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ABSTRACT: In the present work, an economic model predictive control (EMPC) system is designed that accounts for the
dynamics of the control actuators. A combined process−actuator dynamic model is developed to describe the process and
control actuator dynamics and is used within the EMPC system. Integrating the design of the regulatory control layer, which
controls the control actuators, and the supervisory control layer consisting of an EMPC system is an important consideration
given the fact that EMPC may force an unsteady-state operating policy to optimize the process economics, and the dynamics of
the control actuator layer may affect the closed-loop process-actuator dynamics. Moreover, integral or average input constraints
are often imposed within the EMPC solution. However, if the actuator layer is not accounted for in the EMPC system, the
actuator output trajectory may not satisfy the integral input constraints. To address closed-loop stability of the combined process-
actuator closed-loop system, stability constraints, designed via Lyapunov-based techniques, are imposed on the EMPC problem
to guarantee closed-loop stability of the process system under the EMPC. An EMPC system accounting for the control actuator
dynamics is applied to a benchmark chemical process example to study the impact of the actuator dynamics on closed-loop
economic performance and reactant material constraint satisfaction.

■ INTRODUCTION
The chemical processing industry has long been interested in
employing control methods that not only ensure the stability
and safety of a process, but that also force the process to
achieve the highest profit possible. Currently, a hierarchical
control structure is employed to accomplish these objectives.
Real-time optimization (RTO) is used at the highest level of
the hierarchy to compute the economically optimal operating
point of the process system using a steady-state process
model.1,2 Below RTO, the supervisory control layer receives the
optimal operating point and uses it to compute control actions
while accounting for process constraints and closed-loop
performance considerations. Within chemical process indus-
tries, model predictive control (MPC) is widely implemented
in the supervisory control layer and is typically formulated with
a quadratic cost function (see, e.g., refs 3−5). The MPC
solution is used to provide set-points to the lower regulatory
control layer, which often consists of a set of proportional-
integral-derivative (PID) controllers. The regulatory control
layer is responsible for dictating that the control actuators
implement the control action requested by the supervisory
control layer.
Within the context of MPC, the dynamics of the regulatory

control layer and the control actuators are typically neglected
and the dynamic model used within the MPC assumes that the
control actuators can achieve an instantaneous response to the
MPC computed control actions. In practice, however, this may
not be the case (e.g., ref 6). Two main approaches have been
used to address this issue: retuning the PID (regulatory)
control layer to maintain the desired response to the MPC set-
point changes, and accounting for actuator dynamics in the
model predictive controller model.
PID tuning, retuning, and monitoring are used to address the

first approach to dealing with the closed-loop actuator

dynamics. A number of methods exist for tuning PID
controllers such as the classical Ziegler−Nichols and Cohen−
Coon tuning rules and internal model control (see, e.g., refs
7−10) among many others. Because actuators may be poorly
tuned or become poorly tuned over time as the process/
actuator dynamics change, a variety of studies have been
performed on methods for detecting poor tuning of the PID
control systems based on various performance metrics and then
updating the controller tuning parameters (e.g., refs 11−13).
For example, case studies from the pulp and paper industry,
where it is desirable to minimize disturbance effects, were used
to examine some of the short-comings of an index based on
minimum variances.11 Performance indices were proposed for
the monitoring of set-point tracking and disturbance rejection,
along with retuning methodologies when desired responses are
not attained.12,13 Adaptive control methods to update PID
parameters have also been explored (e.g., ref 14). Some work
explicitly considering MPC in the supervisory control layer and
PID controllers in the regulatory control layer has also been
carried out. For example, in ref 6, monitoring of process states
is performed using exponentially weighted moving average
residuals, and the PID controllers that manipulate the actuators
to the MPC set-points are then automatically retuned for
improved set-point tracking after the poor tuning is detected.
Another approach is to use a dynamic model in MPC that

accounts for the control actuator dynamics. For example, the
formulation and stability properties of an adaptive control
allocation problem that explicitly accounts for the actuators is
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considered in ref 15. In ref 16 an MPC that explicitly accounts
for actuator dynamics is used to predict the optimal control
allocation strategy for a re-entry vehicle and demonstrates
improved tracking and stability over a different method that
does not include the actuator dynamics. In ref 17 a model of
the actuator dynamics, which includes both actuator saturation
and backlash, is incorporated in an MPC model. The resulting
MPC demonstrated improved performance over the case where
the actuator dynamics were not included in the MPC.
Recently, amid calls for tighter integration of process control

and economic optimization, economic MPC (EMPC) has been
proposed which is designed with a stage cost function that
represents the process economics.18−20 Thus, EMPC combines
dynamic economic optimization and supervisory control.
Because the EMPC cost function is not necessarily based on
a desired steady-state, as is the standard MPC quadratic cost
function, EMPC does not necessarily drive the system toward a
steady-state. A number of EMPC formulations have been
developed to deal with the resulting possibility of unsteady-
state or dynamic operation (see the review paper21 for an
overview of recent developments on EMPC). Figure 1 depicts a
block diagram of the control architecture consisting of an
EMPC system in the supervisory control layer, the regulatory
control layer (shown as a set of PI controllers), the control
actuators, and the controlled process system.
To date, no work has been completed that examines the

effect of actuator dynamics within the context of EMPC.
Motivated by this, the present work considers developing an
EMPC system that explicitly accounts for the actuator
dynamics. Specifically, a dual-mode Lyapunov-based EMPC
(LEMPC) is designed with a combined process-actuator model.
Conditions that guarantee the stability of the resulting closed-
loop system under LEMPC and the regulatory layer are
provided. Under the first mode of operation, the LEMPC may
dictate a potentially time-varying operating policy while
maintaining the closed-loop state trajectory in a bounded set.
Under the second mode of the operation, the LEMPC
computes control actions that force the closed-loop state to

converge to a small region around the steady-state. An EMPC
system that accounts for actuator dynamics is applied to a
chemical process example to study the effect of the actuators on
performance and integral input constraint satisfaction.

■ PRELIMINARIES

Notation. The Euclidean norm of a vector is denoted as |·|.
A continuous function α: [0, a) → [0, ∞) belongs to class if
it is strictly increasing and α(0) = 0. A function V:Rn → R≥0 is
positive definite if V(x) > 0 for all x ≠ 0 and V(0) = 0 at x = 0.
The symbol Ωr denotes a level set of a positive definite scalar
function V:Rn → R≥0 (Ωr := {x ∈ Rn | V(x) ≤ r} where r > 0).
The notation S(Δ) signifies the family of functions that are
piecewise constant for time intervals of length Δ. Set
subtraction is signified by the symbol “\” (i.e., A\B = {x ∈ A
| x ∉ B}).

Class of Process Systems. The class of process systems
considered is described by a system of nonlinear first-order
ordinary differential equations of the form:

̇ =x t f x t u t w t( ) ( ( ), ( ), ( ))a (1)

where x ∈ Rnx is the process state vector, ua ∈ Rnu is the control
actuator output vector, and w ∈ Rnw is the disturbance vector.
Owing to the physical limitations of the control actuators, there
are bounds on the control actuator outputs: ua,i ∈ Ua,i := {ua,i ∈
R | ua,i

min ≤ ua,i ≤ ua,i
max} for i = 1, ..., nu where ua,i

min and ua,i
max denote

the minimum and maximum allowable values of the ith actuator
output, respectively. The norm of the disturbance vector is
assumed to be bounded in the set: W := {w ∈ Rnw | |w| ≤ θ}
where θ > 0. The vector function f(·,·,·) describing the process
dynamics is assumed to be locally Lipschitz on Rnx × Rnu × Rnw,
and the origin of the unforced system is taken to be an
equilibrium point of eq 1 ( f(0, 0, 0) = 0). The state of the
process system of eq 1 is assumed to be measured
synchronously at sampling times Δ > 0. The discrete sampling
time sequence is denoted as {tk≥0} where tk := t0 + kΔ, t0 is the
initial time, and k = 0, 1, ....

Figure 1. A block diagram of the control structure with EMPC at the supervisory control layer. The dashed box denotes the regulatory control and
control actuator layer and consists of nu actuators in closed-loop under PI controllers, and the dotted box represents the combined process−actuator
model that will be developed for use in EMPC. The output of the PI controllers is denoted as u ̂m,i(t).
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Control Actuator Modeling. Typically, a feedback control
system is designed to stabilize the origin of the nonlinear
process system of eq 1. Within this paradigm, the controller
computes control actions um(t) and the underlying assumption
is that the actuators can instantaneously or nearly instanta-
neously (i.e., in a negligible amount of time relative to the time
constants of process dynamics of eq 1) implement the
computed control action (ua(t) ≈ um(t) for almost all times).
However, the control actuators are dynamic systems and the
assumption that ua(t) ≈ um(t) may not necessarily be applicable
depending on the dynamics of the actuators, thereby potentially
leading to significant constraint violations. To this end, the
dynamics of the ith control actuator, which may be operating in
closed-loop under a linear controller or in open-loop, are
assumed to be modeled by the following linear system:

ζ ζ
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= +

=
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⎣
⎢⎢
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⎦
⎥⎥
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where xa,i ∈ Rns,i is the state vector describing the dynamics of
the ith actuator, ζi ∈ Rnc,i is the state vector of the controller, um,i
∈ R is the requested input value or set-point of the control loop
around the ith actuator, ua,i ∈ R is the output of the ith actuator,
and the matrices Ai, Bi, and Ci are real matrices of appropriate
dimensions. For the case that the control actuator operates in
open-loop or in closed-loop under a static controller, the model
of eq 2 does not include any controller states. In this modeling
framework, the actuator output is subject to constraints which
leads to output constraints. The output constraints can be
converted into linear state constraints, that is the state xa,i must
satisfy

∈ = ∈ | ≤ ≤x X x R u C x u: { }a i a i a i
n

a i i a i a i, , , ,
min

, ,
maxs i, (3)

The reachable set-points or requested actuator values are given
by the set:

= ∈ | ≤ ≤U u R u u u: { }m i m i m i m i m i, , ,
min

, ,
max

(4)

where um,i
min = ua,i

min/Kp,i, um,i
max = ua,i

max/Kp,i, and Kp,i is the steady-
state gain between the requested input um,i and the actuator
output ua,i. Continuous state or output feedback of the actuator
state xa,i(t) or output ua,i(t) is assumed. Given that the system
of eq 2 is linear, state estimation can be carried out using
standard techniques. Although not explicitly needed for the
theoretical developments below, the dynamics of the control
actuators are assumed to be decoupled from one another and
the eigenvalues of Ai are assumed to be strictly in the left-half of
the complex plane (Re(λj) < 0 for all j where λj is an eigenvalue
of Ai). These assumptions are made to study the most typical
case in practice and to clarify the fact that the input um(t) is
used to stabilize the process dynamics (i.e., um(t) is not used to
stabilize the actuator dynamics).
A model describing the evolution of all nu control actuators is

constructed from the individual models of eq 2. Define the
following integers:

∑ ∑= =
= =
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(5)

and the following vectors: xa
T(t) := [xa,1

T (t) ··· xa,nu
T (t)] and ζT(t)

:= [ζ1
T(t) ··· ζnu

T(t)]. The dynamic model describing the
evolution of all of the control actuators is
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where xa ∈ Xa := Xa,1 × ··· × Xa,nu ⊂ Rns, ζ∈Rnc, um ∈ Um := Um,1

× ··· × Um,nu, A ∈ R(ns+nc) × (ns+nc), B ∈ R(ns+nc) × nu, and C ∈ Rnu × ns.
The state constraint xa ∈ Xa is used to ensure that the output
constraint is satisfied.

Combined Process-Actuator Model. From the process
model of eq 1 and the control actuator layer model of eq 6, a
combined dynamic model can be constructed to be used within
an EMPC system. Denote the state vector of the combined
process-actuator dynamic system as zT(t) := [xT(t) xa

T(t) ζT(t)]
and the resulting combined process-actuator system is given by

ζ
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where z ∈ Rnz with nz = nx + ns + nc and g:R
nz × Rnu × Rnw → Rnz

is a locally Lipschitz vector function of its arguments (by the
assumption imposed on f(·,·,·)). Owing to the constraints
imposed on xa, z is subject to the constraint z ∈ Z in which Z is
the set where the state constraint on xa is satisfied, and any
other state constraints imposed on x and ζ are also satisfied.
The combined process−actuator system is illustrated by the
dotted box in Figure 1.
For the combined process and actuator system, the existence

of a stabilizing controller h(z) ∈ Um is assumed that renders the
origin of the nominal closed-loop system z ̇ = g(z, h(z), 0)
asymptotically stable. Applying an appropriate converse
theorem,22−24 there exists a continuously differentiable, positive
definite Lyapunov function, V:Rnz → R≥0, for the closed-loop
system of eq 7 under the controller h(z) that satisfies

α| | ≤ ≤ | |a z V z z( ) ( ) ( )1 2 (8a)

α∂
∂

≤ − | |V z
z

g z h z z
( )

( , ( ), 0) ( )3 (8b)

α∂
∂

≤ | |V z
z

z
( )

( )4
(8c)

for all z ∈ D where D is an open neighborhood of the origin
and the functions αi(·), i = 1, 2, 3, 4 are class functions.
Many nonlinear control laws have been developed for various
classes of nonlinear systems that satisfy the aforementioned
assumption (e.g. refs 25−27).
An invariant set within D, usually taken to be a level set of V,

will be used in the design of an EMPC system and is taken as
an estimate of the region of attraction of g(z, h(z), 0).
Specifically, the level set of V(·), Ωρ̅ ⊂ D, is defined
which contains points in state-space where V̇(z) < 0 when z
≠ 0 and V̇(0) = 0 while accounting for the input constraints. To
account for the state constraints imposed on the state z,
another level set Ωρ which satisfies Ωρ ⊆ Z and Ωρ ⊆ Ωρ̅ is
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defined and is referred to as the stability region of the system of
eq 7 under the controller h(z) for the remainder of this work.
Remark 1. A clarification on the stability region Ωρ is in

order. First, when Ωρ̅ = Z, the stability region Ωρ can be taken
to be Ωρ̅ since this is a state-space region where V̇ is negative
definite and the state constraints are satisfied. However,
consider two cases: Ωρ̅ ⊂ Z and Z ⊂ Ωρ̅. In the former case,
the stability region Ωρ can be taken to be Ωρ̅ because the state
constraints are satisfied for all points in Ωρ̅. While points
outside of Ωρ̅ satisfy the state constraints, it may not be possible
to stabilize the closed-loop system for any states starting in
Z\Ωρ̅ given that the time-derivative of the Lyapunov function is
not guaranteed to be negative. For the latter case, Ωρ needs to
be taken to be a subset of Z. Any point starting in Z satisfies the
state constraint and is such that V̇ is negative definite. However,
the closed-loop state trajectory that the system evolves along
under the controller h(z) is not guaranteed to be maintained in
Z, that is, Z may not necessarily be forward invariant for the
closed-loop system. The state trajectory may come out of Z, but
stay in Ωρ̅, before it asymptotically converges to the origin.
Remark 2. When the response of the control actuators is

sufficiently fast such that the system of eq 7 exhibits two-time-
scale dynamics and A has eigenvalues with negative real parts,
the assumption of the existence of a stabilizing controller can be
made with respect to the process dynamics of eq 1, and the
design of the EMPC may proceed with neglecting the control
actuator dynamics. In this work, the more general case where
the combined system of eq 7 does not necessarily exhibit two-
time-scale dynamics is considered. A motivating example is
given in the subsequent section to better illustrate the
complications arising when a sufficient time-scale separation
between the process dynamics and the actuator dynamics is not
present. Moreover, when the process−actuator dynamics
exhibit two-time-scale dynamics, designing a controller h(z)
which includes both the fast and slow system states may lead to
an ill-conditioned controller (see, for example, ref 28 for some
results on two-time-scale systems within the context of EMPC).

Economic Model Predictive Control. A scalar function
l:Rnx × Rnu → R that captures the real-time process economics is
used as the stage cost in EMPC. As previously discussed, the
control actuator dynamics are typically neglected when
designing and studying the stability and performance properties
of EMPC with ua(t) = um(t). In this context, EMPC is
characterized by the following dynamic optimization problem:

∫ τ τ τ̃
∈ Δ

+ Δ
l x uminimize ( ( ), ( )) d

u S t

t N

m
( )m k

k

(9a)

subject to

̇ = ̃∼x t f x t u t( ) ( ( ), ( ), 0)m (9b)

̃ =x t x t( ) ( )k k (9c)

∈u t U( )m m (9d)

where the decision variable of the optimization problem is the
piecewise constant input trajectory um(t) that is defined over
the prediction horizon t ∈ [tk, tk + NΔ). The EMPC uses the
nominal process model (eq 9b) initialized with a state feedback
measurement at the current sampling time tk (eq 9c) to predict
the evolution of the process over the prediction horizon. The
predicted state trajectory is denoted as x ̃(t). The input
constraints (eq 9d) are included as a constraint in the
optimization problem to ensure that the EMPC computes an
admissible control action. The EMPC is typically implemented
in a receding horizon fashion: at a sampling period tk, a state
measurement is received, the optimal control problem defined
by eq 9 is solved for the optimal input trajectory denoted as
um*(t|tk) where t ∈ [tk, tk + NΔ), and the control action defined
for the first sampling period of the prediction horizon, which is
denoted as um*(tk|tk), is sent to the control actuator layer to be
implemented over the sampling period. At the next sampling
period tk+1, the procedure is repeated. In general, EMPC, as
defined by the problem of eq 9, is not stabilizing and thus,
additional constraints are added to the problem of eq 9 to

Figure 2. Transient response of the closed-loop system resulting from the process described by eq 10 and a first-order control actuator controlled by
a PI controller with controller parameters: (a) Kc = 5.0 and K = 5.0 and (b) Kc =1.0 and K = 2.6 (which is denoted as “Account for Actuator”). For
comparison purposes, the case when ua(t) = um(t) is also given and is denoted as “Neglect Actuator”.
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ensure closed-loop stability. In this work, stability constraints
will be designed on the basis of the explicit feedback controller
h(z).

■ EMPC ACCOUNTING FOR THE CONTROL
ACTUATOR DYNAMICS

In this section, the design of a Lyapunov-based EMPC
(LEMPC) scheme that accounts for the control actuator
layer and a stability analysis of the closed-loop process−
actuator system of eq 7 under the LEMPC is completed. To
better illustrate the complications arising from the actuator
layer, a motivating example is given in the next subsection.
Motivating Example. Consider the following scalar

nonlinear system:

̇ = +x x ua
2

(10)

where ua ∈ [−10, 10]. The (open-loop) dynamics of the
control actuator are assumed to be described by the following
first-order transfer function (in the Laplace domain):

τ
=

+
G s

K

s
( )

1p
p

P (11)

where Kp is the steady-state process gain and τP is the time
constant. For this example, let Kp = 1.0 and τP = 0.1. The
control actuator is regulated by a PI controller which has the
following transfer function:

τ
= +

⎛
⎝⎜

⎞
⎠⎟G s K

s
( ) 1

1
c c

I (12)

where Kc is the controller gain and τI is the integral/reset time.
Let Kc = 5.0 and τI = 0.1 which has been tuned so that the
closed-loop transfer function relating the desired input um to
the actuator output ua is overdamped. A feedback controller is
designed via feedback linearization techniques to stabilize an
operating steady-state of the system of eq 10 by neglecting the
control actuator layer and is given by the following explicit
control law:

= − + −u t x K x x( ) ( )m sp
2

(13)

where xsp is the desired operating steady-state and K is a tuning
parameter of the controller.
In this case, let K = 5.0 and xsp = 2.8. An example transient

response of the resulting closed-loop system is given in Figure
2a along with the case that ua(t) = um(t). From Figure 2a, the
transient response of the closed-loop system including the
actuator dynamics nearly overlaps the response of the case
when ua(t) = um(t). For this case, the upper bound on K for
closed-loop stability is large given that the closed-loop actuator
tracks um(t) sufficiently fast (i.e., K may be increased to increase
the speed of the response of x(t)). In addition, when ua(t) =
um(t), there is no upper bound on K.
On the other hand, consider a different case where Kc = 1.0

(the remaining parameters are the same as the previous case).
With this PI controller gain, the closed-loop system is unstable
because the closed-loop actuator does not respond sufficiently
fast. To make the closed-loop system stable, one could decrease
the feedback linearizing controller gain (effectively slowing the
rate of change of um(t)). A closed-loop simulation with K = 2.8
and Kc = 1.0 is shown in Figure 2b. The closed-loop state
trajectory x(t) is driven to the desired set-point which
demonstrates that with Kc = 1.0 there is an upper bound on

the feedback linearizing controller gain, K, for closed-loop
stability. However, compared to the case where um(t) = ua(t)
(denoted as “Neglect Actuator” in Figure 2b), the transient
response is much different. For example, overshoot is observed
in the state trajectory x(t) where the closed-loop actuator under
the PI controller dynamics is simulated, while no overshoot is
observed for the case where the actuator layer is neglected in
the simulation. The discrepancy noticed in the closed-loop state
trajectories of Figure 2b is an important consideration in the
context of EMPC as consistently transient operation may be
realized under EMPC. If one does not account for the actuator
layer and the response of the process system is sufficiently
different from that predicted by the model, closed-loop
performance under EMPC may be significantly affected.

Lyapunov-Based EMPC Formulation and Implemen-
tation. An EMPC is designed via the Lyapunov-based
techniques proposed in ref 20 which takes advantage of the
stability properties of an explicit stabilizing controller. To
account for the actuator dynamics, the combined process-
actuator model of eq 7 and the controller h(z) are used in the
formulation. With abuse of notation, l(z) will be used to denote
the economic stage cost l(x, ua). However, one may also
consider more general stage cost functions which may include
the regulatory controller states ζ and/or the requested control
actions um in the economic stage cost because the stability
analysis of LEMPC does not rely on the objective function
value to have certain properties to prove closed-loop stability.
The resulting Lyapunov-based EMPC (LEMPC) is formulated
as follows:

∫ τ τ̃
∈ Δ

+ Δ
l zminimize ( ( )) d

u S t

t N
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k
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k k e (14f)

where the decision variable is the requested piecewise constant
input trajectory um(t) which is defined over the prediction
horizon t ∈ [tk,tk + NΔ) and z(̃t) denotes the predicted state
trajectory.
The LEMPC of eq 14 is a dual mode controller and t′

denotes a switching time between modes. Under mode 1
operation (tk < t′), the LEMPC operates the process system in
an economically optimal, but possibly transient, manner while
maintaining the closed-loop state in Ωρ. To guarantee that the
closed-loop state, which can be affected by unknown bounded
disturbances, will be maintained in Ωρ, two Lyapunov-based
constraints of eq 14e and 14f are used. If the state of the system
is in Ωρe ⊂ Ωρ, then the constraint of eq 14e is active and
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defines mode 1 operation of the LEMPC. Equation 14e
constrains the predicted state trajectory to be contained in Ωρe

over the prediction horizon. The region Ωρe is designed to be

such that any state starting in Ωρe will be maintained in Ωρ over
the sampling period in the presence of bounded disturbances,
so that the state at the next sampling period will be in Ωρ. If the
current state z(tk) ∉ Ωρe, the constraint of eq 14f, which defines
mode 2 operation, is active. This contractive constraint enforces
that the time-derivative of the Lyapunov function under the
control action implemented at the first sampling period of the
prediction horizon be less than that under the control action
computed by the controller h(z). This will guarantee that any
state starting in Ωρ\Ωρe will converge to Ωρe in finite time.
Under mode 2 operation (tk ≥ t′), the contractive constraint of
eq 14 is always active which enforces that the closed-loop state
converges to a small compact set containing the origin in its
interior. The LEMPC of eq 14 is implemented in a receding
horizon fashion.
Remark 3. It is important to point out that the constraints on

the control actuator outputs (i.e., the state constraints) are
guaranteed to be satisfied for the closed-loop system under
LEMPC with any initial state z(t0) ∈ Ωρ because the closed-
loop state under the LEMPC of eq 14 is guaranteed to be
maintained in Ωρ. Within Ωρ, the state constraints are satisfied
by design of the region Ωρ.
Stability Analysis. By design of the controller h(z), the

stability region Ωρ, and the Lyapunov-based constraints
imposed in the LEMPC (eqs 14e and 14f), the resulting
LEMPC scheme has the same closed-loop stability and
robustness properties (with respect to the closed-loop system
of eq 7) as that described in ref 20. For completeness of
presentation, the stability properties are summarized below (the
proofs of Propositions 1 and 2 can be found in ref 29 and the
proof of Theorem 1 is in ref 20). The results utilize the
following properties which follow from the fact that g(·,·,·) is a
locally Lipschitz vector function of its arguments, the Lyapunov
function V(·) is continuously differentiable, and the state vector
z, the input vector um, and the disturbance vector w are all
bounded in a compact set. First, there exists an M > 0 such that

| | ≤g z u w M( , , )m (15)

for all z ∈ Ωρ, um ∈ Um, and w ∈W. Second, there exist positive
constants Lz, Lw, Lz′, and Lw′ such that

| − | ≤ | − | + | |g z u w g z u L z z L w( , , ) ( , , 0)m m z w1 2 1 2 (16)

∂
∂

−
∂

∂

≤ ′| − | + ′ | |

V z
z

g z u w
V z

z
g z u

L z z L w

( )
( , , )

( )
( , , 0)m m

z w

1
1

2
2

1 2 (17)

for all z1, z2 ∈ Ωρ, um ∈ Um, and w ∈ W.
The following proposition bounds the difference between

Lyapunov function values for any two points in Ωρ.
Proposition 1 (c.f., ref 29). The difference between

Lyapunov function value for any two points in Ωρ is bounded
by a quadratic function fV(·):

− ≤ | − |V z V z f z z( ) ( ) ( )V1 2 1 2 (18)

for all z1, z2∈Ωρ where

α α ρ β= +−f s s s( ) : ( ( ))V 4 1
1 2

(19)

for some β > 0.
The difference between the nominal state trajectory of eq 7

(w(t) ≡ 0) and the state trajectory in the presence of
disturbances can be bounded when the state trajectories are
maintained in Ωρ.

Proposition 2 (c.f., ref 29). The difference between the state
trajectory of eq 7 where w(t) ≢ 0 and the nominal state
trajectory of eq 7 (w(t) ≡ 0) can be bounded by a class
function f w(·):

| − ̂ | ≤ −z t z t f t t( ) ( ) ( )w 0 (20)

when z(τ), z(̂τ) ∈ Ωρ for all τ ∈ [t0,t] where z(t) denotes the
state of the system of eq 7 with w(t) ≢ 0 and z(̂t) denotes the
state of the nominal system of eq 7 and

θ
= −f s

L
L

e( ) : ( 1)w
w

x

L sx

(21)

The following theorem states the stability properties of the
closed-loop system of eq 7 under the LEMPC of eq 14. For any
state z(t0) ∈ Ωρ, sufficiently small sampling period and bound
on disturbance, and ρe properly chosen, the closed-loop state
trajectory will be maintained in Ωρ. If the switching time t′ is
finite (i.e., the LEMPC switches to mode 2 operation only), the
closed-loop state converges to and remains bounded in a small
invariant set containing the origin in its interior.

Theorem 1 (c.f., ref 20). Consider the closed-loop system of
eq 7 under the LEMPC of eq 14 based on a controller h(z) that
satisfies the conditions of eq 8. Let εw > 0, Δ > 0, ρ > ρe > 0,
and ρ > ρs > 0 satisfy

ρ ρ≤ − Δf f( ( ))e V w (22)

and

α α ρ θ ε− + ′ Δ + ′ ≤ − Δ− L M L( ( )) /s z w w3 2
1

(23)

If z(t0) ∈ Ωρ, ρs ≤ ρe, ρmin ≤ ρ, and N ≥ 1 where

ρ ρ= + Δ | ≤V z t V z tmax{ ( ( )) ( ( )) }smin (24)

then the state z(t) of the closed-loop system is always bounded
in Ωρ. Furthermore, if the switching time is finite (t′ <∞), then
the closed-loop state z(t) is ultimately bounded in Ωρmin

.
Remark 4. The stability result of Theorem 1 provides

sufficient conditions for closed-loop stability (boundedness of
the closed-loop state inside Ωρ) under the LEMPC formulated
with the combined process-actuator model in the presence of
bounded uncertainties. When the actuator models are not
exactly known, these uncertainties can be incorporated in the
disturbance vector w(t). If the bound on the disturbance vector
is sufficiently small, then closed-loop stability under the
LEMPC can be proven. However, it is impossible to guarantee
exact constraint satisfaction when an exact model for the
actuator layer is not known as is the case for any constraint (i.e.,
state constraints) when there is plant-model mismatch.
Remark 5. Incorporating a model which includes the actuator

layer dynamics may increase the computational complexity as is
the case whenever a more complex (potentially higher-order)
model is used within a model predictive control framework.
The main objective of the present work is to illustrate the effect
of the actuator dynamics on the closed-loop performance and
constraint satisfaction under EMPC. Given the fact that EMPC
optimizes the process economics using a dynamic process
model, it is important to consider the effects of the actuator
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dynamics on the actual closed-loop evolution of the process.
For certain cases, formulating an EMPC that does not account
for the actuator dynamics may result in a different closed-loop
performance than the closed-loop performance under EMPC
that accounts for the actuator layer. However, often economic-
based constraints are included in the formulation of EMPC
since EMPC accounts for the process economics. As
demonstrated in the present work, it may not be possible to
satisfy the economic-based constraints (in this case, the
economic-based constraint considered is an integral input
constraint; see the Application to a Chemical Process Example
section below) unless a model of the actuator layer is included
in the EMPC. Thus, to optimize the process economics
through dynamic operation under EMPC while ensuring the
integral constraint, the only way is to use a dynamic model of
the actuator layer. This may increase the EMPC computational
time, but this is the price that needs to be paid to achieve
constraint satisfaction.

■ APPLICATION TO A CHEMICAL PROCESS
EXAMPLE

A benchmark chemical reactor example from ref 30 is
considered in this case study. Specifically, consider a
continuously stirred tank reactor (CSTR) where ethylene
(C2H4) is oxidized to ethylene oxide (C2H4O). The CSTR is
equipped with a cooling jacket to remove heat generated from
the exothermic reactions occurring in the CSTR. In addition to
the catalytic oxidation reaction that converts ethylene to
ethylene oxide, two combustion reactions that convert ethylene
oxide and ethylene to carbon dioxide and water occur in the
CSTR. The reaction equations are as follows:

+ →C H
1
2

O C H O
r

2 4 2 2 4
1

(R1)

+ → +C H 3O 2CO 2H O
r

2 4 2 2 2
2

(R2)

+ → +C H O
5
2

O 2CO 2H O
r

2 4 2 2 2
3

(R3)

The reaction rates r1, r2, and r3 of reactions R1, R2, and R3,
respectively, are given by the following rate laws:31

=
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=
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(25b)

=
−⎜ ⎟⎛

⎝
⎞
⎠r k

E
RT

Pexp3 3
3

EO
0.5

(25c)

where k1, k2, and k3 are pre-exponential factors, E1, E2, and E3
are activation energies for each reaction, R is the gas constant,
and T is the absolute temperature. The reaction rates depend
on the partial pressures of ethylene (PE) and of ethylene oxide
(PEO). The gaseous mixture in the CSTR is assumed to be an
ideal gas, and thus, the partial pressures can be written in terms
of the molar concentrations of ethylene and ethylene oxide
which are denoted as CE and CEO, respectively.
A system of four differential equations relating the state

variables for the chemical process (reactor gas density (ρR),
ethylene concentration (CE), ethylene oxide concentration
(CEO), and absolute temperature T within the reactor) can be
derived from mass and energy balances by employing standard

modeling assumptions (a detailed description of the modeling
can be found in ref 30). To simplify the presentation, a
dimensionless variable form of the reactor model will be used
with the state variables ρR, CE, CEO, and T corresponding to the
dimensionless state variables x1, x2, x3, and x4, respectively. The
system of ordinary differential equations that describes the
evolution of the CSTR is given by

= −
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where Aj (j = 1, 2, 3), Bk (k = 1, 2, 3, 4), γl (l = 1, 2, 3), and Tc
are process parameters with values given in Table 1 and t

denotes the dimensionless time. The manipulated inputs to the
reactor are considered to be the volumetric flow rate of the inlet
stream (u1) and the concentration of ethylene in the inlet
stream (u2). The output of actuators for the manipulated inputs
u1 and u2 is assumed to be the inlet volumetric flow rate and the
inlet concentration of ethylene, respectively. The actuator
outputs are bounded within the following sets (given in
dimensionless variable form):

∈u [0.0704, 0.7042]a,1

∈u [0.2465, 2.4648]a,2

The control objective of the CSTR is to feed the ethylene to
the reactor in a manner that maximizes the average yield of
ethylene oxide. The average yield of ethylene oxide, which
quantifies the amount of ethylene oxide produced compared to
the amount of ethylene fed to the reactor, is given by

Table 1. Dimensionless Process Model Parameters of the
Ethylene Oxidation CSTR. The Parameters Are Taken from
Reference 30

parameter value parameter value

A1 92.80 B4 7.02
A2 12.66 γ1 −8.13
A3 2412.71 γ2 −7.12
B1 7.32 γ3 −11.07
B2 10.39 Tc 1.0
B3 2170.57
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where t0 is the initial time and tf is the final time. Owing to
practical considerations, the time-averaged molar flow rate of
ethylene that can be fed to the reactor is limited to

∫ τ τ τ
−

=
t t

u u
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( ) ( ) d 0.175
t

t

f 0
1 2

0

f

(28)

Because the integral input constraint of eq 28 fixes the value of
the denominator in eq 27, the stage cost function used in the
EMPC problem to achieve the desired objective is

= −l x u u x x( , ) 1 3 4 (29)

The control actuators for the manipulated inputs u1 and u2 are
modeled as identical first-order linear systems with transfer
function (in the Laplace domain):

τ
=

+
G s

K

s
( )

1p
p

p (30)

where the steady-state gain of the actuators is Kp = 1.0 and the
time-constant of the actuators is τp = 0.0225. Each control
actuator output is controlled by a PI controller which receives
its set-point from the EMPC in the supervisory layer (c.f.,
Figure 1). The transfer function describing the PI controllers
(the same tuning parameters were used in both PI controllers)
is

τ
= +

⎛
⎝⎜

⎞
⎠⎟G s K

s
( ) 1

1
c c

I (31)

where the PI controllers in the simulations below have been
tuned to give overdamped responses. Thus, the closed-loop
dynamics of a control actuator under a PI controller form a
second-order linear system and the dynamic equations
modeling the closed-loop behavior have two states: ua,i, which
is the ith actuator output, and ζi, which is the ith PI controller
state (i = 1, 2). The input to the closed-loop system consisting
of the actuator under the PI controller is the set-point um,i of
the control loop and is computed by the EMPC. Under the
modeling framework of eq 7, the state of the combined
process−actuator model is zT = [x1 x2 x3 x4 ua,1 ua,2 ζ1 ζ2] and
the input is um

T = [um,1 um,2].
In this case study, the difference between accounting for the

control actuator layer in EMPC and neglecting the actuator
layer will be examined. Two EMPC systems are considered.
Before the EMPC is designed, it is important to point out that
the system has an open-loop asymptotically stable steady-state
that satisfies the integral input constraint of eq 28 with xs

T =
[0.998 0.424 0.032 1.002] which corresponds to the steady-
state input us

T = [0.35 0.5]. Since closed-loop stability under
EMPC is not an issue for the region of operation considered for
the system of eq 26, an explicit characterization of the
Lyapunov-based constraints of eqs 14e and 14f will not be
needed. However, given that the steady-state is open-loop
asymptotically stable, there exists a control Lyapunov function
that could be used to design a Lyapunov-based controller that
satisfies eq 8. With the Lyapunov function and Lyapunov-based
controller, the Lyapunov-based constraints of eqs 14e and 14f
could be designed.

To satisfy the integral input constraint of eq 28 over the
entire length of operation given that EMPC is formulated with
a finite-time prediction horizon, the constraint is imposed over
successive operating windows, that is the constraint must be
satisfied over each operating interval of length tp. The EMPC
systems considered are implemented with a shrinking horizon
that covers the entire operating window tp at the beginning of
the window and is decremented by one at each sampling
period. Specifically, at the beginning of the operating window
where tk = t0 + jtp for some j = 0, 1, ... (j denotes the jth
operating window), the prediction horizon is initialized as Nk =
tp/Δ (assuming that tp is a multiple of the sampling period). At
each subsequent sampling period, the prediction horizon
decreases by one (Nk = Nk−1 − 1) until the beginning of the
next operating window where the prediction horizon is
reinitialized to tp/Δ.
The formulation of the EMPC that does not account for the

actuator layer is given by

∫ τ τ τ τ− ̃ ̃
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where the constraints of eq 32d and 32e are enforced for all t ∈
[tk, tk + NkΔ) and the integral of the right-hand side of eq 32f
accounts for the amount of material used since the beginning of
the operating window. The EMPC of eq 32 will be referred to
as EMPC-1 for the remainder of this work. The formulation of
the EMPC that accounts for the actuator dynamics, which will
be referred to as EMPC-2 for the remainder of this work, is
given by

∫ τ τ τ τ− ̃ ̃ ̃
∈ Δ

+ Δ
z z zmin ( ) ( ) ( ) d

u S t

t N

( )
5 3 4

m k

k k

(33a)

subject to

̇ = ̃∼z t g z t u t( ) ( ( ), ( ))m (33b)

̃ =z t z t( ) ( )k k (33c)

̃ ∈z t( ) [0.0704, 0.7042]5 (33d)

̃ ∈z t( ) [0.2465, 2.4648]6 (33e)

∈u t( ) [0.0704, 0.7042]m,1 (33f)

∈u t( ) [0.2465, 2.4648]m,2 (33g)
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where the constraints of eq 33d−33g are enforced for all t ∈ [tk,
tk + NkΔ) and the integral of the right-hand side of eq 33h
accounts for the actual amount of material fed to the reactor
(i.e., the actual actuator output). A notable difference between
EMPC-1 and EMPC-2 is in the enforcement of the integral
constraint. Because EMPC-1 neglects the actuator dynamics,
while EMPC-2 includes them, in EMPC-1, the integral input
constraint is enforced on the basis of the requested input, while
EMPC-2 enforces the constraint to be satisfied on that which is
actually being fed to the reactor.
The sampling period used in the implementation of EMPC-1

and EMPC-2 is Δ = 9.36, and the operating window for which
the integral input constraints are enforced is tp = 46.8. All
numerical integrations were performed using the explicit Euler
method with a step size of h = 0.0001 used to integrate forward
the model within each EMPC optimization problem and a step
size of hi = 0.00001 to simulate the closed-loop dynamics of the
reactor and actuators. In the closed-loop simulations below, the
reactor was initialized at zT(0) = [0.997 1.264 0.209 1.004 0 0 0
0]. The state constraints on the components of ua in eqs 33d
and 33e are enforced at every integration step h. To solve the
optimization problems, the open-source interior point solver,
Ipopt32 was employed.
Three different PI tunings for the actuator controllers were

considered. The tunings were chosen by finding values of Kc
with τI = τP = 0.0225 such that the step response to a change in
set-point um would reach 98% of its final value in about 10%,
50%, and 100% of the sampling period Δ = 9.36 without
overshooting. The three tuning cases are referred to as Case 1,
2, and 3 for the remainder, and the proportional gains used
were Kc = 0.09, Kc = 0.02, and Kc = 0.01, respectively, for the
three cases.
Several closed-loop simulations under both EMPC-1 and

EMPC-2 for the different tuning settings of the PI controllers
were carried out over 10 operating windows. The closed-loop
trajectories under EMPC-1 and under EMPC-2 for case 1 are
given in Figures 3−5, the trajectories for case 2 are given in
Figures 6−8, and the trajectories for case 3 are given in Figures
9−11. From Figures 3−5, the closed-loop trajectories of the
CSTR under EMPC-1 and under EMPC-2 are nearly
overlapping. For this case, the PI controllers are tuned such
that the control actuators respond quickly to a set-point change
relative to the sampling period (and process dynamics) and
thus, the control actuators are able to closely track the
piecewise constant requested input trajectory um(t) computed
by EMPC. On the other hand, for case 3 (Figures 9−11), more
differences, as expected, are observed between the closed-loop
trajectories. From Figure 10, EMPC-2 computes higher set-
points for the actuator layer because EMPC-2 accounts for the
control actuator dynamics and thus, anticipates the slow
response of the actuator layer by providing it a higher set-point
to speed its response to the set-point change.
Table 2 gives the closed-loop yield of ethylene oxide of all

the simulations as well as the maximum and minimum average
molar flow rate of ethylene to the reactor over each operating
window, that is the minimum and maximum values of the
integral:

Figure 3. Closed-loop state trajectories of the CSTR under EMPC-1
(dashed line) and under EMPC-2 (solid line) with Kc = 0.09 (the
trajectories are overlapping).

Figure 4. Requested input trajectory (um(t)) computed by EMPC-1
(dashed line) and by EMPC-2 (solid line) corresponding to the case
Kc = 0.09 (the trajectories are nearly overlapping).

Figure 5. Control actuator output trajectory (ua(t)) for the closed-
loop CSTR under EMPC-1 (dashed line) and EMPC-2 (solid line)
with Kc = 0.09 (the trajectories are nearly overlapping).
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Figure 6. Closed-loop state trajectories of the CSTR under EMPC-1
(dashed line) and under EMPC-2 (solid line) with Kc = 0.02 (the
trajectories are nearly overlapping).

Figure 7. Requested input trajectory (um(t)) computed by EMPC-1
(dashed line) and by EMPC-2 (solid line) corresponding to the case
Kc = 0.02.

Figure 8. Control actuator output trajectory (ua(t)) for the closed-
loop CSTR under EMPC-1 (dashed line) and EMPC-2 (solid line)
with Kc = 0.02.

Figure 9. Closed-loop state trajectories of the CSTR under EMPC-1
(dashed line) and under EMPC-2 (solid line) Kc = 0.01.

Figure 10. Requested input trajectory (um(t)) computed by EMPC-1
(dashed line) and by EMPC-2 (solid line) corresponding to the case
Kc = 0.01.

Figure 11. Control actuator output trajectory (ua(t)) for the closed-
loop CSTR under EMPC-1 (dashed line) and EMPC-2 (solid line)
with Kc = 0.01.
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over all j ∈ {0, 1, ..., 9} (labeled “min. con.” and “max. con.” in
Table 2, respectively). The results of Table 2 demonstrate that
the greater is the deviation of the actuator behavior from its
ideal instantaneous response to an EMPC set-point change, the
greater is the violation of the integral constraint for EMPC-1.
For example, in the case where the PI controller brings the
actuator to its new set-point in only about 10% of the sampling
period (case 1), the maximum violation of the integral
constraint at the end of one of the 10 operating periods is
about 1.15% greater than the allowable value of the integral
constraint, but in the case that the actuator reaches its new set-
point at the end of the sampling period (case 3), the maximum
violation of the integral constraint at the end of one of the 10
operating periods is about 6.15% greater than the allowable
value of the integral constraint. This discrepancy occurs because
EMPC-1 only ensures that the trajectory um(t) computed by
EMPC-1 meets the integral constraint; it does not account for
the effect of the actuator dynamics (i.e., the amount of material
actually being fed to the CSTR). The material fed to the CSTR
under EMPC-2 satisfies the integral input constraint at the end
of each operating period for all three tunings presented (Table
2). The violation of hard constraints under EMPC-1 shows that
consideration of actuators for an EMPC may be an important
consideration and explicit inclusion of the actuator dynamics
within the EMPC dynamic model may mitigate constraint
violation.
The yield of ethylene oxide at steady-state is 6.41%; the yield

under EMPC-2 is better than the steady-state yield for all cases
while satisfying the integral input constraint. It is important to
point out that the closed-loop yield under EMPC-1 was greater
than that under EMPC-2; however, more ethylene is fed to the
CSTR under EMPC-1 than the constraint value of 0.1750,
which contributes to the higher yield. For example, though the
closed-loop yield under EMPC-1 for case 3 is 9.90% compared
to that under EMPC-2 which was 9.41%, EMPC-1 uses
significantly more ethylene than allowable (a maximum of
6.15% more than the integral constraint in an operating
period). As pointed out in the “Motivating Example,”
accounting for the actuator layer for a system under EMPC
may be important since EMPC may dictate a transient
operating policy especially for the case when the actuator
layer is not nearly instantaneous relative to the process
dynamics. From the results in Table 2, as the speed of
response of the actuator layer increases, the difference between
closed-loop yield under EMPC-1 and EMPC-2 decreases, and
the amount of integral input constraint violation under EMPC-
1 decreases. This implies that when the regulatory controllers

are well-tuned (i.e., the actuator layer gives a fast response
relative to the process dynamics), both EMPC systems give
approximately the same result. Figures 3 to 11 illustrate this
point. Thus, these results show that for systems where actuators
are known to be poorly tuned or to become poorly tuned, it is
prudent to include the actuators directly within the EMPC
model, especially when hard constraints are present, to avoid
constraint violations.
The computation time of EMPC-2 is greater than EMPC-1.

However, it is important to point out the scope of the present
work which is demonstrating closed-loop performance and
constraint satisfaction under each of the EMPCs. When the
actuator layer responds sufficiently fast, the closed-loop
performance and constraint satisfaction is comparable between
the two approaches and thus, it would be more applicable for
practical application to use EMPC-1, owing to reduced
computation complexity. On the other hand, if the actuator
layer response is slow, significant constraint violations may
occur. To resolve this issue, a model including the actuator
must be used. Thus, the computational time comparison for the
present chemical process example compares a case that uses a
less complex model which leads to constraint violations with a
case that uses a more complex model that does not lead to
constraint violations. Moreover, given that computation time
depends on numerous factors such as how the constraints are
realized numerically, the solution strategy employed to solve
the nonlinear, nonconvex dynamic optimization problem of
EMPC, the computer hardware used in the simulation, etc., the
computational time of the two EMPCs is not compared
because the added computational time is not a limitation of the
proposed approach. Rather, this is a general problem when
considering economic-based constraint satisfaction under
EMPC which again, requires the use of a more detailed model.
Gaussian white noise was added to the process and actuator

states of EMPC-2 using a random number generator, with zero
mean and standard deviation σw

T = [0.6 1.2 0.6 0.6 0.6 1.8], and
bound θT = [1.8 3.6 1.8 1.8 1.8 3.6], corresponding to states [z1
z2 z3 z4 z5 z6]

T. The values of z5 and z6 were set to their
maximum or minimum if the bounds on these states were
exceeded when the noise was applied. The effect of noise was
examined for the fastest PI tuning (case 1) and the slowest PI
tuning (case 3) previously discussed. The state and input
trajectories with the bounded noise applied are shown in
Figures 12−17 for these two cases.
As shown in Figures 12−17, this realization of the process

noise produces a small effect on the state and input trajectories.
As a result, the average molar flow rate of ethylene to the
reactor was approximately the same for EMPC-2 with noise as
it was for EMPC-2 without noise (see Table 2). In addition, the
yield for case 3 was approximately the same as in Table 2;
however, a noticeable decrease in yield was observed for case 1
in the presence of noise (yield with noise was 9.57%, which is
0.02% lower than the nominal case). Though the yield was
decreased, EMPC-2 continued to meet the constraints and
retain superior performance over steady-state operation in the
presence of noise. These simulations also demonstrate
robustness of the EMPC that incorporates the actuator
dynamics.

■ CONCLUSIONS
In this work, the control actuator dynamics were accounted for
within the context of economic model predictive control
(EMPC). A combined process−actuator dynamic model was

Table 2. Average Yield of Ethylene Oxide for the CSTR
under EMPC-1 and under EMPC-2 over 10 Operating
Periodsa

EMPC-1 EMPC-2

case yield min. con. max. con. yield min. con. max. con.

1 9.66% 0.1766 0.1770 9.60% 0.1750 0.1750
2 9.79% 0.1811 0.1826 9.53% 0.1750 0.1750
3 9.90% 0.1850 0.1858 9.41% 0.1750 0.1750

aThe columns denoted as “min. con.” and “max. con.” correspond to
the minimum and maximum average ethylene molar flow rate fed to
the CSTR over an operating period.
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developed to be used within the EMPC and Lyapunov-based
constraints, imposed in the EMPC problem, were formulated
on the basis of the combined process-actuator dynamic model.
Conditions for closed-loop stability of the process-actuator
dynamic system under the Lyapunov-based EMPC (LEMPC)
were provided. Under the first mode of operation, the LEMPC
optimizes the process economics while possibly operating the

process system in a transient fashion, and under the second
mode of operation, the LEMPC forces the state of the system
to converge to a small set containing the origin. An EMPC
system that accounts for the control actuator dynamics was
developed and applied to a benchmark chemical process
example and was compared with an EMPC system that does
not account for the control actuator dynamics. From the

Figure 12. Closed-loop state trajectories of the CSTR under EMPC-2
with noise, Kc = 0.01.

Figure 13. Requested input trajectory (um(t)) computed by EMPC-2
with noise, Kc = 0.01.

Figure 14. Control actuator output trajectory (ua(t)) for the closed-
loop CSTR under EMPC-2 with noise, Kc = 0.01.

Figure 15. Closed-loop state trajectories of the CSTR under EMPC-2
with noise, Kc = 0.09.

Figure 16. Requested input trajectory (um(t)) computed by EMPC-2
with noise, Kc = 0.09.

Figure 17. Control actuator output trajectory (ua(t)) for the closed-
loop CSTR under EMPC-2 with noise, Kc = 0.09.
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comparison, the EMPC system that accounts for the actuator
dynamics was able to satisfy an integral input constraint on the
actual amount of reactant material that was being fed to the
process (the EMPC system that neglected the actuator
dynamics led to constraint violations) while improving
closed-loop economic performance over steady-state operation.
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