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A B S T R A C T

Control methods for Atomic Layer Etching (ALE) processes are constantly evolving due to the increasing level
of precision needed to manufacture next-gen semiconductor devices. This work presents a novel, real-time
Endpoint-based (EP) control approach for an Al2O3 ALE process in a discrete feed reactor. The proposed method
dynamically adjusts the process time of both ALE half-cycles to ensure an optimal process outcome. The EP
controller uses a machine learning-based transformer to take in variable-length, time-series pressure profiles
to identify when the ALE process is complete. However, this model requires a large amount of process data
to ensure that it will perform well even when under a variety of kinetic and pressure disturbances that mimic
common issues in a real-world manufacturing environment. Thus, this work uses a multiscale modeling method
that integrates a macroscopic Computational Fluid Dynamics (CFD) and a mesoscopic kinetic Monte Carlo
(kMC) simulation to generate process data and test the proposed controllers. After testing the performance
of the EP controller on individual runs, various combinations of ex-situ Run-to-Run (R2R) and EP controllers
are examined in order to determine the strongest control strategy in a manufacturing environment. The final
results show that the EP controller is highly accurate when trained on conditions that are representative
of its implementation environment. Compared to traditional EWMA controllers, it has significantly fewer
misprocesses, which enhances the overall control performance and efficiency of the ALE process.
1. Introduction

Electronic devices are an integral part of our modern society. They
are used in everything from personal computers and mobile devices
to smart vehicles and medical equipment. While there are many dif-
ferent types of electronic devices, all of them share a key feature:
they are all made of densely connected integrated circuits, which
are in turn composed of semiconductor transistors. Besides just the
growing demand for the raw quantity of semiconductor chips, these
chips are also becoming more and more compact (Singh et al., 2023;
Voas et al., 2021). Moore’s Law continues to hold true as the semi-
conductor chips used in these electronic devices shrink and become
more sophisticated (Ajayan et al., 2021). Many new semiconductor
device architectures, such as the gate-all-around structure, require the
development of novel, high-precision manufacturing processes (Mukesh
and Zhang, 2022).

A major factor in the industry’s ability to continuously manufacture
more and more sophisticated chips is the usage of advanced equipment
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and processes, including extreme ultraviolet (EUV) lithography (Wang
et al., 2020). Additionally, other critical process steps necessitate 3D,
nanoscale precision, contributing to the ongoing semiconductor supply
shortages (Voas et al., 2021). Other processes capable of achieving this
high level of precision are Atomic Layer Etching (ALE) and Atomic
Layer Deposition (ALD). These two processes are similar to traditional
etching and deposition processes, except they use half-reactions to etch
or deposit a single atomic layer of material at a time (Kanarik et al.,
2015; George, 2010). This is an extremely high precision process, which
is required to manufacture modern semiconductor devices with tight
process specifications (Ajayan et al., 2021; Tseng, 2022; Shauly, 2023).
For the purposes of this work, the ALE of bulk Al2O3 is considered. This
process consists of two steps: first, a precursor of hydrogen fluoride
(HF) is used to prepare the Al2O3 surface by fluorinating it. Then, an
etching reagent of trimethylaluminum (TMA) is used to etch the fluori-
nated surface (George, 2020; Kondati Natarajan and Elliott, 2018). This
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Digital Chemical Engineering 14 (2025) 100206 
cycle removes a single layer of the Al2O3 substrate and can be repeated
o remove multiple layers with a high level of precision.

Besides advanced manufacturing methods, advanced process con-
trol methods are also vital in the improvement of the manufacturing
fficiency of semiconductor chips due to the high sensitivities of these

processes. For older etch processes, such as plasma-enhanced etch,
a popular, high-precision feedback control method that is still used
today is endpoint (EP) detection (Roland et al., 1985; Wan et al.,
2014). By measuring the ratio of gases in the outlet stream or the
voltage of the plasma, the end time of the process can be automatically
determined in real time. The advantages of EP-based process control are
twofold: product quality is maximized, as an accurate EP control system
ensures that the reaction is carried out to completion. Secondly, reagent
wastage is minimized, as the process will terminate soon after the reac-
tion is completed. This is also an in-situ feedback control system, which
means that there are no ex-situ variables that require several iterations
to tune (Moyne, 2015). Another popular control strategy is Run-to-

un (R2R) control, which is a widely used ex-situ control method and
as been actively studied in the context of ALE processes (Yun et al.,

2022b). R2R controllers operate on a batch-to-batch basis, adjusting
rocess parameters between batches by using the measured output
alues from previous runs as feedback, unlike real-time feedback con-
rollers, which make continuous adjustments. Rather, this batch-based
pproach enables consistent process optimization, helping to manage
ariations and disturbances that may arise during production.

While EP control systems are common for standard semiconductor
tch processes, they have yet to be implemented for ALE processes.
ost likely, this can be attributed to the high difficulty in relating a

eal-time measurable parameter to the completion of the process and
he fact ALE processes focus on manufacturing cutting-edge devices
hat make traditional endpoint detection methods difficult to imple-
ent (Sun et al., 1994). In a previous work, the authors demonstrated

hat machine-learning methods can be used in conjunction with process
imulations to train a transformer model that uses real-time wafer

surface pressure data as an input to predict whether a wafer is fully
rocessed as an output for the ALE process described above (Wang

et al., 2024a). This work continues on by using this transformer as a
asis for a real-time endpoint feedback controller.

To minimize the financial and time-based costs of real-world testing,
multiscale computational fluid dynamics simulations are widely used
o model semiconductor manufacturing processes, including plasma-
nhanced chemical vapor deposition (Crose et al., 2018; Zhang et al.,

2020), atomic layer deposition (Pan et al., 2014), and atomic layer
tching (Yun et al., 2022b). In this work, a multiscale simulation

approach is applied, which combines macroscopic CFD simulations of a
discrete feed reactor with mesoscopic kinetic Monte Carlo simulation.
This integrated method provides a detailed and accurate representation
of the actual physical processes.

This work explores the integration of both a real-time endpoint (EP)
eedback control system and an ex-situ run-to-run (R2R) controller to
nsure the optimal operation of an atomic layer etching (ALE) process
n an industrial manufacturing environment with process disturbances.
irst, Section 2 summarizes the ALE process and how the process is

simulated. Next, Section 3 describes the formulation and implementa-
ion of the EP control system. Section 4 does the same for the R2R
ontrol system. Finally, Sections 5 and 6 analyze how effective various
ombinations of EP and R2R controllers are at mitigating the effects of
 kinetic process disturbance across multiple process runs.

2. Process description

2.1. Atomic layer etching

Atomic layer etching (ALE) is a modern semiconductor fabrication
technique that uses two alternating half-reactions to achieve atomic-
evel control over the etching process (Kanarik et al., 2015). Cru-

cially, both of these half-reactions are self-limiting; this means that
2 
the reaction naturally slows down as it approaches completion. For a
well-designed ALE process, overprocessing will only result in wasted
reagents and will not misprocess the wafer.

The specific ALE process that this work examines is the etching of
Al2O3 by the following reactions:

Al2O3 (s) + 6HF (g) → 2AlF3 (s) + 3H2O (g) (Reaction A)

2AlF3 (s) + 4Al(CH3)3 (g) → 6AlF(CH3)2 (g) (Reaction B)

In Reaction A, the gaseous hydrofluoric acid (HF) precursor fluorinates
the Al2O3 surface. Then, in Reaction B, the gaseous trimethylaluminum
(TMA) precursor etches away the fluorinated ALF3 surface created
in Reaction A, releasing a gaseous byproduct of dimethylaluminum
fluoride (DMAF) (Kondati Natarajan and Elliott, 2018).

The two half-reactions can each be split into multiple elementary
reactions (Yun et al., 2022a). Generally speaking, these elementary re-
actions can be sorted into one of two categories: adsorption/desorption
reactions and nonadsorption reactions. The kinetic rate constant of the
former is modeled by the Collision Theory equation shown in Eq. (1)
and that of the latter is modeled by the Transition State Theory equa-
tion shown in Eq. (2).

𝑘𝑎𝑑 𝑠(𝑃𝑎, 𝑇 ) =
𝜎𝑎𝑃𝑎𝐴𝑠𝑖𝑡𝑒

𝑍𝑎
√

2𝜋 𝑚𝑎𝑘𝐵𝑇
(1)

where 𝑎 is the adsorbate (HF, TMA), 𝜎𝑎 is the sticking coefficient
between the adsorbate and the Al2O3 surface, 𝑃𝑎 is the adsorbate’s
partial pressure on the wafer surface, 𝐴𝑠𝑖𝑡𝑒 is the surface area of a single
Al2O3 binding site, 𝑍 is the adsorbate’s coordination number, 𝑚𝑎 is the
adsorbate’s atomic mass, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the
surface temperature of the wafer.

𝑘𝑛𝑜𝑛𝑎𝑑 𝑠(𝑇 ) = 𝜈 exp
(

−
𝐸𝐴
𝑅𝑇

)

, 𝜈 = 𝑘𝐵𝑇
ℎ

(2)

where 𝜈 is the pre-exponential factor, ℎ is Planck’s constant, 𝐸𝐴 is the
ctivation energy, and 𝑅 is the ideal gas constant.

With a kinetic rate constant equation for each elementary reaction,
the overall reaction progression can be simulated with a kinetic Monte
Carlo (kMC) algorithm. The algorithm takes place in a 300 × 300 grid
that represents a larger reaction zone. Each point on the grid represents
a reaction site, and the algorithm evaluates how the 90,000 reaction
ites progress through time. The specifics of the kMC simulation method
an be found in an earlier work by the authors, but a brief summary of
he algorithm’s implementation is given below (Wang et al., 2024b).

1. Randomly select a reaction site
2. Calculate 𝑘𝑡𝑜𝑡 =

∑𝑛
𝑖−1 𝑘𝑖

3. Find 𝑗 such that ∑𝑗−1
𝑖=1 𝑘𝑖 ≤ 𝛾1𝑘𝑡𝑜𝑡 ≤

∑𝑗
𝑖=1 𝑘𝑖

4. Calculate 𝛿 𝑡𝑘 =
− ln 𝛾2
𝑘𝑡𝑜𝑡𝐴

where 𝑛 is the number of possible reactions for the selected reaction
site, 𝑘𝑖 is a reaction rate constant for a possible reaction, 𝑘𝑡𝑜𝑡 is a
site-specific constant, 𝑗 is the selected reaction, 𝛾1, 𝛾2 are randomly
generated numbers that are evenly distributed within the range (0, 1],

is the total number of active sites, and 𝛿 𝑡𝑘 is the time elapsed for
hat reaction. Another way to interpret Steps 2 and 3 is that they are
andomly selecting a reaction for the site selected in Step 1, with the
robability of each possible reaction being weighted by the reaction

rate constant of that reaction. And Step 4 is calculating how long
the reaction takes to occur within the context of the entire grid, with
𝛿 𝑡𝑘 ∼1e−6 s. Thus, as the kMC algorithm is repeated, it will simulate
he surface reaction progression at a very fine resolution.

2.2. Discrete feed reactor

The ALE process takes place inside a Discrete Feed Reactor (DFR),
pictured in Fig. 1. This reactor operates at a constant temperature and
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Fig. 1. 3D representation of the discrete feed reactor and its components.
pressure, and it allows reagents to continually flow into the reactor
and byproducts to be flushed from the reactor. These characteristics all
help ensure precise control over the process, which enables the process
control techniques discussed later in this work.

The precursor for the reaction, along with a carrier gas of N2, enters
the reactor from the inlet at the top. These gases are dispersed by a
showerhead plate, which improves the precursor distribution on the
wafer at the bottom of the reactor. Finally, any unused precursor and
byproducts evacuate the chamber through the outlet at the sides (Wang
et al., 2024b).

The reactor is simulated through a Computational Fluid Dynamics
(CFD) software called ANSYS Fluent, which calculates the unsteady-
state pressure evolutions within the reactor. All the boundaries of the
reactor are simulated as inert walls, except for three areas that are
shown in Fig. 1: the inlet has a set mass flowrate as its boundary
condition, the outlet has a set negative pressure differential as its
boundary condition, and the wafer surface is modeled as a reaction
zone where the mass source fluxes are calculated by the mesoscopic
kMC simulation described in Section 2.1. Of note, the wafer surface is
separated into 5 sections as shown in Fig. 2; this allows the collected
process data to contain information regarding the reaction progression
across the wafer itself, which is a crucial process metric.

Given these boundary conditions, the fluid volume of the reactor is
then divided into a mesh so that the characteristic mass, momentum,
and energy transport equations shown in Eqs. (3) to (5) can be solved
numerically.
𝜕 𝜌
𝜕 𝑡 + ∇ ⋅

(

𝜌⃖⃗𝑣
)

= 𝑆𝑚 (3)
𝜕
𝜕 𝑡

(

𝜌⃖⃗𝑣
)

+ ∇ ⋅
(

𝜌⃖⃗𝑣⃖⃗𝑣
)

= −∇𝑃 + ∇ ⋅
(

𝜏
)

+ 𝜌⃖⃗𝑔 + ⃖⃖⃗𝐹 (4)
𝜕
𝜕 𝑡 (𝜌𝐸) + ∇ (

⃖⃗𝑣 (𝜌𝐸 + 𝑃 )
)

= −∇
(

𝛴 ℎ𝑗 ⃖⃖⃗𝐽 𝑗
)

+ 𝑆ℎ (5)

where 𝜌 is the gas-phase species density, ⃖⃗𝑣 is the velocity of said species,
𝑆𝑚 is the source generation and consumption flux of that species, 𝑃 is
the operating pressure of the reactor, 𝜏 is the normal two-rank stress
tensor, ⃖⃗𝑔 is the gravitational acceleration constant, ⃖⃖⃗𝐹 is the force acting
on the system, 𝐸 is the accumulated rate of system energy, 𝑆ℎ is the
energy source generation or consumption, ℎ𝑗 is the sensible enthalpy
flux of gas species 𝑗, and ⃖⃖⃗𝐽 is the mass diffusion flux of gas species 𝑗.
𝑗

3 
Fig. 2. Top-down view of the various reaction zones considered in the overall
simulation.

The simulation is run with an integration timestep of 0.001 s, which
is how often Eqs. (3) to (5) are solved. Additionally, it was found that
the operating conditions listed in Table 1 result in both half-reactions
being fully processed within 2 s (Yun et al., 2022a).

2.3. Multiscale model

Due to the self-limiting nature of the ALE half-reactions, the reaction
rate is not constant; it gradually slows down as the reaction approaches
completion. Thus, the mesoscopic kMC and macroscopic CFD simula-
tions cannot be run independently as the former affects the latter, and
vice versa. To link the two simulations and increase the accuracy of the
overall simulation, a multiscale framework is used.
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Fig. 3. Graphical representation of the information flow in the multiscale model.
Table 1
Operating conditions used for all the ALE simulations in this work.

Variable Value

Operating temperature 573 K
Operating pressure 300 Pa
Inlet mass flowrate 1e−5 kg/s
Outlet pressure −200 Pa
Reaction A HF inlet mole fraction 0.1
Reaction B TMA inlet mole fraction 0.5

The multiscale coupling method that conjoins the CFD and kMC
simulations is shown in Fig. 3. The simulation starts by loading a
steady-state simulation of the CFD model where the input is pure N2; as
there is no reagent, the kMC simulation is inactive. Then, the unsteady-
state CFD model with the inlet parameters listed in Table 1 is ran
for a single timestep of 0.001 s. Once the CFD simulation converges,
the partial pressures and temperature at each wafer section are sent
to their own kMC simulation, which makes for 5 independent kMC
simulations. Each simulation then calculates the reaction rate constants
and extents of reaction for the next 0.001 s that the CFD simulation is
about to simulate. These extents of reaction are converted into mass
source generation and consumption fluxes, 𝑆𝑚, and used in the CFD
simulation of the following timestep. This constant flow of information
persists throughout the entire multiscale simulation to ensure both an
accurate macroscopic CFD simulation and an accurate mesoscopic kMC
simulation.

Each simulation represents a full process of a half-reaction, produc-
ing two important time-series datasets: the absolute pressure on the
wafer surface, and the reaction completion percentage, or coverage, on
the wafer surface. Both datasets consist of 5 data points at each timestep
due to the 5 reaction zones, and an example of the former is shown in
Fig. 4(b). However, the latter is processed to yield the coverage mean
and the coverage standard deviation, as seen in Fig. 4(a), because these
4 
two metrics directly determine if a wafer was successfully processed or
not.

3. Endpoint controller methods

3.1. Endpoint controller description

Due to the sensitive nature of bleeding edge manufacturing tech-
niques, process control methods are inherent assumptions. For example,
proportional–integral (PI) controllers are commonly used to control
the temperature and pressure of etching and deposition reactors (Ou
et al., 2024). While PI controllers work well for on-line measurable
process variables to drive them to the requested setpoints, they are
not suitable when the primary control objective is to control a key
process parameter that cannot be measured in real-time. For example,
the reaction coverage is one such parameter that can only be measured
once the processing step is complete. Rather, a common process control
method for well-characterized processes such as plasma-enhanced etch
is endpoint (EP) control (Roland et al., 1985). An EP controller uses
some sort of signal, such as a voltage change, as a flag to end the desired
process. However, for the ALE process examined in this work, there
is no such indicator. Rather, this work uses a data-driven transformer
model to act as the indicator common in other EP controllers.

The real-time endpoint detector developed in this work is based on
a binary classifier model that uses real-time pressure data to determine
whether the given ALE half-reaction has reached completion. If so, the
controller ends the reaction and initiates chamber purging; otherwise,
the process continues. The endpoint controller is activated 0.5 s into the
process, as it is impossible for the reaction to finish any earlier than this.
Once the termination signal is received, the endpoint controller is also
deactivated as the reaction cannot be restarted. An optimal detector
will ensure full wafer processing without wasting any precursors or
time, enhancing cost-effectiveness and efficiency. However, creating
such a detector is challenging, as its performance depends on accurately
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Fig. 4. Example of the coverage progression data (a) and the wafer surface pressure progression data (b).
correlating inputs to outputs. Due to inherent limitations of the process
data, it may not achieve perfect control under all conditions, leading
to trade-offs discussed in later sections.

3.2. Transformer model description

To train the transformer model for the classification task described
above, a total of 240 process runs with unique run conditions were
simulated. Each dataset can be defined by a naming scheme with three
components: Reaction, Variable, and Number. There are two possible
choices for Reaction: Reaction A or Reaction B. Variable describes the
general category of process condition the run was simulated under. For
example, ‘‘TST’’ affects the pre-exponential factor, or 𝜈, of Eq. (2); ‘‘CT’’
refers to the sticking coefficient, or 𝜎, of Eq. (1); ‘‘INV’’ has 𝜎 and 𝜈 in
an inverse relationship; ‘‘PRESS’’ refers to the operating pressure inside
the reactor. Finally, Number describes the exact process conditions
according to Table 2. For example, ‘‘A_CT_23’’ refers to a process run
for Reaction A with run parameters of 𝜎 = 1.05, 𝜈 = 1.0, 𝑃 = 300.

Finally, each process run is broken down into smaller input se-
quences, which is simply the pressure dataset fed to the transformer
model. These input sequences represent the variable-length nature of
the actual data that the EP controller is to be used on. Because each
5 
Table 2
List of the ranges for each variable. Each one consists of 40 points, which evenly span
the range of each process condition denoted in the columns. 𝜎 represents the sticking
coefficient found in Eq. (1), 𝜈 represents the pre-exponential factor in Eq. (2), and 𝑃
is the operating pressure.

Variable 𝜎 range 𝜈 range 𝑃 range

TST [1.0,1.0] [0.5,1.475] [300,300]
MIX [0.5,1.475] [0.5,1.475] [300,300]
INV [1.5,0.525] [0.5,1.475] [300,300]
PRESS [1.0,1.0] [1.0,1.0] [200,395]

process run is simulated for 3.0 s, multiple input sequences can be ex-
tracted per process run for the purpose of model training. Specifically,
the entire 3.0 s run can be separated into 26 input sequences of varying
length that evenly span from 0.5 s to 3.0 s. Note that the first input
sequence considered is for 𝑡 = 0.5 s because it is considered impossible
for either reaction to reach full coverage before then. Each of these
variable-length input sequences have an associated output of whether
the run is complete or not. In this manner, two transformer models are
trained, one for each reaction, each on 1920 input sequences.

The ultimate goal of the EP controller is to take in input sequences
of variable-length, time-series data and output a binary classification



H. Wang et al. Digital Chemical Engineering 14 (2025) 100206 
Fig. 5. Example of the raw wafer surface pressure input data. The large pressure spikes and sharp changes make it nonideal for training a transformer model.
of whether the process is complete. There are a variety of data-driven
machine learning model architectures that can handle this task, such
as recurrent neural networks (RNNs), long short term memory (LSTM)
networks, and transformers. In a previous work, it was found that trans-
formers perform the best when handling time-series input data (Wang
et al., 2024a). While both RNNs and LSTM networks can handle time-
series data through proper padding and masking operations, they still
have their own challenges. RNNs cannot contextualize data across a
long time period, ‘‘forgeting’’ about earlier data. On the other hand,
LSTM networks can only process data in a sequential manner, making
it impossible to form any long-term correlations. In comparison, the
transformer’s encoder/decoder structure allows it to retain information
across long time periods and extract complex relationships. Trans-
former networks are also trained faster, as they have a parallel structure
that naturally lends itself towards graphical processing units (GPUs).
As RNNs and LSTM networks have sequential structures, they cannot
take advantage of a GPU’s powerful processing capabilities. Thus, the
EP controller’s process model is based on a data-driven transformer.

3.3. Transformer model training

Before discussing the transformer architecture, it is important to
understand the data used to train it. The input data sequence is the
variable-length, time-series pressure profile described in Section 2.3,
and the output data is whether that pressure profile would result in
a completed reaction. While the output data is stable, the raw input
data has large, sudden spikes that are a natural result of the numerical
solving process, as seen in Fig. 5. These spikes occur because the
numerical solution method is trying to minimize the overall error of
the entire reactor’s pressure profile, not just that of the wafer surface
pressure. While a transformer model can still be trained on such data,
it is obviously nonideal as the noise will reduce the model’s predictive
ability.

To clean the wafer pressure input data, two steps are taken. First,
all outliers are dropped. For this problem, the pressure is generally
confined to 200 ± 1 Pa; thus, all pressure spikes/drops of more than 1 Pa
were labeled as outliers and dropped from the data. As an example,
after this step is taken, the raw input data shown in Fig. 5 becomes
the data shown in Fig. 6(a). Second, the data is further smoothed by
applying a rolling average. A window of 3 data points was used to avoid
removing critical information, and the results can be seen in Fig. 6(b).
Once the input data sequence is successfully cleaned, it can be used to
train and test the transformer model.

The EP controller examined in this work uses a transformer model,
and its encoder–decoder architecture is used to correlate the wafer
6 
Table 3
Hyperparameters for the transformer model.

Model hyperparameter Value

Input dimension 5
Embedding dimension 8
Number of heads 2
FNN neurons 64
Dropout ratio 0.1
Encoder layer number 2
Final FNN layer number 2
Final FNN neurons 64
Output dimension 1

surface pressure to process completion. The overall structure of the
transformer is shown in Fig. 7. Specifically, each block has a multi-
head self-attention mechanism (Vaswani et al., 2017) that relates each
element of the input sequence data to each other element; this allows
the model to capture process behavior that varies over time.

The real-time pressure data is fed into the model through an input
layer. Following that, it is embedded by a dense layer with dimension
8 that performs a positional encoding operation that provides infor-
mation regarding how the time-series elements are ordered. Inside the
encoder block, there is an internal FNN with a hidden layer of 64
neurons. Two encoder blocks with multi-head attentions are stacked
together in a serial manner. The outputs of the last encoder block are
combined through a global average pooling operation that makes the
output vector have the same dimension regardless of the length of the
input sequence. This output is then fed into the final FNN, which has
2 layers of 64 neurons each, and it outputs the final decision with a
sigmoid activation function. The hyperparameters of the soft sensor
transformer model are summarized in Table 3.

4. Run-to-Run controller methods

4.1. Run-to-Run controller description

The Run-to-Run (R2R) controller is an ex-situ controller, which
means that it can only apply control actions after a process run is
completed. Though it lacks real-time precision, it has access to higher-
quality process data. For the ALE process, while the endpoint controller
uses surface pressure as input, the R2R controller can use the final
coverage as its input; this is the most important process metric, which
allows the R2R controller to make finer adjustments.

Because the R2R controller only takes place after the process is
completed, the final coverage that it uses as its input is actually the
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Fig. 6. Example of the wafer surface pressure input data after points more than 0.5 Pa have been removed (a) and a rolling average of 3 points is implemented (b).
product of Reaction A’s coverage and Reaction B’s coverage; this final
coverage represents the percentage of the wafer that is fully processed
(underwent both Reaction A and Reaction B). While there are many
parameters that the R2R controller can adjust, one of the goals of
this work is to evaluate its efficacy when used in conjunction with
the EP controller described in Section 3. Thus, all the R2R controllers
examined in this work only adjust the process time in response to the
final coverage.

4.2. Run-to-Run process model

The R2R controller’s control actions are generally based on a process
model that describes the relationship between the process outcome and
the control variable. Most such models assume a linear relationship
between the outcome and the control variable, as this assumption is
generally valid for small control actions. Such a linear model has the
following general form:

𝑦 = 𝑎 ⋅ 𝑥 + 𝑏

where 𝑦 represents the target output, 𝑥 is the control variable, 𝑎 is the
slope, and 𝑏 is the intercept. Note that 𝑎 and 𝑏 are parameters that relate
the behavior of the control variable to the output variable.

In this work, both the mean and the standard deviation (std.)
of the final coverage must be controlled, as uniformity is a critical
7 
process metric in semiconductor manufacturing. Thus, there are two
R2R controllers, one for each process metric. However, the calculation
of the process time, which is the input, requires some nuance. Because
the final coverage is a process metric that is indicative of whether both
half-reactions were successfully completed, it is impossible for the R2R
controller to independently adjust the two half-reactions’ process times.
Thus, the R2R controllers’ process models use a process time offset
term, 𝛿, as a shared input that determines the process times for both
half-reactions.

Another challenge for implementing R2R control of ALE processes is
that both the mean and std. profiles exhibit highly nonlinear behavior,
which poses a challenge for traditional linear control models. A poor
process model can cause the model to deviate significantly from the
actual physical process and result in poor control performance (Yun
et al., 2022c). A solution to this issue involves applying nonlinear trans-
formations to the input and output parameters so that the transformed
input and output have a more linear relationship. Thus, the two models
will both have the form shown below.

𝜓𝑐 = 𝛼𝑐 ⋅ 𝜒𝑐 + 𝛽𝑐 , 𝑐 = 𝑚, 𝑠 (6)

where 𝑐 is a subscript that can be either 𝑚 for the final coverage mean
or 𝑠 for the final coverage std., 𝜓𝑐 is the transformed output metric 𝑐 of
the process, 𝛼 is the slope for process metric 𝑐, 𝜒 is the transformed
𝑐 𝑐
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Fig. 7. Structure of the soft sensor transformer network.
input for the process metric 𝑐, and 𝛽𝑐 is the intercept for process metric
𝑐.

This study uses a median effect function (Yun et al., 2022c) to
transform the final coverage mean and a simple exponential function
to transform the final coverage std. It was empirically determined
that these transformed ouputs are linearly related to ln 𝛿𝑚 and 𝛿𝑠,
respectively. The equations of the transformed terms are shown below:

𝜓𝑚 = ln 𝑐 𝑜𝑣𝑚
1 − 𝑐 𝑜𝑣𝑚

, 𝜒𝑚 = ln(𝛿𝑚 + 0.75) (7a)

𝜓𝑠 = ln 𝑐 𝑜𝑣𝑠, 𝜒𝑠 = 𝛿𝑠 + 0.75 (7b)

where 𝑐 𝑜𝑣𝑚 is the final coverage mean, 𝑐 𝑜𝑣𝑠 is the final coverage std.,
𝛿𝑚 is the process time offset for the final coverage mean equation, and
𝛿𝑠 is the process time offset for the final coverage std. equation. Both
the nonlinear and linear fits for the final coverage mean are shown in
Figs. 8(a) and 8(b), and the fits for the final coverage std. are shown
in Figs. 8(c) and 8(d). The 𝑅2 score of the fitting for the final coverage
mean and final coverage std. are 0.997 and 0.96, respectively. These
scores show that the fitted curve is highly accurate and can be used to
build a process model.

The kink in Fig. 8(c) is a result of the difference in magnitude of the
kinetic rate constants. For the HF reaction, there is one surface reaction
that is 1000 times larger than the rest. Thus, when the substrate reaches
that step, large parts of the wafer will effectively pause at the slow
reaction while the remainder finishes reacting. This causes the standard
deviation to momentarily increase before settling back down.
8 
4.3. Estimated weight moving average method

Even with a highly accurate process model, inherent noise within
the system or process disturbances that shift the process model may
affect the R2R controller’s ability to maintain the system at the desired
setpoint. One widely used methodology to mitigate these challenges is
the Exponentially Weighted Moving Average (EWMA) method, which
updates the 𝛼𝑐 , 𝛽𝑐 tuning parameters in Eq. (6) by taking the exponen-
tially weighted moving average of its past values. This effectively gives
the controller information regarding its past error, which allows it to
adjust and overcome the above challenges.

In real-world applications, the slope 𝛼𝑐 is typically assumed to
remain constant, even under various disturbances, while the intercept
𝛽𝑐 is set to be adjustable (Ingolfsson and Sachs, 1993). Thus, the
updating mechanism for the intercept 𝛽 for process metric 𝑐 is defined
by the following equation (Del Castillo and Hurwitz, 1997):

𝛽𝑐 ,𝑖+1 = (1 − 𝜆)𝛽𝑐 ,𝑖 + 𝜆(𝜓𝑐 ,𝑖 − 𝛼𝑐𝜒𝑐 ,𝑖) (8)

where 𝛽𝑐 ,𝑖+1 is the updated intercept, 𝛽𝑐 ,𝑖 is the intercept used in the
previous run, 𝜓𝑐 ,𝑖 is the transformed output of the previous run, 𝛼𝑐 is
the slope, and 𝜒𝑐 ,𝑖 is the transformed input of the previous run. As all
of the terms for the previous run are already known, 𝛽𝑐 ,𝑖+𝑎 can be easily
solved for each controller as follows.

𝛽𝑚,𝑖+1 = (1 − 𝜆)𝛽𝑚,𝑖 + 𝜆
(

ln
𝑐 𝑜𝑣𝑚,𝑖

1 − 𝑐 𝑜𝑣𝑚,𝑖
− 𝛼𝑚 ln (𝛿𝑚,𝑖 + 0.75)

)

𝛽𝑠,𝑖+1 = (1 − 𝜆)𝛽𝑠,𝑖 + 𝜆
(

ln 𝑐 𝑜𝑣𝑠,𝑖 − 𝛼𝑠(𝛿𝑠,𝑖 + 0.75))

Then, 𝛽𝑐 ,𝑖+1 can be plugged into Eqs. (6) and (7) to find 𝜒𝑐 ,𝑖 and
subsequently 𝛿 .
𝑐 ,𝑖+1
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Fig. 8. Nonlinear fittings of the two coverage criteria vs. process time. The orange line is the predicted coverage, and the blue line is the actual coverage. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
The exact solution for the final coverage mean (𝑐 = 𝑚) is shown
below.

ln
𝑐 𝑜𝑣𝑚,𝑑

1 − 𝑐 𝑜𝑣𝑚,𝑑
= 𝛼𝑚𝛾 + 𝛽𝑚,𝑖+1, 𝛾 = ln (𝛿𝑚,𝑖+1 + 0.75) (9a)

𝛾 =
(

ln
𝑐 𝑜𝑣𝑚,𝑑

1 − 𝑐 𝑜𝑣𝑚,𝑑
− 𝛽𝑚,𝑖+1

)

∕𝛼𝑚

𝛿𝑚,𝑖+1 = 𝑒𝛾 − 0.75 (9b)

where Eq. (9a) is the full form of Eq. (6) with the nonlinear 𝑚 terms
from Eq. (7) substituted in, Eq. (9b) is the final equation that the R2R
controller uses to find the process time offset, 𝑐 𝑜𝑣𝑚,𝑑 is the desired final
coverage mean, 𝛾 is a placeholder variable as defined in Eq. (9a), and
𝛿𝑚,𝑖+1 is the process time offset for the next run as determined by the
final coverage mean R2R controller. Similarly, the exact solution for
the final coverage std. (𝑐 = 𝑠) is as follows:

ln 𝑐 𝑜𝑣𝑠,𝑑 = 𝛼𝑠(𝛿𝑠,𝑖+1 + 0.75) + 𝛽𝑠,𝑖+1 (10a)

𝛿𝑠,𝑖+1 =
ln 𝑐 𝑜𝑣𝑠,𝑑 − 𝛽𝑠,𝑖+1

𝛼𝑠
− 0.75 (10b)

where Eq. (10a) is the full form of Eq. (6) with the nonlinear 𝑠 terms
from Eq. (7) substituted in, Eq. (10b) is the final equation that the R2R
controller uses to find the process time offset, 𝑐 𝑜𝑣𝑠,𝑑 is the desired final
coverage std., and 𝛿𝑠,𝑖+1 is the process time offset for the next run as
determined by the final coverage mean R2R controller.
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Once both controllers have found their respective 𝛿𝑐 , the final 𝛿𝑓 is
set as the largest of the two to minimize underprocessing.

𝛿𝑓 ,𝑖+1 = max(𝛿𝑚,𝑖+1, 𝛿𝑠,𝑖+1)
where 𝛿𝑓 ,𝑖+1 is the final process time offset that is used to determine the
process times of the next run, 𝛿𝑚,𝑖+1 is the process time offset found by
the final coverage mean controller, and 𝛿𝑠,𝑖+1 is the process time offset
found by the final coverage std. controller. Then, Eq. (11) is used to
find the process times for the next run.

𝑡𝐴,𝑖+1 = 𝑡𝐴,0 + 𝛿𝑓 ,𝑖+1 (11a)

𝑡𝐵 ,𝑖+1 = 𝑡𝐵 ,0 + 𝛿𝑓 ,𝑖+1 (11b)

where 𝑡𝐴,𝑖+1 is the process time of the next HF reaction, 𝑡𝐴,0 is the initial
process time for the HF reaction, 𝑡𝐵 ,𝑖+1 is the process time of the next
TMA reaction, and 𝑡𝐵 ,0 is the initial process time for the TMA reaction.

5. Endpoint controller results and analysis

5.1. Endpoint controller testing dataset

The EP controller’s main objective is to accurately stop the process.
To evaluate its ability to do so, the EP control system is tested on
complete runs with different parameters from the training simulations;
these runs are called testing runs to differentiate them from the train-
ing/validation data used to develop the transformer model. The main
difference between the testing data and the training/validation data is
that the testing data is examined in real time rather than separated into
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Fig. 9. The blue line represents the final coverage mean throughout the run, the green
line is the final coverage std., the vertical dotted red line is 𝑡𝑒𝑝, and the vertical dotted
purple line is 𝑡𝑡𝑟. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

multiple input sequences. Specifically, every 0.1 s, the EP controller
receives the real-time wafer surface pressure data and makes a decision
about whether to terminate or continue the process. The point at which
the EP controller first decides to terminate the process is referred to as
𝑡𝑒𝑝, and it represents the end time as determined by the EP controller.
For the sake of analysis, each process run is simulated to 3.0 s regardless
of the 𝑡𝑒𝑝. This is so that the optimal end time, 𝑡𝑡𝑟, can be determined
and compared to 𝑡𝑒𝑝.

An important note is that undershooting the predicted end time
(𝑡𝑒𝑝 < 𝑡𝑡𝑟) is much worse than overshooting (𝑡𝑒𝑝 > 𝑡𝑡𝑟). When the model
overshoots, it effectively makes the process run longer than what is
necessary. While this wastes some reagent and time, the wafer is still
successfully processed. Conversely, when the model undershoots, the
wafer is underprocessed and will most likely have to be thrown away.
Thus, undershooting is much worse than overshooting. For this reason,
the error metric is weighted so that undershooting is more heavily
penalized.

𝑒 =
{

|𝑡𝑒𝑝 − 𝑡𝑡𝑟| if 𝑡𝑒𝑝 > 𝑡𝑡𝑟
2|𝑡𝑒𝑝 − 𝑡𝑡𝑟| otherwise (12)

where 𝑒 is the error metric used to evaluate the EP system’s perfor-
mance, 𝑡𝑒𝑝 is the end time predicted by said model, and 𝑡𝑡𝑟 is the optimal
end time. For example, in Fig. 9, the predicted end time is 1.4 s while
the true end time is 1.7 s. Thus, the error associated with this run is
0.6.

Eq. (12) will be used to evaluate the EP controller’s efficacy at
mitigating various process disturbances in two ways: first is its robust-
ness, or how changing the training data themselves affects the model
performance. Then, the controller is evaluated on its consistency, which
is how noise in the training data affects the EP control system.

5.2. Robustness

To understand how the training data affects the model perfor-
mance when under various disturbances, multiple EP controller are
first trained on the datasets described in Section 3.2 that have datasets
with either pure kinetic, pure pressure, or both kinetic and pressure
disturbances. Note that the kinetic disturbance is directly applied to
the reaction rate 𝑘 rather than to any individual constant, which was
the case for the training data. Then, each EP controller is run on testing
datasets with the same set of disturbances, and the error as described
in Eq. (12) is calculated for each run. The results for Reaction A are
shown in Table 4 and the results for Reaction B are shown in Table 5.
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Table 4
Error comparison for Reaction A with a kinetic/pressure spread.

Training data Validation data

Kinetic Pressure Both

Kinetic 0.467 1.060 0.915
Pressure 0.593 0.313 0.285
Both 0.613 0.413 0.440

Table 5
Error comparison for Reaction B with a kinetic/pressure spread.

Training data Validation data

Kinetic Pressure Both

Kinetic 0.153 1.707 1.790
Pressure 0.733 0.164 0.250
Both 0.373 0.267 0.310

Generally speaking, the EP controller improves when it is trained
on the types of disturbances that it is tested on. For example, when the
system is trained on a kinetic disturbance from Reaction A, it performs
better on the kinetic test (𝑒 = 0.467) compared to the pressure test
(𝑒 = 1.060), and vice versa. Of note, while it is vital to train the model
on the disturbances it is expected to face, the pressure disturbance has
a much larger impact than the kinetic disturbance. For both Reaction A
and Reaction B, when examining the column where the validation data
has both kinetic and pressure disturbances, the model trained on only
pressure disturbance data outperforms all others. This indicates that
the pressure disturbance plays a much larger role in the model’s ability
to understand the process than the kinetic disturbance, to the point
where a model trained on only the pressure disturbance outperforms
a model trained on both, even when validated on a dataset with both
disturbances. This shows that the optimal strategy for training an EP
controller is to simply use training data similar to what the model will
be used on. In industry, this is trivial as each process has many years
of data (Zhang et al., 2021).

It is worth mentioning that the impact of the pressure disturbances
may not come from it affecting the actual kinetics of the reactions;
usually, kinetic disturbances have a greater effect on the actual reaction
rates and 𝑡𝑡𝑟. Rather, this phenomenon is most likely due to how the
model uses the surface pressure of the wafer as its input. Additionally,
the range of the surface pressure, ±5 Pa, is relatively narrow for each
run compared to the scale of pressure disturbance, ±100 Pa. This means
that a good model must necessarily adapt to the wide range of pressure
disturbances. This explains the poor performance of the models trained
on kinetic data that are tested on runs with pressure disturbances; the
pressure disturbances shifts the wafer surface pressure far beyond the
pressure range that the model is used to, which makes all the input
sequence’s values seem abnormal.

5.3. Consistency

It is also important to understand how well the EP controller can
handle noise, which is referred to as its consistency. Each reaction was
run ten times, each with a randomly selected 𝜈 and 𝜎, which are the
same variables used in Table 2, and no other process disturbances. The
value of these two variables were selected from a Gaussian distribution
centered around 1.0 with a standard deviation of 0.1 because this
distribution follows the industrial standard of an average fail rate of
2%. The results of the twenty total runs are shown in Tables 6 and 7.

Reaction A has a higher average error (𝑒 = 0.46) compared to
Reaction B (𝑒 = 0.08), which suggests that the model for Reaction A is
not as accurate as the model for Reaction B. This result is corroborated
by Tables 4 and 5, as the average error of a model when tested on the
same dataset it was trained on is 0.407 for Reaction A and 0.209 for
Reaction B. Both average errors are comparable to the ones in Tables 6
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Table 6
Evaluation of Reaction A with no disturbances and moderate noise. Average error is
.47.
No. 𝜈 𝜎 𝑡𝑡𝑟 𝑡𝑒𝑝 Error

Run 1 0.939 1.020 1.3 1.3 0.00
Run 2 1.120 0.969 1.0 1.5 0.50
Run 3 0.922 1.030 1.0 1.5 0.50
Run 4 0.930 0.999 1.1 2.1 1.00
Run 5 0.947 0.923 1.1 1.7 0.60
Run 6 1.010 0.910 1.0 1.5 0.50
Run 7 1.160 0.938 1.8 2.0 0.20
Run 8 1.150 0.819 1.1 1.5 0.40
Run 9 0.934 1.140 1.2 2.1 0.90
Run 10 0.888 0.882 1.2 1.3 0.10

Table 7
Evaluation of Reaction B with no disturbances and moderate noise. Average error is
0.08.

No. 𝜈 𝜎 𝑡𝑡𝑟 𝑡𝑒𝑝 Error

Run 1 1.080 0.916 1.2 1.2 0.00
Run 2 0.979 0.856 1.4 1.3 0.20
Run 3 1.090 1.050 1.2 1.3 0.10
Run 4 1.070 1.070 1.2 1.3 0.10
Run 5 0.877 1.000 1.4 1.6 0.20
Run 6 0.954 1.230 1.3 1.3 0.00
Run 7 1.060 1.080 1.2 1.3 0.10
Run 8 0.964 0.913 1.3 1.3 0.00
Run 9 0.946 0.995 1.3 1.4 0.10
Run 10 1.170 1.090 1.2 1.2 0.00

and 7; thus, the EP controller for Reaction A performs worse than that
of Reaction B. But regardless of the model’s baseline prediction ability,
the results for Reaction B show that the EP method is resistant to noise
when the model is trained on datasets where those parameters are
varied.

6. Run-to-Run controller results and analysis

6.1. Run-to-Run environment

The EP controller shows great potential for mitigating common
isturbances in an industrial manufacturing environment. However, the

controller may not be possible to implement for all processes, as the
controller for Reaction A was not as consistent as that of Reaction B
even though they were trained on similar datasets. Thus, there is still
motivation to design more complex control schemes for processes that
re hard for data-driven machine learning models to learn.

A common control system for ALE processes is ex-situ run-to-run
R2R) control, which adjusts process parameters after directly measur-
ng the process outcome after the process is complete. Thus, this section
xamines how EP and R2R control systems can work together under
arious frameworks. Specifically, all the control systems will be tested
nder the same conditions; the process will experience a sudden shift
here all the kinetic activity is lowered by 40%. This is a relatively

arge in comparison to the shifts examined for the pure EP controller,
nd any failure to account for this shift will result in scrapped material
nd wasted time. The ideal combination of control systems will quickly
djust the process time so that the final coverage criteria are met with
inimal over-processing.

The control systems will be evaluated on how many runs they
ake to return to the target final coverage criteria and how much

overprocessing occurs. Because there are two final coverage criteria,
 total of three error calculations are made:

𝜖𝑚 =
𝐿
∑

𝑖=1
𝑐𝑚,𝑖 ⋅

|𝑐 𝑜𝑣𝑚,𝑖 − 0.96|
𝐿

, where 𝑐𝑚,𝑖 =
{

1 if 𝑐 𝑜𝑣𝑚,𝑖 ≥ 0.96
2 if 𝑐 𝑜𝑣𝑚,𝑖 < 0.96

(13a)

𝜖𝑠 =
𝐿
∑

𝑐𝑠,𝑖 ⋅
|𝑐 𝑜𝑣𝑠,𝑖 − 0.02|

, where 𝑐𝑠,𝑖 =
{

1 if 𝑐 𝑜𝑣𝑠,𝑖 ≤ 0.02 (13b)

𝑖=1 𝐿 2 if 𝑐 𝑜𝑣𝑠,𝑖 > 0.02 0
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𝜖𝑡 =
𝐿
∑

𝑖=1
0.01 ⋅

𝑡𝐴,𝑖 + 𝑡𝐵 ,𝑖
𝐿

(13c)

where 𝜖𝑚 is the error term associated with the final coverage mean
criterion, 𝑐𝑚,𝑖 is a scaling factor based on if the final coverage mean
criterion was met for run 𝑖, 𝑐 𝑜𝑣𝑚,𝑖 is the final coverage mean of run 𝑖, 𝐿
is the number of process runs, 𝜖𝑠 is the error term associated with the
final coverage std. criterion, 𝑐𝑠,𝑖 is a scaling factor based on if the final
coverage std. criterion was met for run 𝑖, 𝑐 𝑜𝑣𝑠,𝑖 is the final coverage std.
of run 𝑖, 𝜖𝑡 is the error term associated with overprocessing, 𝑡𝐴,𝑖 is the
process time for the HF reaction for run 𝑖, and 𝑡𝐵 ,𝑖 is the process time
for the TMA reaction for run 𝑖. The final, comprehensive error term is
found by simply summing up the three error terms of Eq. (13) as shown
below:

𝜖𝑓 = 𝜖𝑚 + 𝜖𝑠 + 𝜖𝑡 (14)

where 𝜖𝑓 is a comprehensive error term used to evaluate the various
control systems presented in this work.

Of these control systems, first is a standalone EWMA-R2R system
hat is meant to establish a baseline expectation for the following
ontrol systems. Second, the EP system will be evaluated on its own
o better compare real-time and ex-situ controllers. Finally, combined
ystems will be examined: an EP+SCC system, and an EP+EWMA

system. ‘‘SCC’’ stands for Standard Case Corrector, which is a newly
developed R2R ex-situ controller. All of these systems will be compared
through two metrics. First and foremost, they will be evaluated on how
many wafers are scrapped, or thrown away; this occurs when the final
coverage criteria is insufficient. If two control systems have the same
number of scrapped wafers, then they will be evaluated on how much
ime they waste on overprocessing. With these metrics, the best control
ystem among the aforementioned four systems can be determined.

6.2. Pure EWMA controller

The EWMA-R2R controller processes coverage data by first convert-
ing the measured mean and standard deviation to nonlinear forms,
then applying the EWMA algorithm to determine the process time.
While Eqs. (9) and (10) describe how the EWMA-R2R controller up-
dates the run parameters after each run, they do not describe the initial
starting point of the process system. In this work, the initial process
times, 𝑡𝐴,0 = 0.75 s and 𝑡𝐵 ,0 = 1.05 s, are set to achieve a final coverage

hose mean is over 96% and std. is less than 2% when there are no
isturbances. Although the ALE process has two half-reactions, only the
inal etch per cycle (EPC) is measurable, preventing the R2R controller
rom adjusting each half-reaction individually. Instead, both 𝑡𝐴 and 𝑡𝐵
re updated simultaneously using a process time offset 𝛿, adjusted by
he controller as shown in Eq. (11) and restated here.

𝑡𝐴 = 𝑡𝐴,0 + 𝛿

𝐵 = 𝑡𝐵 ,0 + 𝛿
where 𝑡𝐴 and 𝑡𝐵 are the process times for the HF and TMA reactions,
espectively, 𝑡𝐴,0 and 𝑡𝐵 ,0 are their initial process times, and 𝛿 is the
ime offset determined by the R2R controller.

The performance of the EWMA-R2R controller depends on two
actors: the accuracy of the process model used in Eq. (6), and the value
f 𝜆 in Eq. (8), which is a tunable factor that determines how much

weight is given to recent measurements. A larger 𝜆 value makes the
controller more responsive to recent batches, enabling quicker, more
aggressive corrections, while a smaller 𝜆 emphasizes historical data,
leading to a more conservative, stable response. Although aggressive
settings can correct shifts faster, conservative settings reduce the risk of
oscillations or divergence. This study uses 𝜆 values of 0.7 for aggressive
and 0.3 for conservative control.

Performance results for two pure EWMA-R2R controllers with 𝜆 =
.3, 0.7 are shown in Figs. 10(a) and 10(b). These plots show that
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Fig. 10. Control results of the EWMA-R2R controller. The blue line is the mean coverage, the orange line is the std. coverage, the high red dashed line is the mean coverage
target, and the low red dashed line is the std. coverage target. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
the EWMA-R2R controller can drive the system back to the desired
setpoint even with a large process shift, where all kinetic rates are
reduced by 40%. The more aggressive 𝜆 = 0.7 controller in Fig. 10(b)
results in fewer scrapped wafers compared to the conservative 𝜆 =
0.3 controller in Fig. 10(a) because the aggressive EWMA controller
reaches the final coverage criteria faster, indicating that it is better
suited for this ALE process. This is also supported by the 𝜖𝑓 criterion,
as the more aggressive EWMA has a lower 𝜖𝑓 of 0.061 compared to the
conservative controller’s 0.074. However, even though the aggressive
EWMA controller performs well, it still has a key limitation in its
inefficiency at the initial stages; several wafers are misprocessed before
the process fully corrects.

6.3. Pure endpoint controller

The EP controller is a real-time controller, which means that there
is no parameter updating or changing in the controller in between each
run. Thus, the process times are represented by the following equations:
12 
𝑡𝐴 = 𝐸 𝑃𝐴
𝑡𝐵 = 𝐸 𝑃𝐵

where 𝑡𝐴 and 𝑡𝐵 are the process times for the HF and TMA reactions,
respectively, and 𝐸 𝑃𝐴 and 𝐸 𝑃𝐵 are the process times as determined by
the EP controller for the HF and TMA reactions, respectively.

Rather, all the differences in between the runs stem from the
stochastic nature of the multiscale simulations and the Transformer
model in the EP controller. The EP controller used for this simulation
is the same one described in Section 3, but the threshold of the final
sigmoid function is adjusted; this represents the transformer’s confi-
dence that the process has terminated. Two thresholds were considered:
a conservative EP controller with a sigmoid threshold of 0.96 for Reac-
tion A and 0.99 for Reaction B, and an aggressive EP controller with a
threshold of 0.5 for both reactions. Fig. 11(a) shows the performance
of the conservative EP controller and Fig. 11(b) that of the aggressive
controller.disturbances.
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Fig. 11. Control results for pure EP controllers. The lines are the same as in Figs. 10(a) and 10(b).
The conservative and aggressive pure EP controllers in Figs. 11(a)
and 11(b) both resulted in 0 scrapped wafers. However, the conserva-
tive EP controller consistently resulted in large amounts of overpro-
cessing, causing its 𝜖𝑓 of 0.099 to be above even that of the pure
EWMA controllers. In comparison, the aggressive EP controller has
the lowest 𝜖𝑓 of all four controller systems at 0.056. This means that
it is best suited for handling sudden, large process shifts, and its
performance here highlights its ability to reduce precursor usage and
improve manufacturing efficiency.

Both EP controllers have some overprocessing, but they are still able
to prevent all misprocesses, even when the disturbance first appeared.
In comparison, the pure EWMA-R2R controller requires several batches
to adjust to the disturbance before there are no more misprocesses.
Despite its advantages, the pure EP controller also has other weak-
nesses; it relies on time-series pressure profiles, which are influenced
by the stochastic nature of surface reactions and noise in the measuring
equipment. This causes it to predict different endpoint times even
when the process conditions are identical. Thus, combining EP and
R2R controllers can make up for their individual shortcomings. For the
13 
combined control systems shown next, the aggressive EP controller is
used as it performed better than the conservative EP controller.

6.4. Standard case corrector

As both the EP and R2R controllers use the process time as their
control variable, there are many ways to combine the two systems. As
mentioned earlier, while the EP controller does prevent misprocessing,
it can be volatile when used for multiple runs. Thus, one combined
EP+R2R method is to use a Standard Case Corrector (SCC) Controller.
This controller assumes that the process time required to adjust one set
of coverage criteria to another is the same regardless of if there are any
disturbances.

As illustrated in Fig. 12, after each run, the SCC controller uses the
final coverage mean and std. progression curves of a standard case
without any disturbances to find two key values for each curve: 𝑡0,
which is the time needed to reach the target set point, and 𝑡𝑚, which
is the time needed to reach the measured output of the most recent
run. The controller then calculates the sum 𝑡 = 𝑡 − 𝑡 . Like 𝛽
𝑑 𝑚 0 𝑓 ,𝑖+1
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Fig. 12. Representation of how the SCC controller calculated 𝑡𝑑 for the final coverage
mean.

in Eq. (11), the final 𝑡𝑑 is the maximum between the one calculated
from the final coverage mean curve and the one calculated from the
final coverage std. curve. Additionally, the fitted progression curves
of Fig. 8 are used as the standard case examples. This is because
the smoother curves prevent the controller from forming any offsets.
If the true final coverage criteria progression curves were used, their
non-monotonic nature could cause issues in the SCC controller.

When a disturbance is sensed, the system is ‘‘reset’’ with a run
that only uses the endpoint controller. This effectively sets 𝑡𝐴,0 = 𝐸 𝑃𝐴
and 𝑡𝐵 ,0 = 𝐸 𝑃𝐵 . Then, the process time continues to be updated by
modifying Eq. (11) as follows:

𝑡𝑑 = 𝑡𝑚 − 𝑡0 (17a)

𝑡𝐴,𝑖+1 = 𝑡𝐴,𝑖 + 𝑡𝑑 (17b)

𝑡𝐵 ,𝑖+1 = 𝑡𝐵 ,𝑖 + 𝑡𝑑 (17c)

where 𝑡𝑑 is the value found in Fig. 12, 𝑡𝐴,𝑖 and 𝑡𝐵 ,𝑖 are the most recent
process times for reactions A and B, and 𝑡𝐴,𝑖+1 and 𝑡𝐵 ,𝑖+1 are the next
set of process times for reactions A and B. Note that, unlike the EWMA-
R2R controller, the SCC-R2R controller does not rely on a linear model.
Thus, it avoids using any nonlinear transformations, making it easier to
implement.

The result of combining the EP and SCC controllers is shown in
Fig. 13. Run 0 is where the disturbance is first introduced, resulting in
a misprocess. Run 1 is the pure EP run, and Runs 2 and onwards are the
SCC-controlled runs as defined by Eq. (17). Even though the EP+SCC
control system results in a scrapped wafer in Run 0, it successfully
brings the process back within control by Run 1 and continues to tightly
control the final coverage criteria around the target set point due to
the unstable nature of the process. Thus, the EP+SCC is insufficient to
control the process.

While the EP+SCC controller may be worse than the pure EP con-
troller when it comes to sudden, unexpected process disturbances, that
is not always the case. In manufacturing environments, it is common
practice to have qualifying test runs after a major equipment cleaning
in order to detect any process shifts. In this scenario, Runs 0 and 1
of the EP+SCC controller can be thought of as qualifying runs that do
not count towards the misprocessing rate. In that case, the 𝜖𝑓 should
only span Runs 2–20. When evaluated in this context, the EP+SCC
controller’s 𝜖𝑓 becomes 0.047, which is lower than the aggressive EP
controller’s 𝜖𝑓 of 0.056. Thus, in the right circumstances, the EP+SCC
controller can outperform the pure EP controller.
14 
Fig. 13. Control results for the EP+SCC controller; 6 scrapped wafers, 𝜖𝑓 = 0.057.

Fig. 14. Control results for the EP+EWMA controller; 4 scrapped wafers, 𝜖𝑓 = 0.060.

6.5. EWMA and EP controller

While the EP+SCC controller has a better performance than either
of the controllers on their own in a controlled manufacturing environ-
ment, many of the batch runs did not meet the final coverage criteria.
Thus, the combined controller can still be improved upon, and other
combinations of R2R and EP controllers must be explored. In this
section, the EWMA-R2R controller in Section 6.2 is combined with the
EP controller in Section 6.3 to create another hybrid approach.

While both the EWMA-R2R and EP controllers use the process time
as their control variable, there is no issue as the combined controller
functions similarly to the SCC controller; once a disturbance is detected,
the process times are reset after a run that only has an EP controller.
Once that run is completed, the control system reverts to the classical
EWMA-R2R equations of Eqs. (9) to (11). The results of combining a
EWMA-R2R controller with 𝜆 = 0.7 and an aggressive EP controller are
shown in Fig. 14. Run 0 is where the disturbance is first introduced,
resulting in a misprocess. Run 1 is the pure EP run, and Runs 2 and
onwards are controlled by the same EWMA-R2R controller discussed
earlier in Section 6.2.

Like the EP+SCC controller, the EP+EWMA controller system per-
forms worse than the pure EP system when it comes to reacting to
a sudden process shift. However, when evaluated in a well-controlled
manufacturing environment, its 𝜖𝑓 becomes = 0.049. While this is still
larger than the EP+SCC controller’s 𝜖𝑓 of 0.047, which indicates that
the EP+SCC controller is ideal, it is nonetheless higher than the pure
EP controller’s 𝜖 of 0.056.
𝑓
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Table 8
Summary of the R2R evaluation criteria.

𝜖𝑓 , Runs 0–20 𝜖𝑓 , Runs 2–20

EWMA, 𝜆 = 0.3 0.074 –
EWMA, 𝜆 = 0.7 0.061 –
EP, aggressive 0.056 –
EP, conservative 0.099 –
EP+SCC 0.057 0.047
EP+EWMA 0.060 0.049

The final results of all the different control systems are summarized
in Table 8. For manufacturing environments that are poorly controlled

ith a potential for unexpected process shifts, the pure EP control
system is the best option as it has the lowest 𝜖𝑓 when all the runs
are considered. However, for a manufacturing environment that is well
controlled and where process shifts only occur at known events, the
combined systems are better. Of the two, the EP+SCC controller has a
lightly lower 𝜖𝑓 when only Runs 2–20 are considered. Thus, the pure
P controller is best suited for poorly controlled manufacturing envi-
onments, and the EP+SCC controller is best suited for well controlled
nvironments.

7. Conclusions

This work presents an integrated control strategy combining a real-
time endpoint (EP) feedback controller, based on a transformer ma-
chine learning architecture, with an ex-situ Run-to-Run (R2R) con-
troller for an Al2O3 atomic layer etching (ALE) process. The EP con-
troller was trained with simulated process data and then tested on a
different set of simulated process data for two different metrics: robust-
ness and consistency. This novel controller enables real-time detection
of process indicators for the ALE process, effectively handling kinetic
and pressure disturbances. For R2R control, this work introduced a new
WMMA strategy involving nonlinear transformations to create a linear

relationship and a novel standard case corrector (SCC) simplified the
overall implementation by eliminating the need for complex nonlinear
modeling.

Various combinations of EP and R2R controllers were applied to
the ALE process under a severe negative kinetic disturbance. Two
manufacturing environments were considered: a poorly controlled en-
vironment where process shifts occur randomly and without warning,
and one where process shifts are expected (e.g., after maintenance is
done on the etching tool). For the former case, the pure EP controller
erformed best, as it had the lowest error metric, 𝜖𝑓 = 0.056, when
onsidering all runs, including the initial disturbance run. But for the
atter case, only Runs 2–20 are used to calculate 𝜖𝑓 as Runs 0 and 1
re considered to be qualifying test runs used to adjust the process
arameters. In that case, the EP+SCC controller performed the best as it
ad the best performance of 𝜖𝑓 = 0.047 at maintaining the system at the
esired setpoint after the kinetic disturbance was implemented. This
ybrid approach leverages the strengths of both controllers, offering
 significantly improved performance over the traditional pure EWMA
nd pure EP controllers.

The controllers developed in this work only use the surface wafer
pressure in their machine-learning models, but in reality, the amount
and variety of process data that is available in a high-volume manufac-
turing environment is many times larger. Whether it be incorporating
multiple data streams, aggregating these large datasets, or using bleed-
ing edge machine-learning models, industrial manufacturing represents
a space with abundant opportunities for innovation.
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