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ABSTRACT
Chemical process equipment (e.g., sensors, valves, pumps,
and vessels) can impact the dynamics, profitability, and
safety of plant operation. While continuous chemical pro-
cesses are typically operated at steady-state, a new control
strategy in the literature termed economic model predictive
control (EMPC) moves process operation away from the
steady-state paradigm toward a potentially time-varying
operating strategy to improve process profitability. The
EMPC literature is replete with evidence that this new
paradigm may enhance process profits when a model of the
chemical process provides a sufficiently accurate represen-
tation of the process dynamics. Recent work in the EMPC
literature has indicated that though the dynamics associated
with equipment are often neglected when modeling a chemi-
cal process, they can significantly impact the effectiveness
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of an EMPC (and the potentially time-varying operating
policies dictated by an EMPC may impact equipment in
ways that have not been previously observed under steady-
state operating policies); therefore, equipment dynamics
must be accounted for within the design of an EMPC. This
monograph analyzes the work that has accounted for valve
behavior in EMPC to date to develop insights into the
manner in which equipment behavior should impact the
design process for EMPC and to provide a perspective on a
number of open research topics in this direction.

Keywords: valve stiction, valve nonlinearities, economic model predictive
control, process control, process safety, process equipment



1
Introduction

The limitations of process equipment (e.g., catalysts, valves, pumps,
compressors, heat exchangers, vessels, and sensors), and the manner
in which the materials that comprise such equipment change over
time, have long been understood to pose issues for chemical process
control and therefore have been accounted for in various ways. In
the commonly utilized optimization-based controller known as model
predictive control (MPC) (Qin and Badgwell, 2003), valve limitations are
often accounted for within the control design by setting bounds on the
manipulated inputs as constraints (Rawlings, 2000). Issues associated
with sensors (e.g., drift and bias) have been accounted for in process
control utilizing techniques such as measurement replacement (Kettunen
et al., 2008) and output compensation (Prakash et al., 2002). Actuator
faults (Venkatasubramanian et al., 2003; Gajjar and Palazoglu, 2016)
have been handled through reconfiguration of MPC designs (Mhaskar,
2006; Alanqar et al., 2017c; Lao et al., 2013). Because such equipment
limitations have been recognized to play an important role in the
effectiveness of MPC designs and in maintaining closed-loop stability and
process operational safety, developments in economic model predictive
control (EMPC) (Ellis et al., 2014a; Rawlings et al., 2012; Müller
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296 Introduction

et al., 2015; Amrit et al., 2013; Limon et al., 2014), which is an
MPC with a modified objective function (compared to the traditional
industrial design) that does not take its minimum at a process steady-
state and therefore may operate a process in a time-varying fashion,
can incorporate similar techniques. The methods for accounting for
equipment limitations just described are handled at the design stage
of MPC/EMPC when it is still possible to add appropriate constraints
and abilities for model updating or controller reconfiguration to the
control system.

Despite recognition of the importance of accounting for equipment
limitations like hard bounds and equipment failure in MPC and EMPC,
little emphasis has been placed on accounting for equipment behavior in
a dynamic context. Though it could be argued that the traditional meth-
ods utilized for model updating in MPC based on process data (Marlin
and Hrymak, 1996) and data-based on-line model update methods for
EMPC (Alanqar et al., 2017b) can account for time-varying process
dynamics attributable to equipment issues such as catalyst deactivation
and heat exchanger fouling, these methods do not explicitly analyze the
dynamic behavior of equipment to understand how it may, like other
limitations/failure mechanisms of equipment, imply that adjustment
may need to be made to MPC/EMPC designs at the design stage.
Several works on MPC accounting for valve behavior through various
constraints (e.g., Zabiri and Samyudia, 2006; del Carmen Rodríguez
Liñán and Heath, 2012) have appeared. However, these have not taken
the dynamic behavior of the valves explicitly into account in the dynamic
model utilized for making state predictions. Srinivasan and Rengaswamy
(2008) explored a compensation method for valve stiction in which a
compensating signal to be added to the output of a linear controller for
a process is computed by an optimization problem with a model that
includes a data-driven stiction model (it is EMPC-like, taking advantage
of a prediction horizon to compute a number of compensating signals
throughout this horizon and only applying the first). Several recent
works (e.g., Durand et al., 2017; Durand and Christofides, 2016; Bacci
di Capaci et al., 2017) have focused on explicitly accounting for the
dynamic behavior of valves in MPC/EMPC. It has been demonstrated
that in addition to updates to the model utilized for making state
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predictions in MPC/EMPC to handle the valve behavior, adjustments
may also need to be made to the design itself, incorporating different
constraints than in the case that the valve dynamics can be neglected.
Furthermore, the time-varying nature of the input trajectories that
may be set up under an EMPC may cause equipment considerations
to become relevant that may not have been previously observed when
steady-state tracking was the operational goal.

Motivated by these recent developments indicating that accounting
for dynamic valve behavior in control design can be critical to the success
of an MPC/EMPC formulation, we focus in this work on analyzing the
literature related to valve behavior in EMPC to bring to the forefront the
notion that despite the general trend in the literature toward neglecting
equipment behavior, equipment behavior should be accounted for within
EMPC at the design stage. Using the literature focused on accounting
for valve behavior in EMPC as a guide, we highlight the necessity
of accounting for equipment behavior in EMPC from an economics
and a constraint satisfaction viewpoint and also indicate that it may
not be possible to develop EMPCs without accounting for equipment
behavior and then expect that all results will readily translate to the
case with equipment behavior accounted for in the model utilized for
making state predictions. To demonstrate this, we select several recent
EMPC developments which have not explicitly considered process-valve
or process-equipment systems within the design, and suggest that the
relevant dynamics of process-equipment systems may not fit within the
traditional set of assumptions developed when equipment behavior is
neglected. Therefore, equipment behavior must be considered from the
start of EMPC design; if it is not, it may be necessary to assess whether
developments in the literature can be directly applied to practical
systems in which equipment plays a role before utilizing such designs.



2
Preliminaries

2.1 Notation

The symbol | · | represents the Euclidean norm of a vector. The symbol
S(∆) represents the set of piecewise-defined vector functions with
period ∆. The notation tk = t0 + k∆, k = 0, 1, . . ., represents a
sampling time, where t0 (k = 0) is the first sampling time, and ∆
is the sampling period. A scalar-valued function Vq(·) is positive definite
if Vq(q) > 0 for q 6= 0 and Vq(0) = 0. A level set of Vq is denoted by
Ωρq := {q ∈ Rn : Vq(q) ≤ ρq}. A class K function α : [0, a)→ [0,∞) is
continuous, strictly increasing, and α(0) = 0. The notation ‘/’ signifies
set subtraction, i.e., q ∈ A/B refers to the set {q ∈ Rn : q ∈ A, q /∈ B}.
The notation qT denotes the transpose of a vector q.

2.2 Class of systems

In this tutorial, unless otherwise stated, we consider the following class
of nonlinear continuous-time systems, which can model many chemical
process systems of interest:

q̇ = f(q, um, w), (2.1)
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2.2. Class of systems 299

where q ∈ Q ⊆ Rn is the vector of states bounded within the set Q,
um ∈ Rm is the vector of control actions, and w ∈ Rl is a vector of
time-varying, bounded disturbances (w ∈ W := {w ∈ Rl : |w| ≤ θ}).
In general, it is not required that um be equal to the vector of process
inputs ua, which may be related to the vector of process states through
a nonlinear relationship (i.e., ua can be a function of the states affected
by um, rather than a manipulated input). Physically, the process inputs
are outputs from final control elements (e.g., flow rates out of valves,
heat inputs from heating coils) that are subject to actuator limitations
and hence ua is assumed to be bounded (i.e., ua ∈ Ua := {ua ∈ Rm :
umin
a,i ≤ ua,i ≤ umax

a,i , i = 1, . . . ,m}), where ua,i represents the i-th
component of ua and umin

a,i and umax
a,i are its lower and upper bounds,

respectively. The components of the vector um may correspond to
different quantities than ua corresponds to (for example, they may be
control signals or set-points sent to valve actuators). However, due to
the relationship with the process inputs, they should also be bounded
(i.e., um ∈ Um). When dynamics related to process equipment can be
neglected (e.g., when the valve dynamics are significantly faster than
the process dynamics), Equation (2.1) provides a reasonably accurate
model of the system behavior with q containing only the process states,
and ua and um can be assumed to be equivalent. In general, however, q
can include states related to both the process and the equipment states,
and static or dynamic equations may relate ua and um. For simplicity
of notation in this monograph, we will use the short-hand notation
f(q, um) to designate the process of Equation (2.1) in the absence of
disturbances (i.e., w(t) ≡ 0), which will be referred to as the nominal
model.

Though the discrete-time counterpart of Equation (2.1) is considered
in many works on EMPC (e.g., Amrit et al., 2011; Diehl et al., 2011;
Rawlings et al., 2012), this work will discuss continuous-time systems
due to the fact that they arise naturally in the first-principles modeling
of chemical processes. The results discussed could be examined for
extension to EMPC for discrete-time systems (Alessandretti et al.,
2016).
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2.3 Economic model predictive control

Economic model predictive control (EMPC) is a model-based control
design that determines appropriate control actions for a process by
solving the following optimization problem:

min
um(t)∈S(∆)

∫ tk+N

tk

Le(q̃(τ), um(τ)) dτ (2.2a)

s.t. ˙̃q(t) = f(q̃(t), um(t)) (2.2b)

q̃(tk) = q(tk) (2.2c)

q̃(t) ∈ Q, ∀ t ∈ [tk, tk+N ) (2.2d)

um(t) ∈ Um, ∀ t ∈ [tk, tk+N ) (2.2e)

where the stage cost Le is optimized over a prediction horizon consisting
of N sampling periods of length ∆ (throughout each sampling period,
a constant value of um is computed, which is reflected by the notation
um(t) ∈ S(∆) in Equation (2.2a). The notation q̃ signifies the prediction
of the state q from the nominal model in Equation (2.2b) from the initial
condition in Equation (2.2c) which corresponds to a state measurement
at time tk. Equations (2.2d)–(2.2e) reflect state and input constraints,
respectively (Equation (2.2d) may include bounds on states related to
ua, since if ua 6= um, the bound in Equation (2.2e) does not necessarily
prevent valve output saturation). The stage cost in Equation (2.2a)
is not required to take its minimum at a process steady-state, as is
required in the traditional tracking MPC designs utilized in industry.
However, tracking MPC is a special case of EMPC (it is an EMPC with
a quadratic objective function), and therefore the results in this work
should be understood to be applicable to MPC.
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Handling Process-Equipment Considerations

within EMPC

Under the assumption that ua = um, a variety of modifications have
been made to Equation (2.2) (e.g., various constraints or restrictions on
the horizon length, process model, and/or objective function have been
added; reviews of formulations of various EMPC designs developed to
guarantee closed-loop stability and feasibility can be found in Ellis et al.,
2014a; Ellis et al., 2016; Rawlings et al., 2012; Müller and Allgöwer,
2017) to address theoretical (e.g., closed-loop stability) and practical
(e.g., operational safety, Albalawi et al., 2017c) considerations. From
the generality of the process model incorporated in Equation (2.2) and
its modifications, it may be supposed that new EMPC developments in
the literature should be able to be readily applied to a chemical process
system in which equipment dynamics are not negligible simply by
using an appropriate dynamic model in Equation (2.2b) that explicitly
includes dynamics related to equipment. A goal of this section is to
demonstrate that based on recent results in the literature that seek to
explicitly handle valve considerations within EMPC, a comparison with
several example formulations that do not, and an analysis of potential
limitations of other types of dynamics related to equipment, this may
not be the case.
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302 Handling Process-Equipment Considerations within EMPC

3.1 EMPC accounting for valve behavior

Several recent works (Durand et al., 2014; Durand and Christofides,
2016; Durand et al., 2017) have explicitly examined the implications
of including the valve dynamics (which cause ua not to equal um) in
Equation (2.2b) in addition to the dynamics of the chemical process.
This acknowledges that the controller, process, and valve dynamics
are coupled (i.e., the equipment is not independent of the process) so
that an EMPC made aware of the valve dynamics can make better
choices for control actions because it is using a more accurate process
model. Though this is an example of the well-known principle that
MPCs/EMPCs compute more optimal input trajectories when a more
accurate model is utilized for making state predictions, it is conceptually
different from what is commonly implied by this principle. Specifically,
this principle typically is applied with respect to improving the model
of the chemical process, not with recognizing how commonly neglected
dynamics such as those of equipment are playing a role in the accuracy
of the dynamic model.

Valve dynamics vary between valves, and are influenced by a variety
of factors, such as the type of the valve (e.g., butterfly, globe, ball;
Bishop et al., 2002), the mechanism by which the valve moves, the
lubrication of the valve, and the types of effects that cause ua 6= um
(e.g., a valve may exhibit nonlinear dynamic behavior associated with
friction called stiction or may experience delays in changes in its output
termed backlash related to looseness of mechanical components in the
valve Choudhury et al., 2005). Furthermore, a valve’s dynamics can
change over time as a result of factors such as wear, vibration, or
tightening of valve packing (Hägglund, 2002). In addition, the dynamics
between ua,i (the i-th component of ua) and um,i (the i-th component
of um) can be influenced by the presence of flow controllers for valves
in the control loop. These might be attractive for a process under a
controller like EMPC that determines um,i and applies it for a sampling
period. A flow controller may aid in driving ua,i to um,i at a reasonable
rate during the sampling period throughout which the set-point is fixed
(Figure 3.1). Therefore, the model utilized in Equation (2.2b) (which
can be either a first-principles or empirical model of valve behavior;
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Figure 3.1: Schematic portraying potential configurations of the EMPC output um

and the valve output vector ua. The top figure shows the control architecture in the
case that the valve output flow rate set-points um,i, i = 1, . . . , m, from the EMPC
are set-points for a flow controller for a valve. ei and ûm,i, i = 1, . . . , m, denote
the error um,i − ua,i received by the flow controller and the flow controller output,
respectively. The bottom figure portrays the control loop architecture when no valves
are operated under flow control. In both figures, q represents measurements of states
for the process-valve system that the EMPC receives as state feedback.
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see Brásio et al., 2014, for example, for a review of many modeling
techniques for friction in valves, and Durand et al., 2017 for an example
of an empirical model of a sticky valve’s flow controller and dynamics
developed for use in EMPC) will need to take into account the individual
nature of the dynamics of each valve influencing the process.

To exemplify how valve dynamics may be cast in a nonlinear systems
framework, we discuss very general forms for two classes of valve
dynamics. The first, which was investigated in (Durand et al., 2014),
describes the case that a linear relationship relates ua,i to um,i, as
follows: [

ẋa,i(t)
ζ̇i(t)

]
= Ai

[
xa,i(t)
ζi(t)

]
+Bium,i(t)

ua,i(t) = Cixa,i(t)

(3.1)

where xa,i ∈ Rnsi , i = 1, . . . ,m is a vector of ns,i states describing the
dynamics of the i-th valve, and ζi ∈ Rnc,i , i = 1, . . . ,m, is a vector of nc,i
dynamic states of a linear flow controller, and Ai ∈ R(ns,i+nc,i)×(ns,i+nc,i),
Bi ∈ R(ns,i+nc,i)×1, and Ci ∈ R1×ns,i are matrices and vectors.

Nonlinear models of valve behavior may also be required (e.g., when
a valve experiences stiction). In that case, the ua,i − um,i relationship
may be characterized through nonlinear systems of differential equations
as follows:

ua,i = fa,i(xdyn,i) (3.2)

ẋdyn,i = fdyn,i(xdyn,i, um,i), (3.3)

where xdyn,i ∈ Rnzi is a vector of states describing the dynamics
related to the i-th valve (including those related to a flow controller
for a specific valve if applicable), and fa,i and fdyn,i are nonlinear
functions (scalar-valued and vector-valued, respectively) describing
the relationship between ua,i and xdyn,i and um,i. In the notation
of Equation (2.1), q includes all states associated with the process
(components of the vector x) and with the valve, i.e., q = [x xdyn]T ,
where xdyn = [xdyn,1 . . . xdyn,m]T .

To provide more context to the modeling in Equations (3.2)–(3.3),
consider that one way of obtaining a first-principles model for a valve
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experiencing stiction is to perform a force balance on the valve and
select an appropriate model of the friction dynamics to model the
friction force in this force balance. If the LuGre model Canudas de Wit
et al. (1995) is selected as this friction model and the valve is modeled
as a pneumatic sliding-stem globe valve such that the forces on the
valve can be modeled as being due to the friction force, spring force,
and pressure from the pneumatic actuation (Choudhury et al., 2005),
the valve dynamics may be modeled through the following dynamic
equations (which take the form of Equation (3.3)):

dxv
dt

= vv (3.4)

dvv
dt

= 1
mv

[
AvP − ksxv − σ0zf − σ1vv

+ σ1|vv|σ0zf
FC + (FS − FC)e−(vv/vs)2 − σ2vv

]
(3.5)

dzf
dt

= vv −
|vv|σ0zf

FC + (FS − FC)e−(vv/vs)2 , (3.6)

where xv is the valve stem position, xv,max is the maximum valve stem
position, ua,max is the maximum flow rate through the valve, vv is the
valve velocity, ks is the spring constant for the spring of the globe valve,
Av is the area of the valve diaphragm, P is the pressure applied to the
diaphragm by the pneumatic actuation, and mv is the mass of the valve
moving parts. The state zf is an internal state of the LuGre friction
model, which is used in Equations (3.5) and (3.6) to model the friction
force experienced by the valve moving parts. FS , FC , vs, σ0, σ1, and σ2
are parameters of this friction model. A relationship between ua and
xv might be developed from a valve characteristic (Coughanowr and
Leblanc, 2009) to relate ua and xv as in Equation (3.2) (an example
is provided below). The value of P can be determined by a controller
(i.e., it is related to um).

The EMPC designs from Durand et al. (2014) and Durand and
Christofides (2016) imply that if an EMPC of the form of Equation (2.2)
is developed assuming ua = um, but it is desired to update it to
reflect the valve behavior, the required updates may not be as simple
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as using a process-valve model in Equation (2.2b). If it is desired for
the objective function, for example, to reflect that profits depend on the
actual process input vector ua rather than its set-point vector um, the
objective function will need to reflect this. Furthermore, the potential
for an EMPC to set up a time-varying operating policy may necessitate
the use of constraints (termed “economic constraints”) designed to
prevent the controller from setting up an undesirable operating policy
that might increase costs (e.g., increase feedstock costs by adjusting
the manipulated inputs) that are not reflected in the objective function
(an example of an economic constraint is presented below). Economic
constraints may be functions of process inputs; this could result in
cases where, if ua is assumed to equal um, the economic constraints
are functions of the manipulated inputs, but when ua 6= um, they may
instead be state constraints. Valve dynamics may also introduce a need
for new state, input, or combined state and input constraints that are
not present when ua = um (an example of this will be showcased below).
This again implies that valve dynamics must be considered from the
beginning of the design of EMPC formulations, because these dynamics
may result in fundamentally different types and numbers of constraints
than may be considered reasonable when ua = um. This can impact
not only individual formulations, but even theoretical results because
changes in the type and formulation of constraints can impact how
feasibility is considered for an EMPC formulation at the design stage.

Example 1. To exemplify how accounting for valve behavior may result
in modifications to the model, constraints, and objective function of an
EMPC, we consider controlling an ethylene oxidation process (Özgülşen
et al., 1992; Alfani and Carberry, 1970) with the following dynamic
model written in dimensionless form:

ẋ1 = ua(1− x1x4) (3.7a)

ẋ2 = ua(0.5− x2x4)−A1exp(γ1/x4)(x2x4)0.5

− A2exp(γ2/x4)(x2x4)0.25 (3.7b)

ẋ3 = −uax3x4 +A1exp(γ1/x4)(x2x4)0.5

− A3exp(γ3/x4)(x3x4)0.5 (3.7c)
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ẋ4 = ua
x1

(1− x4) + B1
x1
exp(γ1/x4)(x2x4)0.5

+ B2
x1
exp(γ2/x4)(x2x4)0.25

+ B3
x1
exp(γ3/x4)(x3x4)0.5 − B4

x1
(x4 − 1) (3.7d)

where x = [x1 x2 x3 x4]T , and x1, x2, x3, and x4 are the dimensionless
gas density, ethylene concentration, ethylene oxide concentration, and
reactor temperature, respectively. The single process input ua represents
the dimensionless feed volumetric flow rate, which is related to the
valve output flow rate set-point um computed by a controller through
Equations (3.4)–(3.6), with the following equations describing the valve
characteristic and PI control law for the flow controller of the valve that
computes the pressure applied by the pneumatic actuation, respectively:

ua =
(
xv,max − xv
xv,max

)
ua,max (3.8)

P = Ps +Kc,p
um − ua
ua,max

+ Kc,p

τI,p
ζP (3.9)

ζ̇P = um − ua
ua,max

(3.10)

where the controller tuning is Kc,p = −82737.09 and τI,p = 0.01, and
Ps is a steady-state pressure value (fixed to the last applied value
of the pressure whenever um changes). ζP is the dynamic state of
the PI controller, and it is re-initialized to zero every time that um
changes. The values of the parameters in these equations are noted in
Table 3.1 (Garcia, 2008; Özgülşen et al., 1992).

Two EMPCs will be examined for controlling this process (i.e.,
for computing um) over two operating periods of length tp, where tp
is one dimensionless time unit (denoted by td; i.e., tp = 1 td). The
prediction horizon Nk shrinks throughout an operating period (it is
5 at the beginning of the operating period, and decreases by one at
each subsequent sampling time in the operating period so that the
prediction horizon always includes the remainder of the operating
period). A sampling period has length ∆ = 0.2 td. The first EMPC
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Table 3.1: Ethylene oxidation example parameters. td denotes a dimensionless time
unit.

Parameter Value
γ1 –8.13
γ2 –7.12
γ3 –11.07
A1 92.80
A2 12.66
A3 2412.71
B1 7.32
B2 10.39
B3 2170.57
B4 7.02
mv 1.361 kg
Av 0.06452 m2

ks 52538 kg/t2d
vs 0.000254 m/td
σ0 108 kg/t2d
σ1 9000 kg/td
σ2 612.9 kg/td
FC 1423 kg ·m/t2d
FS 1707.7 kg ·m/t2d

ua,max 0.7042
xv,max 0.1016 m

to be examined accounts for the valve behavior and is formulated as
follows, where q = [xT xv vv zf ζP ]T and q̇ = fq(q, um), used in making
state predictions within the controller, denotes the dynamic system of
Equations (3.7), (3.4)–(3.6), and (3.8)–(3.10):

min
um(t)∈S(∆)

∫ tk+Nk

tk

−ũa(τ)x̃3(τ)x̃4(τ) dτ (3.11a)

s.t. ˙̃q(t) = fq(q̃(t), um(t)) (3.11b)
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q̃(tk) = q(tk) (3.11c)

0 ≤ ũa(t) ≤ 0.7042, ∀ t ∈ [tk, tk+Nk
] (3.11d)

0.0704 ≤ um(t) ≤ 0.7042, ∀ t ∈ [tk, tk+Nk
] (3.11e)

P̃ ≥ 0, ∀ t ∈ [tk, tk+Nk
) (3.11f)∫ tk+Nk

tk

ũa(τ)dτ +
∫ tk

(j−1)tp
u∗a(τ)dτ = 0.175tp/0.5

(3.11g)

In Equation (3.11), j denotes the number of complete operating periods
that have passed before the current sampling period, and q̃ signifies
the prediction of the process-valve state from Equation (3.11b). ũa
is the prediction of ua (obtained from the predicted value of xv from
Equation (3.8)), which is bounded between the maximum and minimum
flow rates considered to be achievable from the valve (Equation (3.11d)).
u∗a(t) represents the actual valve output at time t < tk. The objective
function is related to the time-averaged yield of ethylene oxide with a
fixed available feedstock. Equation (3.11g) is an example of an “economic
constraint” for an EMPC, requiring that the amount of feedstock used
by the process in each time interval of length tp be fixed to 0.175,
which is the amount which would be fed at steady-state. P̃ represents
the predicted value of the pressure from the pneumatic actuation,
and because pressure cannot become negative, it is required to be
positive throughout the prediction horizon under any input trajectory
returned by Equation (3.11). This is a constraint on both states and the
manipulated input um, as can be seen from Equation (3.9) and the fact
that ζP is a state of the process-valve system and that ua is a function
of a state through Equation (3.8).

The second EMPC neglects the dynamics of the valve (i.e., it assumes
ua = um) and is formulated as follows, where ẋ = fx(x, um) denotes the
dynamic system of Equation (3.7) with ua = um and u∗m(t) denotes the
value of the manipulated input applied by the EMPC at time t < tk:

min
um(t)∈S(∆)

∫ tk+Nk

tk

−um(τ)x̃3(τ)x̃4(τ) dτ (3.12a)

s.t. ˙̃x(t) = fx(x̃(t), um(t)) (3.12b)
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x̃(tk) = x(tk) (3.12c)

0.0704 ≤ um(t) ≤ 0.7042, ∀ t ∈ [tk, tk+Nk
) (3.12d)∫ tk+Nk

tk

um(τ)dτ +
∫ tk

(j−1)tp
u∗m(τ)dτ = 0.175tp/0.5

(3.12e)

In Equation (3.12), x̃ = [x̃1 x̃2 x̃3 x̃4]T represents the predicted state of
the system of Equation (3.7). Again, the objective function is related
to the time-averaged process yield with a fixed available feedstock and
the economic constraint is again related to a feedstock restriction, but
here both consider that ua = um.

The results of controlling the process of Equations (3.7), (3.4)–(3.6),
and (3.8)–(3.10) with both of these EMPCs are shown in Figure 3.2,
where the trajectories of ua, um, and P under the first EMPC are labeled
with “EMPC-A,” and those under the second EMPC are labeled with
“EMPC-B.” The simulations were performed using Ipopt (Wächter and
Biegler, 2006), with an integration step size of 10−6 td utilized within the
first EMPC and an integration step size of 10−4 td utilized within the
second, and the process model of Equations (3.7), (3.4)–(3.6), and (3.8)–
(3.10) simulated within an integration step size of 10−6 td under the
inputs computed by both EMPCs. The pressure for the pneumatic
actuation of the process was saturated at zero if it would otherwise have
become negative. The simulation was initiated from the process–valve
state qI = [0.997 1.264 0.209 1.004 0.051 m 2.000× 10−6 m/td 1.426×
10−5 m 0]T , with the initial value of Ps set to 63713 kg/m · t2d. Further
details regarding the simulation can be found in Durand and Christofides
(2016). The results indicate that incorporating the valve dynamics
improved the ability of the EMPC to compute set-points for which the
available actuation energy was sufficient to drive the valve output flow
rate to the set-point. This is important due to the economic constraint,
which is satisfied under the first EMPC but not under the second EMPC
because the plant-model mismatch for the second EMPC causes that
control actions computed by that EMPC (which would need to be
reached by ua to ensure that the feedstock constraint is met) to not be
reachable with the available pressure from the pneumatic actuation.
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Comparing Equations (3.11) and (3.12) indicates that the objective
functions of the optimization problems are formulated differently. That
in Equation (3.11) is formulated with respect to ua (as opposed to
um as in Equation (3.12)) due to a recognition that it is the physical
process inputs that affect the yield, not the set-points. The formulation
of the economic constraint in Equation (3.12e) is also different from
that in Equation (3.11g) because the actual feed to the process (the
output from valves, rather than their set-points) determines how much
of the feedstock has been used. Therefore, if it is assumed that ua =
um, the feedstock constraint can be applied to past and predicted
inputs (Equation (3.12e)), but when it is recognized that ua 6= um,
this constraint is formulated with respect to past and future states
(Equation (3.11g)). Finally, the actuation magnitude constraints are
added in Equation (3.11f) because a dynamic relationship exists between
ua and um. Therefore, unless appropriate bounds on um are determined
in light of this dynamic relationship that ensure that the range of values
of um allowed corresponds only to the range of ua that can be reached
with positive pressures from the pneumatic actuation, an additional
constraint may be needed to prevent actuator (pressure) saturation.
This is an important physically-based constraint that cannot be included
without accounting for the dynamics of the full process–valve system in
the controller. It is noted that the EMPC formulations presented do not
have any stability-based constraints, demonstrating that the conclusions
of this section (i.e., accounting for equipment behavior in EMPC may
not be as simple as updating the nonlinear process model of an EMPC
formulation) are independent of the specific EMPC formulation under
consideration.

3.1.1 EMPC accounting for valve behavior: Input rate of change
constraints

In addition to constraints like the actuation magnitude constraints,
input rate of change constraints (Durand et al., 2016) have also been
investigated for use in EMPC accounting for valve considerations.
Specifically, they were considered to help prevent valve wear because
an EMPC may compute a time-varying operating policy to maximize



312 Handling Process-Equipment Considerations within EMPC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

Time (td)

u

um, EMPC −A ua, EMPC −A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

Time (td)

u

um, EMPC −B
ua, EMPC −B

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.3

0.4

0.5

0.6

0.7

Time (td)

u

um, EMPC − C ua, EMPC − C

(a) Value output flow rate set-point um compared with actual valve output ua under three
different EMPC’s: EMPC-A (accounts for valve behavior), EMPC-B (assumes ua = um), and
EMPC-C (assumes ua = um but incorporates input of change constraints).
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(b) Pressure from the pneumatic actuation under three different EMPC-A (accounts for valve
behavior), EMPC-B (assumes ua = um), and EMPC-C (assumes ua = um but incorporates
input of change constraints).

Figure 3.2: ua, um, and P for the process of Equations (3.7), (3.4)–(3.6), and (3.8)–
(3.10) under three different EMPC designs demonstrating the effects of accounting
and not accounting for valve behavior within the EMPC on the ability of ua to reach
um within each sampling period.
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the objective function of Equation (2.2), and may change the process
inputs between sampling periods significantly to do so (for example,
Figure 3.2a shows several relatively large changes in um and ua between
two sampling periods for EMPC-A and EMPC-B). If the sampling period
is small, this may correspond to frequent and significant movement of
the valve, which may contribute to wear of the valve. Increasing the
sampling period to avoid moving the valve excessively may not be a
viable option because the sampling period needs to be small enough
to ensure adequate control (i.e., the sampling period should not be
greater than the timescale of the process), and shorter sampling periods
also allow more frequent feedback of the process state, which may
enhance robustness. Therefore, it may be desirable to add constraints
of the following form to Equation (2.2) to set an explicit upper-bound
εdesired,i > 0 for the i-th input on the amount by which the manipulated
inputs (related to the valve outputs) can vary between two sampling
periods of the prediction horizon:

|u∗m,i(tk|tk)− u∗m,i(tk−1|tk−1)| ≤ εdesired,i, ∀ i = 1, . . . ,m (3.13)

|u∗m,i(tj |tk)− u∗m,i(tj−1|tk)| ≤ εdesired,i, ∀ i = 1, . . . ,m,

j = k + 1, . . . , k +N − 1, (3.14)

where u∗m,i(tj |tk), j = k, . . . , k +N − 1, signifies the optimal solution of
an EMPC at time tk for t ∈ [tj , tj+1) in the prediction horizon.

Tracking MPC designs have long incorporated constraints on the
input rate of change and also penalties in the objective function on the
input rate of change (Qin and Badgwell, 2003; Camacho and Bordons,
2007; Mhaskar and Kennedy, 2008); however, these constraints are
particularly relevant to consider for EMPC for the following reasons: 1)
It is possible that in a case without disturbances/plant-model mismatch,
a tracking MPC with input rate of change constraints may be stabilizing
in the sense that it may essentially drive the closed-loop state to the
operating steady-state and maintain the state at this steady-state there-
after. In such a case, input aggressiveness is only problematic during the
transient as the state is driven from an initial condition to the operating
steady-state by an MPC. However, an EMPC may operate a process in
a time-varying fashion over time even in the absence of disturbances,
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so that input aggressiveness remains problematic throughout the time
of operation and an EMPC has potential in that case to cause greater
wear of valves than a tracking MPC. 2) In the presence of disturbances,
it cannot be determined a priori whether an MPC or EMPC will create
greater actuator wear. This is because both utilize different objective
functions and constraints, and therefore it cannot be determined a
priori what control action each will compute at each measured state of
the state trajectory under the inputs computed by each controller. 3) If
a penalty on the input rate of change is added to the objective function
of a tracking MPC, the minimum of the objective function remains the
operating steady-state. In contrast, because the minimum value of the
objective function of an EMPC may not be at a process steady-state,
adding a penalty on the input rate of change to the objective function
can directly impact the economic performance of the closed-loop system
because then the EMPC is optimizing a trade-off between economic
optimality with respect to a chosen profit metric and the input rate of
change. This means that the weighting of any penalty on the input rate
of change in the objective function of an EMPC must be carefully chosen
to avoid reducing economic performance unnecessarily. 4) Restricting
the allowable inputs for EMPC at a given sampling time using input
rate of change constraints has the potential to reduce profits. Therefore,
the bounds εdesired,i on the input rate of change should be carefully
chosen.

Input rate of change constraints are an example of constraints that
may need to be added to an EMPC to account for valve behavior
that are not necessarily straightforward to add to an existing EMPC
design (and once again convey the need to account for equipment at
the design stage rather than assuming that developing a more detailed
process model will be sufficient to account for equipment behavior). A
difficulty with input rate of change constraint design comes from the
fact that these constraints restrict the allowable values of the inputs,
which can impact the feasibility of an EMPC (e.g., they may make it
more difficult for the controller to ensure that state constraints can
be satisfied) and therefore must be designed in conjunction with the
rest of the constraints to aid in maintaining feasibility. Constraints
that guarantee that Equations (3.13) and (3.14) are satisfied by the
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control actions computed by an EMPC, but do so by adding constraints
that are guaranteed to be feasible at each sampling time under certain
assumptions, have appeared only for a specific formulation of EMPC
known as Lyapunov-based EMPC (LEMPC) (Heidarinejad et al., 2012).
Describing this formulation requires the following two assumptions to
be placed on the class of systems of Equation (2.1):

Assumption 1. The right-hand side of Equation (2.1) is a locally Lip-
schitz function of its arguments with an (isolated) equilibrium point
at the origin of the nominal (i.e., w(t) ≡ 0) system with um ≡ 0 (i.e.,
f(0, 0, 0) = 0).

Assumption 2. There exists an explicit stabilizing Lyapunov-based
controller hq(q) with hq(0) = 0 and locally Lipschitz components that,
when applied continuously to the nominal system of Equation (2.1) as
the input um, can render the origin of that system asymptotically stable
in the sense that there exists a sufficiently smooth positive definite
Lyapunov function Vq(q) and class K functions α1,q, α2,q, α3,q, and α4,q
for which the following properties hold for all q ∈ Dq:

α1,q(|q|) ≤ Vq(q) ≤ α2,q(|q|) (3.15a)

∂Vq(q)
∂q

f(q, hq(q)) ≤ −α3,q(|q|) (3.15b)∣∣∣∣∂Vq(q)∂q

∣∣∣∣ ≤ α4,q(|q|) (3.15c)

hq(q) ∈ Um, (3.15d)

where the Lyapunov level set Ωρq ⊂ Dq, where q ∈ Q for all q ∈ Ωρq , is
the stability region of the process-valve system, andDq is a neighborhood
of the origin.

With these assumptions and some additional sufficient conditions,
the following formulation of an LEMPC with input rate of change
constraints that are guaranteed to be feasible at each sampling time
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was developed (Durand et al., 2016; Durand and Christofides, 2016):

min
um(t)∈S(∆)

∫ tk+N

tk

Le(q̃(τ), um(τ)) dτ (3.16a)

s.t. ˙̃q(t) = f(q̃(t), um(t)) (3.16b)

q̃(tk) = q(tk) (3.16c)

q̃(t) ∈ Q, ∀ t ∈ [tk, tk+N ) (3.16d)

um(t) ∈ Um, ∀ t ∈ [tk, tk+N ) (3.16e)

Vq(q̃(t)) ≤ ρq,e, ∀ t ∈ [tk, tk+N ), if Vq(q(tk)) ≤ ρq,e
(3.16f)

∂Vq(q(tk))
∂q

f(q(tk), um(tk)) ≤
∂Vq(q(tk))

∂q
f(q(tk), hq(q(tk))),

if tk > ts or Vq(q(tk)) > ρq,e (3.16g)

|um,i(tk)− hq,i(q(tk))| ≤ εr,i, ∀ i = 1, . . . ,m (3.16h)

|um,i(tj)− hq,i(q̃(tj))| ≤ εr,i, ∀ i = 1, . . . ,m,

j = k + 1, . . . , k +N − 1, (3.16i)

where ts is the time after which Equation (3.16g) begins to be enforced
regardless of the value of Vq(q(tk)), and εr,i is an upper bound in
Equations (3.16h)–(3.16i) (εr,i 6= εdesired,i). Ωρq,e ⊂ Ωρq defines a region
in state-space where, if q(tk) ∈ Ωρq,e , then q(tk+1) ∈ Ωρq for a nonlinear
process-valve system under the controller of Equation (3.16). The role
of the constraint of Equation (3.16f) is to allow for process economic
optimization while maintaining the predicted process-valve state within
Ωρq,e , and the role of the constraint of Equation (3.16g) is to drive
the process-valve state back into Ωρq,e when it exits this region. This
combination of Equations (3.16f)–(3.16g) guarantees that the closed-
loop state is maintained within Ωρq at all times if q(t0) ∈ Ωρq and is
driven to a neighborhood Ωρmin of the origin when t > ts, as long as a
feasible solution to the optimization problem exists at each sampling
time and both ∆ and θ are sufficiently small (in a sense that can be made
precise in terms of a variety of functions and parameters related to the
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LEMPC, system, and Lyapunov-based controller design (Heidarinejad
et al., 2012; Durand et al., 2016); the fact that a sufficiently small θ is
required for these theoretical results also motivates inclusion of valve
dynamics in Equation (3.16b) to reduce plant-model mismatch). From
the design of hq to ensure that it satisfies Equation (3.16e), the design
of Ωρq to ensure that the closed-loop state under hq(q̃(tj)), t ∈ [tj , tj+1),
j = k, . . . , k + N − 1, satisfies Equation (3.16d), and the design of
Equations (3.16f)–(3.16i) to be satisfied by hq(q̃(tj)), t ∈ [tj , tj+1),
j = k, . . . , k +N − 1, hq implemented in sample-and-hold is a feasible
solution at every sampling time.

It is noted that Durand et al. (2016) and Durand and Christofides
(2016) only consider εr,1 = εr,2 = · · · = εr,m = εr and εdesired,1 =
εdesired,2 = · · · = εdesired,m = εdesired. However, it is necessary to
highlight the general case considered in this section where different
upper bounds εr,i and εdesired,i are allowed for each input i = 1, . . . ,m
(or to consider whether some other scaling of the components of um and
of hq in Equations (3.13) and (3.14) and Equations (3.16h) and (3.16i)
can achieve a similar effect to allowing different upper bounds on each
constraint while utilizing the same upper bounds). The reason for this
is that the freedom to utilize different upper bounds for each input may
aid in enhancing economic performance while still reducing wear. For
example, for a single εr and εdesired to sufficiently constrain all inputs
(both those with large and small magnitudes) to prevent wear, εr and
εdesired may need to be small to prevent wear of valves with smaller flow
rates out of them. This may limit the ability of the EMPC to enhance
profits because it may cause those inputs with larger magnitudes to
be able to change by relatively smaller percent deviations of um,i from
the prior values than if the magnitude of um,i were smaller. However,
Equations (3.16h) and (3.16i) are not required for proving closed-loop
stability or robustness of the EMPC design of Equation (3.16) (Durand
et al., 2016; Durand and Christofides, 2016), but only for investigating
feasibility. Since hq(q̃(tj)), t ∈ [tj , tj+1), j = k, . . . , k+N − 1, remains a
feasible solution to Equations (3.16h) and (3.16i) for any upper bounds
εr,i ≥ 0, i = 1, . . . ,m, having different upper bounds for each input
poses no feasibility issues. Furthermore, through a direct extension of
the results in Durand et al. (2016), it can be shown that Equations (3.13)



318 Handling Process-Equipment Considerations within EMPC

and (3.14) are satisfied by the inputs computed by the controller of
Equation (3.16) as long as ∆ and εr,i, i = 1, . . . ,m, are sufficiently small
in the sense that:

2εr,i + C1∆ ≤ εdesired,i, ∀ i = 1, . . . ,m, (3.17)

where C1 is a positive constant related to an upper bound on
|f(q, um, w)| and the maximum of all minimum Lipschitz constants that
define the Lipschitz continuity of the hq,i, i = 1, . . . ,m, in Ωρq (though
it is possible to replace C1 with a C1,i, i = 1, . . . ,m, that depends on
the minimum Lipschitz constant defining Lipschitz continuity for each
hq,i rather than the maximum among all of those).

Note that even if the upper bounds on the input rate of change
in Equations (3.16h) and (3.16i) are different for each input, Equa-
tion (3.17) requires that:

∆ ≤ εdesired,i − 2εr,i
C1

, ∀ i = 1, . . . ,m, (3.18)

where ∆ must be the same for all i = 1, . . . ,m. This means that despite
the greater potential flexibility of the design with the upper bounds
different for each i, ∆ will still be fixed by the tightest difference
between εdesired,i and 2εr,i. It is the difference that fixes ∆, rather than
the magnitude of each individually, so that ∆ could potentially be fixed
by an input for which a large εdesired,i and εr,i are allowable if a tight
tolerance is used between them (though if C1 is replaced with C1,i,
then the tightest εdesired,i−εr,i

C1,i
fixes ∆). A motivation for using a tighter

difference between εdesired,i and 2εr,i could be that a larger value of
εr,i gives greater freedom to the LEMPC in choosing a control action
to satisfy the constraints of Equations (3.16h) and (3.16i) and thus
potentially to improve process profit; however, as indicated by this
discussion, that benefit must be traded off with sampling period size. If
it were desired to use different values of εdesired,i (leading to different εr,i)
not only for different inputs but also across different sampling periods
for the same input, care would have to be taken that any constraints
enforced throughout the prediction horizon at a given sampling time
are reflective of the actual constraints that will be enforced at those
later sampling times to avoid plant-model mismatch.
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Independent of the EMPC formulation utilized to attempt to enforce
Equations (3.13) and (3.14) to account for valve wear is the underlying
assumption that a relationship exists between εdesired,i, i = 1, . . . ,m,
and the amount of wear experienced by a valve that can be used to tune
the value of this parameter. However, because the input rate of change
constraints do not explicitly model valve wear in a dynamic fashion, it
may not be straightforward in general to choose appropriate values of
εr,i and εdesired,i, i = 1, . . . ,m, to prevent wear. For example, EMPCs
for two different processes may determine that cyclic input trajectories
are optimal, but one may have a shorter period of the trajectory
than the other so that one cyclic trajectory may wear valves more
significantly than another due to frequency of input changes rather than
magnitude. This suggests that it may not be effective to try to handle
valve dynamics without explicitly modeling them at a fundamental
enough level that constraint design becomes straightforward (e.g., for
valve wear, modeling of the root issue causing wear, such as rubbing of
materials, may be necessary to be able to develop appropriate constraints
that are not difficult to tune; however, this remains an open research
topic). Furthermore, Equations (3.13) and (3.14) constrain changes in
um between sampling periods, which, when ua 6= um, may not be as
reflective of valve wear as constraining the maximum difference in ua
between two sampling periods with input rate of change constraints;
restricting the rate of change of the actual valve output rather than its
set-point, without impacting feasibility, could be investigated.
Example 2. Figure 3.2 demonstrates the use of input rate of change
constraints in the EMPC of Equation (3.12) of the form of Equa-
tions (3.13) and (3.14) (with N = Nk) to control the process of
Equations (3.7), (3.4)–(3.6), and (3.8)–(3.10) (the trajectories for ua, um,
and P in this case are denoted by “EMPC-C”). The upper bound εdesired
is taken to be 0.1 throughout the prediction horizon (the constraints of
Equations (3.13) and (3.14) were implemented rather than constraints
designed to guarantee feasibility in LEMPC; because no Lyapunov-
based stability constraints are used in Figure 3.2, these results are not
LEMPC-specific). It can be seen from Figure 3.2a that the input rate of
change constraints prevent um from changing by more than 0.1 between
two sampling periods (which prevents drastic changes in ua as well
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and therefore may help to prevent valve wear), and for this example,
that had an impact on preventing the pressure from the pneumatic
actuation from becoming saturated as often as if the valve output flow
rate set-points were less constrained. This example demonstrates that
feasibility issues can occur if constraints are not accounted for in the
EMPC design stage carefully, because EMPC-C was infeasible for three
of the sampling periods depicted in the figure.

3.1.2 EMPC accounting for valve behavior: Impacts of valve
behavior on ease of design

In this section, we consider how accounting for valve behavior in EMPC
can impact the readiness with which an EMPC formulation in the
literature can be designed for process-valve systems. To investigate this,
we analyze three recent LEMPC formulations (for consistency with the
description of LEMPC for process-valve systems in the prior sections)
which were developed to handle practical issues (meeting a production
schedule and reducing the computation time of EMPC) for nonlinear
chemical process systems. Through these formulations, we demonstrate
that implementation difficulties may arise when accounting for valve
dynamics in EMPC formulations in the literature due to the form of
models for valve behavior. The goal is not to provide an exhaustive
review of the challenges with adjusting all EMPC formulations to
account for process-valve dynamics, but rather to use several illustrative
examples to highlight the need for future EMPC designs to consider
valve behavior from the beginning of design.

Impacts of Valve Behavior on Ease of EMPC Design: Steady-State
Determination. The first formulation to be described is an LEMPC
tailored to handle production management considerations (Alanqar
et al., 2017a). Specifically, the LEMPC is designed to drive certain
components of the system state to values determined by a production
scheduling algorithm. Though this formulation did not consider valve
dynamics or input rate of change constraints in Alanqar et al. (2017a),
we present here an extension that accounts for a process-valve model and
input rate of change constraints (the input rate of change constraints
are used here as the best available method in the EMPC literature for
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accounting for the dynamics of valve wear, despite their limitations as
described in the prior section). In this case, we denote the components
of the state vector that are required to reach specific values (“scheduled”
states) by qi, i = 1, . . . , ns, ns ≤ n. The LEMPC for production
management is therefore developed as follows:

min
um(t)∈S(∆)

∫ tk+N

tk

[Le(q̃(τ), um(τ)) +
ns∑
i=1

αWi(q̃i(τ))2]dτ (3.19a)

s.t. ˙̃q(t) = f(q̃(t), um(t)) (3.19b)

q̃(tk) = q(tk) (3.19c)

q̃(t) ∈ Q, ∀ t ∈ [tk, tk+N ) (3.19d)

um(t) ∈ Um, ∀ t ∈ [tk, tk+N ) (3.19e)

Vq(q̃(t)) ≤ ρq,e, ∀ t ∈ [tk, tk+N ), if Vq(q(tk)) ≤ ρq,e
(3.19f)

∂Vq(q(tk))
∂q

f(q(tk), um(tk)) ≤
∂Vq(q(tk))

∂q
f(q(tk), hq(q(tk))),

if tk > ts or Vq(q(tk)) > ρq,e or |qi(tk)| ≥ γi,

i = 1, . . . , ns (3.19g)

|um,i(tk)− hq,i(q(tk))| ≤ εr,i, ∀ i = 1, . . . ,m (3.19h)

|um,i(tj)− hq,i(q̃(tj))| ≤ εr,i, ∀ i = 1, . . . ,m,

j = k + 1, . . . , k +N − 1, (3.19i)

where αWi is the penalty on the deviation of the i-th state, i = 1, . . . , ns,
of the process-valve model from its steady-state value, and the γi, i =
1, . . . , ns, represent upper bounds on the absolute values of the deviations
of the measured values of the ns scheduled states from their steady-state
values. The roles of the constraints are similar to those in Equation (3.16),
with the modification that Equation (3.19g) is activated under an
additional condition that |qi(tk)| ≥ γi, i = 1, . . . , ns, so that the value of
the Lyapunov function along the closed-loop state trajectories decreases
between two sampling periods when any qi, i = 1, . . . , ns, is not within
γi of its scheduled value. This is done because it is assumed that each
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qi, i = 1, . . . , ns, can be driven within γi of its scheduled value under
repeated application of Equation (3.19g). The steady-state can be
made to vary over time in accordance with the production schedule,
and Alanqar et al. (2017a) discuss methods for guaranteeing that the
closed-loop state is driven from one steady-state to the next without
losing closed-loop stability or feasibility of the optimization problem.

The primary difference between Equation (3.19) and the LEMPC
for production management formulation in Alanqar et al. (2017a) is the
input rate of change constraints in Equations (3.19h) and (3.19i). It can
be readily verified, however, that because Equation (3.16) and (3.19)
have identical constraints (i.e., the only difference is in the activation
condition for Equation (3.16g) but not in its form), the closed-loop
stability, feasibility, and input rate of change results described in the
prior section for Equation (3.16) hold for Equation (3.19) as well
(as long as all sufficient conditions and assumptions required for the
theoretical results hold). Therefore, though this analysis indicates that
some additional investigation is required to evaluate the properties of an
EMPC formulation in the literature that is being extended to account
for valve behavior through constraints such as input rate of change
constraints, in many cases, it may be possible to accomplish such an
analysis fairly quickly through analogy of new LEMPC formulations
with those for which valve behavior was explicitly considered.

However, this concept that an EMPC which does not account
for valve behavior can be extended, in a straightforward fashion, to
account for such behavior ignores the fact that there can be fundamental
differences in the dynamics of equipment compared to the dynamics
of chemical processes that may affect whether critical assumptions
utilized in designing an EMPC for a nonlinear process system can be
verified to hold if that design is utilized for a process-equipment system.
An example of fundamental differences between equipment behavior
and process behavior is valve saturation. It would be rare to find a
chemical process with such a non-differentiable nonlinearity; however,
because equipment is physically limited, saturation nonlinearities are
common when valve dynamics are considered. Assumptions 1–2 are
important in Equation (3.16) and are critical to the entire concept
behind Equation (3.19), requiring that a steady-state for the system



3.1. EMPC accounting for valve behavior 323

can be located and characterized, and that the closed-loop state can
be driven to this steady-state and, in the case of Equation (3.19), can
be driven from a region around one steady-state to a region around a
different steady-state if required by the schedule. For chemical processes,
such assumptions are generally considered to be non-limiting (i.e., they
hold for most chemical process systems of interest). However, it may
be more difficult to verify these assumptions when valve behavior is
included.

To demonstrate this, consider the process-valve system from Durand
et al. (2017) defined by Equations (3.4)–(3.6) and the following equation
which describes the dynamics of the level hE in a tank:

dhE
dt

= 1
AE

((
xv,max − xv
xv,max

)
ua,max − c1

√
hE

)
, (3.20)

where AE is the tank cross-sectional area and c1 is the resistance
coefficient. The level can be controlled by manipulating the pressure
applied to a sticky pneumatic sliding-stem globe valve that opens and
closes to allow more or less flow, respectively, into the tank. If it is
considered desirable to develop an LEMPC to determine the pressure,
then a steady-state must be determined. If the right-hand side of each
differential equation of the model is set to zero, the result indicates that
a value of xv can be determined for a desired value of hE , vv = 0, and
AvP = σ0zf + ksxv. However, this last equality implies that to drive
the level to a certain value, any value of zf that is related to the input
P through this equality can be associated with the desired value of the
level. Even if an explicit controller were utilized to control the process,
as required in developing hq for the LEMPC, the steady-state value of
zf can remain unclear because at steady-state, vv = 0, which always
causes Equation (3.6) to provide no information on the value of zf , and
additional analysis would be required to determine if a steady-state
exists or not.

One method for analyzing this issue further would be to replace the
friction model with one which does not contain any states for the friction
model like zf for which an engineer would not have an exact steady-state
value in mind. For example, the classical model (Garcia, 2008) could be
utilized instead, resulting in the dynamic system of Equations (3.4), (3.6),
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and (3.20) combined with the following expression for the valve velocity:

dvv
dt

=



1
mv

[AvP − ksxv − (FC + (FS − FC)e−(vv/vs)2)sgn(vv)− σ2vv],
if vv 6= 0

0 if vv = 0 and |AvP − ksxv| ≤ FS
1
mv

[AvP − ksxv − FSsgn(AvP − ksxv)],
if vv = 0 and |AvP − ksxv| > FS

(3.21)
Again, the issue of isolation comes up for the open-loop process-valve
system because the steady-state values of xv, hE , and vv occur for a
number of different P values (i.e., any for which |AvP − ksxv| ≤ FS).
The equation dvv

dt = 0 in Equation (3.21) associated with the loss of
isolation of a steady-state does not allow the right-hand side to be
determined as a function of P , and therefore there is no control law
that can alter the dynamics of vv until |AvP − ksxv| > FS unless it is
able to cause them to be bypassed by causing |AvP − ksxv| to never
be less than or equal to FS whenever a new set-point for the level is
requested.

The above analysis indicates that the nonlinearities which describe
certain types of valve dynamics may make it more difficult to find
appropriate stabilizing controllers or steady-states for process-valve
systems than for a standard chemical process. This indicates that
neglecting valve dynamics at the design stage of an EMPC formulation
may cause important directions to be missing from the literature
regarding how to appropriate such designs to cases where valve-related
nonlinearities make the design of the controller’s constraints challenging.
Even more fundamentally, it must be analyzed whether it is possible to
develop EMPC formulations with isolated steady-states to which the
closed-loop state can be driven over time (this is important to a number
of EMPC formulations and is not limited to LEMPC) with control-
relevant process-valve models, and if not, what types of constraints or
theory can be utilized to handle process-valve systems. Furthermore,
differentiability of the objective function and constraints of an EMPC
when process-valve models are utilized should be investigated to aid
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in appropriate choices of optimization algorithms. There may also be
techniques for handling some valve nonlinearities outside the process
model in EMPC. For example, if saturation of a state is a concern,
then rather than modeling the saturation of the state in the process-
valve model, a state constraint can be added to the optimization
problem (Durand et al., 2017).

Impacts of Valve Behavior on Ease of EMPC Design: Empirical
Modeling and Distributed Control. The two example designs which will
be analyzed in this section have particular relevance for EMPC incorpo-
rating process-valve dynamics because they focus on computation time
reduction (Fang and Armaou, 2016), and incorporating valve dynamics
within the process model increases the number of states of the dynamic
model, which would be expected to increase computation time. Further
motivation for attempting to reduce computation time is that reducing
the sampling time for a process-valve system may allow the controller
to be more flexible to handle the nonlinearities of stiction. For example,
in Durand et al. (2017), it is noted that the sampling period of an
EMPC that includes the process-valve dynamics for a valve without
flow control is significantly longer than the time-scale on the which
valve slips, with the result that the controller cannot adjust the valve
position while the valve is slipping, which can prevent it from being
able to smoothly drive the process state to its set-point. Utilizing a very
short sampling period was postulated to be a method for improving
these results.

The first example design considered is that for LEMPC with an
empirical model used for making state predictions instead of a first-
principles model (Alanqar et al., 2015a; Alanqar et al., 2015b). This
formulation has been developed for input-affine nonlinear systems with
the following form (written here for a process-valve system):

q̇(t) = fp(q(t), w(t)) + G̃(q(t), w(t))um(t), (3.22)

where fp and G̃ are nonlinear vector and matrix functions, respectively,
which are infinitely differentiable and can be locally expressed with a
convergent power series. Equation (3.22) is a member of the class of
systems of Equation (2.1).
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It is assumed that either the nonlinear model of Equation 3.22 is
unavailable or that it is desirable not to use the nonlinear model in
EMPC for computation time reasons, but to instead use an empirical
model with the following form:

˙̂q(t) = Aq̂(t) + Pz(q̂(t)) +Bum(t), (3.23)

where A and B are matrices of constant coefficients, q̂ denotes the state
of the process-valve system as determined from the empirical model,
and Pz(q̂) is a vector function containing nonlinear monomial terms in
the components of q̂ of order two to order z, i.e., Pz(q̂) := EζNL(q̂),
ζNL(q̂) = [q̂2

1 q̂1q̂2 · · · q̂zn]T , with E denoting a matrix of coefficients of
the terms in ζNL(q̂). The following LEMPC formulation is developed
with an empirical model utilized for making state predictions:

min
um(t)∈S(∆)

∫ tk+N

tk

Le(˜̂q(τ), um(τ)) dτ (3.24a)

s.t. ˙̂̃q(t) = A˜̂q(t) + Pz(˜̂q(t)) +Bum(t) (3.24b)
˜̂q(tk) = q(tk) (3.24c)
˜̂q(t) ∈ Q, ∀ t ∈ [tk, tk+N ) (3.24d)

um(t) ∈ Um, ∀ t ∈ [tk, tk+N ) (3.24e)

V̂q(˜̂q(t)) ≤ ρq̂,e, ∀ t ∈ [tk, tk+N ), if V̂q(q(tk)) ≤ ρq̂,e
(3.24f)

∂V̂q(q(tk))
∂q

(Bum(tk)) ≤
∂V̂q(q(tk))

∂q
(Bhq̂(q(tk))),

if tk > ts or V̂q(q(tk)) > ρq̂,e, (3.24g)

where the notation follows along the lines of that in Equation (3.16),
with ˜̂q representing the prediction of the process state obtained from
the empirical model, and V̂ and hq̂ representing the Lyapunov function
and Lyapunov-based controller obtained based on the empirical model
(i.e., V̂ satisfies constraints similar to, but stronger than, those in
Assumption 2 when hq̂ is used to control the process of Equation 3.23;
a number of additional conditions are also required for the stability
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and feasibility results in Alanqar et al., 2015a; Alanqar et al., 2015b).
ρq̂e is an upper bound on the Lyapunov function value that, like ρe
in Equation (3.16), is used to determine which of the Lyapunov-based
stability constraints in Equation (3.24) is enforced at a given sampling
time.

One of the fundamental assumptions underlying both the practical
use of Equation (3.24) and also the theory related to this formulation
in Alanqar et al. (2015a) and Alanqar et al. (2015b) is that modeling
the dynamics of a system using the form of Equation (3.23) is reason-
able. As shown in the prior section, process-valve models may contain
nonlinearities due to the valve dynamics with a different character than
those typically observed for chemical processes. For example, it has been
suggested in a number of works (e.g., Durand et al., 2017; Choudhury
et al., 2005; He et al., 2007; Kano et al., 2004) that an empirical model
for stiction be formed with an “if-then” type structure (i.e., the manner
in which the valve output changes in response to changes in the control
signal received by the valve may be different based on conditions such
as the magnitude of the change in the control signal). This implies
that a single differential equation with polynomial terms may not be
sufficient for representing all valve behavior. Since the process and
valve behavior are coupled, this could also prevent the process-valve
model from taking the form of Equation (3.23), and should therefore
be investigated. This discussion exemplifies the need to consider valve
behavior from the beginning of EMPC design to verify whether the
fundamental assumptions of the EMPC methods developed and their
theoretical results (which depend on factors such as the assumed form of
the class of systems) will be applicable to the physical process-equipment
systems to which they will be applied, and to address explicitly how to
handle cases where they are not or where it is not clear if they are.

The second computation time reduction method to be described in
this section is a distributed LEMPC (DLEMPC) formulation (i.e., the
m process inputs are computed by m̄ distributed controllers instead of
by a single centralized controller, where the i-th distributed controller
solves for a subset of the available process inputs denoted by ūm,i,
i = 1, . . . , m̄). Two types of DLEMPC designs (termed “sequential”
and “iterative” designs) have been developed for input-affine nonlinear
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systems with the following form (here written for a process-valve system):

q̇(t) = f̃(q(t)) +
m̄∑
i=1

gi(q(t))ūm,i(t) + b(q(t))w(t), (3.25)

where the vector functions f̃ , gi, i = 1, . . . , m̄, and b are locally Lipschitz
and ūi denotes one of m̄ vectors containing mi process inputs from the
input vector um, where m =

∑m̄
i=1mi.

In a sequential DLEMPC, m̄ controllers solve for subsets of the total
number (m) of control inputs available (specifically, each solves for mi

inputs, i = 1, . . . ,mm̄) in sequence. The i-th DLEMPC in the sequence
receives the input trajectories computed by the i− 1 DLEMPCs before
it in the sequence (i.e., it receives trajectories for

∑i−1
j=1mj inputs) and

assumes that the mi+1, . . . ,mm̄ inputs are equal to the corresponding
components of hq implemented in sample-and-hold. The following is
the formulation of a sequential DLEMPC (Chen et al., 2012; Albalawi
et al., 2017a):

min
ūm(t)∈S(∆)

∫ tk+N

tk

Le(q̃j(τ), ūm,1(τ), . . . , ūm,m̄(τ)) dτ (3.26a)

s.t. ˙̃qj(t) = f̃(q̃j(t)) +
m̄∑
i=1

gi(q̃j(t))ūm,i(t) (3.26b)

q̃j(tk) = q(tk) (3.26c)

q̃j(t) ∈ Q, ∀ t ∈ [tk, tk+N ) (3.26d)

ūm,j(t) ∈ Ūm,j , ∀ t ∈ [tk, tk+N ) (3.26e)

ūm,r(t) = h̄q,r(q̃j(tp)), r = j + 1, . . . , m̄, ∀ t ∈ [tp, tp+1),

p = k, . . . , k +N − 1 (3.26f)

ūm,s(t) = ū∗m,s(t|tk), s = 1, . . . , j − 1, ∀ t ∈ [tk, tk+N )
(3.26g)

Vq(q̃j(t)) ≤ ρq,e, ∀ t ∈ [tk, tk+N ), if V (q(tk)) ≤ ρq,e
(3.26h)
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∂Vq(q(tk))
∂q

(
m̄∑
i=1

gi(q̃j(t))ūm,i(t)
)

≤ ∂Vq(q(tk))
∂q

(
m̄∑
i=1

gi(q̃j(t))h̄q,i(q(tk))
)
,

if tk > ts or Vq(q(tk)) > ρq,e (3.26i)

where the notation follows that in Equation (3.16) and q̃j is the predicted
state trajectory according to Equation (3.26b) within the j-th DLEMPC.
Ūm,j represents the input constraints on ūm,j (obtained from the appro-
priate constraints in U and considering umin

a,i = −umax
a,i ) and h̄q,i(q(tk))

represents the vector of components of hq(q(tk)) corresponding to the
mi inputs in ūi.

In contrast to a sequential DLEMPC, in an iterative DLEMPC
architecture, the m̄ controllers are solved simultaneously for their
respective subsets of the m components of the input vector (determining
the solutions of all distributed controllers is referred to as an iteration).
At the first iteration, each DLEMPC assumes that the inputs for
which it does not solve are fixed to the appropriate components of
hq implemented in sample-and-hold. Once solutions to all DLEMPCs
have been obtained, the DLEMPCs can communicate their solutions
to one another and perform additional iterations. During subsequent
iterations, the i-th DLEMPC, i = 1, . . . , m̄, solves only formi inputs and
assumes that the remaining inputs are fixed to the solutions determined
by the other DLEMPC’s at the prior iteration. The formulation of
the j-th iterative DLEMPC is that of Equation (3.26) but with the
following equations used in place of Equations (3.26f) and (3.26g) (Liu
et al., 2010; Albalawi et al., 2017a):

ūm,r(t) = h̄q,r(q̃j(tp)), r ∈ {1, . . . , m̄}, r 6= j, ∀ t ∈ [tp, tp+1),

p = k, . . . , k +N − 1, c = 1 (3.27a)

ūm,r(t) = ū∗m,r,c−1(t|tk), r ∈ {1, . . . , m̄}, r 6= j, ∀ t ∈ [tp, tp+1),

p = k, . . . , k +N − 1, c ≥ 2 (3.27b)
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and the following equation used in place of Equation (3.26i):
∂Vq(q(tk))

∂q
gj(q(tk))ūj(tk) ≤

∂Vq(q(tk))
∂q

gj(q(tk))h̄q,j(q(tk)),

if tk > ts or Vq(q(tk)) > ρq,e (3.28)

In Equations (3.27a) and (3.27b), c signifies the iteration number, and
ū∗m,r,c−1(t|tk), t ∈ [tk, tk+N ), signifies the optimal solution from the r-th
DLEMPC at iteration c− 1.

The two DLEMPC designs provide an effective framework for
demonstrating that despite the relative ease with which both the
formulation of an LEMPC accounting for valve behavior and the
theoretical results for such an LEMPC were obtained for Equation (3.19)
by directly extending the results in Durand et al. (2016) and Durand and
Christofides (2016) to account for valve behavior (in that case, through
input rate of change constraints), extending other EMPC results in
the literature to account for valve behavior, even through the same
constraints, can require more careful analysis and new constraint designs,
making the results without accounting for valve behavior in such cases
incomplete and therefore reducing their utility. To demonstrate this,
we first consider the design and theoretical developments required to
extend sequential and iterative DLEMPCs to handle input rate of change
constraints. This discussion relies on the results obtained in (Liu et al.,
2010; Albalawi et al., 2017a; Chen et al., 2012) for distributed LEMPC
without input rate of change constraints. The important results from
those works for the sequential design for this discussion are summarized
as follows: 1) h̄q,j(q̃j(tp)), t ∈ [tp, tp+1), p = k, . . . , k+N−1, is a feasible
solution to the j-th sequential DLEMPC because it satisfies all state
and input constraints in Equation (3.26); 2) when the DLEMPC of
Equation (3.26) is feasible, the inputs computed by the m̄ sequential
DLEMPC’s maintain the closed-loop state of Equation (3.25) within
Ωρq at all times (under sufficient conditions and assumptions). If it is
desired to add input rate of change constraints, however, consideration
must be given to the fact that Equations (3.16h) and (3.16i) apply to
all manipulated inputs, but only a subset of the manipulated inputs is
available to be computed in each sequential DLEMPC. Therefore, the
following input rate of change constraints must be added to the j-th
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DLEMPC for all i between 1 and m that correspond to the inputs in
ūm,j (i.e., there should be mj sets of constraints of the following form):

|um,i(tk)− hq,i(q(tk))| ≤ εr,i (3.29a)
|um,i(tp)− hq,i(q̃j(tp))| ≤ εr,i, p = k + 1, . . . , k +N − 1 (3.29b)

The two feasibility/stability points described from Liu et al. (2010),
Albalawi et al. (2017a), and Chen et al. (2012) continue to hold when
these input rates of change constraints are applied because h̄q,j(q̃j(tp)),
t ∈ [tp, tp+1), p = k, . . . , k + N − 1, remains a feasible solution to
these constraints. Similarly, Equations (3.13) and (3.14) will hold for
all m inputs applied to the process if Equation (3.17) holds since
Equations (3.29a) and (3.29b) are feasible.

The constraints of Equations (3.29a) and (3.29b) are also appropriate
for the j-th DLEMPC, for all i ∈ {1, . . . ,m} that correspond to the
inputs in the vector ūm,j (rather than Equations (3.16h) and (3.16i)).
The relevant feasibility and stability properties for this discussion
from Albalawi et al. (2017a), which hold under appropriate assumptions
and conditions, are: 1) h̄q,j(q̃j(tp)), t ∈ [tp, tp+1), p = k, . . . , k +N − 1,
is a feasible solution to each iterative DLEMPC for c = 1; 2) for a
feasible solution to each iterative DLEMPC to exist if c > 1, it must
be checked that Vq remains below ρq,e when Vq is computed along
the closed-loop state trajectory of Equation (3.25) with w ≡ 0 and
inputs ū∗m,r,c−1(t|tk), t ∈ [tk, tk+N ), r = 1, . . . , m̄. The resulting feasible
solution at iteration c in the j-th DLEMPC (if this condition on Vq is
met) is then ū∗m,j,c−1(t|tk), t ∈ [tk, tk+N ); and 3) the closed-loop state is
maintained within Ωρq if, at each sampling time, either a feasible solution
to all m̄ DLEMPCs that also meets the requirement on Vq is applied to
the process or hq(q(tk)) is applied if the solution returned at c = 1 does
not meet the requirement on Vq at c = 1. The analysis of whether these
three conditions continue to hold, and also Equations (3.13) and (3.14),
when Equations (3.29a) and (3.29b) are included in the j-th DLEMPC
requires analyzing feasibility of each iteration with these constraints
and also the closed-loop state and input trajectories under the potential
combination of hq(q(tk)) and the feasible DLEMPC solutions that
meet the Vq requirement that may be applied to the process over time.
Specifically, when c = 1, h̄q,j(q̃j(tp)), t ∈ [tp, tp+1), p = k, . . . , k+N − 1,
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remains a feasible solution to the constraints in each DLEMPC since
it satisfies Equations (3.29a) and (3.29b). If a subsequent iteration is
performed, ū∗m,j,c−1(t|tk), t ∈ [tk, tk+N ) is a feasible solution if the Vq
requirement was met because it satisfied Equations (3.29a) and (3.29b)
at iteration c− 1 and therefore will satisfy them at iteration c as well.

Finally, though the added Equations (3.29a) and (3.29b) will not
affect the stability proof, it must be analyzed whether they guarantee
that Equations (3.13) and (3.14) are met when Equation (3.17) holds,
at every sampling time, regardless of whether the DLEMPC inputs or
hq(q(tk)) is applied to the process (in particular, whether Equation (3.13)
on the applied inputs is always satisfied, and whether at a given sampling
time where the DLEMPC solution is applied, whether Eq. 3.14 holds
on all non-implemented inputs computed by the DLEMPC). Upper
bounds on Equations (3.13) and (3.14) for each i = 1, . . . ,m and
j = k + 1, . . . , k +N − 1 are, respectively (Durand et al., 2014):

|u∗m,i(tk|tk)− hq,i(q(tk))|+ |u∗m,i(tk−1|tk−1)− hq,i(q(tk−1))|

+|hq,i(q(tk))− hq,i(q(tk−1))| (3.30a)

|u∗m,i(tj |tk)− hq,i(q̃j(tj))|+ |u∗m,i(tj−1|tk)− hq,i(q̃j(tj−1))|

+|hq,i(q̃j(tj))− hq,i(q̃j(tj−1))| (3.30b)

Conditions which allow Equations (3.13) and (3.14) to hold if Equa-
tion (3.17) forms an upper bound on these equations are: Condition
1) |u∗m,i(tj |tk)− hq,i(q̃j(tj))| ≤ εr,i, i = 1, . . . ,m, j = k, . . . , k +N − 1;
Condition 2) |u∗m,i(tk−1|tk−1) − hq,i(q(tk−1))| ≤ εr,i , i = 1, . . . ,m (to
ensure there is no ambiguity at t0, set u∗m,i(t0|t0) = hq,i(q(t0)), i =
1, . . . ,m). If the LEMPC solution is applied to the process-valve system,
Equations (3.29a) and (3.29b) are feasible and therefore Condition 1
holds. Condition 1 is trivially satisfied using hq,i(q(tk)), i = 1, . . . ,m,
as the system input for tj = tk. Finally, whether u∗m,i(tk−1|tk−1) came
from a feasible solution to the DLEMPC optimization problem or
from hq,i(q(tk−1)), Condition 2 is satisfied. Therefore, Equation (3.13)
is satisfied by the input trajectory applied to the process under the
iterative DLEMPC implementation strategy over time. This discussion
regarding how to extend the iterative and sequential designs indicates
that updating EMPC designs to account for valve behavior may require
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new constraints to be developed for a design and new theoretical analysis
if the valve behavior is not accounted for from the beginning of the
design.

3.2 EMPC accounting for equipment behavior

Motivated by the importance of including valve behavior in EMPC
as reviewed in the prior sections, we conclude by proposing that
other equipment dynamics, also traditionally neglected when modeling
processes and designing controllers, may be critical to account for
within EMPC design, again from the design stage. Equipment-related
considerations (e.g., corrosion Finšgar and Jackson, 2014; Garcia-Arriaga
et al., 2010; Anderko et al., 2005), heat exchanger fouling (Yeap et al.,
2004; Bohnet, 1987; Polley et al., 2002), catalyst fouling (Pacheco
and Petersen, 1984; Zhang and Seaton, 1996), fatigue (Okrajni et al.,
2005), creep (Ul-Hamid et al., 2006; Bonaccorsi et al., 2014), impeller
wear (Aiming et al., 1995), pump leakage (Khan and Abbasi, 2001), and
sensor drift (Center for Chemical Process Safety, 2017), all of which
are observed in the chemical process industries) can be impacted by
and/or may themselves impact process operating conditions. Therefore,
one could consider that an MPC/EMPC should be made aware of the
dynamics of equipment through a process-equipment model. This can be
expected to be beneficial for two major reasons: 1) EMPC may operate
processes in ways that they have not been operated before (i.e., with
persistent time-varying operation as opposed to steady-state operation).
It is not then obvious whether or not new equipment concerns may
arise (e.g., shorter time to failure of equipment (Kidam and Hurme,
2013) due to the manner in which the equipment is impacted by the
operating strategy over time) if the EMPC is not aware of the equipment
behavior. This is especially important to address because it is not
possible to predict the manner in which an EMPC may operate a
process a priori, especially in the presence of disturbances. 2) The
purpose of utilizing EMPC to control a process is to enhance profit,
and equipment replacement due to changes in the equipment over time
can decrease profit. It is necessary to investigate whether an EMPC can
enhance process profits during operation while simultaneously decreasing
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equipment costs by being made aware of equipment limitations (this
may be beneficial for tracking MPC as well).

The first step in enabling this vision of an EMPC which accounts for
equipment behavior is selecting and/or developing sufficiently accurate,
control-relevant models for equipment behavior which can effectively
represent any coupling between the dynamics of a process and of
equipment. These models must be capable of predicting equipment
dynamics regardless of the operating conditions or changes in operating
conditions (e.g., a model for creep developed from data at a fixed
temperature may not be sufficient). This will require an analysis of
literature on a variety of different dynamic equipment considerations. It
will also require models to be selected that can accurately account for
multiple types of equipment behavior occurring at once (e.g., corrosion
in addition to creep). Finally, it will require methods for determining
how to incorporate the models in EMPC in a manner that allows all
potential equipment dynamics to be accounted for, even those which
may not be thought of as applying to a given process, due to the inability
to predict a priori how an EMPC may control a process and thus an
inability to pre-determine all possible equipment dynamics that may
have significance within the process–equipment model.

However, determining an appropriate process–equipment model is
just the first step in working to achieve EMPC designs that explicitly
account for the interactions between processes and equipment. As for
the case when sticky valves are the types of equipment under focus, new
constraints may be required (e.g., constraints on the rate of corrosion
or the stress experienced by a component), which will need to be
developed and incorporated within EMPC from the beginning of design.
Accounting for equipment dynamics from the beginning of EMPC
design may also expose, as for the valves, a need to question whether
fundamental assumptions of traditional EMPC design techniques which
neglected equipment dynamics continue to hold when process–equipment
systems are considered. For example, advances in EMPC focused on
operational safety (Kletz, 2009; Khan and Abbasi, 1999; Pariyani et al.,
2010) have introduced the concept that safety is related to the process
state and may be quantified through a state-based metric termed the
Safeness Index S(·) upon which a threshold value can be set to delineate



3.2. EMPC accounting for equipment behavior 335

between states which are acceptable to operate at and those which are
not desirable from a safety perspective (Albalawi et al., 2017b). An
LEMPC formulation was developed that can drive the state from any
q(tk) ∈ Ωρq into the region where S(·) is less than its threshold in finite
time (under sufficient conditions and assumptions) as follows (extended
here to process–valve systems):

max
um(t)∈S(∆)

∫ tk+N

tk

Le(q̃(τ), um(τ)) dτ (3.31a)

s.t. ˙̃q(t) = f(q̃(t), um(t)) (3.31b)

q̃(tk) = q(tk) (3.31c)

q̃(t) ∈ Q, ∀ t ∈ [tk, tk+N ) (3.31d)

um(t) ∈ Um, ∀ t ∈ [tk, tk+N ) (3.31e)

Vq(q̃(t)) ≤ ρq,e, ∀ t ∈ [tk, tk+N )

if Vq(q(tk)) ≤ ρq,e (3.31f)

S(q̃(t)) ≤ STH , ∀ t ∈ [tk, tk+N )

if S(q(tk)) ≤ STH (3.31g)

∂Vq(q(tk))
∂q

f(q(tk), um(tk))

≤ ∂Vq(q(tk))
∂q

f(q(tk), hq(q(tk))),

if Vq(q(tk)) > ρq,e or tk > ts or S(q(tk)) > STH

(3.31h)

where the notation follows that in Equations (2.2) and (3.16). This
design seeks to keep the state predictions within the region in Ωρq

in which S(q) ≤ STH when S(q(tk)) ≤ STH . This design raises an
important point for EMPC in general (i.e., not only LEMPC): if it is
desired to enhance process operational safety within EMPC through
systems-based safety constraints on the state, it is important for the
EMPC to be aware of all dynamics which affect the state (i.e., both
those related to the process and those related to equipment) to seek to
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prevent plant–model mismatch from causing the control actions which
an EMPC believes will maintain a process state within a safe operating
region from driving the actual process state into unsafe operating
regions in state-space. Additionally, it may give greater flexibility to
engineers to include the states most heavily tied to a safety issue in
S(q), rather than forcing them to develop S(q) from a more limited
selection of states which may not be fully capable of assessing safety
concerns.

However, the design of Equation (3.31) once again brings to the
forefront the need to account for equipment behavior from the beginning
of EMPC design. For example, one of the fundamental assumptions of
the safety functions of Equation (3.31) is that the state of the system
can always be driven back into a neighborhood of the steady-state. Yet,
many equipment-related issues (e.g., corrosion) are not reversible, so it
is reasonable to postulate that there may be circumstances in which a
state used to represent an equipment issue will constantly evolve in an
unsafe direction (i.e., it cannot be turned away from this direction) such
that if this state is included in S(q) and considered in setting STH , then
once that state causes STH to be exceeded, the design of Equation (3.31)
will not be able to drive S(q) back into the region where S(q) ≤ STH .
This indicates that to prevent accidents by focusing on the interactions
between a process and equipment, new types of safety-based constraints
may need to be developed that can constrain potentially irreversible
properties (e.g., possibly requiring their values to remain below a certain
value in a given time period or to be no worse than under steady-state
operation). The safety systems themselves contain equipment that can
fail as well, and therefore accounting for potential impacts of the process
operating strategy on the ability of equipment comprising the safety
system (e.g., burst discs Mannan, 2012) to operate on demand may also
improve process operational safety.

In addition, though many EMPC designs apply to the class of
systems in Equation (2.1) (i.e., systems of nonlinear ordinary differential
equations; there are limited cases where the fundamentally distributed
nature of chemical processes has been recognized in EMPC design (Lao
et al., 2015a; Lao et al., 2014a; Lao et al., 2014b)), some equipment
dynamics (e.g., stress) may need to be modeled using partial differential
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equations. Due to the fact that equipment may only contact the bound-
ary of a process (e.g., in a reactor, the process conditions which directly
affect the reactor vessel are those at the wall of the reactor), it may be
necessary to model the process as well with partial differential equations
to develop sufficiently accurate predictions of the process conditions at
the process–equipment boundary. This may require advances in EMPC
theory and formulations. Furthermore, advances in other fields which
may benefit control, such as state estimation, may also be required (it
may not be possible to measure all states in a control-relevant equipment
model; for example, the state zf in Equation (3.6) is not truly a physical
state and therefore it would be expected that state estimation may
provide an effective means for obtaining its value). Therefore, output
feedback EMPC (Ellis et al., 2014b) for process–equipment systems
would also need to be investigated.

Finally, capital cost considerations related to equipment must be
considered. EMPC designs focus on profits within a prediction horizon,
which have traditionally been assumed to be related to shorter-term
operating objectives like reducing energy use or increasing the produc-
tion rate of a product. The prediction horizon must generally be fairly
short to achieve reasonable computation times. However, part of the cost
of plant operation is due to maintenance and part replacement as a result
of equipment degradation. Therefore, EMPC designs should account
for longer-term costs for equipment that may be related to short-term
operating conditions (e.g., a penalty can be placed on equipment wear in
the objective function) so that the controllers do not make short-sighted
decisions that may ultimately reduce the profits of a plant even if they
appear to raise them in the short-term. However, accounting for longer-
term costs requires that either methods be developed that can account
for these longer-term costs in a shorter prediction horizon, or methods
dealing with longer prediction horizons in a computationally efficient
manner must be developed (Du et al., 2015). Furthermore, with the
greater focus on integrating dynamics-related challenges with scheduling
to improve operation (Zhuge and Ierapetritou, 2012; Flores-Tlacuahuac
and Grossmann, 2010; Tong et al., 2015), scheduling problems should
also look at including impacts of the schedule on process equipment
(e.g., potentially taking a lead from the literature for cycling of power
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plants Van den Bergh and Delarue, 2015; Kumar et al., 2012; Hermans
and Delarue, 2017; Intertek).

Remark 1. A clarification should be made regarding the relationship
between works developed for EMPC to handle equipment (e.g., sensors
and actuators) faults or maintenance efforts and the dynamic equipment
behavior being proposed for inclusion in EMPC in this work. This can
be exemplified by comparing EMPCs accounting for actuator faults
(e.g., Alanqar et al., 2017c) and maintenance e.g., Lao et al., 2014c
with EMPC accounting for stiction dynamics (Durand and Christofides,
2016). The works which have accounted for actuator faults have assumed
ua = um, with the result that a fault in the valve would correspond to
its unavailability for control (e.g., its output becomes fixed at a specific
value until the fault is fixed). In the case where stiction is included, the
valve may appear to be stuck at a certain value for some period of time,
but that is not because it has experienced a fault. That is a function
of its dynamics, which prevent its macroscopic movement until a large
enough force is applied to the valve, at which point the valve’s dynamics
will dictate that it will move (though the results accounting for actuator
faults and maintenance should be extended to process–valve systems).
Similarly, though sensors may become unavailable due to, for example,
maintenance, and their measurements replaced with state estimations
until they are brought back on-line (Lao et al., 2015b), this unavailability
of the sensor is not due to the dynamic nature of its behavior, but rather
due to a physical intervention of maintenance personnel. However, drift
in sensor readings over time caused by dynamic effects (potentially, for
example, corrosion) would constitute behavior that has the potential to
be modeled as part of equipment dynamic behavior of which an EMPC
should be made aware.



4
Conclusions

Including valve behavior (e.g., stiction) in EMPC has been demonstrated
to be beneficial from the perspective of reducing plant/model mismatch
to enable production goals and constraints to be met, and it has been
demonstrated that it should be taken into account from the beginning
of the design of EMPC formulations to avoid ambiguity in how to
handle constraints or practical considerations related to considering
the dynamics associated with a process-valve system as opposed to
only a chemical process. The benefits of designing EMPCs to account
for valve behavior that have been examined in the literature suggest
that it may also be desirable to investigate considerations related to
other equipment, which may be important from the perspectives of both
profit and safety, within EMPC. This review presents the perspective
that chemical process systems should be understood not as chemical
processes alone, but as being affected by the geometry and dynamics
of equipment, and furthermore impacting those equipment dynamics.

339



340 Conclusions

Especially with EMPC, which can operate a process in aggressive ways
that potentially have more impact on equipment than more traditional
MPC designs, it may no longer be adequate to consider equipment
selection, design, and materials selection to be design considerations
inapplicable to process control strategies.



Acknowledgements

Financial support from the National Science Foundation and the Depart-
ment of Energy is gratefully acknowledged.

341



References

Aiming, F., L. Jinming, and T. Ziyun (1995). “Failure analysis of
the impeller of a slurry pump subjected to corrosive wear”. Wear.
181–183: 876–882.

Alanqar, A., H. Durand, F. Albalawi, and P. D. Christofides (2017a).
“An economic model predictive control approach to integrated pro-
duction management and process operation”. AIChE Journal. 63:
1892–1906.

Alanqar, A., H. Durand, and P. D. Christofides (2015a). “On identifica-
tion of well-conditioned nonlinear systems: Application to economic
model predictive control of nonlinear processes”. AIChE Journal.
61: 3353–3373.

Alanqar, A., H. Durand, and P. D. Christofides (2017b). “Error-
triggered on-line model identification for model-based feedback
control”. AIChE Journal. 63: 949–966.

Alanqar, A., H. Durand, and P. D. Christofides (2017c). “Fault-tolerant
economic model predictive control using error-triggered online model
identification”. Industrial & Engineering Chemistry Research. 56:
5652–5667.

Alanqar, A., M. Ellis, and P. D. Christofides (2015b). “Economic model
predictive control of nonlinear process systems using empirical
models”. AIChE Journal. 61: 816–830.

342



References 343

Albalawi, F., H. Durand, and P. D. Christofides (2017a). “Distributed
economic model predictive control for operational safety of nonlinear
processes”. AIChE Journal. 63: 3404–3418.

Albalawi, F., H. Durand, and P. D. Christofides (2017b). “Process
operational safety using model predictive control based on a process
Safeness Index”. Computers & Chemical Engineering. 104: 76–88.

Albalawi, F., H. Durand, and P. D. Christofides (2017c). “Process
operational safety via model predictive control: Results and future
research directions”. Computers & Chemical Engineering. in press.

Alessandretti, A., A. P. Aguiar, and C. N. Jones (2016). “On convergence
and performance certification of a continuous-time economic model
predictive control scheme with time-varying performance index”.
Automatica. 68: 305–313.

Alfani, F. and J. J. Carberry (1970). “An exploratory kinetic study of
ethylene oxidation over an unmoderated supported silver catalyst”.
La Chimica e L’Industria. 52: 1192–1196.

Amrit, R., J. B. Rawlings, and D. Angeli (2011). “Economic optimization
using model predictive control with a terminal cost”. Annual Reviews
in Control. 35: 178–186.

Amrit, R., J. B. Rawlings, and L. T. Biegler (2013). “Optimizing process
economics online using model predictive control”. Computers &
Chemical Engineering. 58: 334–343.

Anderko, A., N. Sridhar, L. T. Yang, S. L. Grise, B. J. Saldanha,
and M. H. Dorsey (2005). “Validation of localised corrosion model
using real time corrosion monitoring in a chemical plant”. Corrosion
Engineering, Science, and Technology. 40: 33–42.

Bacci di Capaci, R., M. Vaccari, and G. Pannocchia (2017). “A valve
stiction tolerant formulation of MPC for industrial processes”. In:
Proceedings of the 20th IFAC World Congress. Toulouse, France.
9374–9379.

Bishop, T., M. Chapeaux, L. Jaffer, K. Nair, and S. Patel (2002). “Ease
control valve selection”. Chemical Engineering Progress: 52–56.

Bohnet, M. (1987). “Fouling of heat transfer surfaces”. Chemical Engi-
neering & Technology. 10: 113–125.



344 References

Bonaccorsi, L., E. Guglielmino, R. Pino, C. Servetto, and A. Sili (2014).
“Damage analysis in Fe-Cr-Ni centrifugally cast alloy tubes for
reforming furnaces”. Engineering Failure Analysis. 36: 65–74.

Brásio, A. S. R., A. Romanenko, and N. C. P. Fernandes (2014).
“Modeling, detection and quantification, and compensation of stiction
in control loops: The state of the art”. Industrial & Engineering
Chemistry Research. 53: 15020–15040.

Camacho, E. F. and C. Bordons (2007). Model Predictive Control. 2nd
ed. London, England: Springer-Verlag.

Canudas de Wit, C., H. Olsson, K. J. Åström, and P. Lischinsky
(1995). “A new model for control of systems with friction”. IEEE
Transactions on Automatic Control. 40: 419–425.

Center for Chemical Process Safety (2017). Guidelines for Safe Automa-
tion of Chemical Processes. 2nd ed. Hoboken, New Jersey: John
Wiley & Sons, Inc.

Chen, X., M. Heidarinejad, J. Liu, and P. D. Christofides (2012).
“Distributed economic MPC: Application to a nonlinear chemical
process network”. Journal of Process Control. 22: 689–699.

Choudhury, M. A. A. S., N. F. Thornhill, and S. L. Shah (2005).
“Modelling valve stiction”. Control Engineering Practice. 13: 641–658.

Coughanowr, D. R. and S. E. Leblanc (2009). Process Systems Analysis
and Control. 3rd ed. Boston, Massachusetts: McGraw-Hill.

del Carmen Rodríguez Liñán, M. and W. P. Heath (2012). “MPC for
plants subject to saturation and deadzone, backlash or stiction”.
In: Proceedings of the 4th IFAC Nonlinear Model Predictive Control
Conference. Noordwijkerhout, The Netherlands. 418–423.

Diehl, M., R. Amrit, and J. B. Rawlings (2011). “A Lyapunov function
for economic optimizing model predictive control”. IEEE Transac-
tions on Automatic Control. 56: 703–707.

Du, J., J. Park, I. Harjunkoski, and M. Baldea (2015). “A time scale-
bridging approach for integrating production scheduling and process
control”. Computers & Chemical Engineering. 79: 59–69.

Durand, H. and P. D. Christofides (2016). “Actuator stiction compen-
sation via model predictive control for nonlinear processes”. AIChE
Journal. 62: 2004–2023.



References 345

Durand, H., M. Ellis, and P. D. Christofides (2014). “Integrated design
of control actuator layer and economic model predictive control for
nonlinear processes”. Industrial & Engineering Chemistry Research.
53: 20000–20012.

Durand, H., M. Ellis, and P. D. Christofides (2016). “Economic model
predictive control designs for input rate-of-change constraint han-
dling and guaranteed economic performance”. Computers & Chemi-
cal Engineering. 92: 18–36.

Durand, H., R. Parker, A. Alanqar, and P. D. Christofides (2017).
“Elucidating and handling effects of valve-induced nonlinearities in
industrial feedback control loops”. Computers & Chemical Engineer-
ing. in press.

Ellis, M., H. Durand, and P. D. Christofides (2014a). “A tutorial review
of economic model predictive control methods”. Journal of Process
Control. 24: 1156–1178.

Ellis, M., H. Durand, and P. D. Christofides (2016). “Elucidation of the
role of constraints in economic model predictive control”. Annual
Reviews in Control. 41: 208–217.

Ellis, M., J. Zhang, J. Liu, and P. D. Christofides (2014b). “Robust
moving horizon estimation based output feedback economic model
predictive control”. Systems & Control Letters. 68: 101–109.

Fang, Y. and A. Armaou (2016). “Carleman approximation based quasi-
analytic model predictive control for nonlinear systems”. AIChE
Journal. 62: 3915–3929.

Finšgar, M. and J. Jackson (2014). “Application of corrosion inhibitors
for steels in acidic media for the oil and gas industry: A review”.
Corrosion Science. 86: 17–41.

Flores-Tlacuahuac, A. and I. E. Grossmann (2010). “Simultaneous
scheduling and control of multiproduct continuous parallel lines”.
Industrial & Engineering Chemistry Research. 49: 7909–7921.

Gajjar, S. and A. Palazoglu (2016). “A data-driven multidimensional
visualization technique for process fault detection and diagnosis”.
Chemometrics and Intelligent Laboratory Systems. 154: 122–136.

Garcia, C. (2008). “Comparison of friction models applied to a control
valve”. Control Engineering Practice. 16: 1231–1243.



346 References

Garcia-Arriaga, V., J. Alvarez-Ramirez, M. Amaya, and E. Sosa (2010).
“H2S and O2 influence on the corrosion of carbon steel immersed in
a solution containing 3 M diethanolamine”. Corrosion Science. 52:
2268–2279.

Hägglund, T. (2002). “A friction compensator for pneumatic control
valves”. Journal of Process Control. 12: 897–904.

Ul-Hamid, A., H. M. Tawancy, A.-R. I. Mohammed, and N. M. Abbas
(2006). “Failure analysis of furnace radiant tubes exposed to excessive
temperature”. Engineering Failure Analysis. 13: 1005–1021.

He, Q. P., J. Wang, M. Pottmann, and S. J. Qin (2007). “A curve fitting
method for detecting valve stiction in oscillating control loops”.
Industrial & Engineering Chemistry Research. 46: 4549–4560.

Heidarinejad, M., J. Liu, and P. D. Christofides (2012). “Economic model
predictive control of nonlinear process systems using Lyapunov
techniques”. AIChE Journal. 58: 855–870.

Hermans, M. and E. Delarue (2017). “Modeling start-up modes and
corresponding cycling costs in the unit commitment problem”. In:
Proceedings of IEEE PowerTech Manchester. Manchester, United
Kingdom.

Intertek (2017). “Utility Cycling AdvisorTM”. http://www.intertek.
com/power-generation/cycling-advisor/ Accessed 2017-08-20.

Kano, M., H. Maruta, H. Kugemoto, and K. Shimizu (2004). “Practical
model and detection algorithm for valve stiction”. In: Proceedings of
the IFAC Symposium on Dynamics and Control of Process Systems.
Cambridge, Massachusetts. 859–864.

Kettunen, M., P. Zhang, and S.-L. Jämsä-Jounela (2008). “An embedded
fault detection, isolation and accommodation system in a model pre-
dictive controller for an industrial benchmark process”. Computers
& Chemical Engineering. 32: 2966–2985.

Khan, F. I. and S. A. Abbasi (1999). “Major accidents in process
industries and an analysis of causes and consequences”. Journal of
Loss Prevention in the Process Industries. 12: 361–378.

Khan, F. I. and S. A. Abbasi (2001). “Risk analysis of a typical chemical
industry using ORA procedure”. Journal of Loss Prevention in the
Process Industries. 14: 43–59.

http://www.intertek.com/power-generation/cycling-advisor/
http://www.intertek.com/power-generation/cycling-advisor/


References 347

Kidam, K. and M. Hurme (2013). “Analysis of equipment failures as
contributors to chemical process accidents”. Process Safety and
Environmental Protection. 91: 61–78.

Kletz, T. (2009). What Went Wrong?: Case Histories of Process Plant
Disasters and How They Could Have Been Avoided. 5th ed. Burling-
ton, Massachusetts: Elsevier.

Kumar, N., P. Besuner, S. Lefton, D. Agan, and D. Hilleman (2012).
“Power Plant Cycling Costs, Subcontract Report NREL/SR-5500-
55433”. Technical Report, National Renewable Energy Laboratory.

Lao, L., M. Ellis, and P. D. Christofides (2013). “Proactive fault-tolerant
model predictive control”. AIChE Journal. 59: 2810–2820.

Lao, L., M. Ellis, and P. D. Christofides (2014a). “Economic model
predictive control of parabolic PDE systems: Addressing state
estimation and computational efficiency”. Journal of Process Control.
24: 448–462.

Lao, L., M. Ellis, and P. D. Christofides (2014b). “Economic model
predictive control of transport-reaction processes”. Industrial &
Engineering Chemistry Research. 53: 7382–7396.

Lao, L., M. Ellis, and P. D. Christofides (2014c). “Smart manufacturing:
Handling preventive actuator maintenance and economics using
model predictive control”. AIChE Journal. 60: 2179–2196.

Lao, L., M. Ellis, and P. D. Christofides (2015a). “Handling state
constraints and economics in feedback control of transport-reaction
processes”. Journal of Process Control. 32: 98–108.

Lao, L., M. Ellis, H. Durand, and P. D. Christofides (2015b). “Real-
time preventive sensor maintenance using robust moving horizon
estimation and economic model predictive control”. AIChE Journal.
61: 3374–3389.

Limon, D., M. Pereira, D. Muñoz de la Peña, T. Alamo, and J. M.
Grosso (2014). “Single-layer economic model predictive control for
periodic operation”. Journal of Process Control. 24: 1207–1224.

Liu, J., X. Chen, D. Muñoz de la Peña, and P. D. Christofides (2010).
“Sequential and iterative architectures for distributed model pre-
dictive control of nonlinear process systems”. AIChE Journal. 56:
2137–2149.



348 References

Mannan, S. (2012). Lees’ Loss Prevention in the Process Industries–
Hazard Identification, Assessment and Control. 4th ed. Waltham,
Massachusetts: Elsevier.

Marlin, T. E. and A. N. Hrymak (1996). “Real-time operations optimiza-
tion of continuous processes”. In: Proceedings of the 5th International
Conference on Chemical Process Control. Tahoe City, California.
156–164.

Mhaskar, P. and A. B. Kennedy (2008). “Robust model predictive
control of nonlinear process systems: Handling rate constraints”.
Chemical Engineering Science. 63: 366–375.

Mhaskar, P. (2006). “Robust model predictive control design for fault-
tolerant control of process systems”. Industrial & Engineering Chem-
istry Research. 45: 8565–8574.

Müller, M. A., D. Angeli, and F. Allgöwer (2015). “On necessity and
robustness of dissipativity in economic model predictive control”.
IEEE Transactions on Automatic Control. 60: 1671–1676.

Müller, M. A. and F. Allgöwer (2017). “Economic and distributed
model predictive control: Recent developments in optimization-
based control”. SICE Journal of Control, Measurement, and System
Integration. 10: 39–52.

Okrajni, J., K. Mutwil, and M. Cieśla (2005). “Chemical pipelines
material fatigue”. Journal of Materials Processing Technology. 164–
165: 897–904.

Özgülşen, F., R. A. Adomaitis, and A. Çinar (1992). “A numerical
method for determining optimal parameter values in forced periodic
operation”. Chemical Engineering Science. 47: 605–613.

Pacheco, M. A. and E. E. Petersen (1984). “On the development of a
catalyst fouling model”. Journal of Catalysis. 88: 400–408.

Pariyani, A., W. D. Seider, U. G. Oktem, and M. Soroush (2010). “Inci-
dents investigation and dynamic analysis of large alarm databases
in chemical plants: A fluidized-catalytic-cracking unit case study”.
Industrial & Engineering Chemistry Research. 49: 8062–8079.

Polley, G. T., D. I. Wilson, B. L. Yeap, and S. J. Pugh (2002). “Evalua-
tion of laboratory crude oil threshold fouling data for application to
refinery pre-heat trains”. Applied Thermal Engineering. 22: 777–788.



References 349

Prakash, J., S. C. Patwardhan, and S. Narasimhan (2002). “A Super-
visory Approach to Fault-Tolerant Control of Linear Multivariable
Systems”. Industrial & Engineering Chemistry Research. 41: 2270–
2281.

Qin, S. J. and T. A. Badgwell (2003). “A survey of industrial model
predictive control technology”. Control Engineering Practice. 11:
733–764.

Rawlings, J. B. (2000). “Tutorial overview of model predictive control”.
IEEE Control Systems Magazine: 38–52.

Rawlings, J. B., D. Angeli, and C. N. Bates (2012). “Fundamentals of
economic model predictive control”. In: Proceedings of the IEEE
Conference on Decision and Control. Maui, Hawaii. 3851–3861.

Srinivasan, R. and R. Rengaswamy (2008). “Approaches for efficient
stiction compensation in process control valves”. Computers &
Chemical Engineering. 32: 218–229.

Tong, C., A. Palazoglu, N. H. El-Farra, and X. Yan (2015). “Energy
demand management for process systems through production
scheduling and control”. AIChE Journal. 61: 3756–3769.

Van den Bergh, K. and E. Delarue (2015). “Cycling of conventional
power plants: Technical limits and actual costs”. Energy Conversion
and Management. 97: 70–77.

Venkatasubramanian, V., R. Rengaswamy, and S. N. Kavuri (2003). “A
review of process fault detection and diagnosis: Part II: Qualitative
models and search strategies”. Computers & Chemical Engineering.
27: 313–326.

Wächter, A. and L. T. Biegler (2006). “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming”. Mathematical Programming. 106: 25–57.

Yeap, B. L., D. I. Wilson, G. T. Polley, and S. J. Pugh (2004). “Mitiga-
tion of crude oil refinery heat exchanger fouling through retrofits
based on thermo-hydraulic fouling models”. Chemical Engineering
Research and Design. 82: 53–71.

Zabiri, H. and Y. Samyudia (2006). “A hybrid formulation and design
of model predictive control for systems under actuator saturation
and backlash”. Journal of Process Control. 16: 693–709.



350 References

Zhang, L. and N. A. Seaton (1996). “Simulation of catalyst fouling at
the particle and reactor levels”. Chemical Engineering Science. 51:
3257–3272.

Zhuge, J. and M. G. Ierapetritou (2012). “Integration of scheduling and
control with closed loop implementation”. Industrial & Engineering
Chemistry Research. 51: 8550–8565.


	Introduction
	Preliminaries
	Notation
	Class of systems
	Economic model predictive control

	Handling Process-Equipment Considerations within EMPC
	EMPC accounting for valve behavior
	EMPC accounting for equipment behavior

	Conclusions
	Acknowledgements
	References

