
Data-Driven Machine Learning Predictor Model for Optimal
Operation of a Thermal Atomic Layer Etching Reactor
Published as part of Industrial & Engineering Chemistry Research special issue “AI/ML in Chemical
Engineering”.

Henrik Wang, Feiyang Ou, Julius Suherman, Matthew Tom, Gerassimos Orkoulas,
and Panagiotis D. Christofides*

Cite This: Ind. Eng. Chem. Res. 2024, 63, 19693−19706 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: As semiconductor devices continue to shrink to
nanoscale dimensions and take on increasingly complex geometries,
novel fabrication processes and techniques must emerge in
response. One such technique is atomic layer etching (ALE),
which uses half-reactions to etch away monolayers of substrate per
cycle. Due to the self-limiting nature of the composite half-
reactions of ALE, the reaction progresses in a nonlinear fashion,
making it difficult to precisely forecast when the reaction has
reached completion. This work aims to construct a predictor model
based on simulated data that determines the etch rate of any ALE
process given the real-time wafer surface pressure data. This model
is trained on a machine learning transformer structure, which is
commonly employed in natural language processing, as the transformer structure is well-suited for handling large amounts of time-
series/sequence data. To determine how to create the best predictor model, both data aggregation and data set selection heuristics
are explored. The resulting models indicate that, for a sufficiently controlled process, it is not optimal to aggregate all available data
sets. Rather, data sets must be carefully selected with a heuristic to yield the optimal ALE predictor model.

■ INTRODUCTION
The past two decades has observed technological innovations
in high-performance electronics that possess favorable
characteristics including reduced feature sizes, computing
speed, and energy efficiency.1 However, this continued
advancement is facing hurdles attributed to a vital and
necessary component of electronic devices: semiconductors.
Per Moore’s law, a semiconductor chip will improve in
performance by strategic designing and downscaling of
transistors that facilitate stacking and densification;2 however,
the manufacturing of these products is time-consuming and
inconsistent at maintaining overall quality in nanoscale
dimensions. In terms of productivity, the overall semi-
conductor fabrication process comprises around 500 process-
ing steps from raw materials to the finished product that are
exclusive to the product material and design.3 Additionally,
some components of the finished product have stringent
design criteria.4 For example, the nanowire, a critical
component of transistors that enables current transport
between the source and drain of complementary metal-oxide
transistor technology,5,6 demands oxide film thicknesses in the
nanoscale. These nanoscale dimensions are reproducible

through sequential cycles of thin-layer deposition and etching
processes that are intended to add or remove monolayers of
substrate material by exhibiting self-limiting characteristics.
However, it is difficult to streamline a high quality fabrication
method for this process at an industrial setting due to the
inherent limitations in process- and operation-dependent
techniques. One way to help meet the growing demand for
both semiconductor chip throughput and quality is by
developing models that can accurately predict the process
quality as a function of real-time process data.
Digital twin modeling is an effective tool intended to

replicate real-world processes through computational modeling
with feedback validation to ensure the efficacy of the model.
For example, Shao et al. (2019) discussed the prevalence of
digital twin modeling in the semiconductor manufacturing
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industry with applications to smart manufacturing, which
enables process optimization and advanced process control by
extending data sets across wider ranges of operating
conditions.7 Besides a single process, Moyne et al. (2020)
hypothesized the potential for expanding beyond a singular
process (i.e., across processes with slightly dissimilar character-
istics) through simulated modeling.8 Kanarik et al. (2023) also
entertained the idea of implementing artificial intelligence (AI)
to construct data-driven and predictive models to enable
process optimization.9 The aforementioned works discuss
clever approaches for integrating a network of simulated
models that is applicable for this study.
With the growing complexity of semiconductor manufactur-

ing processes, manually measuring wafer quality has become
increasingly time-consuming and labor-intensive.10 For in-
stance, a quartz crystal microbalance is traditionally employed
to measure the thickness of deposited or etched films on wafers
in industry, thereby assessing the etch coverage and quality of
the product in an off-line analysis manner. However, the use of
a quartz microbalance requires careful operation, bears a low
sampling rate, and has significant expenses.11 To address these
challenges, soft sensing methods have emerged in recent
years.12 A soft sensor functions like a traditional sensor by
utilizing models that interpret process data that is easier and
less expensive to obtain, to predict product properties such as
the etch coverage across the wafer. The performance of a soft
sensor is highly dependent on the accuracy of its prediction
model. Deep learning methods, including recurrent neural
networks (RNN), convolutional neural networks (CNN), and
transformers, have gathered significant attention for this
purpose due to their superior performance and wide
applications.13

In industry, large fabrication plants often have multiple
product flows that share the same etch process.14 For example,
multiple product flows that each create a specific semi-
conductor device may all use the same 1000 Å Al2O3/SiO2
etch process. Subtle differences between these product flows,
such as the underlying substrate geometry, often cause their
respective substrates to exhibit different kinetic behaviors for
the same process recipe. Thus, a predictor model trained on
one specific product line and reactor is not guaranteed to
perform similarly for other product lines or reactors, which is
why most such predictor models thus far have been focused on
a specific process on a specific tool.15

However, with the increasing demand for more semi-
conductor products, fabrication plants must output numerous
semiconductor chips. This has led to an increased number of
both processing tools and process flows.16 As the number of
tools and flows in a fabrication plant increases, the number of
predictor models needed will increase dramatically, leading to
numerous unique process data sets. Thus, it is important to
explore if data aggregation techniques can be used to create a
general predictor model that performs well for a set of process
flows. And as the number of unique process data sets continues
to increase, it will also become important to create a
methodology to determine which data sets should be
aggregated for the training of a predictor model.
Modern ALE processes operate quickly, taking less than 10

min to complete a single cycle.17 However, to capture the
inherent process variability for a specific product flow and
reactor, process data must be collected from multiple runs.
Thus, if the required process data were to be gathered
experimentally at an academic scale, it may take months or

even years to collect enough data to train an accurate predictor
model. An alternative method is to use simulated process data.
Simulated process data offers the convenience of being able to
directly manipulate kinetic parameters, which drastically
decreases the number of runs required to collect enough
process data to train a predictor model. With simulated data,
valuable insights into the efficacy and optimization of data
aggregation techniques within the purview of creating
predictor models for semiconductor manufacturing processes
can be found.
This work investigates the development of a cross-operation

and cross-design predictive model of a two-step thermal ALE
procedure to fabricate an aluminum oxide (Al2O3) film by
utilizing a precursor trimethylaluminum (TMA) and an
etching reagent hydrogen fluoride (HF) under high operating
temperatures that volatize all the reactants and products. This
process is simulated by a computational model with a
multiscale framework that intersects features from various
time and length domains for atomic, molecular, kinetic, and
fluidic properties, all of which govern the kinetics of this
etching process. In the Ångstrom and picosecond length and
time scales, respectively, atomistic modeling is relevant for
discussing the electronic, thermophysical, and kinetic proper-
ties of the materials involved in the ALE process by employing
ab initio molecular dynamics simulations such as density
functional theory and nudged elastic band methods. Addition-
ally, the spontaneity or tendency for a reaction to occur is
characterized through elementary reaction pathways that are
defined using a statistical mechanics via collision theory (CT)
and the Arrhenius model. To establish this stochastic behavior
of reaction in a larger length and time scales of micrometers
and milliseconds, respectively, a mesoscopic approach through
a kinetic Monte Carlo (kMC) method is beneficial for this
purpose. Lastly, ALE is dependent on the fluid dynamics when
the substrate is exposed to reagents and byproducts that affect
the composition and characterization of the substrate surface.
Computational fluid dynamics (CFD) is utilized to study the
effects of fluid transfer on the substrate surface, in which CFD
is not bounded by a maximum length- and time scale
exemplified by atomistic and mesoscopic models. The
conjunction of these three simulations establish a multiscale
model that can1 resemble realistic experiments conducted in
vitro,2 produce synthetic data at an efficient rate, and ref 3
enable optimization of process operation and design by
conducting numerous case studies for similar systems defined
by quantifiable variables.
Traditional model reduction methods like proper orthogonal

decomposition and approximate inertial manifold techniques
work well for the construction of low-dimensional models for
transport-reaction processes modeled by one- or two-dimen-
sional (2D) parabolic partial differential equations (PDEs) and
can lead to low-order models for controller design; however,
this work deals with the development of input/output models
capturing nonlinear relationships between process operating
variables as inputs (e.g., input flow rates and pressure) and
product metrics as outputs (e.g., film spatial uniformity,
coverage) that cannot be captured by the traditional model
reduction methods for PDEs.18 Furthermore, the model of the
ALE process considered in our work is a multiscale CFD
model whose complexity makes the implementation of
traditional model reduction methods very challenging given
the use of different continuum (e.g., dynamic conservation
equations) in the gas phase and discrete (e.g., kMC models)
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on the film surface. Thus, this work explores using neural
network models and the associated statistical analysis as an
efficient way to develop predictive operational models for these
complex processes.
In summary, this paper investigates the application of a

machine learning-based soft sensor for predicting ALE etch
rates using process data that can be realistically collected in
real-time during the process. The necessary process data were
generated through multiscale simulations of an ALE process in
a discrete feed reactor, wherein kinetic parameters were
adjusted to represent different process flows. To enhance
model performance, a data aggregation approach is proposed,
which increases the volume of training data by integrating
multiple data sets. This manuscript is organized by first
describing the overall structure of what data sets are generated
and aggregated, and how they are compared. The subsequent
section goes into detail regarding the multiscale modeling
simulations that were used to generate process data. The
following section describes how the predictor model was
developed and trained. The last section analyzes the perform-
ance of the models trained on different data sets and their
implications.

■ PROCESS DESCRIPTION AND DATA GENERATION
METHODS

The effectiveness of data aggregation depends greatly on the
data being aggregated. To that end, this work seeks to elucidate
the possible benefits of aggregating data and explore methods
of choosing which data sets should be aggregated by focusing
on a specific fabrication process. The ideal process would be
one that is relatively simple, has at least two sources of
variance, and would benefit from a robust predictor model.
One semiconductor manufacturing process that meets all three
of the aforementioned criteria is atomic layer etching (ALE).
Specifically, this work explores data aggregation in the

context of using ALE to etch away Al2O3 while preserving the
underlying SiO2 substrate. This process is simple in that it is
only composed of two-half reactions, whereas other processes
such as area-selective atomic layer deposition may consist of
three or more.19 The two half-reactions are shown and
described below.

+ +Al O (s) 6HF(g) 2AlF (s) 3H O(g) (reaction A)2 3 3 2

In reaction A, gaseous HF prepares the Al2O3 surface for
etching.

+2AlF (s) 4Al(CH ) (g) 6AlF(CH ) (g) (reaction B)3 3 3 3 2

In reaction B, gaseous TMA etches away the prepared ALF3
surface created in reaction A, releasing a byproduct of
dimethylaluminum fluoride (DMAF). These etching reactions
were chosen due to their high selectivity toward Al2O3 rather
than SiO2. To ensure that all the reagents are in a gaseous
form, the process temperature is 573 K and the process
pressure is 300 Pa. Additionally, the process consists of
reaction A and reaction B cycling back and forth; to reduce
reagents from the other half-reaction mixing, a purge step is
taken before and after each reaction. Specifically, N2 is pumped
into the chamber until all reagent is removed. For reaction A, 1
× 10−5 kg/s of gas with a mole fraction of 0.1 HF and 0.9 N2 is
pumped into the chamber for 1.2 s and then purged with N2
for 0.8 s. For reaction B, 1 × 10−5 kg/s of gas with a mole
fraction of 0.5 TMA and 0.5 N2 is pumped into the chamber
for 1.5 s and then purged with N2 for 0.5 s. From experimental
testing, these conditions with no disturbances result in
complete reactions for both half-reactions.20

To simulate these reactions, both half-reactions can be
decomposed into multiple intermediate reactions, as detailed
in Yun et al. (2021).20 These intermediate reactions can be
classified into two types: adsorption and nonadsorption. By
varying the kinetic parameters of these intermediate reactions,
variance can be naturally introduced into the process. These
varied parameters represent differences in the substrates, such
as the device geometry or substrate material.21 They exist
because multiple product flows and devices share process
recipes along the manufacturing pipeline, and one of the goals
of this paper is to demonstrate that aggregating process data
will result in improved model performance despite the fact that
the data originate from different sets, each with their own
unique kinetic parameters.
For the final criterion, a robust predictor model would, at a

minimum, be able to improve manufacturing efficiency by
eliminating inspection steps. These inspection steps are
conducted at state-of-the-art fabrication centers, where each

Figure 1. Figure showing the flow of information between the macroscopic simulation in ANSYS Fluent and the mesoscopic simulation executed
through the UDFs.
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wafer is inspected after an etch step to ensure that the product
specifications and quality standards are met. However, with a
robust predictor model, this step could be omitted (or at least
executed less frequently) for a majority of processed wafers,
greatly increasing overall manufacturing efficiency.
After selecting a process, the next step is to gather data for

that process. Generally, most machine learning processes
improve in performance when trained on larger data sets.
Thus, each data subset needs to be large enough to produce a
functioning model to properly compare the effects of data
aggregation. To generate all the requisite data, it would take
months, if not years, to do so with industrial data. An
alternative method is to use simulations to generate the
requisite data. By constructing a reactor model and using
advanced simulation methods, it is possible to accurately
represent an ALE reactor and the reaction kinetics occurring
within it.19 Additionally, simulation runs are much faster to
execute than their physical counterparts; with powerful
computer processors, it is possible to complete over 16 unique
process runs in a single day, for example.22 Thus, all the data
sets analyzed in this work are generated through simulations.
Multiscale CFD Modeling. All simulations must balance

accuracy and computational efficiency while generating data at
a sufficient rate. Generally speaking, the more accurate a
simulation is, the more computational power it takes to carry
out that simulation. Because the simulated data is meant to be
used as training data for a machine learning algorithm, the
simulations must be fast while sacrificing the least amount of
accuracy.
To meet these requirements, this work carried out 2D

multiscale CFD simulations of an ALE system in a discrete
feed reactor. The discrete feed reactor is a stationary reactor
with a single inlet at the top, two outlets on the sides, the wafer
substrate at the bottom, and a showerhead plate between the
wafer and the inlet to promote ideal reagent distribution as
shown in Figure 1. The reactor operates by first purging the
chamber with N2 gas, then injecting a reagent gas into the
chamber for a preset process time, and finally purging the
chamber with N2 gas once again. This configuration makes it
easy to optimize reagent usage while maintaining etch
uniformity, which ensures that the end product reaches
process specifications.23 The simulation was bound to 2D
geometry to reduce the computational complexity and is valid
because both the substrate and reactor have radial symmetry.
Multiscale CFD simulations decrease computational complex-
ity (with respect to carrying out a microscopic simulation for
the entire process domain) while preserving accuracy by
simultaneously carrying out macroscopic and microscopic
simulations that constantly communicate between each other.
Specifically, the simulation, shown in Figure 1, takes place
within the multiphysics software, ANSYS Fluent, which
simulates the macroscopic mass and energy dynamic balances
within the reactor, which is represented by the left, red section
in Figure 1. At each integration time step of the gas-phase
continuum model, custom user-defined functions (UDFs)
simulate the mesoscopic reaction kinetics on the wafer surface
through a kMC simulation scheme over several locations on
the wafer surface, which is represented in the right, blue
section in Figure 1. Additionally, the macroscopic simulation
receives information regarding how much reagent is consumed
and product is produced at each point on the wafer, which is
the green box at the bottom of Figure 1, while the kMC
simulation receives information regarding the partial pressures

at each point of the wafer, which is the orange box at the top of
Figure 1. These two simulations are carried out simultaneously
through UDFs in ANSYS Fluent that enable customizable
features applicable to multiscale modeling, and by working in
tandem, they improve the overall accuracy of the ALE
simulation .
While the macroscopic simulation takes place inside ANSYS

Fluent, the reactor was designed in ANSYS SpaceClaim, a 3D
CAD software. The discrete feed reactor shown in Figure 2 has

a cylindrical shape and consists of a wafer plate at the bottom,
an inlet plate in the middle to ensure even reagent distribution,
an inlet hole at the top for reagents to enter, and 2 outlet holes
at the sides for the etch byproducts and purge gas to exit from.
In a previous work, it was found that the efficacy of these
reactors mainly depends on 2 factors: the gap distance and
inlet plate geometry.23 Based on previous research into reactor
optimization, the reactor used in this work has a gap distance
of 5 mm and an inlet plate of 13 equally spaced holes with a
diameter of 10 mm.19

To observe the different reaction rates across the wafer
surface while minimizing excessive calculations, the wafer
surface was separated into 5 equidistant sections. Each section
has its own kMC simulation, which takes in the average partial
pressures of that wafer section and returns the mass fluxes of
that wafer section. This allows each section to progress on their
own and ultimately allows for analysis of the etching
uniformity across the wafer.
The macroscopic simulation evaluates the spatiotemporal

behavior of the fluid transport within the reactor by
numerically solving the characteristic mass, momentum, and
energy transport equations, which are respectively described as
follows

+ · =
t

v S( ) m (1)

+ · = + · + +
t

v v v P g F( ) ( ) ( )
(2)

+ + = +
t

E v E P h J S( ) ( ( )) ( )j j h (3)

where ρ is the gas-phase species density, v is the velocity of
said species, Sm is the source generation and consumption flux
of that species, P is the operating pressure of the reactor, is

Figure 2. Schematic of the reactor model. For reaction A, a mixture of
HF and N2 enters from the inlet, and HF, H2O, and N2 are purged
through the outlet. For reaction B, a mixture of TMA and N2 enters
from the inlet, and DMAF and N2 are purged through the outlet.
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the normal two-rank stress tensor, g is the gravitational
acceleration constant, F is the force acting on the system, E is
the accumulated rate of system energy, Sh is the energy source
generation or consumption, hj is the sensible enthalpy flux of
gas species j, and Jj is the mass diffusion flux of gas species j.
Equations 1−3 are numerically solved at each integration time
step of 0.001 s. The integration time step used for the solution
of the continuum gas-phase dynamic model, 0.001 s, is small
enough to ensure stable numerical integration and high
simulation accuracy while keeping the computational burden
at an affordable cost. Smaller integration time steps have been
tested, and they lead to the same numerical results even though
the computational burden is increased. Increasing the
integration time step to higher values will speed up the
calculations but may compromise numerical stability and
reduce accuracy, and as the computational burden under the
0.001 s time step is computationally affordable, there is no
reason to do so. Clearly, there is an upper bound on the time
step that maintains numerical stability of the simulation, but
0.001 s is well within this upper bound.
The only reactions occurring within the reactor take place

on the wafer surface. Thus, all boundaries are defined as
impermeable walls, save for a few exceptions: the inlet hole at
the top is defined as an inlet with a mass flow rate of 1 × 10−5

kg/s, the outlet holes at the sides are defined as outlets with a
dynamic pressure of −200 Pa, and the wafer surface is defined
as a reaction zone where the molecular species flux calculated
in the kMC section are implemented. More details about the
macroscopic simulation can be found in ref 23.
The mesoscopic simulation receives the partial pressures

calculated in the macroscopic simulation and returns the mass
flux of products and reactants. This computation is conducted
through a kMC algorithm that simulates the reaction rates of
the nonadsorption reactions on the wafer as a function of the
kinetic rate constants. For this ALE process, two general types
of reactions are considered: adsorption/desorption reactions
and nonadsorption reactions. The rate constant of the former
is calculated through CT, and that of the latter is calculated
with the Arrhenius equation, which are respectively shown
below.

=k
P A

Z m k T
2

2d
d

d d
ads,

site

B (4)

where kads,d is the reaction rate constant for gas species d to
adsorb onto the wafer surface, Pd is the partial pressure of gas
species d, Asite is the surface area of the binding site, σs is the
experimentally determined sticking coefficient of gas species d,
Z is the coordination number of gas species d, md is the atomic
mass of gas species d, kB is the Boltzmann constant, and T is
the absolute temperature of the wafer surface.

i
k
jjj y

{
zzz= =

‡
k

E
RT

k TQ
hQ

exp ,nads
a B

(5)

where knads is the reaction rate constant for a nonadsorption
reaction, ν is the pre-exponential factor, Ea is the activation
energy, R is the universal gas constant, T is the absolute
temperature of the wafer surface, and h is the Planck constant.
Note that when calculating ν, the ratio of the partition
functions Q‡, Q is assumed to be unity.24 This assumption was
validated by comparing the resulting simulation results to
experimental results. Additionally, all the other kinetic

properties, such as σ, Ea, and ν, for both half-reactions of the
ALE process were also determined in that same work.20

The kMC algorithm uses a grid with 300 × 300 sites to
represent a larger swath of the wafer surface and randomly
generated numbers to represent the stochastic nature of the
ALE half-reactions. In a previous work, it was found that this
grid size allowed for accurate simulations for a low computa-
tional cost.20 At each integration time step of the macroscopic
CFD simulation, the kMC algorithm calculates the rate
constants of each possible reaction with eqs 4 and 5 and
then uses them to update the 300 × 300 grid.
The basic steps of the algorithm are as follows:
1. Randomly select a site on the grid.
2. Randomly select 2 random numbers, γ1, γ2 ∈ (0, 1].
3. Sum up all possible reaction rate constants into ktot.
4. Select a reaction by comparing γ1 to ktot.
5. Calculate the time evolution as δt = −ln(γ2)/(nktot),
where n is the number of active sites on the grid.

6. Terminate when (∑δt) ≥ tint, where tint is the
integration time step of 0.001 s.

Note that both γ1 and γ2 are randomly selected from a
uniform distribution of (0,1] as they represent the stochastic
nature of atomistic surface reactions. Additionally, for step 3,
the reaction rate constants are calculated with eqs 4 and 5 and
the atomistic constants found in ref 20. Equation 4 is
dependent on the partial pressure of the reactant species,
which means that all the reaction rate constants must be
recalculated at each time step as the partial pressures of each
species cannot be guaranteed to be constant.
Steps 1, 2, 3, 5, and 6 are relatively simple, but step 4

requires a more in-depth explanation. To select a reaction, the
following expression is evaluated for each possible reaction

<
= =

k k k
i

r

i
i

r

i
1

1

1 tot
1 (6)

where r is the reaction the expression is being evaluated for, ki
is the ith reaction, γ1 is a randomly selected number created in
step 2, and ktot is as described in step 3. Additionally, for all
grid sites and a selected γ1, eq 6 will only be true for a single,
unique reaction, which is the selected reaction. A more detailed
explanation of the kMC algorithm, including pseudocode, can
be found in a previous work.19

At the end of the multiscale simulation, the reaction
coverage across the wafer can be estimated by examining the
300 × 300 of the kMC simulation. As the coverage is a fraction
of how much of the surface has completed the reaction, it is
simply the number of sites that have reached the final product
divided by the total number of grid sites. The coverage can
then be converted into the etch rate by multiplying by 0.46 Å/
cycle, as that is the amount of Al2O3 that would be etched away
if the wafer reached full coverage in both half-reactions.20

With the simulation settings described above, the accuracy
of the simulations is uncompromised while the computational
efficiency remains high. When run on powerful CPU-based
(central processing unit) nodes with 24 and 48 cores with 384
GB and 512 GB of DRAM (dynamic random-access memory),
respectively, a full simulation of both half-reactions took
approximately 8 h. Thus, by using 4 such nodes, simulating
100 process runs can be completed in 200 h.
Process Data Sets. For this project, two types of data sets

were created: one that represents a process, and one that
imitates raw industrial data. The main difference between these
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two data set types is that the former data sets are meant to be
compact data sets that represent many years of process data.
Their kinetic parameters are set to a specific number within a
range and do not include any noise; thus, they will be called
process-specified data sets. The latter data set, which is used to
compare model performances, is intended to represent a series
of process runs. The kinetic parameters for each run are
randomly selected from a Gaussian distribution that represents
a specific process, which introduces variation into each process
run. Thus, this data set will be called the random-run data set.
To train and validate the predictor models, four separate

process-specified data sets with varying kinetic parameters were
created. The varied kinetic parameters were chosen to
represent common process shifts in a manufacturing environ-
ment, such as deposition of reactants to reactor sidewalls
affecting the nonadsorption reactions or complex device
geometries affecting sticking coefficients.25

The four process data sets are differentiated by their kinetic
constants, which have been uniquely modified for each data
set. Specifically, the sticking coefficients (σ) and pre-
exponential factors (ν), are multiplied by a constant ranging
from 0.5 to 1.5. The four processes are listed in Table 1 where

fσ is the constant that the sticking coefficient (σ) found in eq 4
is multiplied by and fν is the constant for the pre-exponential
factor (ν) found in eq 5. Furthermore, in CT, only fσ is varied;
in TST, only fν is varied; in MIX, fσ and fν share the same value;
finally, in INV, fσ and fν are inversely correlated such that their
sum is always 2. For example, the data set that represents MIX
consists of 25 simulations, where the values of fν and fσ are
represented as

= = + ·f f i0.47 0.03i i, ,

where i is the ith simulation. By carrying out a similar
procedure for the CT, TST, and INV processes, 4 unique data
sets comprising 25 simulations each are generated, making for
a total of 100 simulations. These data sets are then aggregated
in various combinations before being used to generate a
prediction model.
To analyze the performance of the prediction models

generated with the process-specified data sets, each model will
be used to estimate the etch rate of a random-run data set
comprising 60 process runs. The kinetic parameters for each
run will be randomly selected from a Gaussian distribution that
has an average of 1 and a standard deviation of 0.1. To
consider both the average etch rate and the standard deviation
of the etch rate across the wafer, the etch rate is measured at 5
inspection points across the wafer that correspond to the 5
wafer sections described in the “Multiscale CFD Modeling”
section. The resulting etch rate mean and spread for the
random-run data set are illustrated in Figures 3 and 4,
respectively.
Note that the etch rate distribution is not Gaussian, as the

process metric of etch rate does not vary linearly with respect
to the kinetic parameters. As both ALE half-reactions are

naturally self-limiting, high kinetic parameters that increase the
reaction rate of each half-reaction will minimally impact the
overall etch rate.20 Thus, the etch rate distribution is skewed.
Besides measuring the performance of each model as a

predictor, it is also possible to convert them to classifiers and
measure their efficacy in that regard. This approach is
accomplished by adding a filter to both the random-run data
set and the model output that analyzes the etch rate mean and
standard deviation and classifies it as either a “pass” or “fail.”
The specific pass/fail metrics were chosen such that the fail
rate is around 2% for a process with kinetic parameters with a
mean of 1 and standard deviation of 0.1. This means that, for
the etch rate mean and etch rate standard deviation, if either
process variable is more than 2 standard deviations from the
mean, the run has failed. For the random-run data set, this
means that a run fails if the etch rate mean is less than 0.444 or
if the etch rate standard deviation is greater than 2% of the
mean. When applied to the random-run data set, these criteria
result in a fail rate of 2.3%. This fail rate is consistent with
industrial data sets the authors have worked with.

■ TRANSFORMER MODEL TRAINING METHOD
The optimal model training method will differ for each process,
depending on what process data are readily available and able

Table 1. Kinetic Parameter Ranges for Each Process

fσ fν
CT [0.5,1.5]
TST [0.5,1.5]
MIX [0.5,1.3] [0.5,1.5]
INV [0.5,1.3] [1.5,0.5]

Figure 3. Histogram of the average etch rate across the entire wafer
for each run in the random-run data set.

Figure 4. Histogram of the standard deviation of the etch rate across
the wafer as a percentage of the average etch rate for each run in the
random-run data set.
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to be collated into data sets. For the purposes of this work, we
aim to train a transformer model that takes real-time process
data as an input and outputs the expected etch rate.
Input Variables for Model Training. For an ALE reactor

operating in an industrial environment, pressure and temper-
ature are critical process variables that can be measured at high
frequencies with low latency, enabling the generation of
comprehensive time-series data sets for process modeling. To
ensure consistency and simplicity, the wafer temperature and
reactor operating pressure are maintained at near constant
values by feedback control systems. Then, the surface pressure
of the wafer, measured in Pascals, is recorded every 0.1 s,
which aligns with the limitations of real-life industrial sensors.
However, to prevent information loss, because the simulation
is conducted with an integration time step of 0.001 s, the
pressure data is also extracted at every integration time step.
Prior studies on the ALE of Al2O3 in discrete feed reactors
indicate that a 2 s period is sufficient for achieving full wafer
coverage under most conditions.23 Consequently, the pressure
measurement period is limited to 2 s for each half-cycle,
resulting in a maximum of 20 points of time-series wafer
surface pressure data per half-cycle. Each data point contains 5
pressure readings, which are sampled from the 5 different
inspection points on the wafer surface described in the
“Multiscale CFD Modeling” section. The time-series pressure
data collected for both the HF and TMA half-cycles are then
concatenated into a complete data set for a single ALE run.
Output Variables for Model Training. The output

variable of the ALE process for the soft sensor is the etch
coverage calculated for each of the previously described
inspection points at the end of the overall process. This
measurement offers valuable information about both the
overall etch rate and the etch rate uniformity across the
wafer. The total coverage after two half-cycles is defined by

= · { }icov cov cov , 1, 2, 3, 4, 5i i iHF, TMA, (7)

where covi is the total coverage at the end of the process on
inspection point i, covHF,i is the coverage at the end of HF half-
cycle on inspection point i, and covTMA,i is the coverage at the

end of TMA half-cycle on inspection point i. Each half-cycle is
programmed to end at t = 2.0 s, where t is the processing time.
The true total coverages are obtained through multiscale

simulations as described in the previous section and then
compiled into data sets consisting of their respective input and
output data. When effectively trained, the soft sensor model is
expected to output the coverage data with minimal absolute
percentage error compared to the true values.
Development of the Predictor Model. Introduction to

Time-Series Modeling. To develop a prediction model based
on time-series input data, deep learning methods such as RNN
and long-short-term memory (LSTM) neural networks have
been widely explored and applied across various fields,
including chemical engineering.26 These neural networks are
capable of processing long sequences of data and learning
about the information between each element. This results in
the models learning about the correlations within the data
sequence. This capability enables RNNs and LSTMs to better
understand and fit time-series data compared to traditional
feedforward neural networks (FNN).
A novel deep learning model, the transformer, has emerged

in recent years and rapidly gained significant attention in the
field of natural language processing (NLP) due to its
outstanding and record-breaking performance on most NLP
tasks.27 The transformer network structure has also demon-
strated equally impressive performance in computer vision
tasks such as image classification and object detection.28

Additionally, one of the most popular and advanced examples
of AI, the large language model (LLM), which includes
products such as ChatGPT and BERT, employs the trans-
former architecture. By utilizing billions of training data points
and model parameters, LLMs are capable of generating
human-like responses and solving a wide range of problems,
offering substantial potential for future applications.29

The transformer model employs an encoder-decoder
architecture to handle a sequence of time-series data. A
multihead self-attention mechanism30 is used within each
block to compute the relevance of each element in the
sequence relative to every other element. This approach
enables the model to effectively capture intercorrelations

Figure 5. Comparison between RNN (left), LSTM (center), and transformer (right) models. Two data sets of real-time process data were
considered: a mixed data set from multiple processes that was used for both training and validation (blue), and a data set from a single process that
was only used for validation (orange).
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across the entire sequence of time-series data. The attention
mechanism calculates attention scores for each pair of
elements, which are then normalized using a softmax function
to aggregate the attention values. This process allows the
transformer to maintain a comprehensive understanding of the
relationships within the data sequence, surpassing the
capabilities of traditional LSTM networks.30,31

LSTM networks, while effective in handling time-series data
and addressing the vanishing gradient problem occur in
simpler RNNs, can still suffer from memory loss over long data
sequences. This limitation arises because LSTMs process data
sequentially, which struggles to capture long-range depend-
encies. In contrast, the self-attention mechanism of the
transformer allows it to simultaneously consider all positions
in the sequence, ensuring that long-term dependencies are
preserved and effectively learned. This ability to maintain a
global perspective on the data sequence makes the transformer
particularly well-suited for tasks that require a deep under-
standing of a long sequence of time-series data.
In Figure 5, a transformer, RNN, and LSTM model are

compared to demonstrate their respective effectiveness at
training models. The number of optimized parameters for the
three tested models are intentionally selected to have similar
values for the purpose of comparison. Both the RNN and
LSTM networks have one recurrent layer with 24 neurons, and
the output vectors of each recurrent unit are concatenated
together and fed to a FNN network with one hidden layer that
contains 32 neurons to generate the output vector. Figure 5
shows that the transformer model outperforms the other two
models in terms of both learning efficiency on the blue training
data set and median percentage error on the orange unseen
test data set, which has a different disturbance from the
training data set. Thus, the ability of the transformer model to
maintain a general, global perspective on the data sequence
makes it particularly well-suited for tasks that require a deep
understanding of a long sequence of time-series data.
Transformer Soft Sensor Structure. The overall structure of

the transformer soft sensor for the ALE process is shown in
Figure 6.
Following the input layer, a dense layer, or embedding layer,

is used to linearly encode the input data into a suitable format
for the transformer encoder blocks. The applied transformer
network consists solely of encoder blocks, as the task only
involves regression and does not require the model to generate
a series of future predictions.
Positional encoding is added to the input sequence of the

embedded vector of wafer surface pressure time-series data
because the transformer blocks do not inherently recognize the
order of the input elements. This encoding layer provides the
necessary information regarding the order of the input
elements to the transformer encoder blocks. The positional
encoding equations have the following form

i
k
jjjjj

y
{
zzzzz=iPE(pos, 2 ) sin

pos

10, 000 i d2 / model (8)

i
k
jjjjj

y
{
zzzzz+ =PE i(pos, 2 1) cos

pos

10, 000 i d2 / model (9)

where PE is the positional encoding value, i is the index
indicator within a single vector in the sequence that defines the
pressure measurement vector at a specific time, 2i represents
an even index position in the vector, 2i + 1 corresponds to an

odd index position, pos is the index number of the vector in
the sequence, and dmodel is the embedded vector dimension.
The encoder block employs the principle of residual learning

and includes a single-layer neural network to process the
output data from the transformer encoder blocks. Subse-
quently, a concatenation pooling operation is applied, which
connects and aggregates the outputs from all the transformer
blocks from each element in the sequence to prevent
information loss. This pooled data is then fed into a final
FNN to produce the total wafer coverage values. The
hyperparameters of the soft sensor transformer model are
summarized in Table 2.

Transformer Model Training. The data is separated into
two parts: 80% of the data is used for training, while the
remaining 20% is used for validation testing. The training-
testing split is conducted randomly using the data set splitting
module from the scikit-learn package. The mean squared error
(MSE) loss function is applied as the loss criterion, and the
ADAM optimizer is employed for model parameter updates.
The loss value on the validation data set is recorded at each
training epoch, and the model with the lowest MSE on the
validation data set is saved as the most up-to-date candidate

Figure 6. Structure of the soft sensor transformer network. Pressure
data is embedded by a dense layer with dimension 8, undergoes
positional encoding, and then is fed into 2 identical multihead
encoder blocks. Inside the encoder block, there is an internal FNN
with a hidden layer of 64 neurons. The output of the encoders are
combined by concatenation pooling and then fed into the final FNN,
which has 2 layers of 64 neurons each, and it outputs the reaction
coverage.

Table 2. Hyperparameters for the Transformer Model

model hyperparameter value

Input dimension 5
Embedding dimension 8
Number of heads 2
FNN neurons 64
Dropout ratio 0.25
Encoder layer number 2
Final FNN layer number 2
Final FNN neurons 64
Output dimension 5
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model. The training hyperparameters, including batch size,
number of training epochs, learning rate, and initialization
algorithm, are all optimized using a trial-and-error method
based on the model performance on the validation data set.
This approach is feasible and time efficient both because the
data set size is not large and because the transformer
architecture is well suited for parallel computing and training.
The final optimized hyperparameters for the model included a
batch size of 64, 700 total training epochs, a learning rate of
0.001, and the Xavier initialization method. The random seeds
used in data splitting and model training were also fixed to
improve reproducibility.

■ HEURISTIC ANALYSIS METHOD
One method to guarantee creating the most optimal model is
to simply create models for every possible combination of
process-specified data sets. By doing so, and then comparing
their MSE, it is trivial to pick out the model with the best
performance. However, this process becomes increasingly
inefficient as the number of possible data sets increase.
Specifically, there will be n! possible models for n data sets.
And in industry, where there are often hundreds of data sets
for a particular etch process, it is unrealistic to exhaustively
search through every single data set combination. Thus, there
is a motivation to create a heuristic that determines which data
sets should be aggregated.
Statistical Methods Introduction. A well-designed

heuristic is essentially a distillation of the intrinsic statistical
characteristics of a data set. One way to extract this statistical
information is to train models on exactly one process-specified
data set and then compare their performances on the overall
data set that is the combination of all process-specified data
sets. This method reduces the number of models that must be
trained to determine the most optimal model, changing it to
scale linearly with the number of data sets.
The ideal data sets to aggregate are ones that are different

from one another. Training the model on a wide variety of data
will allow it to better understand and predict edge-case
scenarios, which are oftentimes when the run fails. This
selection criteria for data set aggregation can be translated into
selection criteria for the models trained on single process-
specified data sets: aggregate data sets whose representative
models are complementary to each other. If one model
performs sufficiently on data set B and poorly on data set C,
then the ideal data set to aggregate it with would be one whose
representative model performs well on data set C and poorly
on data set B.
Two statistical methods of capturing this relationship are

explored in this work: covariance and the Pearson correlation
coefficient (PCC). The covariance measures the general
strength of the relationship between any 2 data sets, and the
PCC measures the level of linear correlation between any 2
data sets. Thus, both statistical methods will be used to create
heuristics that evaluate which data sets should be aggregated.
Then, by comparing those results to that of the brute-force
exhaustive search, the better heuristic will be determined.
Heuristic Evaluation Method. First, a model is trained on

each process-specified data set as specified in the “Process Data
Sets” section. Then, these single-process models are run on an
aggregate data set consisting of all 4 process-specified data sets
to create a set of 4 MSE data points for each single-process
model. Finally, covariance and PCC is calculated between each

pair of models for their MSE data points. Covariance is
specifically calculated with the formula below

= = x x y y

N
Covar

( )( )

1X Y
i
N

i i
,

1

(10)

where X, Y represent any two models, xi is MSE of model X for
data set i, x is the average MSE of model X, yi is MSE of model
Y for data set i, y is the average MSE of model Y, and N is the
number of data sets. In this case, N = 4. The PCC is similarly
calculated with the formula below.

=
Covar

X Y
X Y

X Y
,

,
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where CovarX,Y is the covariance between any two models X, Y
as calculated in eq 10, σX is the standard deviation of model X,
and σY is the standard deviation of model Y.
Finally, for any given model trained on aggregated data sets,

we can determine the heuristic value of that model by
averaging the covariance or PCC values for the composite pairs
of the aggregated data set. For example, if the aggregated data
set contains data sets X, Y, Z, then the composite pairs are
every unique pair: (X, Y); (X, Y); (Y, Z). Then, the covariance
heuristic value of a model trained on data sets X, Y, Z can be
found with

=
+ +

h M X Y Z( ( , , ))
Covar Covar Covar

3
X Y X Z Y Z

c
, , ,

(12)

where hc is a function that returns the covariance heuristic
value of a model, M(X, Y, Z) is the model trained on data sets
X, Y, Z, and CovarX,Y is the covariance as defined in eq 10.
Similarly, the PCC heuristic value is defined as

=
+ +

h M X Y Z( ( , , ))
3

X Y X Z Y Z, , ,

(13)

where hρ() is a function that returns the PCC heuristic value of
a model and ρX,Y is the PCC as defined in eq 11. With eqs 12
and 13, we can now calculate heuristic values for any model
based on the data sets used to train that model.

■ PREDICTOR MODEL RESULTS AND DISCUSSION
As shown in Table 1, there are 4 process-specified data sets.
This means that there are 15 possible data set combinations
that can be used to train a model: 4 models are trained on only
1 data set, 6 models are trained on 2 data sets, 4 models are
trained on 3 data sets, and 1 model is trained on all 4 data sets.
There are 2 methods to evaluate the performance of these 15
models. The first is to examine the MSE of the model when it
is run on the validation portion of the process-specified data
sets, and the second is to examine the accuracy of the model
when run on the random-run data set described in the “Process
Data Sets” section. The full results of the MSE test are shown
in Table 3.
Where the columns represent the validation data set the

model was run on, the rows represent the training data sets of
the model, and the values in the table are the resulting MSE.
Multi-Process Model Performance. From Table 3, the

model with the best performance across all 4 processes is the
one trained on all 4, with an MSE of 0.16. However, it is
difficult to grasp why just by examining the complete tabulated
results. To better compare the 4 data sets, we begin by
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examining the degree of independence between them. In other
words, we want to know if it is possible to create a strong
model for a data set without training the model on that very
same data set.
To answer this question, we compared the average

performances of the models trained on a particular process

to the performance of the best model not trained on the
process. Figure 7a−d are bar charts showing this comparison
for each process.
Figure 7a−d demonstrates that, for all processes, the model

performance is drastically improved whenever the model is
trained on the corresponding data set of the process. This
illustrates that the failure mechanism for each data set is
unique. Thus, if a model is missing any one data set, it will
perform badly for the validation portion of that data set. On
the other hand, if there was a process that was not
independent, then the data set of that process can be excluded
from the training data set for the best performing model.
To demonstrate this point, let pd be a process that is not

independent; that is to say, there must be a model mnd that is
trained on the processes pi, pj but performs as well as a model
trained on pd. As other independent process data sets are
aggregated on, any models whose training data sets include pi,
pj and omit pd will still perform well on the pd. Thus, the model
that performs best on the union of all the process data sets can
omit pd as long as pi, pj is included. By repeating this
procedure, all the nonindependent processes can be omitted to
yield the ideal training data set.
So, for a manufacturing environment that spans the full

range of all the individual process data sets, the best predictor
model will be trained on an aggregated data set that includes
the data set of all independent processes. This environment is
equivalent to one where the process runs have relatively high
fail rates due to volatile processing conditions.

Table 3. MSE of Each Model for Each Validation Dataseta

aThe MSE values are colored such that low MSE scores are green and
high MSE scores are red.

Figure 7. These subfigures measure model performance by comparing their MSEs when tested on the validation data set of the stated process. The
left bar is the average performance of all models trained on the stated process, and the right bar represents the best model that was not trained on
the stated process.
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Single-Process Model Performance. It is also important
to understand how to best optimize a model for performance
on a single process, which is more representative of a low
variance process than multiple processes. This is found by
examining Table 3 and determining which model has the
smallest MSE in each column. The best model for each process
is the model trained only that process, except for TST; the best
model for that process was trained on CT + TST. This
demonstrates that adding the data of other processes into the
training data dilutes the amount of representative process data
for that process, which generally causes the model performance
to decrease. To gain more insight into how aggregating data
affects the model performance on a single process, Figure 8a−d
illustrate the MSE of the best performing model as a function
of the number of data sets used to train it.
Figure 8a−d demonstrate that, generally, the performance of

a model on a single process decreases as data from other
processes is aggregated into the training data set. This holds
true for both the CT and INV processes, but the MIX and
TST processes deviate from the other 2 processes.
While the general trend for MIX as shown in Figure 8c is

that the single-process model performance decreases with
increasing aggregation, the model trained on 2 data sets
performs unexpectedly poorly. This can be attributed to the
fact that MIX is the most independent process. In the previous
section, MIX had the highest MSE when looking at models not
trained on the process. This means that MIX cannot be
represented well by an aggregation of the other process data
sets. So in the case of single-process models trained on 2 data
sets, MIX will be diluted the most compared to the other 3

processes, which causes it to have an outlier in terms of
performance.
TST actually demonstrates the inverse of the expected

response where the single-process model performance
increases with increasing aggregation. This is likely due to
the fact that TST had the highest MSE when looking at models
trained on that process among Figure 7a−d. Because even the
models trained on the TST process data set had mediocre
performances on the TST validation data set, it demonstrates
that the transformer method struggles to create a good model
for this data set. But as more data sets are aggregated into the
model, the model performance improves. This demonstrates
that data aggregation can also help improve model perform-
ance for processes that are difficult to model with just their
own process data.
From the multiprocess and single-process analyses, it is seen

that the ideal amount of data aggregation depends on not just
the characteristics of the process data sets, but also on the
process environment. If there are multiple processes with poor
controls and large variability in between runs, then the model
should be trained on as many independent data sets as
possible. For single process models, while there is a general
pattern for how data aggregation affects model performance on
single processes, there are enough exceptions that the pattern
cannot be used to determine what data sets will yield the
model with the best performance. Thus, to further improve
manufacturing efficiency, there needs to be a method to choose
which data sets to aggregate together to train a predictor model
for low-variance processes.

Figure 8. These subfigures measure model performance by comparing their MSEs when tested on the validation data set of the stated process.
From left to right, the number of data sets used to train the model increases from 1 to 4 as stated in the x-axis, with the stated process data set
always being included. Each bar represents the highest performing model for that number of data sets.
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Heuristic-Based Assessment of Data Sets. Another way
to analyze model performance for low-variance processes is to
observe their performance on the random-run data set as
described in the “Process Data Sets” section. These data sets
represent a process environment where runs are expected to
pass and where most runs have similar kinetic parameters.
Additionally, we will explore the heuristics described in the
“Heuristic Analysis Method” section to see if they can predict
which data sets should be aggregated for a low-variance process
environment. The 2 proposed heuristics of covariance and
PCC are examined, and the values of the statistical methods for
each pair of single-process models are shown in Figures 9 and

10. Note that the sign of the heuristic represents whether the
relationship between the 2 data sets is positively or negatively
correlated. This relationship is not important, as we are only
concerned with how strong the correlation between 2 data sets
is, not the direction of said correlation. Thus, we are only
interested in the magnitude of the calculated covariance and
PCC. So, for each data set, we find the covariance and PCC
between it and all the other data sets, which is shown in Tables
4 and 5.
With Tables 4 and 5, we can predict what the covariance and

PCC will be for a model trained on multiple data sets by
following the procedure described in the “Heuristic Evaluation
Method” section. Note that it is desired for the predicted
heuristic value to be low. The lower the predicted value, the
less overlap there is between each constituent data set, making

that combination of data sets more likely to better represent
the overall process.
To test the performance of the two proposed heuristics, we

created and ran four models on the random-run data set
described earlier. Then, we evaluated the covariance and PCC
heuristic for each model to see how well they predict the
ranking of the models. The results are summarized in Table 6.
The true performance of each model shown in Table 6 is

represented in the acc. column. From it, we can see that the
model trained on the INV, MIX, and TST process data sets
performed the best. The PCC heuristic predicts this correctly,
assigning it the lowest score. However, the covariance heuristic
failed to do so, instead predicting that the model trained on the
CT, MIX, and TST process data sets would perform the best.
Another point of comparison is to see which heuristic makes
the most correct predictions. The PCC heuristic correctly
predicts that CT + INV + MIX is ranked fourth, incorrectly
predicts that CT + INV + TST is ranked fifth, correctly
predicts that CT + MIX + TST is ranked second, correctly
predicts that INV + MIX + TST is ranked first, and incorrectly
predicts that all is ranked third. Overall, it made 3 correct
predictions. On the other hand, the covariance heuristic
correctly predicts that CT + INV + MIX is ranked fourth,
incorrectly predicts that CT + INV + TST is ranked fifth,
incorrectly predicts that CT + MIX + TST is ranked first,
incorrectly predicts that INV + MIX + TST is ranked second,
and incorrectly predicts that all is ranked third for a total of
only 1 correct prediction. For both metrics, the PCC heuristic
outperformed the covariance heuristic. Thus, these results
demonstrate that the PCC heuristic is more accurate at
predicting the performance of aggregated data set models than
the covariance heuristic.

■ CONCLUSION
To supplement the growing need for increased semiconductor
manufacturing efficiency, a novel real-time etch rate predictor
model was created with simulated process data. A multiscale
method that encompasses both the macroscopic and

Figure 9. Comparison of the PCC values for each pair of processes.
The data sets used to calculate the PCC are the MSE values of a
single-process model for each process.

Figure 10. Comparison of the covariance values for each pair of
processes. The covariance is calculated with the same data sets used to
calculate the PCC.

Table 4. Average Absolute Covariance Values for Each
Dataseta

aEach entry is colored such that lower values are green and higher
values are red.

Table 5. Average Absolute PCC Values for Each Dataseta

aEach entry is colored such that lower values are green and higher
values are red.
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mesoscopic domains was used to simulate the real-time
evolution of ALE of aluminum oxide. With this method, four
different, unique process data sets were created with varying
kinetic parameters. Then, predictor models were trained on
various combinations of these data sets. It was found that, for
systems with high process variance, aggregating all the data sets
resulted in the best performance, but for systems with low
process variance, aggregating all the data sets would not result
in the best performance. Because most manufacturing
environments strive for low process variance, it is thus
necessary to determine a way to estimate which data sets to
aggregate for low process variance environments. We proposed
two possible heuristics to choose data sets to aggregate:
covariance and the PCC. After comparing model performances
on a data set of consecutive process runs, it was found that the
PCC heuristic was the best predictor of performance for
models trained on aggregated data. Further research into other
possible heuristics, the many applications of an accurate real-
time predictor model, and the scalability of these findings to
larger groups of data sets is still needed, but the initial results
indicate that such models can be effectively and easily created.
In another forthcoming work, we have demonstrated the
approach presented in the present paper using industrial data.
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