dimensional system of Eq. (38) ensures that the zero
solution of the xf subsystem of Eq. (38) is exponentially stable, which
guarantees that as t → ∞, Covhf converges to a finite value. Now,
we follow a similar approach to the one employed in the proof of
Theorem A.1 in Kokotovic et al. (1986, p. 361) to compute the the-
oretical estimate of Covhf . Specifically, we have that there exists an

̂∗ >0 such that if 
 ∈ (0, 
̂∗], we have that

xf (t) = x̄f (t) + O(
√


) (68)

Therefore, we have the following estimate for 〈‖xf (t)‖22〉:

〈‖xf (t)‖22〉 = 〈‖x̄f (t) + O(
√


)‖22〉�2〈‖x̄f (t)‖22〉 + O(
) (69)

where 〈·〉 denotes the expected value and ‖ · ‖2 is the standard Eu-
clidean norm. Note that 〈‖xf (t)‖22〉 and 〈‖x̄f (t)‖22〉 are equal to the

traces of the covariance matrices of xf (t) and x̄f (t), Pf (t)=〈xf (t)xf (t)T〉
and P̄f (t) = 〈x̄f (t)x̄f (t)T〉, respectively. Finally, as t → ∞, Pf (t) and
P̄f (t) converge to Pf and P̄f , respectively (both Pf and P̄f are bounded
quantities which follows from closed-loop stability). Because �f
 is
a stable diagonal matrix, the trace of matrix P̄f can be computed as
follows (Lou and Christofides, 2005a):

Tr{P̄f } = 

2

·
∞∑
i=1

∣∣∣∣ 1
�
i

∣∣∣∣ (70)

where �
i (i = 1, 2, . . . ,∞) are the eigenvalues of the matrix �f
 in
Eq. (67). Due to the structure of the eigenspectrum of the linear

operator of Eq. (4),
∑∞

i=1|1/�
i| converges to a finite positive number,
and thus, there exists a positive real number kf
 such that

Tr{P̄f } <


2

· kf
 (71)

Therefore, it follows that

Tr{P̄f } = 〈‖x̄f (∞)‖22〉 = O(
) (72)

According to Eq. (69), it follows that the contribution to the surface
covariance from the state xf of the infinite-dimensional system of
Eq. (38) is O(
), i.e.,

Covhf = Tr{Pf } = Tr{P̄f } + O(
) = O(
) + O(
) = O(
) (73)

This completes the proof of Eq. (61). �

Proof of Eq. (63). We now focus on the xs subsystem and the equa-
tion for the estimation error, e, in Eq. (38).

d
dt

[
xs
e

]
=

[
�s + BsG −BsG

0 �s − KCs

] [
xs
e

]
+

[
0

−KCf

]
xf

+
[
Is 0
Is −K

] [
�s
�y

]
(74)

Let k1s be a positive real number satisfying k1s > ‖KCf ‖2 and we have
the following:

‖KCf xf ‖2 < ‖KCf ‖2 · ‖xf ‖2 < k1s‖xf ‖2 (75)

From Eq. (68), we have the following estimate for ‖xf ‖2 for t� tb
(where tb is the time needed for ‖x̄f (t)‖2 to approach zero and tb →
0 as 
 → 0):

‖xf (t)‖2 = O(
√


) (76)

This implies that we have the following estimate for KCf xf (t) for
t� tb:

KCf xf (t) = O(
√


) (77)

Furthermore, the exponential stability of the closed-loop infinite-
dimensional system of Eq. (38) ensures that the zero solution of
Eq. (74) is exponentially stable. Therefore, as t → ∞, Covhs con-
verges to a finite value. We now proceed to provide a theoretical
estimate for Covhs. We first consider the equations for the estima-
tion errors in both Eqs. (33) and (38). The estimation error of the
finite-dimensional system of Eq. (33), ẽ, is described by the following
equation:

dẽ
dt

= (�s − KCs)ẽ + �s − K�y (78)

The estimation error of the infinite-dimensional system of Eq. (38),
e, is as follows:

de
dt

= (�s − KCs)e − KCf xf + �s − K�y (79)

According to Eq. (77), the solution of Eq. (78) consists of an O(
√


)
approximation of the solution of Eq. (79) (Kokotovic et al., 1986,
Theorem A.1, p. 361). In particular, there exists an 
̂∗∗ >0 such that
for all 
 ∈ (0, 
̂∗∗], it holds that

e(t) − ẽ(t) = O(
√


) (80)

Based on Eq. (80), the right-hand side of the x̃s system of Eq. (33)
constitutes an O(

√

) approximation to the right-hand side of the

xs subsystem of Eq. (38). Therefore, the solution for x̃s of Eq. (33)
consists of an O(

√

) approximation of the solution for the xs of
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Eq. (38) (Kokotovic et al., 1986, Theorem A.1, p. 361). In particular,
there exists an 
̂∗∗∗ >0 such that for all 
 ∈ (0, 
̂∗∗∗], it holds that

xs(t) − x̃s(t) = O(
√


) (81)

and

‖xs(t)‖22 − ‖x̃s(t)‖22 = (‖xs(t)‖2 − ‖x̃s(t)‖2) · (‖xs(t)‖2 + ‖x̃s(t)‖2)
= O(

√

) (82)

Because ‖xs(t)‖2 and ‖x̃s(t)‖2 are bounded for all t >0, 〈‖xs(t)‖22〉 and
〈‖x̃s(t)‖22〉 are equal to the traces of the covariance matrices of xs(t)

and x̃s(t), Ps(t) = 〈xs(t)xs(t)T〉 and P̃s(t) = 〈x̃s(t)x̃s(t)T〉, respectively.
Immediately, it follows that

Covhs = Tr{Ps} = Tr{P̃s} + O(
√


) = C̃ovh + O(
√


) (83)

This completes the proof of Eq. (63). �

Proof of Eq. (41) in Theorem 1. The surface covariance from the
closed-loop infinite-dimensional system of Eq. (38), Covh, includes
contributions from both xs and xf subsystems of Eq. (38). Therefore,
we have the following equation for Covh:

Covh = Covhs + Covhf (84)

where Covhf and Covhs are defined in Eqs. (61)–(64). Using Eqs. (61)
and (63), we immediately have

Covh = C̃ovh + O(
√


) + O(
) (85)

Since as 
 → 0, it holds that

O(
)
O(

√

)

→ 0 (86)

Therefore, the O(
) term in Eq. (85) is very small relative to the term
O(

√

) and can be neglected. There exists an 
∗ = min(
̂, 
̂∗, 
̂∗∗, 
̂∗∗∗)

such that if 
 ∈ (0, 
∗], then

Covh = C̃ovh + O(
√


) (87)

This completes the proof of Theorem 1. �
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