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Economic  model  predictive  control  (EMPC)  has  been  a popular  topic  in  the recent  chemical  process  control
literature  due  to  its potential  to  improve  process  profit  by  operating  a system  in  a  time-varying  manner.
However,  time-varying  operation  may  cause  excessive  wear  of the process  components  such  as  valves
and  pumps.  To  address  this  issue,  input  magnitude  constraints  and  input  rate-of-change  constraints  can
be  added  to  the  EMPC  optimization  problem  to prevent  possible  frequent  and  extreme  changes  in the
requested  inputs.  Specifically,  we  develop  input  rate-of-change  constraints  that  can  be  incorporated  in
conomic model predictive control
hemical processes
rocess control
ate of change constraints
conomic performance

Lyapunov-based  EMPC  (LEMPC)  that ensure  controller  feasibility  and closed-loop  stability.  Furthermore,
we develop  a terminal  equality  constraint  for  LEMPC  that  can  ensure  that the  performance  of  LEMPC
is at  least  as  good  as that of  a Lyapunov-based  controller  in  finite-time  and  in  infinite-time.  Chemical
process  examples  demonstrate  the  incorporation  of input  rate-of-change  constraints  and  terminal  state
constraints  in  EMPC.

© 2016  Elsevier  Ltd.  All  rights  reserved.
. Introduction

As environmental requirements tighten and chemical
rocessing companies are increasingly interested in operat-

ng processes in the most economically efficient but safe manner,
dvanced process control is being exploited as a means to achieve
hese objectives. Real-time optimization (RTO), coupled with

odel predictive control (MPC) and a distributed control system
DCS) architecture, has been used in industry to improve produc-
ion profits (Darby et al., 2011; Marlin and Hrymak, 1996). Typical
ndustrial implementations of the RTO-MPC paradigm have struc-
ures that are considered to make the advanced control strategy
afe to use, including logic steps at the RTO level to evaluate RTO
olutions before implementing them (Marlin and Hrymak, 1996), a
racking MPC  formulation with a quadratic objective, and penalties
n changes in the manipulated inputs between two sampling
eriods of the prediction horizon to prevent aggressive movement
f the actuation elements (Qin and Badgwell, 2003).
A fairly recent development in the MPC  literature that is often
iewed as an alternative to the RTO-MPC hierarchy is economic
odel predictive control (EMPC) which, like standard tracking

∗ Corresponding author at: Department of Chemical and Biomolecular Engineer-
ng, University of California, Los Angeles, CA 90095-1592, USA.

E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

ttp://dx.doi.org/10.1016/j.compchemeng.2016.04.026
098-1354/© 2016 Elsevier Ltd. All rights reserved.
MPC, optimizes an objective function subject to constraints to
determine the optimal control actions that meet these constraints.
Unlike tracking MPC, however, the objective function of EMPC
is not required to have its minimum at a steady-state of the
process because it is based on the concept that processes may
operate more profitably off steady-state than at steady-state. To
attain greater economic profitability than the steady-state operat-
ing strategy dictated by the RTO-MPC control architecture, EMPC
may  calculate widely varying or bang-bang type control actions
(Mendoza-Serrano and Chmielewski, 2012; Ellis and Christofides,
2014; Bailey et al., 1971). Such time-varying control policies are
consistent with the optimal process operation literature, in which
it has been repeatedly shown, both theoretically and experimen-
tally, that periodic operation of certain chemical processes may  be
more economically optimal than steady-state operation (Silveston,
1987; Shu et al., 1989; Sterman and Ydstie, 1991; Özgülş en et al.,
1992). Though the economic results from time-varying operation
in such cases may  be highly favorable, the possible extreme move-
ment required by the actuation elements brings up safety concerns
with respect to whether such movement might cause actuators
or other components that regulate the process flow rates, such as
pumps, to wear out early and thus fail when they are used for safety-

critical processes or are crucial to compliance with environmental
regulations. If such an issue were to occur, the economic benefits
from time-varying process operation under EMPC would no longer
matter or be realized.

dx.doi.org/10.1016/j.compchemeng.2016.04.026
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2016.04.026&domain=pdf
mailto:pdc@seas.ucla.edu
dx.doi.org/10.1016/j.compchemeng.2016.04.026
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The matter of reducing the aggressiveness of input changes has
een a consideration in the tracking MPC  literature since its incep-
ion, however most theoretical studies in EMPC to date have not
ocused on this issue, but the majority of the literature has instead
ocused on other concerns, both theoretical and practical, that arise
rom the use of EMPC. For example, convergence to a steady-state
as established for systems under an EMPC for which the optimal

ontrol problem exhibited an exact turnpike property (Faulwasser
nd Bonvin, 2015). In addition, the closed-loop stability of processes
nder numerous EMPC formulations has been investigated by vari-
us methods (e.g., ensuring that a process with a cyclic steady-state
an be driven to this periodic solution by an EMPC Huang et al.,
012). A common method for guaranteeing closed-loop stability is
o impose additional constraints in the EMPC formulation, such as
erminal steady-state constraints requiring the process state to be
t the steady-state at the end of the horizon (Diehl et al., 2011), ter-
inal region constraints (Amrit et al., 2011), and Lyapunov-based

onstraints (Heidarinejad et al., 2012) (see also the review paper
llis et al., 2014a for further information and references on EMPC).

To extend the foundational results on EMPC to address the
ssue of input change aggressiveness, additional constraints may be
dded to EMPC. One type of constraint that has been used exten-
ively for tracking MPC  formulations to prevent rapid changes of
he actuator output and consequently to prevent rapid changes
f the process states is a rate of change constraint on the values
f the inputs calculated by the MPC  (see, e.g., Qin and Badgwell,
000, 2003; Camacho and Bordons, 2007; De Souza et al., 2010
or both industrial and research work incorporating such a con-
traint). For example, in Muske and Rawlings (1993), feasibility and
losed-loop stability of linear, discrete-time systems under MPC
ith input magnitude and rate of change constraints are proven

or both open-loop stable and unstable systems. In Mhaskar and
ennedy (2008), an MPC  formulation for input-affine nonlinear sys-

ems accounting for input magnitude constraints and input rate
f change constraints using a penalty in the objective and hard
onstraints when possible is proven to be feasible and to ensure
losed-loop stability for bounded process uncertainty. Input rate of
hange constraints have also been used in several works on EMPC.
n particular, an MPC  including input magnitude and rate of change
onstraints was used to improve the economic performance of a
eat pump by incorporating electricity price and weather forecasts
Tahersima et al., 2012), and EMPC including magnitude and rate
f change constraints on the inputs was applied for power produc-
ion and use (Hovgaard et al., 2010). Though input rate of change
onstraints have been applied to several EMPC examples in the lit-
rature, no proof of general feasibility and closed-loop stability for a
onlinear system under an EMPC strategy incorporating both input
agnitude and input rate of change constraints with Lyapunov-

ased constraints that ensure closed-loop stability in the presence
f disturbances has yet been developed. The development of such
n EMPC strategy will be one of the topics covered in this work.

Despite the benefits from an actuator durability perspective
f incorporating constraints that prevent an EMPC from calculat-
ng aggressive control actions, it would be expected that limiting
he control actions that the EMPC can calculate would reduce the
conomic profitability of the EMPC compared to the case that no
nput rate of change constraints are used. However, determining

hether there is still an economic benefit of EMPC compared with
he traditional steady-state paradigm when input rate of change
onstraints are used in EMPC requires the development of proofs
egarding the economic performance of EMPC with input rate of
hange constraints. Previous proofs of the economic performance

f EMPC have not explicitly addressed the case when input rate
f change constraints are included in the EMPC formulation. The
roofs for many of the methods use terminal constraints in the
MPC (Amrit et al., 2011; Ellis et al., 2016; Angeli et al., 2012) or an
cal Engineering 92 (2016) 18–36 19

EMPC prediction horizon that is sufficiently long with some addi-
tional technical conditions (e.g., Grüne, 2013; Müller and Grüne,
2015). Studies to investigate the economic performance of EMPC
have been carried out for EMPC with a stage cost and terminal
constraints that change with time (Angeli et al., 2015), for EMPC
with a generalized terminal region constraint and self-tuning ter-
minal cost (Müller et al., 2014), for EMPC without terminal costs or
constraints for discrete-time systems meeting certain assumptions
including controllability and dissipativity assumptions (Grüne and
Stieler, 2014), and a two-layer EMPC structure including perfor-
mance constraints (Ellis and Christofides, 2014a).

Motivated by all of the above, in this work, we introduce
a Lyapunov-based economic model predictive control (LEMPC)
architecture that can incorporate input rate of change constraints
with provable feasibility, stability, and closed-loop performance
properties. First, we  introduce input rate of change constraints
in the context of LEMPC and show that when the constraints are
formulated with reference to a Lyapunov-based controller, the
LEMPC can be proven to be feasible and to maintain closed-loop
stability for a sufficiently small sampling period. Through a chem-
ical process example, we  demonstrate that the incorporation of
input magnitude and rate of change constraints in EMPC can pre-
vent significant variations in the process inputs while improving
the profit compared to steady-state operation. Subsequently, we
develop an LEMPC design incorporating a terminal equality con-
straint based on an explicit stabilizing Lyapunov-based controller
for which closed-loop economic performance improvement guar-
antees with respect to the Lyapunov-based controller (and with
respect to steady-state operation when the Lyapunov-based con-
troller is exponentially stabilizing) may  be proven for nominal
operation. A chemical process example demonstrates the use of
this LEMPC strategy. We  then show that LEMPC with the termi-
nal equality constraint based on a Lyapunov-based controller, with
input magnitude constraints, and with input rate of change con-
straints retains these provable performance guarantees for nominal
operation.

2. Preliminaries

2.1. Notation

The symbol |·| signifies the Euclidean norm of a vector. A con-
tinuous, strictly increasing function ˛: [0, a) → [0, ∞)  belongs to
class K if ˛(0) = 0. The notation ˝� signifies a level set of a pos-
itive definite scalar-valued function V : R

n → R≥0 and is defined
by ˝� := {x ∈ R

n | V(x) ≤ �, � > 0}. The notation tk = k�,  k = 0, 1,
2, . . . signifies the time at the beginning of a sampling period of
length � for synchronously sampled time intervals. Set subtrac-
tion is signified by ‘/’ (e.g., x ∈ A/B : = {x ∈ A | x /∈ B}). The symbol
S(�) denotes the family of piecewise constant vector-valued func-
tions with period � > 0. More specifically, u(·) ∈ S(�) means that

the function u can be described by a sequence {u(j)}k+N−1
j=k where

u(j) ∈ R
m, or

u(t) = u(j)

for t ∈ [tj, tj+1), j = k, . . .,  k + N − 1.

2.2. Class of systems

The class of systems of nonlinear first-order ordinary differential
equations considered in this work is that of the general form:
ẋ = f (x, u, w)  (1)

where x ∈ R
n, u = [u1 u2 · · · um]T ∈ R

m, and w ∈ R
l are the

state, input, and disturbance vectors, respectively, and are related
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o the time-derivative of the state vector through the nonlin-
ar vector function f. In addition, we assume that the states x(t)
re restricted to the set X  (x(t) ∈ X  ⊂ R

n), that ui(t), i = 1, . . .,  m,
re bounded (ui(t) ∈ Ui := {ui,min ≤ ui(t) ≤ ui,max}), and that the
isturbance w(t) is bounded within a set W ⊂ R

l (w(t) ∈ W :=
w(t) | |w(t)| ≤ �, � > 0}). For simplicity of presentation in the fol-
owing, we will use the notation u(t) ∈ U  ⊂ R

m to denote that each
omponent ui(t) of u(t) is bounded within its respective set Ui. The
ector function f : X  × U  × W is assumed to be locally Lipschitz with
espect to its arguments.

It is assumed that the process economic cost for the system of Eq.
1) can be represented by an economic stage cost function le : X  ×

 → R  that is continuous on X  × U. In addition, it is assumed that
here is a steady-state and steady-state input pair (x∗

s , u∗
s ) for the

ominal (w(t) ≡ 0) system (on X  × U) that minimizes the economic
ost in the sense that the minimum of le is attained at the pair
x∗

s , u∗
s ) when the time derivative of the nominal state in Eq. (1) is

ero. For simplicity, the minimizing pair is assumed to be unique.
ith these assumptions, the minimizing steady-state pair is given

y:

x∗
s , u∗

s ) = arg min
x ∈ X,u ∈ U

{
le(x, u) : f (x, u, 0) = 0

}
.

Without loss of generality, the minimizing pair will be taken to
e the origin of the nominal system of Eq. (1).

.3. Lyapunov-based controller stabilizability assumptions under
ontinuous implementation

We  consider two stabilizability assumptions for the system
f Eq. (1) that a Lyapunov-based controller h(x) = [h1(x) h2(x) · · ·
m(x)]T exists for the nominal system of Eq. (1) that renders the
rigin either locally asymptotically stable or locally exponentially
table in a sense to be made precise in the following two assump-
ions (Massera, 1956; Khalil, 2002), while also meeting the input
onstraints. The first assumption covers the weaker of the two
ases, that of asymptotic stability, while the second covers expo-
ential stability. With slight abuse of notation, the same notation

s used in both assumptions.

ssumption 1. There exists a locally Lipschitz feedback con-
roller h : X  → U  with h(0) = 0 for the nominal system of Eq. (1)
hat renders the origin of the closed-loop system ẋ = f (x, h(x), 0)
symptotically stable when applied continuously in the sense that
here exists a sufficiently smooth Lyapunov function V : R

n → R≥0
uch that the following inequalities hold:

1(|x|) ≤ V(x) ≤ ˛2(|x|) (2a)

∂V(x)
∂x

f (x, h(x), 0) ≤ −˛3(|x|) (2b)

∂V(x)
∂x

∣∣∣∣ ≤ ˛4(|x|) (2c)

or all x ∈ D where D is an open neighborhood of the origin and
i ∈ K,  i = 1, 2, 3, 4.

ssumption 2. There exists a locally Lipschitz feedback controller
 : X  → U  with h(0) = 0 for the nominal system of Eq. (1) that ren-
ers the origin of the system ẋ = f (x, h(x), 0) exponentially stable
hen applied continuously in the sense that there exists a suf-
ciently smooth Lyapunov function V : R

n → R≥0 such that the
ollowing inequalities hold:
1|x|2 ≤ V(x) ≤ c2|x|2 (3a)

∂V(x)
∂x

f (x, h(x), 0) ≤ −c3|x|2 (3b)
cal Engineering 92 (2016) 18–36

∣∣∣∣∂V(x)
∂x

∣∣∣∣ ≤ c4|x| (3c)

for all x ∈ D where D is an open neighborhood of the origin and ci,
i = 1, 2, 3, 4 are positive constants.

We define the set ˝� ⊆ X  ⊂ D, which is an estimate of the region
of attraction of the nominal closed-loop system under a feedback
controller meeting either Assumption 1 or Assumption 2, as the sta-
bility region of the closed-loop system for that controller. Methods
for designing Lyapunov-based feedback controllers can be found in
works such as Lin and Sontag, 1991 and Christofides and El-Farra,
2005.

A consequence of our assumption of the Lipschitz continuity of
h(x) meeting either Assumption 1 or 2 is that its components are
Lipschitz continuous in x, and thus LhL

> 0 exists such that

|hi(x) − hi(x̂)| ≤ LhL
|x − x̂| (4)

for all x, x̂ ∈ ˝� . Here, LhL
is chosen such that it satisfies the

bound in Eq. (4) with the same value for each hi(x) (i.e., LhL
=

max{LhL1
, . . .,  LhLm

}, where LhLi
, i = 1, . . .,  m,  is the smallest positive

constant such that |hi(x) − hi(x̂)| ≤ LhLi
|x − x̂| for all x, x̂ ∈ ˝�). The

requirement that h(x) and its components are Lipschitz continuous
in x does not pose significant practical restrictions.

We  note that from the assumption of Lipschitz continuity of f
and the bounds on w and ui, i = 1, . . .,  m,  there exist M > 0, Lx > 0, and
Lw > 0 such that:

|f (x, u, w)| ≤ M (5)

|f (x, u, w)  − f (x̂, u, 0)|  ≤ Lx|x − x̂| + Lw|w| (6)

for all x, x̂ ∈ ˝� , ui ∈ Ui, i = 1, . . .,  m,  and |w| ≤ �. Furthermore, since
V is sufficiently smooth, f is locally Lipschitz and ˝� is compact,
there exist L′

x > 0 and L′
w > 0 such that the following also holds:∣∣∣∣∂V(x)

∂x
f (x, u, w) − ∂V(x̂)

∂x
f (x̂, u, 0)

∣∣∣∣ ≤ L′
x|x − x̂| + L′

w|w| (7)

for all x, x̂ ∈ ˝� , ui ∈ Ui, i = 1, . . .,  m,  and |w| ≤ �.

2.4. Lyapunov-based controller stabilizability results for
sample-and-hold implementation

Though the system of Eq. (1) is continuous time and it is assumed
that a controller h(x) can be designed that can stabilize the nomi-
nal closed-loop system as described in Assumptions 1 and 2 when
implemented continuously, the Lyapunov-based controller will be
used in this work to design stability constraints for an economic
model predictive control method that is implemented in sample-
and-hold. Thus, we  develop in this section the stability properties
of the nominal closed-loop system of Eq. (1) under h(x) applied
in sample-and-hold, where h(x) meets either Assumption 1 or
Assumption 2 and Eq. (4) when applied continuously. Specifically,
we consider the following nonlinear sampled-data system:

ẋ(t) = f (x(t), h(x(tk)), 0) (8)

for t ∈ [tk, tk+1), where k = 0, 1, . . ..  We present two  propositions
that follow from standard results in the nonlinear sampled-data
systems literature to state the stability results for the process under
a sample-and-hold controller. The first proposition states that the
origin of the sampled-data system of Eq. (8) using h(x) that satisfies
Assumption 1 is rendered practically stable (i.e., the closed-loop
state trajectory will converge to a small neighborhood of the origin

where it will be maintained thereafter). This result follows from
standard results found in the literature (e.g., Teel et al., 1998; Muñoz
de la Peña and Christofides, 2008). The second proposition states
that the origin of the sampled-data system of Eq. (8) using h(x) that
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atisfies Assumption 2 is rendered exponentially stable. This result
s stronger than the result that can be obtained when h(x) satisfies
ssumption 1, and the proof can be found, for example, in Corollary

 of Ellis et al. (2014b) as well as Laila et al. (2006) and the results
ontained therein.

roposition 1. Let Assumption 1 hold and V and ˝� be the Lyapunov
unction that satisfies Eq. (2) and the resulting stability region, respec-
ively. Given �min ∈ (0, �), there exists �* > 0 such that for any � ∈ (0,

*) and x(t0) ∈ ˝� , the closed-loop state trajectory of the sampled-
ata system of Eq. (8) is always bounded in ˝� and is (uniformly)
ltimately bounded in ˝�min and

im sup
t→∞

x(t) ∈ ˝�min . (9)

roposition 2. Let Assumption 2 hold and V and ˝� be the Lya-
unov function that satisfies Eq. (3) and the resulting stability region,
espectively. There exists �∗

e > 0 such that for any � ∈ (0,  �∗
e) the

losed-loop state trajectory of the sampled-data system of Eq. (8) is
lways bounded in ˝� and the origin of the sampled-data system of
q. (8) is exponentially stable for all initial states in ˝� .

We  can also develop stability properties for the closed-loop sys-
em of Eq. (1) in the presence of disturbances under h(x) applied
n sample-and-hold, where h(x) meets either Assumption 1 or
ssumption 2 and Eq. (4) when applied continuously. Specifically,

hese results are derived for the following nonlinear sampled-data
ystem:

˙ (t) = f (x(t), h(x(tk)), w(t)) (10)

or t ∈ [tk, tk+1), where k = 0, 1, . . ..  The following two properties
ddress this sample-and-hold system with disturbances. In both
he case that h(x) in Eq. (10) meets Assumption 1 and the case that
t meets Assumption 2, only uniform ultimate boundedness of the
losed-loop state can be proven. We  note that the sampling times
nd regions within which uniform ultimate boundedness of the
tate are proven are different from those in Propositions 1 and 2.
he proof of the results of the following two propositions can be
ound, for example, in Muñoz de la Peña and Christofides (2008).

roposition 3. Let Assumption 1 hold and V and ˝� be the Lya-
unov function that satisfies Eq. (2) and the resulting stability region,
espectively. Given �∗

min ∈ (0,  �), there exists �∗
w > 0 such that for

ny � ∈ (0,  �∗
w) and x(t0) ∈ ˝� , the closed-loop state trajectory of

he sampled-data system of Eq. (10) is always bounded in ˝� and is
uniformly) ultimately bounded in ˝�∗

min
and

im sup
t→∞

x(t) ∈ ˝�∗
min

. (11)

roposition 4. Let Assumption 2 hold and V and ˝� be the Lya-
unov function that satisfies Eq. (3) and the resulting stability region,
espectively. Given �∗

min,e
∈ (0,  �), there exists �∗

w,e > 0 such that for
ny � ∈ (0,  �∗

w,e) and x(t0) ∈ ˝� , the closed-loop state trajectory of
he sampled-data system of Eq. (10) is always bounded in ˝� and is
uniformly) ultimately bounded in ˝�∗

min,e
and

im sup
t→∞

x(t) ∈ ˝�∗
min,e

. (12)

It is noted that Assumption 2 is stronger than Assumption 1 (i.e.,
henever Assumption 2 is satisfied, Assumption 1 is also satisfied).

herefore, for clarity in the remainder of this manuscript regarding
hich results require the stronger conditions in Assumption 2 to

old, we will state that the results require Assumption 1 when only
he conditions of that assumption are required (though the result
s then also satisfied if Assumption 2 is met), and we  will reserve

ention of Assumption 2 only for those results that require the
tronger conditions in that assumption to hold.
cal Engineering 92 (2016) 18–36 21

2.5. Economic model predictive control

This work develops a formulation for an optimization-based
control strategy known as economic model predictive control
(EMPC) with constraints guaranteeing closed-loop stability, satis-
faction of bounds on the input rate of change, and an upper bound
on the economic cost for the process under the controller. The gen-
eral formulation of EMPC is given by:

min
u( · ) ∈ S(�)

∫ tk+N

tk

le(x̃(�), u(�)) d� (13a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (13b)

x̃(tk) = x(tk) (13c)

ui(t) ∈ Ui, i = 1, . . .,  m (13d)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (13e)

Eq. (13) is a general nonlinear optimization problem that mini-
mizes a stage cost le(x(t), u(t)) (Eq. (13a)) subject to a model of the
nominal system (Eq. (13b)) and the initial condition in Eq. (13c)
that comes from a measurement of the process state at time tk. The
calculated inputs ui, i = 1, . . .,  m, and the predicted states x̃(t), t ∈ [tk,
tk+N), are restricted to their respective sets as shown in Eqs. (13d)
and (13e). In general, additional equality or inequality constraints
may  be added to a general EMPC with the form in Eq. (13) as desired.

The optimization variable in Eq. (13) is the piecewise constant
optimal control trajectory u(t) over a prediction horizon with N
sampling periods of length �.  Thus, the input profile that is the
solution to the EMPC optimization problem is a set of N vectors
denoted by u*(t|tk), t = tk, . . .,  tk+N−1, of which only the first, u*(tk|tk),
is implemented on the process in a sample-and-hold fashion. At
tk+1, the EMPC optimization problem is re-solved.

2.6. Lyapunov-based economic model predictive control

The specific type of EMPC that will be the focus of this work
is Lyapunov-based economic model predictive control (LEMPC)
(Heidarinejad et al., 2012), which is an EMPC with the form of Eq.
(13) but with the addition of Lyapunov-based stability constraints
that define two  modes of operation, as shown below:

min
u( · ) ∈ S(�)

∫ tk+N

tk

le(x̃(�), u(�)) d� (14a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (14b)

x̃(tk) = x(tk) (14c)

ui(t) ∈ Ui, i = 1, . . .,  m (14d)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (14e)

V(x̃(t)) ≤ �e, ∀ t ∈ [tk, tk+N) if tk < t′ and V(x(tk)) ≤ �e

(14f)

∂V(x(tk))
∂x

f  (x(tk), u(tk), 0) ≤ ∂V(x(tk))
∂x

f  (x(tk), h(x(tk)), 0)

if tk ≥ t′ or V(x(tk)) > �e (14g)

where the notation follows that in Eq. (13), with the added con-
straints in Eqs. (14f) and (14g) that define two  modes of operation of
the LEMPC (Modes 1 and 2), and t′ is a pre-determined time at which
it is desired to apply only Mode 2 of the LEMPC. Mode 1 is active

when tk < t′ and when the measured state is within ˝�e , which is a
subset of ˝� defined such that if the state at tk is within ˝�e , then
by tk+1, it is still within ˝� , even in the presence of bounded process
disturbances or plant-model mismatch. Mode 2 is activated when
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he measured state is outside of ˝�e due to process disturbances or
lant-model mismatch, or once the time t′ has been reached. This
ual-mode strategy guarantees that the closed-loop state trajecto-
ies of the process under LEMPC are maintained within ˝� at all
imes.

. LEMPC formulation with input magnitude constraints,
nput rate of change constraints, and an equality terminal
onstraint based on a Lyapunov-based controller

This work introduces input rate of change constraints that can
e used in an LEMPC framework while guaranteeing closed-loop
tability and feasibility of the controller, and it also addresses the
erformance guarantees that can be made for this LEMPC incor-
orating input rate of change constraints for nominal process
peration (the performance guarantees are also shown to hold in
he absence of the input rate of change constraints). The guaran-
ees will be made for a general cost function, so that they will hold
ven if the objective function of the LEMPC is designed to reduce
he input rate of change (for example, a penalty on the input rate
f change may  be added to the objective function). This work thus
ddresses the questions of not only how to add input rate of change
onstraints to LEMPC in a manner that does not affect the feasibil-
ty and closed-loop stability of the controller, but also of whether
hat reduces the economic benefits of using LEMPC for a given
rocess.

To develop the answers to these questions, the contributions
f this work are divided into three parts. In Part 1, we introduce

 Lyapunov-based economic model predictive control (LEMPC)
rchitecture that incorporates input magnitude and rate of change
onstraints with provable feasibility and stability properties, even
n the presence of disturbances. In Part 2, we develop a termi-
al equality constraint based on a Lyapunov-based controller that,
hen used in an LEMPC for a process with no disturbances or
lant-model mismatch (nominal process) ensures that the eco-
omic performance of the resulting LEMPC is at least as good as
hat of the Lyapunov-based controller implemented in sample-and-
old. In Part 3, the results of the first two sections will be combined
o show that the nominal process of Eq. (1) under an LEMPC with
nput magnitude and rate of change constraints and a terminal
quality constraint based on a Lyapunov-based controller performs
t least as well as it does under the Lyapunov-based controller
mplemented in sample-and-hold.

.1. Part 1: LEMPC with input magnitude and rate of change
onstraints

In this section, we develop LEMPC with input magnitude con-
traints that restrict the calculated control actions between an
pper and a lower bound, as well as input rate of change constraints,
hich prevent the calculated inputs between two sampling periods

rom differing from each other by more than a pre-specified
mount. Specifically, we add input rate of change constraints to
he LEMPC of Eq. (14) (which has input magnitude constraints in Eq.
14d)). The input rate of change constraints developed are written
ith respect to a Lyapunov-based controller, but we demonstrate

hat for a sufficiently small sampling period and an appropriate
alue of a parameter of the constraints, the constraints developed
nsure that the difference between the control actions calculated
or two subsequent sampling periods can be bounded by any
esired value. We  prove that the LEMPC incorporating input rate

f change constraints is feasible and furthermore that it ensures
losed-loop stability of a process even in the presence of bounded
isturbances. The results presented hold for the case that the
yapunov-based controller meets Assumption 1, except where it
cal Engineering 92 (2016) 18–36

is noted that Assumption 2 is required. Finally, we  present a chem-
ical process example to demonstrate the effect of incorporating
input rate of change constraints in addition to input magnitude
constraints in EMPC, which shows that the manner in which the
input rate of change constraints are enforced in EMPC can signifi-
cantly affect whether the closed-loop process is able to meet other
hard constraints.

3.1.1. Part 1: Formulation of LEMPC with input magnitude and
input rate of change constraints

As noted in Section 1 of this work, it may  be desirable to add
input rate of change constraints to LEMPC, especially since Mode
1 of LEMPC attempts to dynamically optimize process operation
within the stability region and does not drive the process to a
steady-state. The result of this is that an LEMPC may  request input
trajectories with sharp changes in the requested control actions (an
example is shown in Section 3.1.4 of this work) to maximize profit
subject to the constraints. Restricting the range of allowable control
actions in such a case (e.g., increasing ui,min and/or decreasing ui,max)
may  ameliorate this issue, but it may  be necessary to drastically
decrease this range to reduce the difference between two calculated
control actions to a desired level, particularly if the LEMPC calcu-
lates bang-bang type control actions. Such a drastic reduction in
the allowable range of control actions may  significantly reduce the
process profit; thus, input rate of change constraints may  instead
be considered as an alternative constraint that achieves the same
goal but with potentially higher profit.

The desired form of the input rate of change constraints, assum-
ing that the actuators bring the actuator outputs to the requested
values u∗

i
(tk−1|tk−1), i = 1, . . .,  m, before tk when the LEMPC is re-

solved, is as follows:

|u∗
i (tk|tk) − u∗

i (tk−1|tk−1)| ≤ �desired, ∀ i = 1, . . .,  m (15)

where �desired > 0 is a bound on the difference between the control
action u∗

i
(tk|tk) implemented at tk and the immediate past value

of the actuator output that was  implemented on the process. To
make the predicted state trajectories within the LEMPC more con-
sistent with the actual state trajectory, it may also be desirable
that the other control actions in the prediction horizon that are
not implemented meet the following constraints:

|u∗
i (tj|tk) − u∗

i (tj−1|tk)| ≤ �desired,

∀ i = 1, . . .,  m, j = k + 1, . . .,  k + N − 1 (16)

The chemical process example in Section 3.1.4 will show that the
decision to enforce both Eqs. (15) and (16) (imposing restrictions
on both the implemented and not implemented control actions)
or only Eq. (15) (imposing a constraint on the implemented control
actions only) may  significantly affect the results obtained for LEMPC
with input rate of change constraints, and thus should be carefully
considered.

If the input rate of change constraints are written as in Eqs.
(15) and (16) and directly added into the LEMPC of Eq. (14), it is
not possible to prove feasibility of the resulting LEMPC, as will be
further discussed in Section 3.1.3 of this work. For this reason, mod-
ified constraints are added to the LEMPC of Eq. (14) that constrain
the calculated control actions to differ by no more than a constant
�r ≥ 0 from the value of the Lyapunov-based control law at x(tk).

These modified constraints ensure, as will be demonstrated in Sec-
tion 3.1.3, that the LEMPC is feasible, and they also ensure that the
desired constraints of Eqs. (15) and (16) are met  for any �desired
when �r and � are suitably chosen.
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Incorporating the above considerations, the proposed LEMPC
ith both input magnitude and rate of change constraints is as

ollows:

min
( · ) ∈ S(�)

∫ tk+N

tk

le(x̃(�), u(�)) d� (17a)

.t. ˙̃x(t) = f (x̃(t), u(t), 0) (17b)

˜(tk) = x(tk) (17c)

i(t) ∈ Ui, i = 1, . . .,  m (17d)

˜(t) ∈ X, ∀ t ∈ [tk, tk+N) (17e)

ui(tk) − hi(x(tk))| ≤ �r, i = 1, . . .,  m (17f)

ui(tj) − hi(x̃(tj))| ≤ �r, i = 1, . . .,  m,  j = k + 1, . . .,  k + N − 1

(17g)

(x̃(t)) ≤ �e, ∀t ∈ [tk, tk+N) if tk < t′ and V(x(tk)) ≤ �e

(17h)

∂V(x(tk))
∂x

f  (x(tk), u(tk), 0) ≤ ∂V(x(tk))
∂x

f  (x(tk), h(x(tk)), 0)

f tk ≥ t′ or V(x(tk)) > �e (17i)

where the notation follows that in Eqs. (13) and (14). The rate
f change constraints of Eqs. (15) and (16) are imposed through
qs. (17f) and (17g), which require that the values of u∗

i
(tj|tk), i =

, . . .,  m,  j = k, . . .,  k + N − 1, be within �r ≥ 0 of the values of hi(x̃(tj)).
ote that �r in Eqs. (17f) and (17g) is not the same as �desired in Eqs.

15) and (16), which will be justified in the next section.

emark 1. It is noted that in the LEMPC formulation of Eq. (17), as
ell as in the other LEMPC formulations developed throughout this
ork, the number of constraints considered is kept to a minimum,

nd the form of the objective function and the manner of devel-
ping such an objective function are not discussed. This is done so
hat the theoretical developments in this work in the proofs to be
resented are kept as general as possible and are not obscured by
he additional considerations that may  arise when the optimization
roblem is augmented. The results presented in this work could
e extended, however, to certain cases with additional constraints
nd may  hold practically even when the formulation/assumptions
f this work are not met, though such an extended study is outside
he scope of the present work.

.1.2. Part 1: Rate of change constraints analysis
In this section, we prove that given �desired, we  can ensure that

he desired rate of change constraints of Eqs. (15) and (16) are met
y enforcing the rate of change constraints with respect to hi(x̃(tj)),

 = 1, . . .,  m, j = k, . . .,  k + N − 1, in Eqs. (17f) and (17g) for a suitable
r value, with h(x) meeting Assumption 1.

heorem 1. Consider the closed-loop input trajectories of the process
f Eq. (1) operated under the LEMPC of Eq. (17), with h(x) meeting
ssumption 1 and Eq. (4). There exist �r and 0 < � < min{�∗

w, �1}
uch that for any chosen �desired > 0, if

�r + LhL
M� ≤ �desired (18)

hen Eqs. (15) and (16) are satisfied for all tk with k > 0 and u∗
i
(t0|t0) =

i(x(t0)), i = 1, . . .,  m.

roof. From the bound on f in Eq. (5) and continuity of x, the

ollowing bound holds for all x(t), x(tk−1) ∈ ˝� and t ∈ [tk−1, tk],
here x(t) is the solution of Eq. (1) at time t:

x(t) − x(tk−1)| ≤ M� (19)
cal Engineering 92 (2016) 18–36 23

for � sufficiently small (i.e., � < �1, where �1 is the largest value
of � for which Eq. (19) holds; it is noted that �1 always exists since
˝� is forward invariant for a sufficiently small � from Proposition
3 and Eq. (5) holds in ˝�). In addition, because the bound in Eq.
(5) and continuity of x hold when w(t) ≡ 0 as well, the following
inequality holds for the predicted state of the nominal closed-loop
system for the LEMPC of Eq. (17) (Eq. (17b)):

|x̃(t) − x̃(tj−1)| ≤ M� (20)

for x̃(t), x̃(tj−1) ∈ ˝� , t ∈ [tj−1, tj], j = k + 1, . . .,  k + N, and � <
min{�∗

w, �1}. It is noted that because ˝� ⊆ X, x(t) ∈ ˝� implies
that x(t) ∈ X  as required by Eq. (17e); the fact that the LEMPC for-
mulation of Eq. (17) maintains the state within ˝� is proven in
Section 3.1.3.

From Eqs. (19) and (20) and the Lipschitz continuity property
of hi(x) in x (Eq. (4)), the following bounds hold for x(tk) ∈ ˝� and
x(tk−1) ∈ ˝�:

|hi(x(tk)) − hi(x(tk−1))| ≤ LhL
|x(tk) − x(tk−1)| ≤ LhL

M� (21)

|hi(x̃(tj)) − hi(x̃(tj−1))| ≤ LhL
|x̃(tj) − x̃(tj−1)| ≤ LhL

M� (22)

for � < min{�∗
w, �1}, j = k + 1, . . .,  k + N − 1.

Under the assumption that a feasible solution to the LEMPC of
Eq. (17) exists and thus that Eqs. (17f) and (17g) are satisfied (which
will be proven in Section 3.1.3), we use the constraints of Eqs. (17f)
and (17g) and Eqs. (21) and (22), in addition to the triangle inequal-
ity, to develop upper bounds on the value of the desired rate of
change constraints in Eqs. (15) and (16) when the LEMPC of Eq.
(17) is used to control the process as follows:

|u∗
i (tk|tk) − u∗

i (tk−1|tk−1)|
= |u∗

i (tk|tk) − u∗
i (tk−1|tk−1) − hi(x(tk)) + hi(x(tk)) − hi(x(tk−1))

+ hi(x(tk−1))| ≤ |u∗
i (tk|tk) − hi(x(tk))| + |u∗

i (tk−1|tk−1)

− hi(x(tk−1))| + |hi(x(tk)) − hi(x(tk−1))| ≤ 2�r + LhL
M� (23)

|u∗
i (tj|tk) − u∗

i (tj−1|tk)|
= |u∗

i (tj|tk) − u∗
i (tj−1|tk) − hi(x̃(tj)) + hi(x̃(tj)) − hi(x̃(tj−1))

+ hi(x̃(tj−1))| ≤ |u∗
i (tj|tk) − hi(x̃(tj))| + |u∗

i (tj−1|tk)

− hi(x̃(tj−1))| + |hi(x̃(tj)) − hi(x̃(tj−1))| ≤ 2�r + LhL
M� (24)

for � < min{�∗
w, �1} and j = k + 1, . . .,  k + N − 1. It is noted that

by assuming u∗
i
(t0|t0) = hi(x(t0)), i = 1, . . .,  m,  then |u∗

i
(tk−1|tk−1) −

hi(x(tk−1))| = 0 ≤ �r in Eq. (23) when k = 1, which allows the result
of Eq. (23) to hold for all k > 0. For any �desired, there always exist �r

and � that are sufficiently small such that 2�r + LhL
M� ≤ �desired.

When these values of �r and � are chosen, the desired rate of change
constraints in Eqs. (15) and (16) are met, which follows from Eqs.
(23) and (24) with the bound in Eq. (18). �

Remark 2. The value of �desired would typically be chosen based
on practical considerations. Because �desired depends on the samp-
ling time in Eq. (18), one of these practical considerations may
be the minimum sampling time possible with the controller soft-
ware/hardware.

3.1.3. Part 1: Feasibility and stability analysis
In this section, we  extend the proofs of feasibility and closed-

loop stability from Heidarinejad et al. (2012) for nonlinear
processes under LEMPC without input rate of change constraints

to those under LEMPC including input rate of change constraints.
The results are developed when h(x) used in the design of LEMPC
meets Assumption 1, and stronger closed-loop stability results are
presented for that case that it meets Assumption 2. We  first state
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everal propositions to define functions used to state the theorems
iving the conditions under which feasibility and closed-loop sta-
ility of nonlinear processes under LEMPC with input magnitude
nd rate of change constraints are guaranteed.

roposition 5. (c.f. Mhaskar et al., 2013; Heidarinejad et al., 2012)
onsider the systems

˙ a(t) = f (xa(t), u(t), w(t))

˙ b(t) = f (xb(t), u(t), 0)

ith initial states xa(t0) = xb(t0) ∈ ˝� . There exists a K function fW(·)
uch that

xa(t) − xb(t)| ≤ fW (t − t0),

or all xa(t), xb(t) ∈ ˝� and all w(t) ∈ W with

W (�) = Lw�

Lx
(eLx� − 1).

roposition 6. (c.f. Mhaskar et al., 2013; Heidarinejad et al., 2012)
onsider the Lyapunov function V(·) of the system of Eq. (1) under h(x)
eeting Assumption 1. There exists a quadratic function fV(·) such that

(x) ≤ V(x̂) + fV (|x − x̂|)
or all x, x̂ ∈  ˝� with

V (s) := ˛4(˛−1
1 (�))s + MV s2

here MV is a positive constant.

roposition 7. (c.f. Muñoz de la Peña and Christofides, 2008;
lanqar et al., 2015) Consider the Lyapunov function V(·) of the system
f Eq. (1) under h(x) meeting Assumption 2. There exists a quadratic
unction fV(·) such that

(x) ≤ V(x̂) + fV (|x − x̂|)
or all x, x̂ ∈  ˝� with

V (s) := c4
√

�√
c1

s + ˇs2

here  ̌ is a positive constant.

In the following theorems, we use the notation developed in
ropositions 5–7 and prove feasibility and closed-loop stability of

 process under LEMPC with input magnitude and rate of change
onstraints in the presence of bounded process disturbances. The
heorems extend the results of Heidarinejad et al. (2012) by requir-
ng a modified bound on � based on the results of Section 3.1.2 to
nsure that the LEMPC of Eq. (17) computes control actions that
atisfy the desired constraints in Eqs. (15) and (16). We  present
roofs for LEMPC designed using both the asymptotically stabi-

izing h(x) (Assumption 1) and the exponentially stabilizing h(x)
Assumption 2).

heorem 2. Consider the system of Eq. (1) in closed-loop under the
EMPC design of Eq. (17) based on a controller h(x) that satisfies the
onditions of Eq. (4) and Assumption 1, and assume that u∗

i
(t0|t0) =

i(x(t0)), i = 1, . . .,  m.  Let �w > 0, 0 < � < min{�∗
w, �1}, � > 0, � >

e ≥ �∗
min ≥ �s > 0 satisfy

e ≤ � − fV (fW (�)), (25)

˛ (˛−1(� )) + L′ M� + L′ � ≤ −�w , (26)
3 2 s x w �

nd

�r + LhL
M� ≤ �desired (27)
cal Engineering 92 (2016) 18–36

where fV and fW are defined in Propositions 5 and 6. If x(t0) ∈ ˝� and
N ≥ 1 where

�∗
min = max{V(x(t + �))  : V(x(t)) ≤ �s} (28)

then the state x(t) of the closed-loop system is always bounded in ˝�

and is (uniformly) ultimately bounded in ˝�∗
min

.

Proof. The proof of the closed-loop stability of nonlinear pro-
cesses under LEMPC with both input magnitude and rate of change
constraints, where h(x) satisfies Eq. (4) and Assumption 1, follows
along the lines of that for the LEMPC without input rate of change
constraints in Heidarinejad et al. (2012) because the stability proof
depends only on the Lyapunov-based stability constraints in Eqs.
(17h) and (17i) and is unaffected by the added rate of change con-
straints. Feasibility follows because ui(tk) = hi(x(tk)), i = 1, . . .,  m,  and
ui(tj) = hi(x̃(tj)), i = 1, . . .,  m,  j = k + 1, . . .,  k + N − 1, is a solution that
meets the Lyapunov-based constraints of Eqs. (17h) and (17i), the
input constraints of Eq. (17d), and the rate of change constraints of
Eqs. (17f) and (17g), as well as the assumption that the first value of
ui calculated, u∗

i
(t0|t0), i = 1, . . .,  m,  is set to hi(x(t0)), i = 1, . . .,  m (the

assumption that u∗
i
(t0|t0) = hi(x(t0)), i = 1, . . .,  m,  is made so that

every input calculated by the EMPC, which is all inputs calculated
from time t1 and after since the components of the input vector at
t0 are fixed to hi(x(t0)), meets the desired constraints of Eqs. (15)
and (16)). The constraint of Eq. (17e) is satisfied when x(t) ∈ ˝�

due to the definition of ˝� , and is thus always satisfied when the
LEMPC optimization problem is feasible due to the closed-loop sta-
bility proof of the LEMPC which shows that x(t) ∈ ˝� for t ≥ t0 if
the LEMPC is feasible and x(t0) ∈ ˝� . �

Theorem 3. Consider the system of Eq. (1) in closed-loop under the
LEMPC design of Eq. (17) based on a controller h(x) that satisfies the
conditions of Eq. (4) and Assumption 2, and assume that u∗

i
(t0|t0) =

hi(x(t0)), i = 1, . . .,  m. Let �w > 0, 0 < � < min{�∗
w,e, �1}, � > 0, � >

�e ≥ �∗
min,e

≥ �s > 0 satisfy

�e ≤ � − fV (fW (�)), (29)

− c3

c2
�s + L′

xM� + L′
w� ≤ −�w

�
, (30)

and

2�r + LhL
M� ≤ �desired (31)

where fV and fW are defined in Propositions 5 and 7. If x(t0) ∈ ˝� and
N ≥ 1 where

�∗
min,e = max{V(x(t + �))  : V(x(t)) ≤ �s} (32)

then the state x(t) of the closed-loop system is always bounded in ˝� ,
and is (uniformly) ultimately bounded in ˝�∗

min,e
.

Proof. The proof of feasibility of the LEMPC with both input mag-
nitude and rate of change constraints, where h(x) satisfies Eq. (4)
and Assumption 2, is the same as the proof of feasibility of the
LEMPC where h(x) satisfies Assumption 1 (the proof for feasibil-
ity for Theorem 2). The proof of closed-loop stability of a process
under this LEMPC is an extension of the results in Heidarinejad et al.
(2012), and the major steps of this proof will be presented here to
outline how this extension proceeds.

We first examine the case when x(tk) ∈ ˝�e . In this case, the
proof that x(tk+1) ∈ ˝� when x(tk) ∈ ˝�e and Eq. (29) holds follows
that in Heidarinejad et al. (2012). When instead x(tk) ∈ ˝�/˝�e ,
the Mode 2 constraint of Eq. (17i) is activated which leads to the
following bound:
∂V(x(tk))
∂x

f  (x(tk), u(tk), 0) ≤ ∂V(x(tk))
∂x

f  (x(tk), h(x(tk)), 0)

≤ −c3|x(tk)|2 (33)



Chemical Engineering 92 (2016) 18–36 25

w
i
a

V

E

E

f

t
b
x
s
W
(
t
M
s
a
p
˝

T

R
�
t
i
i
i
w
s
a
b
r

R
a
t
n
w
u
m

3

s
o
f
a
i
r
t
a
s
w
w
o
p
c
i

Table 1
Ethylene oxide process parameters (Özgülş en et al., 1992).

Parameter Value Parameter Value

�1 −8.13 B1 7.32
�2 −7.12 B2 10.39
�3 −11.07 B3 2170.57
A 92.80 B 7.02
H. Durand et al. / Computers and 

here the upper bound follows from Eq. (3b). The bound in Eq. (33)
s then used to bound the time derivative of the Lyapunov function
s follows:

˙ (x(t)) ≤ −c3|x(tk)|2 +
∣∣∣ ∂V(x(t))

∂x
f (x(t), u(tk), w(t)) − ∂V(x(tk))

∂x
f (x(tk), u(tk), 0)

∣∣∣
(34a)

q. 7,|w|≤�≤ − c3|x(tk)|2 + L′
x|x(t) − x(tk)| + L′

w� (34b)

qs. 19, 3a≤ − c3

c2
�s + L′

xM� + L′
w� (34c)

or all t ∈ [tk, tk+1).
If Eq. (30) holds, then the time derivative of the Lyapunov func-

ion along the closed-loop state trajectories is negative and can
e integrated as in Heidarinejad et al. (2012) to show that when
(tk) ∈ ˝�/˝�e , the Lyapunov function decreases between two
ampling times, bringing the state back into ˝�e in finite time.

hen the state re-enters ˝�e , either the Mode 1 constraint in Eq.
17h) is re-activated, which maintains the state within ˝� between
wo sampling times as noted above in this proof, or if tk ≥ t′, the

ode 2 constraint continues to be enforced, which decreases the
tate by at least as much as it would decrease under the sample-
nd-hold implementation of h(x) meeting Assumption 2 in the
resence of disturbances. This decreases the state into the region
�∗

min,e
as stated in Proposition 4 and maintains it there thereafter.

his completes the proof of Theorem 3. �

emark 3. In prior sections, it was mentioned that �r ≥ 0 and
desired > 0, for practical implementation reasons related to con-
roller feasibility. Specifically, the optimization problem of Eq. (17)
s feasible if �r = 0, but the only feasible solution is ui(tk) = hi(x(tk)),

 = 1, . . .,  m, and ui(tj) = hi(x̃(tj)), i = 1, . . .,  m,  j = k + 1, . . .,  k + N − 1,
n which case the application of LEMPC to a process when �r = 0

ill be the same as applying the Lyapunov-based controller in
ample-and-hold (Eq. (10)), for which the more complex LEMPC
rchitecture is not necessary. If �desired = 0, however, no � > 0 can
e chosen as seen from Eqs. (27) and (31), so it is never possible to
equire �desired = 0 in this LEMPC.

emark 4. The reason that the constraints of Eqs. (17f) and (17g)
re enforced with respect to h(x), rather than being enforced as
he desired constraints of Eqs. (15) and (16), is because there is
o guarantee that the constraints of Eqs. (15) and (16) are feasible
ithin the LEMPC since they are unrelated to the controller h(x)
pon which the two constraints of Eqs. (17h) and (17i) that also
ust be satisfied are based.

.1.4. Part 1: Application to a chemical process example
In this section, we use a chemical process example to demon-

trate the effect on the computed control actions and process profit
f incorporating input rate of change constraints in EMPC. We  per-
orm this demonstration by comparing the closed-loop results for

 process under three EMPC’s: one which does not incorporate
nput rate of change constraints, a second which imposes input
ate of change constraints only on the implemented inputs, and a
hird which imposes input rate of change constraints on all control
ctions in the prediction horizon. This chemical process example
hows that input rate of change constraints can be used to reduce
ide variations in the control actions and thus process variables
hile still providing economic benefit compared to steady-state
peration, and furthermore shows that the number of sampling
eriods of the prediction horizon over which the input rate of
hange constraints are enforced in an EMPC can have a significant
mpact on whether the EMPC can satisfy other process constraints.
1 4

A2 12.66 Tc 1.0
A3 2412.71

The chemical process considered is the oxidation of ethylene to
ethylene oxide in a nonisothermal continuously stirred tank reactor
(CSTR), which is assumed to occur according to the following three
complex reactions:

C2H4 + 1
2

O2 → C2H4O (35)

C2H4 + 3O2 → 2CO2 + 2H2O (36)

C2H4O + 5
2

O2 → 2CO2 + 2H2O (37)

In Özgülş en et al. (1992), the dimensionless material and energy
balances for this reactor are developed, with the rate laws for the
reactions in Eqs. (35)–(37) taken from Alfani and Carberry (1970).
The resulting dimensionless equations defining the relationship ẋ =
f (x, u, 0) where u = [u1u2]T are as follows:

ẋ1 = u1(1 − x1x4) (38a)

ẋ2 = u1(u2 − x2x4) − A1e�1/x4 (x2x4)0.5 − A2e�2/x4 (x2x4)0.25 (38b)

ẋ3 = −u1x3x4 + A1e�1/x4 (x2x4)0.5 − A3e�3/x4 (x3x4)0.5 (38c)

ẋ4 = u1

x1
(1 − x4) + B1

x1
e�1/x4 (x2x4)0.5 + B2

x1
e�2/x4 (x2x4)0.25

+ B3

x1
e�3/x4 (x3x4)0.5 − B4

x1
(x4 − Tc) (38d)

where the dimensionless state variables x1, x2, x3, and x4 represent
the dimensionless gas density, ethylene concentration, ethylene
oxide concentration, and temperature in the reactor, respectively,
and u1 and u2 are inputs to the process, with u1 being the feed
volumetric flow rate and u2 the concentration of ethylene in the
feed. The parameters in Eqs. (38a)–(38d) are constants and have
the values defined in Table 1, which are taken from Özgülş en et al.
(1992).

The goal of the process operating strategy is to maximize the
yield of ethylene oxide for a limited reactant feedstock, where the
yield is defined by the following equation:

Y(tf ) =
∫ tf

0
u1(�)x3(�)x4(�)d�∫ tf

0
u1(�)u2(�)d�

(39)

where tf is the time at the end of operation. We  assume that the
available reactant material is fixed by the following integral mate-
rial constraint:∫ tf

0

u1(�)u2(�)d� = 0.175tf (40)

Thus, the EMPC’s considered in this example will maximize the
following stage cost:

le(x, u) = u1(t)x3(t)x4(t) (41)
In addition, due to actuator limitations, u1 and u2 are restricted
to the following sets:

0.0704 ≤ u1 ≤ 0.7042, 0.2465 ≤ u2 ≤ 2.4648 (42)
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of the three EMPC’s. Because no Lyapunov-based constraints were
employed, the input rate of change constraints used were those in
Eqs. (44a)–(45b), which are written in terms of the desired rate
of change as in Eqs. (15) and (16), rather than based off of the
6 H. Durand et al. / Computers and 

The reactor is initialized at xI = [x1I x2I x3I x4I]T = [0.997 1.264
.209 1.004]T, and a sampling period of � = 9.36 is used. The
xplicit Euler numerical integration method is used to integrate
he ordinary differential equations in Eqs. (38a)–(38d) using an
ntegration step size of hI = 10−4 within the EMPC and hp = 10−5

or the model used to simulate the process behavior (which is
gain Eqs. (38a)–(38d) since it is assumed that there are no
isturbances/plant-model mismatch). The open-source interior
oint optimization software Ipopt (Wächter and Biegler, 2006) was
sed for all optimizations.

To accomplish the above control objectives, we develop an
MPC, referred to as EMPC − 1, as follows:

min
( ·  ) ∈ S(�)

∫ tk+Nk

tk

−u1(�)x̃3(�)x̃4(�)d� (43a)

.t. ˙̃x(t) = f (x̃(t), u(t), 0) (43b)

˜(tk) = x(tk) (43c)

.0704 ≤ u1(t) ≤ 0.7042, ∀ t ∈ [tk, tk+Nk
) (43d)

.2465 ≤ u2(t) ≤ 2.4648, ∀ t ∈ [tk, tk+Nk
) (43e)

1
tp

∫ tk

jtp

u∗
1(�)u∗

2(�)d� + 1
tp

∫ tk+Nk

tk

u1(�)u2(�)d� = 0.175 (43f)

here the notation is as in Eq. (17) except that the problem is
mplemented with a shrinking horizon of length Nk and the mate-
ial constraint is implemented over operating periods of length tp to
educe the computation time. Ten operating periods, each of length
p = 46.8, under this EMPC were simulated. The index j signifies the
umber of operating periods that have passed prior to the current
ne (j = 0, . . .,  9), and u∗

1(t) and u∗
2(t) represent the previously com-

uted and applied input trajectories (u∗
1(t) = u∗

1(tq|tq) for t ∈ [tq,
q+1), and u∗

2(t) = u∗
2(tq|tq) for t ∈ [tq, tq+1), where tq varies between

tp and tk−1 in Eq. (43f)). Nk is initialized to tp/� = 5 at the beginning
f each operating period and is decremented by one at the begin-
ing of each sampling period. The results of the simulations under
MPC − 1 are shown as the solid lines in Figs. 1 and 2. As seen in
ig. 2, the EMPC determines that the optimal input trajectories are
hose for which the inputs make extreme jumps throughout each
perating period, which in turn causes significant variation in the
tate variables, as shown in Fig. 1, especially in x2 and x3.

We now suppose that we do not want to have such rapid changes
n the requested control actions. As a result, we impose input rate of
hange constraints in the EMPC to allow it to continue to optimize
he process economics throughout the whole range of u1 and u2, but
ithout taking extreme, sudden action to do so. We  enforce that

he difference between two  control actions can be no more than 0.1.
e  formulate two EMPC’s with input rate of change constraints,

he first of which (EMPC − 2) enforces the rate of change constraint
nly on the first control action that will be implemented, and the
econd of which (EMPC − 3) enforces the rate of change constraint
t each sampling period in the shrinking prediction horizon Nk.
hus, EMPC − 2 solves the optimization problem of Eq. (43) with
he added constraints:

u1(tk) − u∗
1(tk−1|tk−1)| ≤ 0.1 (44a)

u2(tk) − u∗
2(tk−1|tk−1)| ≤ 0.1 (44b)

nd EMPC − 3 solves the optimization problem of Eq. (43) with
he added constraints in Eqs. (44a) and (44b) plus the additional

onstraints:

u1(tj) − u1(tj−1)| ≤ 0.1, j = k + 1, . . .,  k + Nk − 1 (45a)

u2(tj) − u2(tj−1)| ≤ 0.1, j = k + 1, . . .,  k + Nk − 1 (45b)
Fig. 1. State trajectories for the process of Eqs. (38a)–(38d) under EMPC − 1,
EMPC − 2, and EMPC − 3.

The Lyapunov-based constraints in Eqs. (17h) and (17i) were not
considered for this example because the process is operated within
a region around an open-loop asymptotically stable steady-state
and showed no closed-loop stability issues during the simulations
Fig. 2. Input trajectories for the process of Eqs. (38a)–(38d) under EMPC − 1,
EMPC − 2, and EMPC − 3.
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Table  2
Process yield.

Process Yield

EMPC − 1 9.61%
EMPC − 2 9.56%
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Fig. 3. State trajectories for the process of Eqs. (38a)–(38d) under EMPC − 3 in the
presence of bounded disturbances.

Fig. 4. Input trajectories for the process of Eqs. (38a)–(38d) under EMPC − 3 in the
EMPC − 3 8.23%
SS 6.63%

ontroller h(x) as was done in the LEMPC of Eq. (17). The state and
nput trajectories for the simulations of the closed-loop system of
qs. (38a)–(38d) under EMPC − 2 and EMPC − 3 are plotted against
he state and input trajectories for the closed-loop system under
MPC − 1 in Figs. 1 and 2.

The yields (according to Eq. (39)) for the process under the three
ifferent EMPC’s are shown in Table 2 and compared to the yield
or the steady-state case (SS in the table) obtained by starting at
I and using the constant input vector us = [u1s u2s]T = [0.35 0.5]T

o bring the process states to the open-loop asymptotically stable
teady-state [x1s x2s x3s x4s] = [0.998 0.424 0.032 1.002].

As shown in Figs. 1 and 2, the input rate of change constraints
ignificantly reduce the variability in the state and input trajec-
ories as desired, while still allowing optimization of the process
conomics, as shown by the periodic trajectories that still exist in
he state and input trajectories for EMPC − 3, though with reduced
mplitude compared to those under EMPC − 1. As expected, the
ddition of input rate of change constraints reduces the ability
f the EMPC to maximize the yield of the process to its fullest
xtent (the yield under EMPC − 1 is 16.8% greater than that under
MPC − 3). However, even with the input rate of change con-
traints, EMPC − 3 outperforms steady-state operation (the yield
nder EMPC − 3 is 24.1% greater than that for steady-state oper-
tion).

Because the input rate of change constraints in EMPC − 2 are not
nforced at every sampling period, EMPC − 2 becomes infeasible
n the last sampling period of all operating periods after the third
when Ipopt determines a problem is locally infeasible, it returns

 solution that locally minimizes the constraint violation using a
eparate optimization problem (Wächter, 2009)). In each of the
perating periods in which EMPC − 2 is infeasible, the process’ use
f reactant material exceeded the value of the integral constraint,
n some operating periods by as much as 8.7%. Thus, the value of
he yield reported in Table 2 for EMPC − 2 cannot be compared
ith the yields of EMPC − 1 and EMPC − 3 because EMPC − 1 and

MPC − 3 met  the process constraints, while EMPC − 2 did not. The
iolation of the integral constraint by EMPC − 2 occurs because
MPC − 2 predicts that there can be sharp changes in all inputs in
he prediction horizon except those for the first sampling period,
hich are forced to stay within 0.1 of the previous input value.

hus, because of the lack of foresight of EMPC − 2, the implemented
ontrol actions for the first four sampling periods in most of the
perating periods use too much of the reactant material, with the
esult that there is no way that the integral constraint can be
et  in the last sampling period of the operating periods if the

ate of change constraints and hard bounds on the inputs are also
o be met.

We  note that though we did not formulate the constraints of
MPC − 3 with respect to a Lyapunov-based controller which, as
as proven above in this work, ensures feasibility of the optimiza-

ion problem, no issues with feasibility of the solution of EMPC − 3
ere encountered. This can occur in practice, and emphasizes that

he requirements for feasibility of an EMPC with input rate of
hange constraints as developed in this paper, such as formulat-

ng the constraints as in Eqs. (17f) and (17g) rather than as in Eqs.
15) and (16), are conservative. For example, in this problem, we set
*(t−1|t−1) = us. The input vector us satisfies all constraints in Eqs.
presence of bounded disturbances.

(43)–(45b), and thus is itself a feasible input trajectory. Because
EMPC − 3 recognizes that all future inputs in the prediction horizon
must meet the input rate of change constraint, when it finds a solu-
tion that outperforms steady-state operation but is able to satisfy
the constraints, this solution is feasible both in the current operat-
ing period and also, in reverse, in the next (because for this problem,
we assume that the plant follows the nominal process model and
that all constraints depend only on u1 and u2, not on process states,
so the input trajectory just implemented, in reverse, will be feasible
for the next operating period). By progressing in this manner, the
full input trajectory that EMPC − 3 takes is feasible in reverse, and
it is able to settle to an off steady-state input trajectory without
feasibility issues.

To evaluate the robustness of EMPC − 3 when there are process
disturbances (w(t) /≡ 0), the process of Eqs. (38a)–(38d) was sim-
ulated under EMPC − 3, but with bounded Gaussian white noise
added to the right-hand side of Eqs. (38a)–(38d) for the sim-
ulation of the process outside of the EMPC, with zero mean,
standard deviation vector [	x1 	x2 	x3 	x4 ]T = [0.6 10 1.8 0.6]T , and
bound vector [�x1 �x2 �x3 �x4 ]T = [1.8 30 5.4 1.8]T . The standard devi-
ations and bounds were chosen such that the noise had a significant
effect on the process states. The simulation results are shown in
Figs. 3 and 4, and demonstrate that EMPC − 3 incorporating input
rate of change constraints maintained closed-loop stability of the
process in the presence of bounded disturbances. In addition, it met

the integral material constraint and was feasible in all sampling
periods, demonstrating the robustness of the controller.
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emark 5. It is noted that the periodic state trajectories for
MPC − 1 and EMPC − 3 in Fig. 1 are the result of the periodic input
olicies in Fig. 2. The periodic input policies are chosen by the EMPC
ecause the EMPC found that that was the most economically opti-
al  input policy; this is consistent with prior work on the ethylene

xide production process example (e.g., Özgülş en et al., 1992; Ellis
nd Christofides, 2014), which showed that a periodic operating
olicy is more economically optimal than steady-state operation
or this example. The integral constraint of Eq. (40) plays a role in
he periodic trajectories observed because it requires that within
ach operating period, only a certain amount of material can be
sed. Despite the periodic nature of the trajectories, the closed-

oop states remain in a bounded region in state-space around the
symptotically stable steady-state such that the closed-loop pro-
ess is stable in the sense that the states remain within a bounded
egion.

.2. Part 2: LEMPC with a terminal constraint design based on a
yapunov-based controller

In this section, we further build toward the development of
rovable performance guarantees for LEMPC with input rate of
hange constraints by developing an LEMPC formulation (without
nput rate of change constraints) for which provable performance
uarantees can be made for nominal operation. Specifically, an
EMPC incorporating a terminal equality constraint based on a
yapunov-based controller will be developed, and performance
uarantees will be made for this LEMPC for both finite-time
nd infinite-time. While a number of performance results have
een developed for other EMPC formulations (such as EMPC with

 terminal steady-state equality constraint (Diehl et al., 2011;
ngeli et al., 2012) or a terminal region constraint (Amrit et al.,
011)), few performance results have appeared for LEMPC. Previ-
us performance results for LEMPC have been developed utilizing
olutions from an auxiliary tracking MPC  (Ellis and Christofides,
014a; Heidarinejad et al., 2013); the performance guarantees for
EMPC developed in this section compare the closed-loop per-
ormance under LEMPC not with that under MPC  but with that
nder a Lyapunov-based controller implemented in sample-and-
old. Like many other EMPC performance guarantees, those made

n this work rely on the use of a terminal constraint and thus
old only for nominal process operation; however, they have sev-
ral advantages over performance guarantees developed for some
ther formulations of EMPC in that an a priori characterization
f the feasible region is possible and because the terminal con-
traint is not necessarily the economically optimal steady-state
in the design the terminal constraint asymptotically converges
o the economically optimal steady-state or a neighborhood of
t, depending on the properties of h(x)), the resulting LEMPC

ay  give a larger feasible region relative to an EMPC with a
erminal equality constraint equal to the economically optimal
teady-state.

To develop the LEMPC with a terminal equality constraint based
n a Lyapunov-based controller and its provable performance
uarantees, this section begins with a description of the LEMPC for-
ulation for which provable performance guarantees can be made,
hich is an LEMPC of the form of Eq. (14) but without Eq. (14g)

since only nominal operation is considered) and with the addition
f a terminal equality constraint based on the same Lyapunov-
ased controller as is used to develop the Lyapunov-based stability
onstraint of Eq. (14f) (we note that the LEMPC, like that with
nput magnitude and rate of change constraints developed in Part

, has input magnitude constraints with the form in Eq. (14d), but
ince the input trajectories themselves are not the focus of Part 2,
his will not be further highlighted in Part 2). Subsequently, it is
hown that when there are no disturbances and when there is no
cal Engineering 92 (2016) 18–36

plant-model mismatch, the LEMPC with a terminal equality con-
straint based on h(x) is feasible and maintains closed-loop stability
of the nominal process in the sense of boundedness of the
closed-loop state. Following this development, the performance
properties of the controller are proven on both the finite-time
and infinite-time intervals for a Lyapunov-based controller satis-
fying Assumption 1 and for a Lyapunov-based controller satisfying
Assumption 2 (for h(x) meeting Assumption 2, the infinite-time
performance result is equivalent to the statement that the nom-
inal process under LEMPC with a terminal constraint based on a
Lyapunov-based controller performs at least as well in infinite-time
as it does under steady-state operation). Finally, a chemical pro-
cess example is presented that demonstrates the use of the LEMPC
incorporating a terminal equality constraint based on a Lyapunov-
based controller and shows that for a short prediction horizon used
in an EMPC, the use of terminal equality constraints in the EMPC
may  be crucial to improving process economic performance over
steady-state operation.

3.2.1. Part 2: Formulation of LEMPC with a terminal equality
constraint based on a Lyapunov-based controller

In the standard LEMPC design (Heidarinejad et al., 2012), an
EMPC scheme was designed by taking advantage of a Lyapunov-
based controller (meeting Assumption 1 or Assumption 2), a
corresponding Lyapunov function, and the stability region. Though
feasibility, closed-loop stability, and robustness to sufficiently
small disturbances may  be proven for this standard LEMPC design,
guaranteed closed-loop performance under the resulting LEMPC
cannot be proven without additional technical conditions and a
sufficiently long prediction horizon because the standard LEMPC
design does not incorporate terminal constraints (e.g., Grüne, 2013;
Müller and Grüne, 2015). Nevertheless, owing to the availability
of the Lyapunov-based controller of Assumption 1 or Assumption
2, the corresponding Lyapunov function, and the stability region
used to design LEMPC, a terminal equality constraint may  be readily
designed for the LEMPC problem that allows performance guaran-
tees to be made for nominal process operation while maintaining
the unique recursive feasibility property of LEMPC for all initial
states in ˝� . In this work, the terminal constraint is computed from
the solution of the sampled-data system of Eq. (8) (where h meets
either Assumption 1 or Assumption 2).

Because the terminal constraint is derived from the solution
of Eq. (8), it is necessary to define notation that distinguishes the
solution of Eq. (8) from the solution of the LEMPC. To distinguish
the state and input trajectories of the system under the Lyapunov-
based controller implemented in sample-and-hold (Eq. (8)) from
the state and input trajectories of the closed-loop system under
LEMPC incorporating a terminal equality constraint derived from
Eq. (8), z and v will be used for the former, and x and u* will be
used for the latter. Thus, for simplicity of notation, the sampled-
data system consisting of the nominal system of Eq. (1) under
the sample-and-hold implementation of the Lyapunov-based con-
troller is given by:

ż(t) = f (z(t), v(t), 0)

v(t) = h(z(tk))
(46)

for t ∈ [tk, tk+1), k = 0, 1, . . . with initial condition z(0) = z0 ∈ ˝� . The
sampled-data system consisting of the nominal system of Eq. (1)
under the sample-and-hold inputs computed by the LEMPC with
a terminal equality constraint based on the Lyapunov-based con-
troller is given by:
ẋ(t) = f (x(t), u∗(t), 0)

u∗(t) = u∗(tk|tk)
(47)
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or t ∈ [tk, tk+1), k = 0, 1, . . . with initial condition x(0) = x0 ∈ ˝� ,
here x0 = z0. It is noted that the two sampled-data systems in Eqs.

46) and (47) are initiated from the same initial condition, but the
ystem of Eq. (46) only incorporates feedback of z(tk) without any
eference to the measured state of the sampled-data system of Eq.
47), and the sampled-data system of Eq. (47) only incorporates
eedback of x(tk) (though it does require z(tk+N) for the determina-
ion of the input u*(t) that is applied to the system, as will be shown
ubsequently).

The solution of the sampled-data system of Eq. (46) is used to
esign a terminal equality constraint for LEMPC that requires that
he predicted state at the end of the prediction horizon (x̃(tk+N))
e equal to the solution of Eq. (46) at time tk+N (z(tk+N)), where the
unction h in Eq. (46) is the same h used to design V and ˝� in
he LEMPC. The terminal condition z(tk+N) is determined at each
ampling time as follows:

Step 1. At the initial time t0 = 0, z(tN) is computed by first initial-
zing the system of Eq. (46) at z0 = x0 (a measurement of the state of
q. (47) at the initial time) and recursively solving the system from
he initial time to tN = N�. Then, the state z(tN) is used as a terminal
quality constraint in an LEMPC problem solved at t = 0.

Step 2. For all sampling times after t0, the terminal constraint
hat is imposed in the LEMPC problem at tk is computed by
ecursively solving the system of Eq. (46) from z(tk) to z(tk+N)
because only nominal operation is considered and z(tk+N−1) was
omputed at the previous sampling time, it is only necessary
o recursively solve the system of Eq. (46) from tk+N−1 to tk+N
o obtain the solution from z(tk) to z(tk+N) if the solution from
he previous sampling time was stored; for added robustness,
specially to numerical and discretization errors, one may  reini-
ialize the system of Eq. (46) with a state measurement z(tk) at
ach sampling time and numerically integrate forward from this
easurement to compute z(tk+N), but in the nominal operating set-

ing considered here, numerical and discretization errors are not
onsidered).

Using the terminal equality constraint described above, the
ormulation of the LEMPC with the terminal equality constraint for-

ulated based on the state z obtained under the Lyapunov-based
ontroller is given by the problem:

min
( · ) ∈ S(�)

∫ tk+N

tk

le(x̃(�), u(�))d� (48a)

.t. ˙̃x(t) = f (x̃(t), u(t), 0) (48b)

˜(tk) = x(tk) (48c)

˜(tk+N) = z(tk+N) (48d)

(t) ∈ U, ∀ t ∈ [tk, tk+N) (48e)

˜(t) ∈ X, ∀ t ∈ [tk, tk+N) (48f)

(x̃(t)) ≤ �, ∀ t ∈ [tk, tk+N) (48g)

here the notation follows that in Eqs. (13) and (14) and, as noted
n Section 2.2, u(t) ∈ U  is equivalent to ui ∈ Ui, i = 1, . . .,  m. Because
e = � for nominal process operation, the Mode 1 constraint of Eq.

48g) enforces that the predicted state remain in ˝� throughout
he prediction horizon. The terminal constraint of Eq. (48d) forces
he computed input trajectory to steer the predicted state tra-
ectory to the state z(tk+N) at the end of the prediction horizon.
his terminal constraint differs from traditional terminal equality
onstraints in the sense that it is not necessarily a steady-state.
owever, the terminal constraint in the LEMPC of Eq. (48) con-

erges to a neighborhood of the steady-state owing to the stability
roperties of the Lyapunov-based controller (if h used in the design
f Eq. (48) meets Assumption 1, then z(t) eventually enters ˝�min
rom Proposition 1, and if h used in the design of Eq. (48) meets
cal Engineering 92 (2016) 18–36 29

Assumption 2, then z(t) reaches the steady-state in infinite-time
from Proposition 2). A difference between the standard LEMPC
design of Eq. (14) and the LEMPC incorporating a terminal equal-
ity constraint in Eq. (48) is that there is no contractive constraint
in the LEMPC with a terminal equality constraint. The reason for
this difference is that only nominal operation is considered for
the LEMPC with a terminal equality constraint, so only the con-
straint in Eq. (48g) is required to ensure closed-loop stability in
the sense that the state trajectory will be maintained within the
stability region ˝� for all times. The effect of including the con-
tractive constraint will be discussed in Section 3.2.2, along with
the stability and feasibility properties of the LEMPC incorporat-
ing a terminal equality constraint based on the Lyapunov-based
controller.

The LEMPC of Eq. (48) is implemented according to a standard
receding horizon implementation. At each sampling time tk, a
state measurement x(tk) is received and the terminal constraint
z(tk+N) is computed. The optimization problem of Eq. (48) is solved
with the computed z(tk+N) to obtain the input trajectory over
the prediction horizon. However, only the control action com-
puted for the first sampling period of the prediction horizon is
implemented on the system. At the next sampling time, a new
state measurement is obtained, a new terminal constraint is com-
puted, and the optimization problem is re-solved with the updated
parameters to obtain the control action for the next sampling
period.

3.2.2. Part 2: Feasibility and stability analysis
In this section, we develop a theorem stating that the LEMPC of

Eq. (48) is feasible and maintains closed-loop stability of the nom-
inal system of Eq. (1) when the Lyapunov-based controller used
in the design of the LEMPC meets Assumption 1 and a sufficiently
small sampling period is utilized.

Theorem 4. Consider the system of Eq. (1) with w(t) ≡ 0 in closed-
loop under the LEMPC design of Eq. (48) based on a controller h that
satisfies the conditions of Eq. (4) and Assumption 1. Let � > 0, and
0 < � < min  {�*, �1}. If x(t0) ∈ ˝� and N ≥ 1, then the state x(t) of
the closed-loop system is always bounded in ˝� .

Proof. Recursive feasibility of the optimization problem of Eq. (48)
is guaranteed when the conditions of Theorem 4 are met  because
the sample-and-hold input trajectory obtained from the Lyapunov-
based controller is a feasible solution to the optimization problem
at t0 (i.e., the input trajectory u(t) = v(t), t ∈ [t0, tN) satisfies the
input constraint of Eq. (48e) and the terminal constraint of Eq. (48d)
by design, it satisfies Eq. (48g) because the Lyapunov-based con-
troller implemented in sample-and-hold maintains the state within
˝� from Proposition 1, and it satisfies Eq. (48f) since Eq. (48g) is sat-
isfied and ˝� ⊆ X). At the next sampling time (t1), u(t) = u*(tj|t0) for
t ∈ [tj, tj+1), j = 1, . . .,  N − 1 (which drives x̃(tN) to z(tN) since u*(tj|t0),
j = 0, . . .,  N − 1, was  feasible at the previous sampling time and thus
Eq. (48d) is satisfied for this input trajectory), and u(t) = h(z(tN))
for t ∈ [tN, tN+1) is a feasible solution to the optimization problem
because nominal operation is considered. At subsequent samp-
ling times (i.e., at tk), a feasible solution to the LEMPC of Eq. (48)
is, similarly, the part of the solution from the previous sampling
time that was not implemented followed by h(z(tk+N−1)) utilized
for the last sampling period in the prediction horizon. This shows
that for nominal operation, the LEMPC of Eq. (48) is always fea-
sible. Closed-loop stability of the LEMPC of Eq. (48) in the sense
that the closed-loop state trajectory is maintained within ˝� at

all times is guaranteed when the optimization problem is feasible
owing to the fact that the Lyapunov-based constraint of Eq. (48g)
is imposed in the optimization problem and nominal operation is
considered. �
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Though the terminal condition itself converges to the origin
r a neighborhood of it, the input trajectory generated by apply-
ng the input calculated for the first sampling period of each
rediction horizon may  not drive the process state to the ori-
in or a small neighborhood of it. The LEMPC of Eq. (48) may
e extended to include the two-mode control strategy of Eq.
14), or the contractive constraint in Eq. (14g) may  be added
o the LEMPC of Eq. (48) to drive the process state to a neigh-
orhood of the origin, even in the presence of disturbances, if
he resulting LEMPC remains feasible. However, the performance
esults to be developed in Section 3.2.3 hold for the nominal
ase.

emark 6. It has been previously noted in this paper that the
easible region of LEMPC with a terminal equality constraint based
n a Lyapunov-based controller can be explicitly characterized a
riori. Theorem 4 and its proof show that the feasible region is the
tability region of the LEMPC.

.2.3. Part 2: Closed-loop performance analysis
In this section, we prove that the economic performance of the

EMPC of Eq. (48) is at least as good as that of the Lyapunov-based
ontroller used in its design in both finite-time and infinite-time.
he analysis techniques used follow those of Angeli et al. (2012),
hich analyzes the closed-loop performance of EMPC formulated
ith an equality terminal constraint equal to x∗

s . In the follow-
ng, J∗e (x(tk)) denotes the optimal value of the objective function
f the optimization problem of Eq. (48) at time tk given the state
easurement x(tk).
The first performance result, presented in the following theo-

em, gives the finite-time performance of the process under the
EMPC of Eq. (48) designed with a Lyapunov-based controller that
atisfies Assumption 1.

heorem 5. Consider the closed-loop system of Eq. (1) with w(t) ≡ 0
nder the LEMPC of Eq. (48) based on a Lyapunov-based controller that
atisfies Assumption 1. Let � ∈ (0, �*) where �* > 0 is the conclusion
f Proposition 1. For any strictly positive finite integer T, the closed-
oop economic performance under the LEMPC of Eq. (48) is bounded
y:

T�

0

le(x(t), u∗(t))dt ≤
∫ (T+N)�

0

le(z(t), v(t))dt (49)

here x and u* denote the closed-loop state and input trajectories of
he system of Eq. (47) and z and v denote the state and input trajectories
f the system of Eq. (46) where z(0) = x(0) ∈ ˝� .

roof. Let u*(t|tk) for t ∈ [tk, tk+N) be the optimal input trajectory
f Eq. (48) at tk. The piecewise defined input trajectory consist-
ng of u(t) = u*(t|tk) for t ∈ [tk+1, tk+N) and u(t) = h(z(tk+N)) for t ∈
tk+N, tk+N+1) is a feasible solution to the optimization problem at
k+1. Utilizing this feasible solution to the problem of Eq. (48) at
k+1, the difference between the optimal values of Eq. (48) at any

wo successive sampling times tk and tk+1 may  be bounded as
ollows:

∗
e (x(tk+1)) − J∗e (x(tk)) ≤

∫ tk+N+1

tk+N

le(z(t), h(z(tk+N)))dt

−
∫ tk+1

tk

le(x(t), u∗(tk|tk))dt. (50)
cal Engineering 92 (2016) 18–36

Let T be any positive finite integer. Summing the differences
between the optimal values of Eq. (48) at two subsequent sampling
times, the following upper bound is derived:

T−1∑
k=0

[J∗e (x(tk+1)) − J∗e (x(tk))] ≤
∫ (T+N)�

tN

le(z(t), v(t))dt

−
∫ T�

0

le(x(t), u∗(t))dt (51)

Without loss of generality, take le(x, u) ≥ 0 for all x ∈ ˝� and
u ∈ U. Then the left-hand side of Eq. (51) is bounded below by:

T−1∑
k=0

[J∗e (x(tk+1)) − J∗e (x(tk))] = J∗e (x(T�)) − J∗e (x(0))

≥ −J∗e (x(0))

(52)

where the inequality follows from the fact that le(x, u) ≥ 0 for all
x ∈ ˝� and u ∈ U. Owing to optimality, the optimal value of Eq. (48)
at the initial time may  be bounded by the cost under a feasible solu-
tion; thus, it may  be bounded by the cost under the Lyapunov-based
controller implemented in sample-and-hold over the prediction
horizon:

J∗e (x(0)) ≤
∫ tN

0

le(z(t), v(t))dt. (53)

Combining Eqs. (51)–(53), the closed-loop economic perfor-
mance from the initial time to T� is no worse than the closed-loop
performance under the Lyapunov-based controller from the initial
time to (T + N)�, which proves the bound of Eq. (49). �

The upper limit of integration of the right-hand side of Eq. (49)
((T + N)�) arises from the fact that a fixed prediction horizon is used
in the LEMPC of Eq. (48). If, instead, T� represents the final operat-
ing time of a given system, one could employ a shrinking horizon
from time (T − N)� to T� in the LEMPC and the upper limit of inte-
gration of the right-hand side of Eq. (49) would be T�.  Specifically,
for tk ∈ [t0, tT−N), we  have from Eq. (51):

T−N−1∑
k=0

[J∗e (x(tk+1)) − J∗e (x(tk))]

≤
∫ T�

N�

le(z(t), v(t))dt −
∫ (T−N)�

0

le(x(t), u∗(t))dt (54)

and from Eq. (49) we have:∫ (T−N)�

0

le(x(t), u∗(t))dt ≤
∫ T�

0

le(z(t), v(t))dt. (55)

For sampling times between tT−N and tT, we  employ a shrinking
horizon in the EMPC. That is, let Nk = N − j be the horizon used at
sampling time tk for k ∈ {T − N, . . .,  T − 1} where j = k − T + N. With
slight abuse of notation, let

J∗e (x(tk)) =
∫ t

k+Nk

tk

le(x(t), u∗(t|tk))dt (56)

be the optimal value of the EMPC problem at sampling times tk, k ∈
{T − N, . . .,  T − 1} where the EMPC is formulated with a prediction
horizon of Nk. By the principle of optimality, the difference between
the optimal value of the EMPC problem at two subsequent sampling

times is

J∗e (x(tk+1)) − J∗e (x(tk)) = −
∫ tk+1

tk

le(x(t), u∗(tk|tk))dt (57)
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or k ∈ {T − N, . . .,  T − 2}. Because T� for this shrinking horizon case
epresents the final time of operation, the EMPC is not solved at
hat time and thus there is no value of J∗e (x(tT )). For this reason, we
onsider the following summation of the terms in Eq. (57):

T−2∑
=T−N

[J∗e (x(tk+1)) − J∗e (x(tk))] − J∗e (x(tT−1))

= −J∗e (x(tT−N)) = −
∫ T�

(T−N)�

le(x(t), u∗(t))dt. (58)

here the left-hand side is equivalent to the summation of the
erms in Eq. (57) from k = T − N to k = T − 1 with J∗e (x(tT )) := 0. The
um of the differences between the optimal values of Eq. (48) at two
ubsequent sampling times between 0 and T − 2 with J∗e (x(tT−1))
ubtracted from this sum gives:

T−2∑
k=0

[J∗e (x(tk+1)) − J∗e (x(tk))] − J∗e (x(tT−1)) =
T−N−1∑

k=0

[J∗e (x(tk+1)) − J∗e (x

(54),(58)≤
∫ T�

N�

le(z(t), v(t))d

Also,

T−2∑
k=0

[J∗e (x(tk+1)) − J∗e (x(tk))] − J∗e (x(tT−1)) = J∗e (x(tT−1)) − J∗e (x(0)) − J

≥ −
∫ N�

0

le(z(t), v(t))dt

here the last inequality follows from the same arguments used
o write Eq. (53) above. Combining Eqs. (59) and (60), the required
erformance bound is obtained for the shrinking horizon case as
ollows:

T�

0

le(x(t), u∗(t))dt ≤
∫ T�

0

le(z(t), v(t))dt (61)

This completes the proof of the finite-time performance bound
or the shrinking horizon case.

Again considering the case that no shrinking horizon is used, we
ote that as a consequence of the performance bound of Eq. (49),
he average finite-time economic performance may  be bounded as
ollows:

1
T�

∫ T�

0

le(x, u∗)dt ≤ 1
T�

∫ T�

0

le(z, v)dt + 1
T�

∫ (T+N)�

T�

le(z, v)dt

(62)

or any integer T > 0. From the right-hand side of Eq. (62), the signif-
cance of the second term on the right-hand side dissipates as T gets
arge. Thus, the results of Theorem 5 show that the average closed-
oop economic performance over a finite-time operating interval
nder LEMPC with a terminal equality constraint based on h that
eets Assumption 1 is at least as good as the average closed-loop

conomic performance under h implemented in sample-and-hold
lus a term that dissipates as the length of operation increases.

In the above discussion, we developed economic performance
uarantees for LEMPC with a terminal equality constraint based
n a Lyapunov-based controller satisfying Assumption 1 on the
nite-time interval. We  now consider the infinite-time (asymp-
otic average) performance. The provable result on asymptotic

verage economic performance varies depending on whether the
yapunov-based controller satisfies Assumption 1 or Assumption
. We  first present a theorem for the infinite-time performance for

 controller satisfying Assumption 1 (the performance result when
cal Engineering 92 (2016) 18–36 31

+
T−2∑

k=T−N

[J∗e (x(tk+1)) − J∗e (x(tk))] − J∗e (x(tT−1))

(T−N)�

0

le(x(t), u∗(t))dt −
∫ T�

(T−N)�

le(x(t), u∗(t))dt

(59)

T−1)) = −J∗e (x(0))

(60)

the Lyapunov-based controller satisfies Assumption 2 is stronger
and will be presented subsequently).

Theorem 6. Consider the closed-loop system of Eq. (1) with w(t) ≡
0 under the LEMPC of Eq. (48) where the Lyapunov-based controller
satisfies Assumption 1 and z(0) = x(0) ∈ ˝� . Let � ∈ (0, �*) where �*

is the conclusion of Proposition 1. The asymptotic average performance
is bounded by:

lim sup
T→∞

1
T�

∫ T�

0

le(x(t), u∗(t))dt ≤ max
x,y ∈ ˝�min

le(x, h(y)). (63)

Proof. To develop the proof of Theorem 6, we first consider
the asymptotic average economic performance of the nominal
system of Eq. (1) under the Lyapunov-based controller that sat-
isfies Assumption 1 implemented in sample-and-hold (i.e., the

sampled-data system of Eq. (46)) for � ∈ (0, �*) where �* > 0 is
the conclusion of Proposition 1. Owing to the fact that z and v are
bounded in compact sets and le and h are continuous on ˝� × U  and
˝� , respectively, the asymptotic average economic performance,
which is given by the left-hand side of Eq. (64) below, is bounded.
Moreover, z converges to ˝�min from Proposition 1. Therefore, the
following inequality, which represents the worst-case asymptotic
average performance under the sample-and-hold Lyapunov-based
controller, follows:

lim sup
T→∞

1
T�

∫ T�

0

le(z(t), v(t))dt ≤ max
x,y ∈ ˝�min

le(x, h(y)). (64)

where the Lyapunov-based controller is evaluated at y instead of x
since y does not necessarily equal x due to the sample-and-hold
implementation of the controller. Given that for any finite-time
interval, the bound of Eq. (49) holds, the inequality of Eq. (63) fol-
lows from the fact that x and u* are bounded in compact sets, the
fact that le is continuous on ˝� × U, and the bound of Eq. (64). �

As noted, Theorem 6 characterizes the worst-case infinite-time
(asymptotic average) performance for the process under the LEMPC
based on a Lyapunov-based controller that satisfies Assumption 1,
and states that it is no worse than the worst-case asymptotic aver-
age performance under the Lyapunov-based controller. Though this
is a weaker result than showing that the asymptotic average per-
formance is at least as good as that for steady-state operation, the
level set ˝�min may  be selected arbitrarily small, at the expense of
requiring a faster sampling rate.

We now focus on the performance guarantees that can be made
in infinite-time when h meets Assumption 2. We  first present a
lemma  on the infinite-time performance of the nominal process of

Eq. (1) under the Lyapunov-based controller meeting Assumption 2
implemented in sample-and-hold (Eq. (46)). We  will then present
a theorem relating this result to the infinite-time performance of
the process under the LEMPC with a terminal constraint based on
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. The lemma  that will now be presented states that the asymptotic
verage economic performance under a Lyapunov-based controller
hat satisfies Assumption 2 is no worse than the economic cost at
he optimal steady-state pair (x∗

s , u∗
s ).

emma  1. The asymptotic average economic cost of the closed-loop
ystem of Eq. (46) under a feedback controller that satisfies Assumption

 for any initial condition z(0) ∈ ˝� is

lim
→∞

1
T�

∫ T�

0

le(z(t), v(t))dt = le(x∗
s , u∗

s ) (65)

here � ∈ (0,  �∗
e) (�∗

e > 0 is the conclusion of Proposition 2) and z
nd v denote the state and input trajectories of the system of Eq. (46).

roof. Recall, the economic stage cost function le is continuous
n the compact set ˝� × U  and z(t) ∈ ˝� and v(t) ∈ U  for all t ≥ 0.
hus, the integral:

1
T�

∫ T�

0

le(z(t), v(t))dt < ∞ (66)

or any integer T > 0. Since z(t) and v(t) exponentially converge to the
ptimal steady-state pair (x∗

s , u∗
s ) as t→ ∞,  the limit of the integral

f Eq. (66) as T tends to infinity exists and is equal to le(x∗
s , u∗

s ). To
rove the limit, it is sufficient to show that for any � > 0, there exists

 T* such that for T > T*, the following holds:

1
T�

∫ T�

0

le(z(t), v(t))dt − le(x∗
s , u∗

s )

∣∣∣∣∣ < � (67)

To simplify the presentation, define I(T1, T2) as the following
ntegral:

(T1, T2) :=
∫ T2�

T1�

le(z(t), v(t))dt (68)

here the arguments of I are integers representing the integers of
he lower and upper limits of integration, respectively. Since z(t)
nd v(t) converge to x∗

s and u∗
s as t tends to infinity, respectively,

e(x(t), v(t)) → le(x∗
s , u∗

s ) as t tends to infinity. Furthermore, z(t) ∈
� and v(t) ∈ U  for all t ≥ 0, so for every � > 0, there exists an integer

˜
 > 0 such that

le(z(t), v(t)) − le(x∗
s , u∗

s )| < �/2 (69)

or t ≥ T̃�. For any T > T̃ ,

|I(0, T) − T�le(x∗
s , u∗

s )| = |I(0, T̃)  + I(T̃ , T) − T�le(x∗
s , u∗

s )|

≤
∫ T̃�

0

|le(z(t), v(t)) − le(x∗
s , u∗

s )|dt +
∫ T�

T̃�

|
< T̃M̃� + (T − T̃)��/2

here

˜
 := sup

t ∈ [0,T̃�]

{
|le(z(t), v(t)) − le(x∗

s , u∗
s )|

}
.

For any T > T∗ = 2T̃(M̃ − �/2)/�  (which implies (M̃ −
/2)T̃/T < �/2), the following inequality is satisfied:

|I(0, T)/(T�) − le(x∗
s , u∗

s )| < T̃M̃/T + (1 − T̃/T)�/2

= (M̃ − �/2)T̃/T + �/2 < �
(71)

hich proves the limit of Eq. (65). �

Utilizing Lemma 1, one may  prove that the asymptotic aver-

ge closed-loop economic performance under the LEMPC of Eq.
48) designed with a Lyapunov-based controller that satisfies
ssumption 2 is no worse than the closed-loop performance at the
conomically optimal steady-state (from Lemma  1, this is the same
cal Engineering 92 (2016) 18–36

), v(t)) − le(x∗
s , u∗

s )|dt
(70)

as stating that the asymptotic average performance of the nominal
process under the LEMPC of Eq. (48) designed with h that meets
Assumption 2 is no worse than the asymptotic average performance
under h implemented in sample-and-hold). This result is stated in
the following theorem.

Theorem 7. Consider the system of Eq. (1) with w(t) ≡ 0 under the
LEMPC of Eq. (48) based on a Lyapunov-based controller that satis-
fies Assumption 2. Let � ∈ (0,  �∗

e) where �∗
e > 0 is the conclusion of

Proposition 2. The closed-loop asymptotic average economic perfor-
mance is no worse than the economic cost at steady-state; that is, the
following bound holds:

lim sup
T→∞

1
T�

∫ T�

0

le(x(t), u∗(t))dt ≤ le(x∗
s , u∗

s ). (72)

Proof. From Theorem 5, for any integer T > 0:

1
T�

∫ T�

0

le(x(t), u∗(t))dt ≤ 1
T�

∫ (T+N)�

0

le(z(t), v(t))dt. (73)

As T increases, both sides of the inequality of Eq. (73) remain
finite owing to the fact that le is continuous and the state and input
trajectories are bounded in compact sets. The limit of the right-
hand side as T→ ∞ is equal to le(x∗

s , u∗
s ) (Lemma  1). Therefore, the

result in Eq. (72) is obtained. �

Remark 7. For systems with average constraints, the average con-
straint design methodologies for asymptotic average constraints
(Angeli et al., 2012) and for transient average constraints (Müller
et al., 2014), which were presented for EMPC with a terminal equal-
ity constraint equal to x∗

s , may  be extended to the LEMPC of Eq. (48)
when the average constraint is satisfied under the Lyapunov-based
controller.

Remark 8. The performance results of this section hold for any
prediction horizon size even when N = 1. The use of a short horizon
may  be computationally advantageous for real-time application.
Also, owing to the fact that the terminal equality constraint of Eq.
(48d) may  be a point in the state-space away from the steady-state,
the feasible region of the LEMPC of Eq. (48) may  be larger than the
feasible region of EMPC with a terminal equality constraint equal
to the steady-state especially when a short prediction horizon is
used.

3.2.4. Part 2: Application to a chemical process example
In this section, we  use a chemical process example to demon-

strate that the nominal process under LEMPC with a terminal
equality constraint based on a Lyapunov-based controller can show
improved economic performance compared to the process under
the sample-and-hold Lyapunov-based controller. The LEMPC of Eq.
(48) is applied to a chemical process example consisting of a con-
tinuously stirred-tank reactor (CSTR) within which two parallel

reactions occur (Bailey et al., 1971):

R → P1 (74a)

R → P2 (74b)
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steady-state and also better than the closed-loop performance
under the Lyapunov-based controller. On the other hand, there is a
noticeable dependence of the average closed-loop performance on

Fig. 6. Closed-loop economic performance with prediction horizon length for the
process of Eq. (75) under the LEMPC of Eq. (48) (solid line, denoted as LEMPC), under
H. Durand et al. / Computers and 

here P1 is the desired product and P2 is a by-product. The rates of
he reactions are second-order and first-order in R, respectively.

To model the reactor, it is assumed that there is no significant
eat of reaction or heat of mixing, that the temperature depend-
nce of the reaction rates can be modeled through the Arrhenius
quation, and that the reactor mixture density, heat capacity, and
nlet and outlet volumetric flow rates are constant. Applying these
ssumptions, the dimensionless dynamic model of the reactor,
btained from the conservation equations, is

˙ 1 = −a1e−1/x3 x2
1 − a2e−ı/x3 x1 − x1 + 1 (75a)

˙ 2 = a1e−1/x3 x2
1 − x2 (75b)

˙ 3 = −x3 + u (75c)

here x1 is the dimensionless R concentration, x2 is the dimen-
ionless P1 concentration, x3 is the dimensionless temperature, and
he manipulated input, denoted by u, is a dimensionless quan-
ity related to the heat flux provided to the reactor. The process
arameters are a1 = 1.0 × 104, a2 = 400, and ı = 0.55, and the input

s restricted to take values in the interval [0.049, 0.449].
The operating profit of the CSTR is assumed to scale with the

ow of the desired product out of the reactor. Owing to the fact
hat the volumetric inlet and outlet flow rates are constant, the
tage cost minimized in LEMPC to maximize the operating profit of
he reactor is given by:

e(x, u) = −x2. (76)

The economically optimal steady-state that minimizes Eq. (76)
s x∗

s = [0.0832 0.0846 0.149] corresponding to the steady-state
nput u∗

s = 0.149. Regarding the implementation details of the
EMPC, the sampling period is � = 0.05, the prediction horizon con-
ists of sixty sampling periods (N = 60), and the Lyapunov-based
ontroller is chosen to be a proportional controller with saturation
o account for the bound on the input (i.e., h(x) = −K(x2 − x∗

2s) + u∗
s

here K = 3.3 and h(x) = h(x) if h(x) ∈ [0.049,  0.449]; else if h(x) <
.049 then h(x) = 0.049; else h(x) = 0.449). The closed-loop simula-
ions were written in Python. To integrate the ODEs and solve the
orresponding sensitivity information required to solve the non-
inear optimization problem, CVODE (Hindmarsh et al., 2005) and
utomatic differentiation via CasADi (Andersson et al., 2012) were
sed, respectively. The resulting nonlinear program was  solved
sing Ipopt (Wächter and Biegler, 2006).

To demonstrate that using the LEMPC with a terminal equal-
ty constraint based on h can indeed lead to better economic
erformance than using the Lyapunov-based controller (in this
ase, the proportional controller with saturation) in sample-and-
old, two closed-loop simulations were completed: the closed-loop
ystem under the LEMPC and the closed-loop system under the
yapunov-based feedback controller. Fig. 5 gives the closed-loop
rajectories under LEMPC for a closed-loop simulation over a length
f 10.0 dimensionless time units. From Fig. 5, the LEMPC of Eq. (48)
ictates a periodic-like operating policy. On the other hand, the
yapunov-based controller dictates a steady-state operating pol-
cy. The average closed-loop economic performance is given by the
ndex:

e = 1
10.0

∫ 10.0

0

x2(t)dt. (77)

The average performance under the LEMPC is 0.0919, while
he average performance under the feedback controller is 0.0849;
he performance under LEMPC is 8.3% better than that under the

eedback controller. It is important to note that it has been demon-
trated that time-varying operation of this example improves
losed-loop performance relative to steady-state operation (Bailey
t al., 1971).
Fig. 5. Closed-loop trajectories for the system of Eq. (75) under the LEMPC of Eq. (48)
(solid trajectories). The horizontal (dashed) trajectories indicate the steady-state
value of each state and input.

Two  potentially interesting issues to address are the closed-loop
performance under EMPC with and without a terminal constraint
and the closed-loop performance under EMPC with different termi-
nal constraint formulations. While these issues may  be difficult to
address in general, we  may  explore these issues with simulation
for this particular example. Fig. 6 displays the average closed-
loop performance for several closed-loop simulations over 10.0
dimensionless time units for three different EMPC schemes and
different horizon lengths. In particular, the three EMPC’s consid-
ered are the LEMPC of Eq. (48), EMPC with a terminal constraint
equal to the economically optimal steady-state, and EMPC with-
out terminal constraints. Overall, the closed-loop performance for
the two EMPC schemes with terminal constraints is relatively
similar and for each horizon length the closed-loop performance
realized was  better than the profit at the economically optimal
an  EMPC with a terminal equality constraint equal to the economically optimal
steady-state (dashed line, denoted as EMPC-term), and under EMPC without a ter-
minal constraint (dashed-dotted line, denoted as EMPC-woterm). For comparison,
the closed-loop economic performance for operation at the economically optimal
steady-state is also plotted (dotted line, denoted as x∗

2).
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he prediction horizon length. For N = 10, the closed-loop perfor-
ance under the EMPC without terminal constraints was worse

han that under the Lyapunov-based controller, illustrating that
erformance-based constraints imposed in EMPC may  be needed
o ensure acceptable closed-loop economic performance for shorter
rediction horizons.

.3. Part 3: LEMPC with input magnitude constraints, input rate
f change constraints, and an equality terminal constraint based
n a Lypaunov-based controller

In this section, we combine the results of Parts 1 and 2 on
EMPC with input magnitude and rate of change constraints and
n LEMPC with a terminal state constraint based on a Lyapunov-
ased controller to show that the performance of LEMPC with input
agnitude and rate of change constraints can be proven to be at

east as good as it would be under a Lyapunov-based controller
mplemented in sample-and-hold for nominal process operation.

The formulation of LEMPC incorporating a terminal state con-
traint based on the Lyapunov-based controller, input magnitude
onstraints, and input rate of change constraints, assuming nominal
rocess operation, is as follows:

min
( ·  ) ∈ S(�)

∫ tk+N

tk

le(x̃(�), u(�))d� (78a)

.t. ˙̃x(t) = f (x̃(t), u(t), 0) (78b)

˜(tk) = x(tk) (78c)

˜(tk+N) = z(tk+N) (78d)

(t) ∈ U, ∀ t ∈ [tk, tk+N) (78e)

˜(t) ∈ X, ∀ t ∈ [tk, tk+N) (78f)

ui(tj) − hi(z(tj))| ≤ �r, i = 1, . . .,  m, j = k, . . .,  k + N − 1 (78g)

(x̃(t)) ≤ �, ∀ t ∈ [tk, tk+N) (78h)

here the notation follows that of Eqs. (17) and (48), and the
mplementation strategy is like that of Eq. (48) (at each tk, a state

easurement x(tk) is received and z(tk+N) is updated before the
EMPC optimization problem is solved), except that each hi(z(tj)),

 = 1, . . .,  m, j = k, . . .,  k + N − 1, is also determined and incorporated
nto the LEMPC of Eq. (78) at each sampling time.

We will now briefly address how the properties of the LEMPC
n Eq. (78) compare with those of the LEMPC of Eq. (17) and of the
EMPC of Eq. (48). Specifically, we will address the bounds on �r and

 required for the LEMPC of Eq. (78) to satisfy the desired input
ate of change constraints in Eqs. (15) and (16) when h(x) meets
ssumption 1, the feasibility of the LEMPC optimization problem,

he closed-loop stability properties of a process under the LEMPC,
nd the performance guarantees that can be made for the nominal
rocess under LEMPC. We  note that we will not address the robust-
ess of the method, because only nominal operation is considered

or the LEMPC of Eq. (78) due to the use of the terminal equality
onstraint.

Using arguments similar to those in Eqs. (19)–(24), it can be
hown that the desired input rate of change constraints of Eqs. (15)
nd (16) are met  when the LEMPC of Eq. (78) is feasible (Eq. (78g) is
et by the calculated control actions) and 2�r + LhL

M� ≤ �desired.
he proof of feasibility of the LEMPC is similar to that noted in the
roof of Theorem 4 in that, because nominal operation is consid-
red, u(t) = h(z(tj)) for j = k, . . .,  k + N − 1 is a feasible solution to the

EMPC of Eq. (78) at t0, with u(t) = u*(t|tk) for t ∈ [tk+1, tk+N) and
(t) = h(z(tk+N)) for t ∈ [tk+N, tk+N+1) being a feasible solution at time

k+1 when u(t) = u*(t|tk) for t ∈ [tk, tk+N) is the solution at time tk.
losed-loop stability of a process under the LEMPC in Eq. (78) is
cal Engineering 92 (2016) 18–36

ensured for nominal operation in the sense that the state is always
maintained within the compact set ˝� due to the constraint in Eq.
(78h).

Finally, we compare the performance of the nominal process
of Eq. (1) under the LEMPC of Eq. (78) with the performance of
the process under the Lyapunov-based controller implemented
in sample-and-hold. Because this comparison is only fair if the
process meets the same constraints under both controllers, we
note that the process under the Lyapunov-based controller imple-
mented in sample-and-hold meets all state and input constraints
in Eq. (78) for the reasons mentioned in the proof that this con-
trol law is a feasible solution to the LEMPC at t0; it also satisfies
the desired rate of change constraints of Eqs. (15) and (16) if the
terms u*(tk|tk) are replaced by hi(z(tk)), i = 1, . . .,  m,  since these
are the implemented control actions under the sample-and-hold
Lyapunov-based controller. With that replacement, Eqs. (15) and
(16) become a requirement that |hi(z(tk)) − hi(z(tk−1))| ≤ �desired,
i = 1, . . .,  m,  which holds for all �desired > 0 for LhL

M� ≤ �desired from
Eq. (21). Thus, when the control actions calculated by the LEMPC
meet Eqs. (15) and (16) (i.e., 2�r + LhL

M� ≤ �desired), it is also true
that LhL

M� ≤ �desired so that the control actions implemented by
the sample-and-hold Lyapunov-based controller also satisfy the
desired input rate of change constraints. This establishes that a fair
comparison can be made between the performance of the process
under the LEMPC of Eq. (78) and the sample-and-hold Lyapunov-
based controller. The performance results of Theorem 5 hold for
h meeting Assumption 1 on the finite-time interval, the perfor-
mance results of Theorem 6 hold for h meeting Assumption 1 on
the infinite-time interval, and the performance results of Theorem
7 hold for h meeting Assumption 2 on the infinite-time interval. It
is noted that these performance results hold for the LEMPC of Eq.
(78) regardless of the form of the cost function; this proves that
for nominal operation, the performance of LEMPC with a termi-
nal equality constraint and input rate of change constraints is no
worse on both the finite-time and infinite-time intervals than that
of an alternative controller that enforces steady-state operation,
regardless of whether the cost function includes additional penal-
ties on the input rate of change to reduce actuator wear. Like the
LEMPC with a terminal equality constraint but without input rate of
change constraints (Eq. (48)), the LEMPC of Eq. (78) has a number of
advantages over other EMPC formulations for which performance
guarantees have been made, particularly that the feasible region
can be characterized a priori.

Remark 9. The motivation for adding input rate of change con-
straints to LEMPC (that the LEMPC may  dictate a dynamic operating
policy) is also motivation for the addition of input rate of change
constraints to EMPC in general. Thus, it is noted that input rate
of change constraints can be added to other EMPC formulations
for which performance guarantees have been previously developed
(such as the steady-state terminal equality constraint formulation)
as well. However, as noted above, LEMPC has a number of advan-
tages over some of the other EMPC formulations that make it more
attractive for incorporating input rate of change constraints and
making performance guarantees for the resulting formulation.

4. Conclusions

In this work, we developed a formulation of LEMPC incorporat-
ing input magnitude and rate of change constraints and a terminal
equality constraint based on a Lyapunov-based controller that
allows provable performance guarantees to be made for the LEMPC.

The LEMPC formulation was  developed in three parts. In Part 1 of
this work, we demonstrated that input rate of change constraints
written with respect to a Lyapunov-based controller can be added
to LEMPC, and that the implemented inputs can then be ensured



Chemi

t
q
o
m
b
t
w
a
i

e
l
c
s
s
t
t
a
b
e
t
L
o
o
s
p
b
w

a
b
n
c
a
a
t
o
u
i
t
o
b
u
t
o

A

D

R

A

A

A

A

A

A

H. Durand et al. / Computers and 

o differ by no more than a desired bound between two  subse-
uent sampling periods. The formulation of LEMPC with input rate
f change constraints developed was shown to be feasible and to
aintain closed-loop stability of a process even in the presence of

ounded disturbances. A chemical process example demonstrated
hat the number of sampling periods of the prediction horizon over
hich the input rate of change constraints are enforced may  have

 significant impact on whether other process constraints such as
ntegral material constraints can be met.

In Part 2, we developed an LEMPC formulation with a terminal
quality constraint based on the Lyapunov-based controller uti-
ized in the formulation of the LEMPC. With this terminal equality
onstraint, the LEMPC formulation was proven to be not only fea-
ible and stable in the sense of boundedness of the closed-loop
tate for nominal operation, but was also proven to have finite-
ime and infinite-time economic performance properties such that
he process under LEMPC performs no worse than it does under an
symptotically stabilizing or exponentially stabilizing Lyapunov-
ased controller implemented in sample-and-hold. When the
xponentially stabilizing controller is utilized to design the LEMPC,
he asymptotic average performance of the process under the
EMPC was proven to be no worse than that under steady-state
peration. The LEMPC formulation presented has advantages over
ther EMPC’s for which performance guarantees have been made,
uch as that the feasible region can be explicitly characterized a
riori. A chemical process example demonstrated the economic
enefits of incorporating a terminal equality constraint in EMPC
hen a short prediction horizon is used.

In Part 3, the results of Parts 1 and 2 were combined to develop
n LEMPC formulation incorporating a terminal equality constraint
ased on a Lyapunov-based controller that also had input mag-
itude and rate of change constraints. It was proven that the
losed-loop performance under this LEMPC with input magnitude
nd rate of change constraints is no worse than that under an
symptotically or exponentially stabilizing Lyapunov-based con-
roller for nominal operation on the finite-time and infinite-time
perating intervals (this means that the infinite-time performance
nder the LEMPC based on an exponentially stabilizing controller

s no worse than that under steady-state operation), regardless of
he form of the cost function or any penalties on the input rate
f change in the cost function. This is significant because it may
e desirable from a safety perspective to reduce input variations
nder EMPC but without reducing the economic performance of
he process below that obtainable with the traditional steady-state
perating strategies.
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