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A B S T R A C T

Semiconductor manufacturing employs an intricate framework of processes that require accurate design spec-
ifications at the nanoscale level. Thermal atomic layer etching fulfills these stringent criteria in an exemplary
manner by conducting top-down removal of transistor films to further downsize thicknesses and facilitate
transistor densification on wafers. However, it has low productivity. Thus, a spatial sheet-to-sheet reactor
is appropriate for achieving high throughput while maintaining substrate quality. In order to continuously
regulate the process, a run-to-run (R2R) controller coupled with a continuous feedback proportional–integral
(PI) controller is proposed to mitigate a kinetic shift disturbance and a continuous pressure ramp disturbance
through a multivariate input correction procedure. A tuning methodology is employed to determine the optimal
tuning parameters to enhance the performance of the R2R and PI controller response to their respective
disturbances. Results indicate that the combined R2R and PI controller outperforms the sole R2R controller by
minimizing the amount of input correction needed to minimize the etching per cycle offset from the setpoint.
1. Introduction

Following the rapid commercialization of electronics, a rising global
consumption for semiconductors, which are integral to electronic per-
formance, is generating recurring shortages that can lead to a volatile
market that depends on these semiconductors (Voas et al., 2021; Mo-
hammad et al., 2022). In the last two decades, the world has ob-
served semiconductor usage in a variety of applications from smart
devices (Lauwers, 2013), biotechnology (Kolahdouz et al., 2022), and
computing (Huang et al., 2023), but this overconsumption is prob-
lematic for a society that depends on electronics. In addition to their
high demand, wafer production comprises over 500 processing steps
(Richard, 2023), which reduces productivity due to the precise dimen-
sions and design criteria required to achieve desirable properties: min-
imal current leakage (Jegadheesan et al., 2020), reduced short-channel
effects (Cao et al., 2023), efficient power conversion (Shenai, 2019),
and self-alignment behavior to facilitate transistor stacking (Radamson
et al., 2020). Particularly, the semiconductor industry has concen-
trated efforts into optimizing the design of wafer logic components,
i.e., transistors, such as metal–oxide–semiconductor field-effect transis-
tors (MOSFETs) with gate-all-around (GAA) designs (Bhol et al., 2022);
however, the fabrication for these transistors requires procedures that
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demand high accuracy in the nanoscale. One fundamental approach
uses a top-down method known as atomic layer etching to remove high-
𝜅 dielectric oxide films such as Al2O3 to allow the size reduction for
transistors (Fang et al., 2018).

Unlike bottom-up fabrication approaches such as atomic layer de-
position (ALD), atomic layer etching (ALE) is a reversal of ALD, which
enables downscaling of the thicknesses of transistors below 10 nm
and, under ideal operating conditions, improves surface uniformity, an
essential characteristic for transistor alignment (Huard et al., 2018).
While there are various types of ALE (e.g., plasma and thermal), this
work focuses on thermal ALE, which comprises a two-step cyclical
process that results in the removal of a monolayer of surface mate-
rial. However, to study this process in a laboratory setting presents a
challenge in developing quantitative, first-principles models that allow
the scale-up of thermal ALE processes that are applicable for industrial
applications. For instance, ALE requires numerous cycles of etching to
produce the finished product, which is a time-consuming task (Chiap-
pim et al., 2022) that generates limited data to produce quantitative
relationships between the etching rate and operating parameters such
as temperature, reagent concentrations, and injection times. Addition-
ally, it is arguable that characterizing the processes with laboratory
vailable online 18 January 2024
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Fig. 1. A three-dimensional depiction of a spatial sheet-to-sheet reactor comprising
various zones for HF/TMA exposure and purging.

data is an expensive task that requires numerous cost and materials
constraints. Thus, in silico multiscale modeling (Li et al., 2013) is an
alternative route towards the scale-up of thermal ALE processes by con-
joining microscopic surface kinetics and macroscopic fluid dynamics
simulations in a thermal ALE reactor that resemble laboratory results.
Through this multiscale simulation, an input–output model between the
operating conditions (e.g., reagent flow rates and substrate velocity)
and the output (e.g., etching per cycle, EPC) can be established without
requiring laboratory experiments that are expensive, wasteful, and
time-consuming.

This work adopts a prior multiscale model for a two-dimensional
(2D) and spatial, sheet-to-sheet (S2S) thermal ALE reactor (see Fig. 1)
for Al2O3 films, that was developed to increase process productiv-
ity (Yun et al., 2022b). While this spatial reactor model is a first
step towards integration to industrial applications, an essential con-
trol system is necessary to maintain process operation and product
conformation attributed to equipment aging and changes in opera-
tion (Moyne et al., 2018). To maintain control for discrete processing
cycles, a batch-to-batch or run-to-run (R2R) control system is beneficial
for implementing control action by accounting for the measured EPC
after the completion of each thermal ALE processing cycle. For in-
stance, Yun et al. (2022c) proposed a multivariable R2R control scheme
to mitigate shift disturbances attributed to reagent pressure losses and
reductions in adsorbate surface coverage for an inclined plate ALE
reactor by manipulating the reagent injection time and flow rate. This
work proposes a R2R controller that mitigates marginal kinetic shift
disturbances that account for unexplainable perturbations that are of-
tentimes encountered during the reactor operation. Such control action
is performed after each subsequent batch run for manipulated variables
that exhibit unstable behavior. However, industry has encountered
numerous challenges with real-time monitoring of the process due to
time constraints and difficulties of predicting the cycle time of the pro-
cess (Derbyshire, 2023). For time-variant manipulated variables such
as the flow rate, research has centered on integrating feedback control
for on-line measurement, particularly for reagent delivery flow rates
that substantially influence the reactor operating pressure (Yun et al.,
2021). Thus, this work incorporates an on-line feedback controller to
mitigate observable ramp disturbances that continuously change with
time (e.g., surface pressures) by implementing proportional-integral
(PI) control by adjusting the inlet mass flow rates.

This work is organized as follows: Section 2 summarizes the multi-
scale modeling framework for the spatial S2S reactor for the thermal
ALE of Al2O3 films comprising the microscopic kinetic Monte Carlo
simulation in Section 2.1 and the macroscopic computational fluid
dynamics model in Section 2.2 and Section 3 examines the development
of the R2R (Section 3.1) and feedback (Section 3.2) control system for
the S2S reactor.
2

2. Multiscale modeling

The thermal atomic layer etching of Al2O3 comprises a two-stage,
AB process with cut-in purging steps that are spatially separated in a
sheet-to-sheet reactor model. To replicate the dynamic behavior of the
reactor, an in silico multiscale computational fluid dynamics model is
proposed that simulates the microscopic surface kinetics occurring on
the wafer surface and the macroscopic fluid dynamics in the ambient
gas-phase regions of the reactor. This multiscale modeling approach
allows the thermal ALE process to be described in various time and
length scales (Cheimarios et al., 2021) through the use of stochastic
kinetic Monte Carlo simulations and computational fluid dynamics.
This section will summarize the kinetic Monte Carlo algorithm (Yun
et al., 2022a) and the multiscale model (Yun et al., 2022b) drawn from
prior works.

2.1. Microscopic modeling

Rudimentary thermal ALE processes are characterized by a general
two-step process (Engelmann et al., 2015) comprising an initial modifi-
cation step followed by an etching step. This procedure is accomplished
through the use of a gaseous precursor that adsorbs to the surface in
a self-limiting manner and a bulky reagent that removes the modified
and volatile surface in a self-limiting manner at high operating temper-
atures. Situated between these two steps are purging stages to ensure
that self-limiting behavior is maintained. For the thermal ALE of Al2O3,
the proposed reaction mechanism, which assumes an elementary rate
law where all reactions are bimolecular, and processing times are
obtained from experimental work by George (2020). The thermal ALE
of Al2O3 uses hydrogen fluoride (HF) as the initial precursor reagent
and trimethylaluminum (TMA) as the secondary etching reagent, while
the spatial S2S reactor model utilizes nitrogen gas (N2) as the purging
material.

The computation of pressure and temperature dependent reaction
rate constants are necessary to exemplify the surface kinetics. Thus,
the integration of Collision Theory and the Arrhenius model are prac-
tical for evaluating reaction rate constants for adsorption, 𝑘𝑎𝑑𝑠, and
nonadsorption reactions, 𝑘𝑛𝑜𝑛𝑎𝑑𝑠. However, the Arrhenius model de-
pends on two constants, the activation energy and the pre-exponential
factor, that are typically unavailable in literature data, whereas Col-
lision Theory relies on a sticking coefficient factor that is attainable
in literature findings. Thus, the use of ab initio molecular dynamics
simulations is practical for optimizing molecular structures and deter-
mining ground-state energy configurations by minimizing electronic
energies through Density Functional Theory and applying the Nudged
Elastic Band method, where the activation energies are calculated
through the open-source software, Quantum ESPRESSO. It is notable
that the software was compiled locally using Intel-based Fortran and
C/C++ compilers as part of the Intel oneAPI toolkits to enhance the
computation speed and parallelization of multiprocess simulations.
Additionally, phonon computations through Density Functional Theory
and the Quasi-harmonic Approximation are employed in Quantum
ESPRESSO to evaluate thermophysical data to define intensive vari-
ables (e.g., specific heat, standard entropy, standard enthalpy) for
the macroscopic computational fluid dynamics simulation discussed
in Section 2.2. To calculate the pre-exponential factor, Transition
State Theory is applied, which assumes a negligible dependence on the
partition functions for the transition state and reactant (Jansen, 2012).

Due to the difficulties of determining the exact configuration, the
number of reactions occurring, and the types of reactions manifesting at
any given instance of time and location, a microscopic model is neces-
sary to reflect the random nature of realistic ALE reactions. Particularly,
a kinetic Monte Carlo (kMC) method is appropriate for this work as it
considers the probabilities of the aforementioned mutually exclusive
events that describe the configuration of the substrate surface at any
location and time (Christofides and Armaou, 2006). Yun et al. (2022a)
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employed a kMC model in the Python programming language, which
originated from Bortz, Kalos, and Lebowitz. The BKL method assumes
that all potential reactions lie within a Poisson distribution, and it
selects a particular reaction through a randomly generated number,
and then calculates a time advancement with a secondary random
number (Bortz et al., 1975). The procedure for the BKL approach can
be simplified as follows:

(1) An 𝑁 ×𝑁 grid comprising 𝑁2 active sites is declared to the kMC
simulation to reflect the initialized wafer prior to thermal ALE
processing.

(2) The adsorption and nonadsorption reaction rate constants (𝑘𝑎𝑑𝑠
and 𝑘𝑛𝑜𝑛𝑎𝑑𝑠, respectively) are evaluated using Collision Theory
and the Arrhenius equation, respectively:

𝑘𝑎𝑑𝑠(𝑃𝑎, 𝑇 ) =
𝜎𝑎𝑃𝑎𝐴𝑠𝑖𝑡𝑒

𝑍𝑎
√

2𝜋𝑚𝑎𝑘𝐵𝑇
(1)

𝑘𝑛𝑜𝑛𝑎𝑑𝑠(𝑇 ) =
𝑘𝐵𝑇
ℎ

exp
(

−
𝐸𝐴
𝑅𝑇

)

(2)

where 𝜎𝑎 is the sticking coefficient for the adsorbate (e.g., HF
and TMA), 𝑎, on the Al2O3 surface, 𝑃𝑎 is the adsorbate surface
pressure on the wafer, 𝐴𝑠𝑖𝑡𝑒 represents the surface area of an
Al2O3 binding site on the wafer, 𝑍 is the adsorbate coordination
number, 𝑚𝑎 is the atomic mass of the adsorbate, 𝑘𝐵 is the
Boltzmann constant, 𝑇 is the surface temperature of the wafer,
ℎ is the Planck constant, 𝐸𝐴 is the activation energy for the
nonadsorbtion reaction, and 𝑅 is the ideal gas constant.

(3) Next, a set of 𝑟 possible reactions for the entire 𝑁 × 𝑁 grid is
listed and denoted by index 𝑖. 𝑘𝑡𝑜𝑡 is then found by summing all
of the possible reaction rate constants, 𝑘𝑖. This assumes that each
reaction is mutually exclusive, i.e., they are independent events,
to employ a Poisson distribution.

𝑘𝑡𝑜𝑡 =
𝑟
∑

𝑖=1
𝑘𝑖 (3)

(4) A random number, 𝛤1 ∈ (0, 1] is selected to determine the
reaction pathway; the reaction 𝑝 that satisfies the following
inequality is chosen:
𝑝−1
∑

𝑖=1
𝑘𝑖 ≤ 𝛤1𝑘𝑡𝑜𝑡 ≤

𝑝
∑

𝑖=1
𝑘𝑖 (4)

(5) Lastly, a time advancement, 𝛥𝑡, computation is performed using
a secondary random number, 𝛤2 ∈ (0, 1] that reflects the time in
which the reaction converts the initial state to the final state.

𝛥𝑡 = −
ln𝛤2
𝑘𝑡𝑜𝑡

(5)

This kMC process is illustrated in Fig. 2, which shows the evolution of
the sites in the 𝑁 ×𝑁 grid.

Following the development of the kMC model, processing times for
chieving similar EPC and surface coverage were validated with exper-
mental findings from George (2020). Additionally, a predictive model
or a multiple-input-single-output dataset was constructed through a
eedforward neural network (FNN) to correlate input parameters, pres-
ure and temperature, with the output parameter, processing time (Yun
t al., 2022a). The results of these investigations were used to develop
he standard operating conditions for the S2S reactor.

.2. Macroscopic modeling

A two-dimensional (2D) spatial, sheet-to-sheet (S2S), reactor was
hen developed from Poodt et al. (2010) and Roozeboom et al. (2012)
hrough the computer-aided design (CAD) modeling software, Ansys
paceClaim, comprising HF and TMA injection regions that are spa-
ially separated by adjacent N purging zones in Fig. 3. Following the
3

2

Table 1
Standard operating conditions for the spatial, thermal
ALE, sheet-to-sheet reactor.
Reactor operating condition Value

Operating Pressure 300 Pa
Operating Temperature 573 K
Substrate Velocity 80 mm/s
HF Flow Rate 20 sccm
TMA Flow Rate 40 sccm

construction of the reactor, a 2D dynamic mesh discretization proce-
dure was conducted using finite elements with triangular geometry,
and an optimized mesh with balanced mesh quality was obtained by
integrating the remeshing and refinement tools in Ansys Workbench. To
optimize the reactor model, multiple macroscopic computational fluid
dynamics simulations were conducted through Ansys Fluent for various
gap distances, i.e., the distance between the wafer and divider walls,
to determine the distance that minimizes HF and TMA intermixing.
Ultimately, it was found that a gap distance of 5 mm was suitable for
the reactor design. Additionally, various reactor operating conditions
including the HF, TMA, and N2 flowrates and the substrate velocity
were tested to determine appropriate conditions that maximized the
etching per cycle (EPC) (Yun et al., 2022b).

The numerical simulation is performed using a pressure-based cou-
pled solver that simultaneously solves the mass and momentum equa-
tions to reduce computation clock time at a cost of requiring more
random access memory (RAM) (ANSYS, 2022a). The mass, momentum,
and energy equations are described as follows:
𝜕𝜌
𝜕𝑡

+ ∇ ⋅
(

𝜌⃖⃗𝑣
)

= 𝑆𝑚 (6)
𝜕
𝜕𝑡

(

𝜌⃖⃗𝑣
)

+ 𝜌
(

⃖⃗𝑣 ⋅ ∇
)

⃖⃗𝑣 = −∇𝑃 + ∇ ⋅
(

𝜏
)

+ 𝜌⃖⃗𝑔 + ⃖⃖⃗𝐹 (7)
𝜕
𝜕𝑡

(𝜌𝐸) + ∇
(

⃖⃗𝑣 (𝜌𝐸 + 𝑃 )
)

= −∇
(

𝛴ℎ𝑗 ⃖⃖⃗𝐽 𝑗

)

+ 𝑆ℎ (8)

here 𝜌 expresses the density of the gaseous species, ⃖⃗𝑣 denotes the
elocity of the gases, 𝑃 is the system pressure, 𝜏 represents the rank-

two stress tensor, ⃖⃗𝑔 is the gravitational acceleration due to Earth, ⃖⃖⃗𝐹
efines the body force subjected onto the gases, ℎ𝑗 and ⃖⃖⃗𝐽 𝑗 are the
ensible enthalpy and mass diffusion flux of species 𝑗, respectively,
nd 𝑆𝑚 and 𝑆ℎ are source generation and consumption flux rates for
he mass and energy equations, respectively. To reduce the complexity
f the simulation, the reactor is assumed to operate under isothermal
nd isobaric conditions, which are made possible by the inclusion of
emperature controllers that maintain temperature uniformity on the
afer surface and a vacuum pump to maintain the pressure within

he reactor chamber. A table of standard operating conditions for the
hermal ALE, S2S reactor is provided in Table 1.

Additionally, a parallelization procedure is employed that partitions
he reactor mesh based on the number of compute cores available in the
entral processing unit (CPU). For this work, multiple compute nodes
omprising 36 and 48 cores, and 384 GB and 512 GB of random access
emory (RAM) were used. The numerical simulation also adopts a

irst-order implicit method to solve the transient transport equations
sing a timestep size of 0.001 s. To simulate the movement of the
afer through each zone of the reactor, a dynamic mesh procedure was

ntegrated into the simulation by defining a constant substrate velocity.
o ensure the quality of the mesh is maintained through each discrete
ovement, a smoothing and remeshing procedure with application
efault settings were specified (ANSYS, 2022b).

.3. Multiscale modeling

The juncture of the microscopic and macroscopic simulations is a
edious process that requires cross-platform programming to enable
he exchanging of output data from each simulation. In the previous
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Fig. 2. Graphical representation of the kMC algorithm when conducting the grid approach for the BKL method. Each grid advances to the next grid following the computation of
the time update, 𝛥𝑡.
Fig. 3. 2D side projection of the sheet-to-sheet spatial reactor for the thermal ALE of Al2O3.
Source: The illustration is adapted from Yun et al. (2022b).
work (Yun et al., 2022b), the multiscale model adopted a Linux Bash
Shell script to enable the transfer of data between the macroscopic
model in Ansys Fluent and the mesoscopic kMC model in the Python
programming language. However, for this work, the kMC model is di-
rectly integrated in Ansys Fluent through the C programming language
in customizable user-defined functions (UDFs). This new multiscale
integration scheme results in faster simulation times due to the simpler
code architecture and retains all the accuracy of the method used
in the previous work. The program executed for each simulation is
summarized in the following steps and illustrated in Fig. 4:

(1) The CFD simulation in Ansys Fluent is executed through a Linux
Bash script and runs for a processing time of 𝛥𝑡.

(2) Once 𝛥𝑡 is reached, the CFD simulation records pressure and
temperature data that is stored through a custom UDF.

(3) The CFD simulation is paused while the kMC simulation is exe-
cuted in C-language inside of Ansys Fluent. It calculates the time
advancement, EPC, and source generation and consumption flux
rate terms. When the time advancement reaches 𝛥𝑡, the source
generation and consumption flux terms are used to update the
corresponding variables through UDFs.

(4) The CFD simulation is executed for the subsequent time advance-
ment, and the cyclical loop continues until the wafer reaches the
end of the reactor.
4

Pertinent surface pressure data is extracted from nodal data located
on the upper surface of the wafer, which is illustrated in Fig. 5. The
pressure field contours illustrate the spatial isolation of the HF and
TMA reaction zones, which is made possible by the addition of adjacent
N2 injection and purging zones. The wafer, which is simulated with
a constant velocity, is represented by a ‘‘floating’’ wall boundary to
prevent the formation of irregular cell geometry as a consequence of
remeshing procedures defined to the dynamic mesh.

3. Process control

While a multiscale model is beneficial for studying the optimal op-
erating conditions desired to maximize wafer quality and productivity,
these conditions generally encounter disturbances that disrupt the ideal
behavior of the thermal ALE process. Disturbances can be classified
into two bifurcations, shifts and drifts, that can dramatically change
the process operation if undetected. Additionally, thermal ALE requires
expensive reagents such as TMA, which are costly and toxic; thus, it is
imperative to minimize the amount of unused reagent (Lubitz et al.,
2014). Therefore, the integration of a process control system is desired
to regulate the thermal ALE operation by exploiting a multivariate
input parameter correction procedure that is conducted in an optimal
manner.
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Fig. 4. An illustration of the multiscale simulation that couples the CFD simulation and kMC simulation in Ansys Fluent.
Fig. 5. Surface pressure field data of the 2D S2S reactor at a time of 1.50 s produced from the multiscale simulation.
One major advantage of simulated models is that process control
systems, which improve the robustness of the overall system, can be
economical in both cost and time (Coughanowr and LeBlanc, 2009).
In this work, two forms of process control systems are examined: an
ex situ run-to-run (R2R) controller and an in-line proportional–integral
(PI) controller. For multivariate processes with fast dynamics, the R2R
controller is advantageous. The R2R controller implements ex situ or
off-line control action after the completion of a thermal ALE batch
run. This multivariate input correction is evaluated using an algorithm
such as the exponentially weighted moving average (EWMA) of a linear
model that relates the input parameters to the output. However, the
R2R controller performs poorly at detecting process shifts that dramat-
ically change the dynamics of the process during the batch run. Thus,
PI control, which is conducted in-line, is practical for implementing
continuous control action within the duration of the thermal ALE cycle
as it consistently measures process data to adjust an input parameter.
Such R2R and PI controllers require experimental and deterministic
tuning to ensure that the process offset is minimized in a minimal
number of batch runs.

3.1. Run-to-run controller

A run-to-run (R2R) controller is beneficial for semiconductor pro-
cessing due to the short time intervals required to complete a single
cycle of thermal ALE, and also for its capability to implement control
actions for slow dynamic systems that require multivariate process
control (Butler, 1995). This form of control has been integrated in
manufacturing execution systems (MES) by Critical Manufacturing to
monitor the behavior of deposition, etching, and lithography processes
5

in wafer fabrication (Andrews, 2022). Sachs et al. (1995) also stud-
ied various tuning approaches for R2R control with semiconductor
processes that were purposefully disturbed in the form of a closed-
loop tuning methodology. R2R controllers employ an ex situ form of
process control in which control actions are performed after a batch
run finishes, which is when a sensitive metrology device (e.g., Quartz
Crystal Microbalance) measures the mass loss off-line in industrial
practice. Following the aforementioned procedure, an EWMA algorithm
can be employed to determine the control actions that modify the input
parameters to overcome the effects of disturbances while also reducing
the offset in minimal batch runs. This R2R control process is depicted
by the process flow diagram in Fig. 6.

3.1.1. Linear model
Before the R2R controller is appropriately tuned, a multiple-input-

single-output (MISO) linear regression model is generated from off-line
data obtained from the multiscale simulation. However, it is notable
that the type of model is chosen based on the deterministic trend of the
dataset (e.g., Wang and Han, 2013; Yun et al., 2022c). This MISO model
is adopted from a prior work (Tom et al., 2022) by assuming negligible
Gaussian noise, and relates three manipulated input parameters, the
substrate velocity, HF flow rate, and TMA flow rate, to the measured
output parameter, etch per cycle (EPC).

�̂� = 𝐁𝑇𝐗 + 𝑎, where 𝐁 ∈ R3, 𝐗 ∈ R3, 𝑎 = 𝛼 + 𝑑 (9)

where �̂� is the predicted EPC output, 𝐁 = 10−3
[

0.0121 0.346 −1.84
]𝑇

is a vector containing process gains or coefficients for each input
parameter, 𝐗 =

[

𝑥1 𝑥2 𝑥3
]𝑇 is the manipulated input vector com-

prising the HF flow rate (𝑥 ), TMA flow rate (𝑥 ), and the substrate
1 2
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Fig. 6. Process diagram that depicts the conjunction of the R2R controller with the multiscale simulation, where the R2R controller performs input adjustment to the macroscopic
CFD model from the calculation of the error between the multiscale model and the target.
velocity (𝑥3), and 𝑎 represents the corrected bias term of the linear
model by accounting for the effects of the correction 𝑑 from the bias
term 𝛼 = 0.478, which is the bias when the system has no observable
disturbance. In this work, the updated bias term 𝑎 is employed to
distinguish from the bias 𝛼 of the linear model generated from off-line
data that is undisturbed. The role of 𝑎 is vital for the calculation of
the updated input variables through an exponentially weighted moving
average of the bias term 𝑎, which is further elucidated in Section 3.1.2.
To ensure the accuracy of the predicted model, the mean squared
error (MSE) metric, which describes the averaged deviation from the
estimated and experimental EPC, was determined to be 4.236×10−4. The
linear model described in Eq. (9) is used in conjunction with an EWMA
method to perform manipulated input adjustment, which is elucidated
in Section 3.1.2.

3.1.2. Exponentially weighted moving average
In order to implement control action, R2R controllers depend on an

algorithm that accounts for the error generated from the deviation of
the measured output from the setpoint or target. One challenge often
encountered in industrial practices is the lack of the data generation
to construct empirical models that can effectively gather deterministic
trends with perturbed data sets (Del Castillo and Hurwitz, 1997). Thus,
continuous tuning of the linear regression model described by Eq. (9)
is necessary to mitigate these disturbances, which can be accomplished
through a translation procedure proposed by Ljung (2010). By assum-
ing that the process gain, 𝐵, is independent of the disturbances, the
process model is translated for a value 𝑑. This updated bias, 𝑎, is deter-
mined through an exponentially weighted moving average (EWMA) of
the bias, 𝛼, to sum the errors following the completion of each batch
cycle (Montgomery, 2013). The EWMA method is described by the
following expression:

𝑎𝑡 = 𝜆(𝑦𝑡 − 𝐁𝑇𝐗𝑡−1) + (1 − 𝜆)𝑎𝑡−1 (10)

where 𝑎𝑡 is the updated bias for the subsequent batch run, 𝑡, that
depends on the previous bias, 𝑎𝑡−1, 𝑦𝑡 represents the observed EPC
evaluated from the multiscale CFD simulation, and 𝜆 is an exponen-
tial weight that is strictly determined from experimental research. An
advantageous feature of the EWMA algorithm is that the recursion strat-
egy reduces EPC offset by summing errors generated from historical
data in the form of ‘‘integral action’’. However, the EWMA method
requires that an optimal 𝜆 be chosen to minimize offset while requiring
a minimal number of batch runs to meet this criteria. The subsequent
adjustment to the input parameters, 𝐗𝑡−1 is calculated by minimizing
the sum of the least squares of all input parameters, which is described
by the following minimization problem:

min ‖

‖

X𝑡 − X𝑡−1
‖

‖

2 (11)
6

B𝑇 X𝑡=𝑐𝑡
s.t. 𝑐𝑡 = 𝜏 − 𝑎𝑡 (12)

where 𝜏 is the target or setpoint of the EPC and ‖⋅‖ denotes the 𝑙2 norm.
The optimization problem, as derived by Tom et al. (2022) utilizes
the partial derivatives of the Lagrange function to create the following
formula that describes the computation of an optimal input, 𝐗, for the
subsequent batch run, 𝑡:

𝐗𝑡 = 𝐗𝑡−1 − 𝐁
(

𝐁𝑇𝐁
)−1 (𝐁𝑇𝐗𝑡−1 − 𝑐𝑡

)

(13)

3.2. Feedback controller

Continuous process control is desired for processes that observe fast
dynamics and have sensitive responses to perturbations. Feedback con-
trol is beneficial for regulating the dynamical behavior of the thermal
ALE process in the S2S spatial reactor due to potential disturbances
that may influence the standard operating pressures of the reactor.
A limitation of R2R control is that adjustment is employed after the
completion of an etching cycle, which results in a lack of process
monitoring while the etching process is conducted and can introduce
nonconformal surface impurities that degrade transistor performance.
Additionally, the R2R controller requires sensitive measuring appara-
tuses such as the Quartz Crystal Microbalance that requires off-line
measuring to record the EPC, which limits the detection of disturbances
that occur during the operation of the reactor (i.e., in situ monitoring).
Therefore, the monitoring of another measurable parameter, the surface
pressure, is practical for use in on-line feedback control and continuous
pressure supervision is necessary to control the frequency of collisions
between molecular species and on reactor walls that can negatively
influence the behavior of the initial adsorption reactions for Steps
A and B (Ishikawa et al., 2017). With respect to in-batch feedback
control, it is important to note that alternative approaches like data-
driven batch control techniques (Chandrasekar et al., 2022) may be
used instead of the proportional–integral control schemes. Such model-
based approaches may lead to achievement of additional performance
requirements like reducing batch time.

The Taiwan Semiconductor Manufacturing Company (TSMC)
(TSMC, 2024) employs a Micro Electro Mechanical System (MEMS)
that measures the deformation of applied pressure in capacitance onto
the surface of pressure sensing electrodes (Cheng et al., 2015). These
pressure sensors exploit the piezoelectric effect that enables them to
change in resistivity when subjected to pressure stresses (Javed et al.,
2019). This work considers the role of MEMS for monitoring the surface
pressure on the substrate in the HF and TMA reaction zones and imple-
ments flow rate adjustments to account for perturbations in the surface
pressure. To ensure that the MEMS is continually implemented in real-
time, PI control is used in this work for monitoring and correcting the
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Fig. 7. Process flow diagram depicting the conjoining of the PI controller with the multiscale model to implement correction to the HF and TMA flow rates, 𝑢, by accounting for
the error between the measured wafer surface pressure 𝑦 from the target surface pressure. The bias, 𝑢0, is obtained from the R2R controller adjustment of the HF and TMA flow
rates.
pressure disturbances and the resulting closed-loop system is displayed
in Fig. 7.

PI controllers continuously apply a control action based on the error
between the measured pressure and the target pressure, as seen below:

𝑢(𝑡) = 𝑢0 +𝐾0 ⋅𝐾𝑝

(

𝑒(𝑡) + 1
𝜏𝐼 ∫

𝑡

0
𝑒(𝜏)𝑑𝜏

)

(14)

where 𝑢(𝑡) is the mass flow rate of HF and TMA taken at time 𝑡, 𝑢0 is
a bias term that is evaluated from the R2R controller input for 𝑥2 and
𝑥3 in Eq. (13), 𝐾0 is a conversion term to correlate mass flowrate and
pressure, 𝐾𝑝 is the proportional gain, 𝑒(𝑡) is the error measured by the
system at time 𝑡, and 𝜏𝐼 is the integral time constant. 𝐾𝑝 represents
the proportional adjustment to the current error, and it drives the
system towards the setpoint but stabilizes at an offset away from the
setpoint. However, the (𝐾0𝐾𝑝∕𝜏𝐼 ) ∫

𝑡
0 𝑒(𝜏)𝑑𝜏 term represents the integral

adjustment of the overall error, and it drives the system from the offset
to the setpoint. Thus, a well-tuned PI controller will be able to quickly
drive the surface pressure of the wafer to the target pressure without
any overshoot (Coughanowr and LeBlanc, 2009). In addition, the PI
controller operates in conjunction with the R2R controller, as the latter
dictates the starting mass flowrates of HF and TMA while the former
adjusts them in real time. In this manner, the PI pressure controller
effectively maintains the desired partial pressures of the reagents on
the wafer surface even in the presence of pressure disturbances.

3.3. Disturbances

In industrial practice, there are a variety of disturbances that may
affect the thermal ALE process environment and result in deviations
of the EPC from the setpoint. For instance, a disturbance in the wafer
surface temperature can affect the EPC and the temperature uniformity
of the surface. Additionally, perturbations in the operating pressure
can be attributed to a failure in the vacuum pump, which is needed
to remove excess reagent and byproducts from the reaction chamber,
or changes in the reagent feed composition and flow rate. To reduce
the complexity of the simulation, the reactor is assumed to operate
isothermally with a temperature control system that maintains surface
temperature uniformity and the standard operating temperature of the
reactor, which has been developed using a model predictive controller
with sparse identification modeling in prior work (Ou et al. 2024).
Tom et al. (2024) also introduced a pressure disturbance that reduces
the probability of reagent adsorption. While there are numerous distur-
bances encountered in the reactor operation, the generalization of the
7

disturbances through their agglomeration into a ‘‘kinetic’’ disturbance
simplifies the control system. For example, Yun et al. (2022c) and Tom
et al. (2022) made this simplification to reduce perturbations through
general kinetic shift and process drift disturbances, which resemble dis-
turbances such as side-wall deposition and corrosion on reactor surfaces
(Butler, 1995), by decreasing the reaction rate constants described in
Section 2.1. The decreasing of the reaction rate constants are intended
to exemplify the uncertainties surrounding disturbance identification,
which is generally difficult to predict in fast dynamics operation in
real time. Additionally, the role of ramp disturbances in the wafer
surface pressure must be considered as a consequence of competing side
reactions, immediate changes in the operating conditions (e.g., the HF
and TMA flow rates), or defective and miscalibrated equipment. It is
notable that pressure changes influence the rate of adsorption of HF and
TMA in the initial reaction mechanism for Steps A and B, respectively.
Thus, the Collision Theory equation, which evaluates the temperature-
and pressure-dependent adsorption reaction rate constant, is influenced
by the pressure disturbance. To introduce these disturbances to the
multiscale model, a kinetic shift disturbance is applied to the kMC
simulation by multiplying all reaction rate constants by a multiplicative
factor of 0.8 to reduce the rate of kinetics for the overall process.
Meanwhile, a ramp pressure disturbance is introduced into the CFD
simulation by defining an operating pressure that is reduced linearly for
the first two seconds and then maintained constant at the final value,
which is expressed by the following equation:

𝑃𝑜𝑝 =

{

𝑃0 − 50𝑡 for 0 < 𝑡 ≤ 2
𝑃0 − 100 for 𝑡 > 2

(15)

where 𝑃𝑜𝑝 is the operating pressure in Pa, 𝑃0 is the starting operating
pressure of 300 Pa, and 𝑡 is time. Essentially, the operating pressure
falls from 300 Pa to 200 Pa over the course of 2 s, after which the
operating pressure is maintained at 200 Pa.

4. Controller tuning and closed-loop simulation results

4.1. Tuning of the R2R controller

The value for the exponential weight, 𝜆, affects the amount of
influence that historical data has on the R2R control action (Oakland,
2003). For the purposes of this work, various weighting parameters
were studied to determine their impact on the controller performance
when subjected to the kinetic shift disturbance. The observed impact of

the controller correction to the inputs on the EPC output for several 𝜆 is
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𝐾

Fig. 8. R2R control plot for various EWMA weights, 𝜆, to determine an optimal
weighting parameter that approaches the target EPC in fewer batch runs.

demonstrated in the control plots in Fig. 8. Results illustrate that lower-
weight 𝜆 requires fewer batch runs to sufficiently approach the setpoint.
Thus, the R2R controller performance depends more on older batch
data, which aligns with the tuning suggestions made by Montgomery
(2013).

4.2. Tuning of the PI controller

Appropriate tuning of the PI controller is imperative in ensuring
the elimination of offset is obtained with minimal process time. PI
control can introduce oscillatory response depending on the value of
the integral time constant defined to the controller, which can be
mitigated with the integration of derivative control or by appropriately
tuning the PI tuning parameters through a closed-loop tuning approach
by introducing the ramp disturbance to the multiscale CFD simulation.
The latter procedure is studied in this work. While there are numer-
ous tuning methodologies (e.g., Ziegler–Nichols and Cohen-Coon), this
work employs a systematic approach to studying the behavior of the
process response with various integral times, 𝜏𝐼 , and proportional gains,
𝐾𝑝. The tuning procedure applies a constant 𝐾𝑝 value for multiple 𝜏𝐼 ,
and vice versa, to determine the optimal tuning parameters for the PI
controller, and the controller response is presented in Fig. 9.

Results demonstrate that increasing 𝜏𝐼 generally increases the time
required to eliminate the offset in Fig. 9(a). However, lower 𝜏𝐼 increases
oscillatory behavior due to increased influence by the accumulated
error term in Eq. (14) on the PI control action. For the process gain,
it is illustrated in Fig. 9(b) that lower 𝐾𝑝 requires more process time to
reach the setpoint. Thus, for the purposes of this work, 𝜏𝐼 = 0.66 and

= 0.60 were specified to the PI controller.
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𝑝

Table 2
Comparison of averaged errors over 5 batch runs between the target and
measured pressures.
Controller model 𝜆 = 0.1 𝜆 = 0.3 𝜆 = 0.7

R2R 0.063 0.025 0.078
PI 0.042 0.042 0.042
R2R & PI 0.019 0.010 0.017

4.3. Integrated run-to-run control and feedback control

The inclusion of simultaneous R2R and PI control is necessary
to perform controller adjustment by measuring both the EPC after
the completion of one thermal ALE cycle through a Quartz Crystal
Microbalance offline and the wafer surface pressure through MEMS
sensors. The performance of the combined R2R and PI control system is
compared to that of a conventional R2R system in the form of controller
response to the kinetic shift and pressure drift disturbances, which is
presented in Fig. 10. The measured output, EPC, response illustrated
in Fig. 10(a) indicates that the individual R2R control system requires
one less batch run to reduce the offset from the setpoint compared to
that of the combined R2R and PI control system. However, a conse-
quence of the faster response at mitigating the disturbance requires a
larger expenditure of reagent and a substantial increase in residence
time, which is not ideal for thermal ALE operation. When investigating
the controller adjustment to the manipulated input variables, results
illustrate that the combined R2R and PI control system performs better
than that of the single R2R control system by requiring higher substrate
residence times (i.e., lower substrate velocities), and reduced reagent
consumption (i.e., lesser reagent flow rates) after the completion of one
thermal ALE cycle in Figs. 10(b)–10(d).

An observable advantage of the conjoined R2R and PI control sys-
tem is the ability for the controller to implement correction within the
batch run to mitigate the effects of the pressure disturbance, while also
reducing the effects of the kinetic disturbance. Due to the regulation of
the reagent flow rates for the PI controller, a reduction in wafer velocity
is pronounced as a consequence of the R2R controller performing
velocity correction following the completion of the batch run. The
performance of each control system is further expressed in terms of the
averaged EPC error across all batch runs in Table 2, which illustrates
that the combined R2R and PI control system reduces the averaged
error substantially. Additionally, the exponential weight of 𝜆 = 0.3
results in minimal averaged EPC error.

The primary objective of the combined R2R and PI control system is
to have a fast response time, which was achievable with deterministic
tuning parameters. A fast response time precludes a reduction of unused
reagent and exposure time needed to obtain complete surface coverage
of the terminated oxide film. For example, the PI controller results

in Fig. 9 show that control actions take less than 0.1 s to be felt on
Fig. 9. Controller responses to various 𝜏𝐼 at constant 𝐾𝑝 = 0.60 in (a) and various 𝐾𝑝 at a constant 𝜏𝐼 = 2.00 to determine optimal parameters that eliminate offset in minimal
time.
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Fig. 10. Comparison of (a) EPC control, (b) substrate velocity, (c) TMA flow rate, and (d) HF flow rate plots for the single R2R controller for a 𝜆 = 0.3 with the combined R2R
nd PI control system for a 𝜆 = 0.3 and 𝜏𝐼 = 0.66.
he wafer surface. Because the reactor knows where the wafer is as
ell as how quickly the wafer is moving, the reactor can only apply

he control actions when the wafer is within the reaction zone. Thus,
hen the wafer is in the purge zone, the control actions can be disabled,
inimizing the usage of expensive reagents.

.4. Robustness

While previous efforts were conducted to study the impact of the
eighting parameter for a single R2R control system, this section fur-

her investigates the role of the exponential weight, 𝜆, for the combined
2R and PI control system. Previously, it was mentioned that the PI
ontrol reduces the offset in the pressure, but due to the HF and TMA
low rate corrections coinciding with the adjustments made to the
F and TMA flow rates by the R2R controller, the combined PI and
2R control mitigate the EPC offset. Therefore, the impact of the R2R
ontroller, and the 𝜆 that is supplied to the R2R controller, on the EPC
orrection can be limited. Fig. 11 depicts the connected R2R and PI
ontrol system response to the kinetic and pressure disturbances for
ultiple 𝜆. Results indicate that despite the aforementioned assertion, 𝜆

argely introduces oscillatory behavior with increasing 𝜆, which makes
t difficult to discern the impact of 𝜆 on the output. Also, 𝜆 = 0.1
equires additional batch runs due to the slower controller response
nd effect of recent EPC error on the subsequent batch run.
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Fig. 11. Comparison of control plots for the combined R2R and PI control system
for various EWMA weights, 𝜆 to determine an optimal 𝜆 that reaches the target in a
minimal number of batch runs.

5. Conclusion

Thermal atomic layer etching (ALE) is a crucial procedure to enable
the fabrication of downscaled transistors, which occupy semiconduct-
ing wafers. However, thermal ALE is characterized by being inaccurate
and nonproductive due to the demanding design criteria required to
produce high-performance semiconducting chips. Thus, an in silico
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multiscale modeling approach is adopted to determine optimal oper-
ating conditions to produce highly conformal transistor films for a
spatial, sheet-to-sheet reactor that is recognized for increasing prod-
uct throughput. Previous works have focused on efforts to integrate
run-to-run (R2R) control systems with exponentially weighted moving
average (EWMA) algorithms to compensate for the effects of pertur-
bations to the thermal ALE process through a multivariate control
procedure; however, continuous feedback control is needed to improve
the correction of disturbances within the batch process. This work
designed a conjoined R2R and Proportional–Integral (PI) control sys-
tem that implements control action both continuously and after the
completion of a thermal ALE cycle. The combination of both control
systems successfully optimized control performance through the tun-
ing of both controllers, which led to observable reduction in input
parameter deviation from their standard operating conditions.
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