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Abstract

This work focuses on model parameter estimation and model-based output feedback control of surface roughness in a sputtering process
which involves two surface micro-processes: atom erosion and surface diffusion. This sputtering process is simulated using a kinetic Monte
Carlo (kMC) simulation method and its surface height evolution can be adequately described by the stochastic Kuramoto–Sivashinsky equation
(KSE), a fourth-order nonlinear stochastic partial differential equation (PDE). First, we estimate the four parameters of the stochastic KSE
so that the expected surface roughness profile predicted by the stochastic KSE is close (in a least-square sense) to the profile of the kMC
simulation of the same process. To perform this model parameter estimation task, we initially formulate the nonlinear stochastic KSE into a
system of infinite nonlinear stochastic ordinary differential equations (ODEs). A finite-dimensional approximation of the stochastic KSE is then
constructed that captures the dominant mode contribution to the state and the evolution of the state covariance of the stochastic ODE system
is derived. Then, a kMC simulator is used to generate representative surface snapshots during process evolution to obtain values of the state
vector of the stochastic ODE system. Subsequently, the state covariance of the stochastic ODE system that corresponds to the sputtering process
is computed based on the kMC simulation results. Finally, the model parameters of the nonlinear stochastic KSE are obtained by using least-
squares fitting so that the state covariance computed from the stochastic KSE process model matches that computed from kMC simulations.
Subsequently, we use appropriate finite-dimensional approximations of the identified stochastic KSE model to design state and output feedback
controllers, which are applied to the kMC model of the sputtering process. Extensive closed-loop system simulations demonstrate that the
controllers reduce the expected surface roughness by 55% compared to the corresponding values under open-loop operation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin film technology plays a crucial role in a wide range of
industries such as micro-electronics, communications, optical
electronics and energy. The electrical and mechanical proper-
ties of thin films strongly depend on micro-structural features
such as interface width, island density and size distributions
(Akiyama et al., 2002; Lee et al., 1999) and significantly affect
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device performance. To fabricate thin film devices with high
and consistent performance, it is desirable that the operation of
thin film preparation processes can be tightly controlled so that
the increasingly stringent industrial requirements on the quality
of such films can be satisfied. This has motivated extensive re-
cent research on feedback control and optimization of thin film
growth processes to achieve desired material micro-structure
(see, for example, a recent review paper by Christofides and
Armaou, 2006 and the references therein).

Sputtering processes are widely used in the thin film and
semiconductor fabrication to remove materials from the surface
of solids through the impact of energetic particles. In many
cases sputtering is used to smooth out surface features. The
surface morphology of thin films after sputter erosion strongly
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depends on conditions such as incident ion energy, sputtered
substrate temperature and material composition (Makeev et al.,
2002). In a sputtering process, the surface is directly shaped
by microscopic surface processes (e.g., erosion, diffusion and
surface reaction), which are stochastic processes. Therefore,
the stochastic nature of sputtering processes must be fully con-
sidered in the modeling and control of the surface roughness
of such processes. The desire to understand and control thin
film micro-structure has motivated extensive research on fun-
damental mathematical models describing the microscopic fea-
tures of surfaces formed by surface micro-processes, which
include: (1) kinetic Monte Carlo (kMC) methods (Gillespie,
1976; Fichthorn and Weinberg, 1991; Shitara et al., 1992; Reese
et al., 2001) and (2) stochastic partial differential equations
(PDEs) (Edwards and Wilkinson, 1982; Vvedensky et al., 1993;
Cuerno et al., 1995; Lauritsen et al., 1996). Furthermore, the
development of modern surface roughness measurement tech-
niques provides the opportunity to obtain surface roughness
measurements in real-time using spectroscopic ellipsometry
techniques (Zapien et al., 2001), grazing-incidence small-angle
X-ray scattering (GISAXS) (Renaud et al., 2003) or by com-
bination of on-line measurement techniques for measuring gas
phase compositions with off-line measurement techniques for
measuring surface roughness. An implementation of the latter
approach can be found in Ni et al. (2004), where it was used to
measure carbon composition of thin films in plasma-enhanced
chemical vapor deposition (PECVD) using combination of op-
tical emission spectroscopy (OES) and X-ray photoelectron
spectroscopy (XPS). Also, experimental methods have been
developed to perform scanning tunneling microscopy (STM)
measurements of the surface during epitaxial growth of semi-
conductor layers (Voigtländer, 2001).

KMC models were initially used to develop a methodology
for feedback control of thin film surface roughness (Lou and
Christofides, 2003a,b). The method was successfully applied to
control surface roughness in a gallium arsenide (GaAs) deposi-
tion process model (Lou and Christofides, 2004) and to control
complex deposition processes including multiple components
with both short-range and long-range interactions (Ni and
Christofides, 2005a). Furthermore, a method for computation-
ally efficient optimization of thin film growth using coupled
PDE and kMC models was developed (Varshney and Armaou,
2005). However, the fact that kMC models are not available in
closed-form makes it very difficult to use them for system-level
analysis and the design and implementation of model-based
feedback control systems. To achieve better closed-loop per-
formance, it is desirable to design feedback controllers on the
basis of closed-form process models, which account for the
stochastic nature of the microscopic events. An approach was
reported in Siettos et al. (2003), Armaou et al. (2004), and
Varshney and Armaou (2006) to identify linear deterministic
models from outputs of kMC simulators and design controllers
using linear control theory. This approach is effective in con-
trolling macroscopic variables which are low statistical mo-
ments of the microscopic distributions (e.g., surface coverage,
which is the first moment of species distribution on a lattice).
However, to control higher statistical moments of the micro-

scopic distributions, such as the surface roughness (the second
moment of height distribution on a lattice) or even the mi-
croscopic configuration (such as the surface morphology),
deterministic models may not be sufficient and stochastic PDE
models may be needed. In this area, other results include the
construction of reduced-order approximations of the master
equation (Gallivan and Murray, 2004) and control of a coupled
kMC and finite-difference simulation code of a copper electro-
deposition process using empirical input–output models (Rusli
et al., 2006).

Stochastic PDEs arise naturally in the modeling of surface
morphology of ultra thin films in a variety of material prepa-
ration processes (Edwards and Wilkinson, 1982; Villain, 1991;
Vvedensky et al., 1993; Cuerno et al., 1995; Lauritsen et al.,
1996). Stochastic PDEs contain the surface morphology infor-
mation of thin films, and thus, they may be used for the pur-
pose of feedback controller design. For example, it has been
experimentally verified that the Kardar–Parisi–Zhang (KPZ)
equation (Kardar et al., 1986) can describe the evolution of the
surface morphology of GaAs thin films which is consistent with
the surface morphology measured by atomic force microscopy
(AFM) (Ballestad et al., 2002; Kan et al., 2004).

Advanced control methods for stochastic PDEs have been
developed to address the need of model-based feedback con-
trol of thin film micro-structure in industrially important
material preparation processes. Specifically, methods for state
feedback control of surface roughness based on linear (Lou
and Christofides, 2005a, b; Ni and Christofides, 2005b) and
nonlinear (Lou and Christofides, 2006) stochastic PDE pro-
cess models have been developed. The methods involve the
reformulation of a stochastic PDE into a system of infi-
nite linear/nonlinear stochastic ordinary differential equations
(ODEs) by using modal decomposition, derivation of a finite-
dimensional approximation that captures the dominant mode
contribution to the surface roughness, and state feedback con-
troller design based on the finite-dimensional approximation.
However, state feedback control assumes a full knowledge of
all states of the process, which may be restrictive in certain
practical applications. Therefore, there is a strong motivation
to develop output feedback control methods for processes
described by stochastic PDEs which utilize information from
a few measurement sensors.

Furthermore, although stochastic PDE models are suitable
for model-based controller design, the construction of stochas-
tic PDE models for thin film growth and sputtering processes
directly based on microscopic process rules is, in general, a
very difficult task. This motivates the development of param-
eter estimation methods for stochastic PDEs. Compared to
deterministic systems, modeling and identification of dy-
namical systems described by stochastic ordinary/PDEs has
received relatively limited attention and most of the results
focus on stochastic ODE systems. Theoretical foundations on
the analysis, parametric optimization, and optimal stochastic
control for linear stochastic ODE systems can be found in the
early work by Åström (1970). More recently, likelihood-based
methods for parameter estimation of stochastic ODE models
have been developed (Bohlin and Graebe, 1995; Kristensen
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et al., 2004). These methods determine the model parameters by
solving an optimization problem to maximize a likelihood
function or a posterior probability density function of a given
sequence of measurements of a stochastic process. For many
thin film growth or sputtering processes, kMC models are
available, which can be conveniently used to generate multiple
independent observations of the same stochastic process. Con-
sequently, statistical moments of the state such as the expected
value (first-order moment), covariance (second-order moment),
and even higher-order moments, can be obtained from the data
set generated by kMC simulations. Since the dynamics of the
state moments of a stochastic process may be described by
deterministic differential equations, the issues of parameter
estimation of stochastic models could be addressed by employ-
ing parameter estimation techniques for deterministic systems.
Following this idea, a systematic identification approach was
developed for linear stochastic PDEs (Lou and Christofides,
2005a) and a method for construction of linear stochastic
PDE models for thin film growth using first principles-based
microscopic simulations was developed and applied to con-
struct linear stochastic PDE models for thin film deposition
processes in two-dimensional (2-D) lattices (Ni and Christofides,
2005b).

However, nonlinearities exist in many material prepara-
tion processes in which surface evolution can be modeled by
stochastic PDEs. A typical example of such processes is the
sputtering process whose surface evolution is described by the
nonlinear stochastic Kuramoto–Sivashinsky equation (KSE). In
a simplified setting, the sputtering process includes two types
of surface micro-processes, erosion and diffusion. The nonlin-
earity of the sputtering process originates from the dependence
of the rate of erosion on a nonlinear sputtering yield function
(Cuerno et al., 1995). Available methods for identification and
construction of linear stochastic PDEs require the analytical
solutions of state covariances (Lou and Christofides, 2005a;
Ni and Christofides, 2005b), which prevent their direct appli-
cations to nonlinear stochastic PDEs. This motivates research
on the development of methods for parameter estimation of
nonlinear stochastic PDE process models.

Motivated by the above, this work focuses on model param-
eter estimation and model-based output feedback control of
surface roughness in a sputtering process which involves two
surface micro-processes: atom erosion and surface diffusion.
This sputtering process is simulated using a kMC simulation
method and its surface height evolution can be adequately
described by the stochastic KSE, a fourth-order nonlinear
stochastic PDE. First, we estimate the four parameters of the
stochastic KSE so that the expected surface roughness profile
predicted by the stochastic KSE is close (in a least-square
sense) to the profile of the kMC simulation of the same pro-
cess. To perform this model parameter estimation task, we
initially formulate the nonlinear stochastic KSE into a system
of infinite nonlinear stochastic ODEs. A finite-dimensional
approximation of the stochastic KSE is then constructed that
captures the dominant mode contribution to the state and the
evolution of the state covariance of the stochastic ODE sys-
tem is derived. Then, a kMC simulator is used to generate

representative surface snapshots during process evolution to
obtain values of the state vector of the stochastic ODE sys-
tem. Subsequently, the state covariance of the stochastic ODE
system that corresponds to the sputtering process is computed
based on the kMC simulation results. Finally, the model pa-
rameters of the nonlinear stochastic KSE are obtained by using
least-squares fitting so that the state covariance computed from
the stochastic KSE process model matches that computed
from kMC simulations. Subsequently, we use appropriate
finite-dimensional approximations of the computed stochastic
KSE model to design state and output feedback controllers,
which are applied to the kMC model of the sputtering pro-
cess. Extensive closed-loop system simulations demonstrate
that the controllers reduce the expected surface roughness by
55% compared to the corresponding values under open-loop
operation.

2. Preliminaries

2.1. Process description

We consider a one-dimensional (1-D) lattice representation
of a crystalline surface of a sputtering process, which includes
two surface micro-processes, atom erosion and surface diffu-
sion. The solid-on-solid assumption is made which means that
no defects or overhangs are allowed to be developed in the film.
The microscopic rules under which atom erosion and surface
diffusion take place are as follows: a site, i, is first randomly
picked among the sites of the whole lattice and the particle at
the top of this site is subject to: (a) erosion with probability
0 < f < 1 or (b) diffusion with probability 1 − f .

If the particle at the top of site i is subject to erosion, the
particle is removed from the site i with probability Pe · Y (�i ).
Pe is determined as 1

7 times the number of occupied sites in
a box of size 3 × 3 centered at the site i, which is shown in’
Fig. 1. There are a total of nine sites in the box. The central
one is the particle to be considered for erosion (the one marked
by •). Among the remaining eight sites, the site above the
central site of interest must be vacant since the central site
is a surface site. Therefore, only seven of the eight sites can
be occupied and the maximum value of Pe is 1. Y (�i ) is the
sputtering yield function defined as follows:

Y (�i ) = y0 + y1�
2
i + y2�

4
i , (1)

where y0, y1 and y2 are constants. Following Cuerno et al.,
1995, the values of y0, y1 and y2 can be chosen such that

x

h

Fig. 1. Schematic of the rule to determine Pe . Pe is defined as 1
7 times the

number of occupied sites in a box of size 3 × 3 centered at the particle on
the top of site i; Pe = 1 in the left figure and Pe = 4

7 in the right figure,
where the particle marked by • is on the top of site i.
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Y (0) = 0.5, Y (�/2) = 0 and Y (1) = 1, which corresponds to
y0 = 0.5, y1 = 1.0065, and y2 = −0.5065. The local slope, �i ,
is defined as follows:

�i = tan−1
(

hi+1 − hi−1

2a

)
, (2)

where a is the lattice parameter and hi+1 and hi−1 are the
values of surface height at sites i + 1 and i − 1, respectively.

If the particle at the top of site i is subject to diffusion, one
of its two nearest neighbors, j (j = i + 1 or i − 1) is randomly
chosen and the particle is moved to the nearest neighbor column
with transition probability wi→j as follows:

wi→j = 1

1 + exp(��Hi→j )
, (3)

where �Hi→j is the energy difference between the final and
initial states of the move, � = 1/kBT and H is defined through
the Hamiltonian of an unrestricted solid-on-solid model as fol-
lows:

H =
(

J

an

) N∑
k=1

(hk − hk+1)
n, (4)

where J is the bond energy, N is the total number of sites in the
lattice and n is a positive number. In the simulations presented
in this paper, we use n= 2 and �J = 2.0 (Siegert and Plischke,
1994).

2.2. KMC model of the sputtering process

To carry out kMC simulations of this sputtering process, the
rates of surface micro-processes should be computed (Fichthorn
and Weinberg, 1991; Vlachos, 1997). The rates of both erosion
and diffusion are site specific and can be obtained based on the
process description as follows:

re(i) = f

�
· Pe(i) · Y (�i ),

rd(i, j) = 1 − f

2�
· wi→j ,

i = 1, 2, . . . , N , (5)

where re(i) is the erosion rate at site i and rd(i, j) is the rate
at which a surface particle hops from site i to site j. For the
sputtering process considered, only nearest neighbor hopping
is allowed, so j = i ± 1. Pe(i) is determined by the box rule
shown in Fig. 1, Y (�i ) is defined in Eqs. (1) and (2) and wi→j

is defined in Eqs. (3) and (4). � is defined as the time scale
(Lauritsen et al., 1996) and is fixed at 1/s for open-loop simu-
lations in this work.

After the rates of surface micro-processes are determined,
kMC simulations can be carried out using an appropriate al-
gorithm. In general, there are two groups of kMC algorithms
which have been developed to simulate dynamical processes
governed by the master equation: (a) the null-event algorithm
(Ziff et al., 1986) and (b) the continuous-time Monte Carlo
method (Vlachos et al., 1993). The null-event algorithm tries to
execute Monte Carlo events on randomly selected sites with cer-
tain probabilities of success, while the continuous-time Monte

Carlo method selects an event before the selection of the site
on which the event is going to be executed. Upon a success-
ful event, the time passed during the event is computed based
on the total rates of all the micro-processes in both the null-
event algorithm and the continuous-time Monte Carlo algorithm
(Reese et al., 2001).

A review and analysis on complexities and efficiencies of
these algorithms can be found in Reese et al. (2001). Although
the continuous-time Monte Carlo algorithms with lists of neigh-
bors and local update are often used for simulating the dy-
namics of complex processes, they are not appropriate for the
sputtering process considered in this work. The continues-time
Monte Carlo method requires the construction of a set of classes
for possible Monte Carlo events and associated surface sites so
that the events in each class have exactly the same transition
probabilities. Typically, the transition probabilities depend on
the surface micro-environment of the surface site considered.
The continues-time Monte Carlo method is efficient to simu-
late systems such as surface reactions and thin film growth pro-
cesses in which the dependence of the transition probabilities
on the surface micro-environment is simply the number of near-
est neighbors. This type of dependence of the transition proba-
bility on surface micro-environment results in a small number
of classes needed to run the simulation. For the sputtering pro-
cess considered in this work, the dependence of both the erosion
and diffusion rates on the surface micro-environment is very
complex and essentially all surface sites have different erosion
and diffusion rates. If a set of classes are constructed so that
each class contains exactly the same transition probability, a
large number of classes are required, which will result in an
inefficient simulation scheme. With these considerations, we
decide to simulate the sputtering process in this work by using
the null-event algorithm (Ziff et al., 1986) so that the complex
dependence of the transition probabilities on the surface micro-
configuration in the sputtering process can be handled in an
efficient way.

The following kMC simulation algorithm is used to simulate
the sputtering process:

• The first integer random number, �1 (0 < �1 �N , where �1
is an integer and N is the total number of surface sites) is
generated to pick a site, i, among all the sites on the 1-D
lattice.

• The second real random number, �2 in the (0, 1) interval, is
generated to decide whether the chosen site, i, is subject to
erosion (�2 < f ) or diffusion (�2 > f ).

• If the chosen site is subject to erosion, Pe and Y (�i ) are
computed. Specifically, Pe is computed by using the box rule
shown in Fig. 1 where the center of the box is the surface
particle on site i and Y (�i ) is computed by using Eqs. (1)
and (2). Then, another real random number �e3 in the (0, 1)

interval is generated. If �e3 < Pe · Y (�i ) the surface particle
on site i is removed. Otherwise, no event is executed.

• If the chosen site is subject to diffusion, a side neighbor, j,
(j = i + 1 or i − 1 in the case of a 1-D lattice) is randomly
picked and the hopping rate, wi→j , is computed by using
Eq. (3). Then, another real random number �d3 in the (0, 1)
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interval is generated. If �d3 < wi→j , the surface atom is
moved to the new site. Otherwise no event is executed.

• Upon the execution of an event, a time increment, �t is com-
puted by using the following expression:

�t= − ln �4
f

�
∑N

i=1[Pe(i) · Y (�i )]+
1−f

2�
∑N

i=1[wi→i+1+wi→i−1]
,

(6)

where �4 is a real random number in the (0, 1) interval.

All random numbers, �1, �2, �3 and �4, follow a uniform
probability distribution in their domains of definition.

Periodic boundary conditions (PBCs) are used in the kMC
model of the sputtering process. Using PBCs, a particle that
diffuses out of the simulation lattice at one boundary enters
into the simulation lattice from the opposing side. Limited by
the currently available computing power, the lattice size of a
kMC simulation is much smaller than the size of a real process.
Therefore, PBCs are widely used in molecular level simulations
so that the statistical properties of a large scale stochastic pro-
cess can be appropriately captured by kMC simulations carried
out on a small simulation lattice (Makov and Payne, 1995).

Remark 1. Note that the probability f in Eq. (5) is dependent
on the operating conditions of the sputtering process. Based
on the process description, the value of f affects the ratio of
erosion and diffusion events on the surface. Since an erosion
event is a direct consequence of the bombardment by incom-
ing particles, a higher bombardment rate will result in a higher
erosion rate, which implies a larger f. On the other hand, the
surface diffusion rate, rd in Eq. (5), should not depend on the
bombardment rate of incoming particles. When spatially dis-
tributed control is implemented, the surface bombardment rate
is a spatially distributed variable. Consequently, f is a spatially
distributed variable that can be computed based on the surface
bombardment rate.

2.3. Stochastic PDE model of the sputtering process

The sputtering process is a stochastic process. The height
fluctuations of the surface in this sputtering process can be ad-
equately described by the stochastic KSE, which is a fourth-
order, nonlinear stochastic PDE (Cuerno et al., 1995). The
stochastic KSE takes the following form:

�h

�t
= −�

�2h

�x2
− 	

�4h

�x4
+ 


2

(
�h

�x

)2

+ �(x, t) (7)

subject to PBCs:

�j h

�xj
(−�, t) = �j h

�xj
(�, t), j = 0, . . . , 3 (8)

and the initial condition:

h(x, 0) = h0(x), (9)

where �, 	, and 
 are parameters related to surface mechanisms
(Lauritsen et al., 1996), x ∈ [−�, �] is the spatial coordinate,
t is the time, h(x, t) is the height of the surface at position x
and time t. The PBCs are used so that the treatment of surface
boundaries is consistent to that of the kMC model where PBCs
are also used. �(x, t) is a Gaussian noise with the following
expressions for its mean and covariance:

〈�(x, t)〉 = 0,

〈�(x, t)�(x′, t ′)〉 = �2�(x − x′)�(t − t ′), (10)

where � is a constant, �(·) is the Dirac function, and 〈·〉 denotes
the expected value.

To study the dynamics of Eq. (7), we initially consider the
eigenvalue problem of the linear operator of Eq. (7), which
takes the form

A�̄n(x) = −�
d2�̄n(x)

dx2
− 	

d4�̄n(x)

dx4
= 
n�̄n(x),

dj �̄n

dxj
(−�) = dj �̄n

dxj
(+�), j = 0, . . . , 3, n = 1, . . . , ∞,

(11)

where 
n denotes an eigenvalue and �̄n denotes an eigenfunc-
tion. A direct computation of the solution of the above eigen-
value problem yields 
0 = 0 with 0 = 1/

√
2�, and 
n =

�n2 −	n4 (
n is an eigenvalue of multiplicity two) with eigen-
functions �n = (1/

√
�) sin(nx) and n = (1/

√
�) cos(nx) for

n = 1, . . . , ∞. Note that the �̄n in Eq. (11) denotes either �n

or n. From the expression of the eigenvalues, it follows that
for fixed values of � > 0 and 	 > 0, the number of unstable
eigenvalues of the operator A in Eq. (11) is finite and the dis-
tance between two consecutive eigenvalues (i.e., 
n and 
n+1)
increases as n increases.

To present the method that we use to estimate the param-
eters of the stochastic KSE of Eq. (7) and design controllers,
we first derive a nonlinear stochastic ODE approximation of
Eq. (7) using Galerkin’s method. To this end, we first expand
the solution of Eq. (7) in an infinite series in terms of the eigen-
functions of the operator of Eq. (11) as follows:

h(x, t) =
∞∑

n=1

�n(t)�n(x) +
∞∑

n=0

�n(t)n(x), (12)

where �n(t), �n(t) are time-varying coefficients. Substituting
the above expansion for the solution, h(x, t), into Eq. (7)
and taking the inner product with the adjoint eigenfunctions,
�∗

n(z) = (1/
√

�) sin(nz) and ∗
n(z) = (1/

√
�) cos(nz), the

following system of infinite nonlinear stochastic ODEs is
obtained:

d�n

dt
= (�n2 − 	n4)�n + 
 · fn� + �n

�(t),

d�n

dt
= (�n2 − 	n4)�n + 
 · fn� + �n

�(t),

n = 1, . . . , ∞,

(13)
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where

fn� = 1

2

∫ �

−�
�∗

n(x) ·
⎛
⎝ ∞∑

j=1

�j (t)
d�j

dx
(x)

+
∞∑

j=0

�j (t)
dj

dx
(x)

⎞
⎠

2

dx,

fn� = 1

2

∫ �

−�
∗

n(x) ·
⎛
⎝ ∞∑

j=1

�j (t)
d�j

dx
(x)

+
∞∑

j=0

�j (t)
dj

dx
(x)

⎞
⎠

2

dx (14)

and

�n
�(t) =

∫ �

−�
�(x, t)�∗

n(x) dx,

�n
�(t) =

∫ �

−�
�(x, t)∗

n(x) dx. (15)

The covariances of �n
�(t) and �n

�(t) can be computed by using
the following result.

Result 1. If (1) f (x) is a deterministic function, (2) �(x) is a
random variable with 〈�(x)〉 = 0 and covariance 〈�(x)�(x′)〉 =
�2�(x − x′), and (3) � = ∫ b

a
f (x)�(x) dx, then � is a real ran-

dom number with 〈�〉=0 and covariance 〈�2〉=�2
∫ b

a
f 2(x) dx

(Åström, 1970).

Using Result 1, we obtain 〈�n
�(t)�

n
�(t

′)〉 = �2�(t − t ′) and
〈�n

�(t)�n
�(t ′)〉 = �2�(t − t ′).

The surface roughness of the process is a variable of inter-
est from a control point of view. The surface roughness, r, is
represented by the standard deviation of the surface from its
average height and is computed as follows:

r(t) =
√

1

2�

∫ �

−�
[h(x, t) − h̄(t)]2 dx, (16)

where h̄(t)=(1/2�)
∫ �
−� h(x, t) dx is the average surface height.

According to Eq. (12), we have h̄(t) = �0(t)0. Therefore,
〈r(t)2〉 can be rewritten in terms of �n(t) and �n(t):

〈r(t)2〉 = 1

2�

〈∫ �

−�
(h(x, t) − h̄(t))2 dx

〉

= 1

2�

〈∫ �

−�

[ ∞∑
i=1

�i (t)�i (x)

+
∞∑
i=0

�i (t)i (x) − �0(t)0

]2

dx

〉

= 1

2�

〈∫ �

−�

∞∑
i=1

[�i (t)
2�i (x)2 + �i (t)

2i (x)2] dx

〉

= 1

2�

〈 ∞∑
i=1

(�i (t)
2 + �i (t)

2)

〉

= 1

2�

∞∑
i=1

[〈�i (t)
2〉 + 〈�i (t)

2〉]. (17)

Eq. (17) provides a direct link between the state covariance
of the infinite stochastic ODEs of Eq. (13) and the expected
surface roughness of the sputtering process.

Remark 2. The stochastic PDE model and the kMC model of
the sputtering process are consistent. The stochastic PDE model
for the sputtering processes can be derived based on the corre-
sponding master equation, which describes the evolution of the
probability that the surface is at a certain configuration (see, for
example, Lauritsen et al., 1996; Vvedensky, 2003). The kMC
model is a first-principle model in the sense that the microscopic
events that directly form the surface are explicitly considered in
the model. Mathematically, kMC simulation methods provide
an unbiased realization of the master equation. Therefore, the
evolution of the surface configuration predicted by the closed-
form stochastic PDE model is consistent to that predicted by
the kMC model. As a result, a controller designed based on
the stochastic PDE process model can be applied to the kMC
model of the same process (Lou and Christofides, 2005a,b,
2006; Ni and Christofides, 2005b). However, the parameters of
the stochastic KSE derived based on the corresponding master
equation need to be carefully estimated. A continuum limit is
used in the derivation of the stochastic KSE from the master
equation, which requires an infinite number of lattice sites in
the kMC model. From a practical point of view, a kMC model
with a finite number of lattice sites is, however, used for the
simulation of the sputtering process, thereby leading to a mis-
match between the stochastic KSE and the kMC model. There-
fore, it is necessary to estimate the parameters of the stochastic
KSE based on the kMC data directly to ensure that the KSE
model predictions are close to the ones of the kMC model.

2.4. Model reduction

Owingto its infinite-dimensionalnature, thesystemofEq. (13)
cannot be directly used as a basis for either parameter estima-
tion or feedback controller design that can be implemented in
practice (i.e., the practical implementation of such algorithms
will require the computation of infinite sums which cannot be
done by a computer). Instead, we will use finite-dimensional
approximations of the system of Eq. (13).

Specifically, we rewrite the system of Eq. (13) as follows:

dxs

dt
= �sxs + 
 · fs(xs, xf ) + �s ,

dxf

dt
= �f xf + 
 · ff (xs, xf ) + �f , (18)
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where

xs = [�1 · · · �m �1 · · · �m]T,

xf = [�m+1 �m+1 �m+2 �m+2 · · · ]T,

�s = diag[
1 · · · 
m 
1 · · · 
m],
�f = diag[
m+1 
m+1 
m+2 
m+2 · · ·],

fs(xs, xf ) = [f1�(xs, xf ) · · · fm�(xs, xf ) f1�(xs, xf )

· · · fm�(xs, xf )]T,

ff (xs, xf ) = [f(m+1)�(xs, xf ) f(m+1)�(xs, xf )

f(m+2)�(xs, xf ) f(m+2)�(xs, xf ) · · · ]T,

�s = [�1
� · · · �m

� �1
� · · · �m

� ]T,

�f = [�m+1
� �m+1

� �m+2
� �m+2

� · · · ]T. (19)

The dimension of the xs subsystem is 2m and the xf subsystem
is infinite-dimensional.

We note that the subsystem xf in Eq. (18) is infinite-
dimensional. Neglecting the xf subsystem, the following
2m-dimensional system is obtained:

dx̃s

dt
= �s x̃s + 
 · fs(x̃s, 0) + �s , (20)

where the tilde symbol in x̃s denotes that this state variable is
associated with a finite-dimensional system.

3. Parameter estimation of the nonlinear stochastic PDE
model

While the parameters of stochastic PDE models for several
deposition and sputtering processes can be derived based on the
corresponding master equation, which describes the evolution
of the probability that the surface is at a certain configuration;
for all practical purposes, the stochastic PDE model parameters
should be estimated by matching the prediction of the stochas-
tic PDE model to that of kMC simulations due to the approx-
imations made in the derivation of the stochastic PDE model
from the master equation (Haselwandter and Vvedensky, 2002;
Lou and Christofides, 2005a).

In this section, we present a method to estimate the param-
eters of the nonlinear stochastic KSE model of the sputtering
process by using data from the kMC simulations of the pro-
cess. The parameter estimation algorithm is developed on the
basis of the finite-dimensional system of Eq. (20).

3.1. System of deterministic ODEs for state covariance

The system of Eq. (20) is a finite-dimensional nonlinear
stochastic ODE system including all four parameters, �, 	, 
,
and �2 of the stochastic KSE of Eq. (7). We first derive the

system of deterministic ODEs that describes the dynamics of
the covariance matrix of the state vector of Eq. (20), xs , which
is defined as Ps = 〈xsx

T
s 〉.

Consider the evolution of the state of Eq. (20) in a small
time interval, [t, t +�t] as follows (Kloeden and Platen, 1995;
Chua et al., 2005):

xs(t + �t) = (Is + �t · �s)xs(t) + �t · 
fs(xs(t), 0)

+ �t · �s(t), (21)

where Is is a 2m × 2m identity matrix. To study the dynam-
ics of Ps , we approximate the Dirac function, �(·) involved
in the covariances of �s by 1/�t , and neglect the terms of
order �t2. When Eq. (21) is used to compute the numeri-
cal solution of xs(t), it is clear that xs(t) is only dependent
on �s(�) (for �� t − �t). Since �s(t) and �s(�) are mutually
independent according to the definition of Gaussian noise of
Eq. (10) and Result 1, �s(t) is also independent of xs(t). We,
therefore, have 〈�s(t)x

T
s (t)〉 = 0 and 〈xs(t)�

T
s (t)〉 = 0. Conse-

quently, the following equation for Ps can be obtained from
Eq. (21):

Ps(t + �t) = Ps(t) + �t · {�sPs(t) + Ps(t)�
T
s

+ 
〈xs(t)fs(xs(t), 0)T + fs(xs(t), 0)xs(t)
T〉

+ Rs}, (22)

where Rs is the intensity of �s and Rs�(t − t ′) = 〈�s(t)�
T
s (t)〉.

In this work, Rs = �2I2m×2m.
By bringing Ps(t) to the left-hand side of Eq. (22), dividing

both sides by �t and setting �t → 0, we obtain the following
nonlinear system of deterministic ODEs for the state covariance
of the system of Eq. (18):

dPs(t)

dt
= �sPs(t) + Ps(t)�

T
s + Rs + 
〈xs(t)fs(xs(t), 0)T

+ fs(xs(t), 0)xs(t)
T〉. (23)

Note that the linear part of Eq. (23) is the Lyapunov equation
used in covariance controller design for linear systems (Hotz
and Skelton, 1987). We will use this deterministic ODE system
as the basis for parameter estimation.

3.2. Parameter estimation

The four parameters of the stochastic PDE process model
of Eq. (7) can be estimated from Eq. (23). Specifically, the
parameters � and 	 are included in the matrix �s of Eq. (23)
and the parameter 
 is associated with the nonlinear term of
Eq. (23). To this end, we need to obtain Ps(t) and 〈xs(t)fs(t)

T+
fs(t)xs(t)

T〉, which are both functions of xs , to perform the
parameter estimation.

The data of xs = [�1(t) · · · �m(t) �1(t) · · · �m(t)]T can
be obtained from kMC simulations of the sputtering process.
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Once xs is obtained, fs(xs, 0) = [f1�(xs, 0) · · · fm�(xs, 0)

f1�(xs, 0) · · · fm�(xs, 0)]T can be computed as follows:

fn�(xs(t), 0) = 1

2

∫ �

−�
�∗

n(x)

⎛
⎝ m∑

j=1

�j (t)
d�j

dx
(x)

+
m∑

j=0

�j (t)
dj

dx
(x)

⎞
⎠

2

dx, n = 1, 2, . . . , m,

fn�(xs(t), 0) = 1

2

∫ �

−�
∗

n(x)

⎛
⎝ m∑

j=1

�j (t)
d�j

dx
(x)

+
m∑

j=0

�j (t)
dj

dx
(x)

⎞
⎠

2

dx,

n = 1, 2, . . . , m. (24)

To compute the expected values for xs(t) · xs(t)
T and

xs(t)fs(xs, 0)T +fs(xs, 0)xs(t), multiple kMC simulation runs
for the sputtering process should be performed and the profiles
of xs(t) · xs(t)

T and xs(t)fs(xs, 0)T + fs(xs, 0)xs(t) should be
averaged to obtain the expected values.

The time derivative of Ps(t) can be computed by the first-
order approximation (O(�t)) of the time derivative as follows:

dPs(t)

dt
= Ps(t + �t) − Ps(t)

�t
, (25)

where �t is a small time interval.
When the values of dPs(t)/dt , Ps(t) and 〈xs(t)fs(xs, 0)T +

fs(xs, 0)xs(t)
T〉 are obtained through kMC simulation runs at a

set of discrete time instants (t=t1, t2, . . . , tk), Eq. (23) becomes
a system of linear algebraic equations for the four unknown
model parameters. When the number of equations is larger than
the number of parameters to be estimated, the least-squares
method can be used to determine the model parameters.

Since Ps is a diagonally dominant matrix (see simulation part
for a numerical verification), to make the parameter estimation
algorithm insensitive to round-off errors, we propose to formu-
late the system of algebraic equations for least-squares fitting
of the model parameters by using only the diagonal elements
of the system of Eq. (23). The system of ODEs corresponding
to the diagonal elements of Eq. (23) is as follows:

d〈�2
n(t)〉
dt

= 2(�n2 − 	n4) · 〈�2
n(t)〉 + 2
 · 〈�n(t) · fn�(t)〉 + �2,

n = 1, . . . , m,
d〈�2

n(t)〉
dt

= 2(�n2 − 	n4) · 〈�2
n(t)〉 + 2
 · 〈�n(t) · fn�(t)〉 + �2,

n = 1, . . . , m. (26)

The system of Eq. (26) is a linear system with respect to �,
	, 
 and �2 and it is straightforward to reformulate Eq. (26) in
the form of the following linear system to estimate �, 	, 
 and
�2 using the least-squares method:

b = A�, (27)

where � = [� 	 
 �2]T and

b = [b1 b2 · · · bk]T

bi =
[

d〈�2
1(ti)〉
dt

· · · d〈�2
m(ti)〉
dt

d〈�2
1(ti)〉
dt

· · · d〈�2
m(ti)〉
dt

]T

,

i = 1, 2, . . . , k (28)

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2·12·〈�2
1(t1)〉 2·14·〈�2

1(t1)〉 2〈�1(t1)·f1�(t1)〉 1
.
.
.

.

.

.
.
.
.

.

.

.

2·m2·〈�2
m(t1)〉 2·m4·〈�2

m(t1)〉 2〈�m(t1)·fm�(t1)〉 1

2·12·〈�2
1(t1)〉 2·14·〈�2

1(t1)〉 2〈�1(t1)·f1�(t1)〉 1
.
.
.

.

.

.
.
.
.

.

.

.

2·m2·〈�2
m(t1)〉 2·m4·〈�2

m(t1)〉 2〈�m(t1)·fm�(t1)〉 1
.
.
.

.

.

.
.
.
.

.

.

.

2·12·〈�2
1(tk)〉 2·14·〈�2

1(tk)〉 2〈�1(tk)·f1�(tk)〉 1
.
.
.

.

.

.
.
.
.

.

.

.

2·m2·〈�2
m(tk)〉 2·m4·〈�2

m(tk)〉 2〈�m(tk)·fm�(tk)〉 1

2·12·〈�2
1(tk)〉 2·14·〈�2

1(tk)〉 2〈�1(tk)·f1�(tk)〉 1
.
.
.

.

.

.
.
.
.

.

.

.

2·m2·〈�2
m(tk)〉 2·m4·〈�2

m(tk)〉 2〈�m(tk)·fm�(tk)〉 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Note that all elements in b and A can be obtained through
the kMC simulations of the thin film growth or sputtering pro-
cess. The least-squares fitting of the model parameters can be
obtained as follows:

�̂ = (ATA)−1AT · b. (30)

Remark 3. Different values of m are used in parameter estima-
tion and controller design. For parameter estimation, the value
of m should be large enough so that the finite-dimensional sys-
tem of Eq. (27) includes all representative modes of the sys-
tem. While for controller design, the value of m depends on the
process and the requirement on the closed-loop performance.
Specifically, m should be equal or larger than the number of
unstable modes of the process to ensure closed-loop stability.
Furthermore, according to Theorem 1 in Lou and Christofides,
2006, m should be large enough to have a sufficiently small
� so that the closed-loop surface roughness of the infinite-
dimensional system is sufficiently close to the set-point value.
However, a very large m should be avoided, since it requires a
large number of actuators which may not be practical from a
practical implementation point of view.

Remark 4. Note that it is important to appropriately collect
the data set of surface snapshots from kMC simulations for
parameter estimation. The data set should be representative so
that the dynamics of the stochastic process can be adequately
captured by the data set and reliable parameter estimation re-
sults can be obtained. Specifically, the condition number of the
square matrix ATA of Eq. (30) should be used as an indicator
of the quality of the data set. The matrix A is constructed by us-
ing the data derived from the surface snapshots. The condition
number measures the sensitivity of the solution to the pertur-
bations in A and b. There is stochastic noise contained in the
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data used to construct the matrix A and the vector b in Eq. (30).
This noise will perturb A and b from their true values. A low
condition number of the square matrix ATA will ensure that
the perturbations in A and b introduced by the noise will not
result in significant errors in the estimated model parameters.
According to the simulations, a low condition number between
10 and 20 can be achieved by appropriately selecting snapshots
while a large condition number could be over 1000. Another
good and practical criterion for a given situation is to compare
the profiles of the expected surface roughness of the process
and the stochastic PDE with estimated parameters. If they are
matched consistently, the condition number of ATA is consid-
ered as a low number for that particular problem. The sampling
time and the number of surface snapshots should be carefully
selected so that the condition number of the square matrix ATA

is small. Another effective way to decrease the condition num-
ber is to acquire as many representative surface snapshots of
the process as possible, e.g., with different initial conditions.

Remark 5. Note that this work does not intent to develop a
new model for the sputtering process and validate the model
against experimental data from a process. Instead, the focus
of this work is to estimate the parameters of a stochastic PDE
model and compare the model output against that from a kMC
model, which is considered as a more accurate process model.
Therefore, if the kMC model for the sputtering process can
capture the roughness evolution of a real process, our method
results in a closed-form stochastic PDE model that possesses a
very similar modeling capability. There is a large body of liter-
ature available for kMC simulations of various sputtering and
thin film growth processes. Our work can be readily extended
to a variety of real world processes to construct stochastic PDE
process models provided that an accurate kMC model is avail-
able for the process of interest.

4. Feedback control

In this section, we design a linear output feedback controller
based on the stochastic KSE process model to regulate the ex-
pected surface roughness of the sputtering process to a desired
level. A state feedback controller is initially designed by fol-
lowing the method developed in our previous work (Lou and
Christofides, 2005a). Then, a static state estimation scheme is
constructed and the output feedback controller design is com-
pleted by combining the state feedback control law and the
state estimation scheme.

4.1. Distributed control problem formulation

We consider the stochastic KSE with distributed control in
the spatial domain [−�, �]:

�h

�t
= − �

�2h

�x2
− 	

�4h

�x4
+ 


2

(
�h

�x

)2

+
p∑

i=1

bi(x)ui(t)

+ �(x, t) (31)

subject to PBCs:

�j h

�xj
(−�, t) = �j h

�xj
(�, t), j = 0, . . . , 3 (32)

and the initial condition:

h(x, 0) = h0(x), (33)

where ui is the ith manipulated input, p is the number of ma-
nipulated inputs and bi is the ith actuator distribution function
(i.e., bi determines how the control action computed by the
ith control actuator, ui , is distributed (e.g., point or distributed
actuation) in the spatial interval [−�, �]). The variables are
defined in the same way as in Eq. (7) of Section 2.3. Follow-
ing similar derivations to the ones of Section 2.3, the following
system of infinite nonlinear stochastic ODEs with distributed
control can be obtained:

d�n

dt
= (�n2 − 	n4)�n + 
 · fn�

+
p∑

i=1

bi�n
ui(t) + �n

�(t), n = 1, . . . ,∞,

d�n

dt
= (�n2 − 	n4)�n + 
 · fn�

+
p∑

i=1

bi�
n
ui(t) + �n

�(t), n = 1, . . . ,∞, (34)

where fn� and fn� are defined in Eq. (14) and �n
�(t) and �n

�(t)

are defined in Eq. (15). bi�n
and bi�

n
are defined as follows:

bi�n
=

∫ �

−�
�∗

n(x)bi(x) dx,

bi�
n

=
∫ �

−�
∗

n(x)bi(x) dx. (35)

The system of Eq. (34) can be rewritten in the following
form:

dxs

dt
= �sxs + fs(xs, xf ) + Bsu + �s ,

dxf

dt
= �f xf + ff (xs, xf ) + Bf u + �f , (36)

where xs , xf , �s , �f , fs(xs, xf ), ff (xs, xf ), �s and �f are
defined in Eq. (19), and

Bs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1�1 · · · bp�1
...

. . .
...

b1�m · · · bp�m

b1�1
· · · bp�1

...
. . .

...

b1�m
· · · bp�m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bf =

⎡
⎢⎢⎢⎢⎢⎣

b1�m+1 · · · bp�m+1

b1�m+1
· · · bp�m+1

b1�m+2 · · · bp�m+2

b1�m+2
· · · bp�m+2

...
...

...

⎤
⎥⎥⎥⎥⎥⎦ . (37)
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Note that the dimension of the xs subsystem is 2m and the xf

subsystem is infinite-dimensional. Neglecting the xf subsys-
tem, the following 2m-dimensional system is obtained:

dx̃s

dt
= �s x̃s + 
 · fs(x̃s, 0) + Bsu + �s , (38)

where the tilde symbol in x̃s denotes that this state variable is
associated with a finite-dimensional system.

We note here that the accuracy of the finite-dimensional
system can be improved by including a finite-number of the
xf modes using the concept of approximate inertial manifolds
(Christofides and Daoutidis, 1997; Armaou and Christofides,
2002).

Remark 6. Note that in practice, the control action, ui , can be
implemented by manipulating the gas composition across the
surface in either a deposition process or a sputtering process.
Spatially controllable CVD reactors have been developed to
enable across-wafer spatial control of surface gas composition
during deposition (Choo et al., 2005). In such a control problem
formulation, the rate that particles land on the surface or the
rate that surface particles are eroded is spatially distributed and
is computed by the controller. The parameters of the stochastic
KSE model of Eq. (31) depend on both the temperature and the
rate that particles land on the surface or that surface particles
are eroded (Lauritsen et al., 1996). In this work, the tempera-
ture is assumed to be a constant. The rate that particles land on
the surface or the rate that surface particles are eroded used to
compute the stochastic KSE model parameters corresponds to
that under open-loop operation, and thus, it is also a constant.
The contribution of the spatially distributed rate that particles
land on the surface or the rate that surface particles are eroded
to the fluctuations of the surface height profile (e.g., the sur-
face roughness) is captured by the term

∑p

i=1 bi(x)ui(t). This
control problem formulation is further supported by our sim-
ulation results which demonstrate that the controller designed
on the basis of the stochastic KSE model of a sputtering pro-
cess can be successfully applied to the kMC model of the same
sputtering process to control the surface roughness to desired
levels (see simulation results section).

4.2. State feedback control

Following the method presented in Lou and Christofides
(2005a), we design a linear state feedback controller on the
basis of the linearization of Eq. (38) around its zero solution.

To simplify our development, we assume that p = 2m (i.e., the
number of control actuators is equal to the dimension of the
finite-dimensional system) and pick the actuator distribution
functions such that B−1

s exists. The linear state feedback control
law then takes the form

u = B−1
s (�cs − �s)x̃s , (39)

where the matrix �cs contains the desired poles of the closed-
loop system; �cs = diag[
c�1 · · · 
c�m 
c�1 · · · 
c�m], 
c�i

and 
c�i (1� i�m) are desired poles of the closed-loop
finite-dimensional system, which satisfy Re{
c�i} < 0 and
Re{
c�i} < 0 for (1� i�m) and can be determined from the
desired closed-loop surface roughness level.

4.3. Output feedback control

The state feedback controller of Eq. (39) was derived under
the assumption that measurements of the states x̃s are available,
which implies that measurements of the surface height profile,
h(x, t), are available at all positions and time. However, from
a practical point of view, measurements of the surface height
profile are only available at a finite number of spatial positions.
Motivated by this practical consideration, we address in this
section the synthesis of an output feedback controller that uses
measurements of the thin film surface height at distinct loca-
tions to enforce a desired surface roughness in the closed-loop
kMC simulation model. The measured surface height profile
can be expressed as follows:

y(t) = [h(x1, t) h(x2, t) · · · h(xq, t)]T, (40)

where xi (i = 1, 2, . . . , q) denotes a location of a point mea-
surement sensor and q is the number of measurement sensors.
Since the height profile h(x, t) can be expanded into an infinite
series as shown in Eq. (12), the vector of output measure-
ments of Eq. (40) can be written in terms of the state of the
infinite-dimensional system, xs and xf , as follows:

y(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
n=1

�n(t)�n(x1) +
∞∑

n=1
�n(t)n(x1) + �0(t)0

∞∑
n=1

�n(t)�n(x2) +
∞∑

n=1
�n(t)n(x2) + �0(t)0

...∞∑
n=1

�n(t)�n(xq) +
∞∑

n=1
�n(t)n(xq) + �0(t)0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Cs

[
�0(t)

xs(t)

]
+ Cf xf (t), (41)

where

Cs(t) =

⎡
⎢⎢⎣

0 �1(x1) �2(x1) · · · �m(x1) 1(x1) 2(x1) · · · m(x1)

0 �1(x2) �2(x2) · · · �m(x2) 1(x2) 2(x2) · · · m(x2)
...

...
...

. . .
...

...
...

. . .
...

0 �1(xq) �2(xq) · · · �m(xq) 1(xq) 2(xq) · · · m(xq)

⎤
⎥⎥⎦ ,

Cf (t) =

⎡
⎢⎢⎣

�m+1(x1) m+1(x1) �m+2(x1) m+2(x1) · · ·
�m+1(x2) m+1(x2) �m+2(x2) m+2(x2) · · ·

...
...

. . .

�m+1(xq) m+1(xq) �m+2(xq) m+2(xq) · · ·

⎤
⎥⎥⎦ . (42)
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Neglecting the xf component in the system of Eqs. (36)
and (41) and linearizing the resulting finite-dimensional sys-
tem around its zero solution, the following linearized finite-
dimensional system is obtained:

dx̃s

dt
= �s x̃s + Bsu + �s ,

ỹ = Cs

[
�̃0
x̃s

]
. (43)

The system of Eq. (43) is used for the output feedback control
design. The general form of the static output feedback control
laws is as follows:

u = F(y), (44)

where F(y) is a vector function and y is the vector of measured
outputs. The synthesis of the controller of Eq. (44) will be
achieved by combining the state feedback controller of Eq. (39)
with a procedure proposed in Christofides and Baker (1999)
for obtaining estimates for the states of the approximate ODE
model of Eq. (43) from the measurements. To this end, we
need to impose the following requirement on the number of
measurements in order to obtain estimates of the states xs of the
finite-dimensional system of Eq. (38) from the measurements y.

Assumption 1. q=2m+1, and the inverse of Cs exists, so that
[�̂0 x̂T

s ]T=C−1
s y, where �̂0 and x̂s denote the estimates of �0

and xs from the output y, respectively.

We note that the requirement that the inverse of Cs exists can
be achieved by appropriate choice of the location of the mea-
surement sensors. When point measurement sensors are used,
this requirement can be verified by checking the invertibility of
the matrix.

The output feedback control law of Eq. (44) is designed on
the basis of Eq. (43) as follows:

u = F(y) = B−1
s (�cs − �s)[0 Is]C−1

s y, (45)

where [0 Is] is used to extract estimated states xs from

[
�̂0
x̂s

]
,

0 is a 2m × 2m zero matrix and Is is a 2m × 2m elementary
matrix.

Remark 7. Note that although the stochastic KSE model of
Eq. (7) for which we computed the parameters is a nonlinear
model for the sputtering process, the state feedback controller
of Eq. (39) and the output feedback controller of Eq. (45) are
linear controllers that are designed based on a linearization
of the stochastic KSE around its zero solution. Our decision
to identify the nonlinear stochastic KSE model of the sputter-
ing process but design the output feedback controller based on
a linearized process model is made based on two considera-
tions. First, from a modeling point of view, the sputtering pro-
cess is a nonlinear process and a linear model is not sufficient
to represent the time evolution of the surface height profile.
Specifically, due to the existence of unstable eigenvalues of the
linear operator of Eq. (11), the expected surface roughness pre-
dicted by a linear stochastic PDE model will go to infinity as

t → ∞, which is not true for the sputtering process due to
the un-modeled nonlinearities of the process. Therefore, it is
important to model the sputtering process using a nonlinear
stochastic PDE model to appropriately capture the process dy-
namics. On the other hand, since the instability of the spatially
uniform steady state comes from the linear part of the model,
and the nonlinear part of the stochastic KSE helps bound the
surface roughness, for control purposes, we only need to focus
on the stabilization of the linear part of the stochastic KSE.
This argument can be further supported by our simulation re-
sults, which demonstrate the effectiveness of the linear output
feedback controller designed in this work.

Remark 8. We note that a full-scale model of a sputtering
process would consist of a 2-D lattice representation of the
surface. Although we developed the method for output feed-
back control design based on a 1-D lattice representation of the
surface, it is possible to extend the proposed method to control
the surface roughness of material preparation processes taking
place in 2-D domains. In a 2-D in space process, the feedback
control design will be based on a 2-D extension of the model of
Eq. (36). Moreover, Eq. (36) will be obtained by solving
the eigenvalue/eigenfunction problem in the 2-D spatial do-
main subject to appropriate boundary conditions; this can be
achieved in a similar way to that followed for the 1-D spatial
domain (see the work by Ni and Christofides, 2005b for results
on the solution of the eigenvalue/eigenfunction problem for a
2-D spatial domain). Once the modal representation of Eq. (36)
corresponding to the 2-D stochastic PDE model is obtained,
the method proposed in this work for controller design can be
applied to control the surface roughness.

5. Numerical simulations

In this section, we present applications of the proposed model
parameter estimation method and both of the state feedback
and output feedback controllers to the kMC model of a sputter-
ing process to demonstrate the effectiveness of the algorithms.
Specifically, the model parameters of the stochastic KSE pro-
cess model are first estimated by using data of surface snapshots
obtained form kMC simulations. The identified KSE model is
linearized and is consequently used as a basis for both state
feedback control and output feedback control design. The con-
trollers designed based on the stochastic KSE model are ap-
plied to the kMC model of the sputtering process to reduce the
expected surface roughness to desired levels.

In all simulations, we consider a sputtering process that takes
place on a lattice containing 200 sites. Therefore, a = 0.0314.
The sputtering yield function, Y (�i ) is a nonlinear function of
�i , which takes the form of Eq. (1). y0, y1 and y2 are chosen
such that Y (0) = 0.5, Y (�/2) = 0 and Y (1) = 1 (Cuerno et al.,
1995).

5.1. Model parameter estimation

We first compute the profiles of the state covariance and the
expected values for �n ·fn� and �n ·fn� from kMC simulations



Author's personal copy

G. Hu et al. / Chemical Engineering Science 63 (2008) 1800–1816 1811

0 100 200 300 400 500 600 700 800 900

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time (sec)

S
ta

te
 c

o
v
a
ri
a
n
c
e

cov(α1(t))

cov(α3(t))

cov(α5(t))

cov(α7(t))

cov(α9(t))

Fig. 2. Profiles of the state covariance 〈�2
n(t)〉 for n = 1, 3, 5, 7, and 9.

of the sputtering process. Upon the execution of an event, the
state of the stochastic KSE model (�n or �n) is updated. If the
executed event is erosion, �n or �n can be updated as follows
(Lou and Christofides, 2005a, 2006):

�new
n = �old

n + a[(n, zi − a/2) − (n, zi + a/2)]
n

,

�new
n = �old

n + a[�(n, zi + a/2) − �(n, zi − a/2)]
n

. (46)

If the executed event is diffusion from site i to site j, �n or �n

are updated as follows:

�new
n = �old

n + a

n
· {[(n, zi − a/2) − (n, zi + a/2)]

− [(n, zj − a/2) − (n, zj + a/2)]},
�new

n = �old
n + a

n
· {[�(n, zi + a/2) − �(n, zi − a/2)]

− [�(n, zj + a/2) − �(n, zj − a/2)]}, (47)

where a is the lattice parameter and zi is the coordinate of the
center of site i.

The terms �n · fn� and �n · fn� are computed by using
Eq. (24) with m=10 for n=1, 2, . . . , 10. The expected profiles
are the averages of profiles obtained from 10 000 independent
kMC simulation runs. The covariance profiles of �1, �3, �5, �7,
and �9 are shown in Fig. 2 and the profiles for the expected
values of �1f1�, �3f3�, �5f5�, �7f7�, and �9f9� are shown in
Fig. 3. Similar profiles are observed for the covariance of �n

and �nfn�, and are omitted here for brevity.
Since we use m = 10, the first 2m = 20 modes are used for

parameter estimation. The three-dimensional profile of the co-
variance matrix for the first 20 states at the end of a simulation
run is plotted in Fig. 4. It is clear that the covariance matrix
is diagonally dominant. Therefore, it is appropriate to use just
the diagonal elements of the system of Eq. (23) for parame-
ter estimation so that the estimation algorithm is insensitive to
round-off errors. To formulate the least-squares fitting problem,
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d〈�2
n(t)〉/dt , d〈�2

n(t)〉/dt , 〈�2
n(t)〉, 〈�2

n(t)〉, 〈�n(t) · fn�(t)〉, and
〈�n(t) · fn�(t)〉 are evaluated at the first 150 available dis-
crete time instants in the data obtained from kMC simulations.
Therefore, in the least-squares fitting formulations of Eqs. (27)
and (30), A is a 3000 × 4 matrix, b is a 3000 × 1 vector and
� = [� 	 
 �2]T. The values of the four parameters obtained
from least-squares fitting are �=2.76×10−5, 	=1.54×10−7,

 = 3.06 × 10−3, and �2 = 1.78 × 10−5.

To validate the parameter estimation method, we first
compute the expected open-loop surface roughness from the
stochastic KSE model of Eq. (7) with the computed parame-
ters. Then, the profile from the stochastic KSE with computed
parameters is compared to that from the kMC model. The ex-
pected surface roughness is computed from the simulations of
the stochastic KSE and the kMC model by averaging surface
roughness profiles obtained from 100 and 10 000 independent
runs, respectively. The simulation result is shown in Fig. 5. It
is clear that the computed model parameters result in consis-
tent expected surface roughness profiles from the stochastic
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Fig. 5. Comparison of the open-loop profile of the expected surface roughness
of the sputtering process from the kMC simulator and that from the solution
of the stochastic KSE using the estimated parameters.

KSE model of Eq. (7) and from the kMC simulator of the
sputtering process. There is observable difference between the
two profiles, which indicates the existence of a slight mis-
match of the identified model with the kMC model of the
sputtering process. The mismatch between the profiles orig-
inates from the fact that the KSE model is derived from the
master equation of the sputtering process with an assumption
of infinitesimal lattice size, while in the kMC simulation a
200-lattice (finite-numbered) model is used.

5.2. Closed-loop simulation under state feedback control

We design a state feedback controller for the sputtering pro-
cess based on the 2m-order approximation of the stochastic
ODE and apply the controller to the kMC model of the sput-
tering process to control the surface roughness to the desired
level. The state feedback controller is designed using the com-
puted KSE model parameters and �cs =diag[−0.01 −0.01 · · ·
− 0.01]. 2m control actuators are used to control the system.
The ith actuator distribution function is taken to be

bi(z) =

⎧⎪⎪⎨
⎪⎪⎩

1√
�

sin(iz), i = 1, . . . , m,

1√
�

cos[(i − m)z], i = m + 1, . . . , 2m.

(48)

The controller is implemented by manipulating the proba-
bility that a randomly selected site is subject to the erosion
rule, f. From a practical point of view, a spatially distributed
erosion probability can be realized by varying the gas com-
position across the substrate. Specifically, the bombardment
rate of each surface site under feedback control is 1/� = 1 +
(
∑2m

j=1bj (zi)uj (t))/a. Since the variation of the bombardment
rate does not change the surface diffusion rate, according to
the discussion in Remark 1, the f of site i should relate to the
surface bombardment rate in a way that (1 − f )/� is a con-
stant. Since in open-loop operation, f̄ = 0.5 and 1/�̄ = 1, we
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Fig. 6. Closed-loop surface roughness profiles in the sputtering process under
state feedback control with different m: initial surface roughness is 0.5.
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Fig. 7. Open-loop expected surface roughness profile of the sputtering process.

have (1 −f )/�= (1 − f̄ )/�̄= 0.5. Therefore, f under feedback
control is determined according to the following expression:

f (i) = f̄ + (
∑2m

j=1bj (zi)uj (t))/a

1 + (
∑2m

j=1bj (zi)uj (t))/a
, (49)

where f̄ =0.5 is the probability a selected surface site is subject
to erosion and 1/�̄=1 is the bombardment rate of each surface
site in open-loop operation.

The simulation algorithm used to run the kMC simulations
for the closed-loop system is similar to the one for the open-
loop system except that once an event is executed, the first
2m states (�1, . . . , �m and �1, . . . , �m) are updated and new
control actions are computed to update the value of f (defined in
Eq. (49)) for each surface site.

The dimension of the reduced-order model, 2m, needs to be
appropriately determined. It should be large enough so that all
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unstable modes are included. The number of unstable modes
is 26 according to the estimated model parameters of the sput-
tering process considered in this work. When 2m�26 and the
desired closed-loop poles are negative, the linearized closed-
loop system under the state feedback control is stable. This is
demonstrated by the simulation result with 2m = 40.

The closed-loop system simulation result under the state
feedback controller designed on the basis of a 40th-order ap-
proximation is shown in Fig. 6 (the dash-dotted line labeled
with m= 20). The other profiles in Fig. 6 are under controllers
of different orders and will be discussed later. The initial sur-
face roughness is around 0.5. The expected surface roughness
is computed by averaging the surface roughness profiles ob-
tained from 100 independent runs. It is clear from Fig. 6 that
the state feedback controller effectively reduces the expected
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Fig. 8. Closed-loop surface roughness profiles in the sputtering process under
state feedback control with different m: flat initial surface.

Fig. 9. A snapshot of the surface configuration at the end of the closed-loop simulation under the 40th-order state feedback controller: initial surface roughness
is 0.5.

surface roughness and stabilizes it at about 0.3. For the purpose
of comparison, an expected open-loop surface roughness pro-
file, which is obtained by averaging 100 independent open-loop
simulation runs, is shown in Fig. 7. Under open-loop operation,
the final steady-state surface roughness is around 0.7. There-
fore, the state feedback controller reduces the expected surface
roughness by 55%. This demonstrates the effectiveness of the
state feedback control law. A snapshot of the surface configura-
tion at the end of the closed-loop simulation is shown in Fig. 9.

However, even when the size of the reduced-order sys-
tem is smaller than the number of the unstable modes, the
state feedback control law still reduces the surface roughness
compared to the open-loop value. This is due to the non-
linearity of the stochastic KSE, which bounds the unstable
linear terms and prevents the expected surface roughness from
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Fig. 10. Closed-loop surface roughness profiles in the sputtering process under
output feedback control with different m: initial surface roughness is 0.5.
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going to infinity. To demonstrate this and show that m = 20 is
appropriate for the state feedback controller design, we com-
pare several state feedback controllers based on the reduced-
order systems with different dimensions, m = 1, 5, 10, 15 as
well as m = 20. For each controller, the number of actuators is
the same with the dimension of the reduced-order system and
�cs = diag[−0.01 − 0.01 · · · − 0.01]. The expected surface
roughness is the average of the surface roughness profiles ob-
tained from 100 independent runs. The initial surface roughness
for the closed-loop simulation is fixed at 0.5 and 0.0, separately.
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Fig. 11. Closed-loop surface roughness profiles in the sputtering process
under output feedback control with different m: flat initial surface.

Fig. 12. A snapshot of the surface configuration at the end of the closed-loop simulation under the 40th-order output feedback controller: initial surface
roughness is 0.5.

The closed-loop simulation results are shown in Figs. 6 and 8.
Despite the use of different initial conditions, the expected sur-
face roughness profiles of the closed-loop systems under the
various state feedback controllers are stabilized at the same
values, for the same m. It is also clear that all final expected
closed-loop surface roughness values are lower compared to the
open-loop simulation. The surface roughness is further reduced
as m increases. However, there is no significant difference be-
tween the expected roughness of m = 15 and 20. Higher-order
controllers will not result in further reduction of the surface
roughness. So it is concluded that m = 20 is an appropriate
dimension of the reduced-order system for the state feedback
controller.

5.3. Closed-loop simulation under output feedback control

We also apply the output feedback controller of Eq. (45) to
the kMC model of the sputtering process. The output feedback
controller is designed based on the same order stochastic ODE
approximation used in the design of the state feedback con-
troller in Section 5.2. The positions of point measurements are
evenly distributed on the surface lattice. The same control ac-
tuators are used to control the system as defined in Eq. (48).

The closed-loop system simulation result under the 40th-
order output feedback controller is shown in Fig. 10 (the
dash-dotted line labeled with m = 20). The expected surface
roughness is the average of surface roughness profiles obtained
from 100 independent runs. The initial surface roughness is
fixed at 0.5. Similar to the closed-loop simulation result under
state feedback control, the output feedback controller also re-
duces the expected surface roughness by 55% compared to the
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corresponding open-loop simulation value. A snapshot of the
surface configuration at the end of the closed-loop simulation
is shown in Fig. 12.

For output feedback control, m = 20 is also an appropri-
ate dimension for the reduced-order system. Simulations un-
der output feedback control with different dimensions of the
reduced-order system are compared in Figs. 10 and 11 with
different initial surface conditions similarly to the comparison
of the state feedback controller in Section 5.2. In these figures,
we can see that the output feedback controllers stabilize the ex-
pected surface roughness, but are not as effective as the state
feedback controllers, especially when the dimension, m, is rel-
atively small. In Fig. 10, the output feedback controller with
m = 1 drives the expected surface roughness to a value which
is higher than the one obtained under open-loop operation (see
Fig. 7). In Fig. 10, we also observe that as the dimension (and
thus the number of sensors) of the model used for controller
design increases, the difference between the output feedback
controllers and the state feedback controllers decreases. This is
due to the decreased error of the estimated state as the num-
ber of measurements increases. We therefore conclude that
m=20 is an appropriate value for the output feedback controller
design.

6. Conclusions

In this work, we developed a method to estimate the pa-
rameters of the nonlinear stochastic KSE model and designed
model-based state and output feedback controllers for a sput-
tering process, which includes two surface micro-processes and
is simulated by a kMC model. Both parameter estimation and
feedback control design begin with formulation of the stochas-
tic KSE into a system of infinite stochastic ODEs by using
modal decomposition. A finite-dimensional approximation is
then obtained to capture the dominant mode contribution to the
surface roughness profile. For parameter estimation purposes,
a deterministic ODE model of the evolution of the state co-
variance is derived to eliminate the influence of fluctuations
from the stochastic processes. Subsequently, a kMC simula-
tor of the sputtering process is used to generate surface snap-
shots at different time instants during the process evolution
to obtain the state and the state covariance of the stochastic
ODE system. Finally, the model parameters of the nonlinear
stochastic KSE are obtained using least-squares fitting and val-
idated by comparing the KSE open-loop simulation result with
the kMC simulation result. With respect to feedback controller
design, two schemes are developed and applied to the sputter-
ing process: state feedback control and output feedback con-
trol. Both control laws are demonstrated to effectively reduce
the expected surface roughness compared to the open-loop
operation.
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