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Abstract

This paper focuses on two-dimensional incompressible Newtonian fluid flow over a flat plate and studies the problem of
reducing the frictional drag exerted on the plate using active feedback control. Several alternative control configurations, including
both pointwise and spatially uniform control actuation and sensing, are developed and tested through computer simulations. All
control configurations use control actuation in the form of blowing/suction on the plate and measurements of shear stresses along
the plate. The simulation results indicate that the use of active feedback control, which employs reasonable control effort, can
significantly reduce the frictional drag exerted on the plate compared to the open-loop values. © 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The problem of trying to influence a flow field to
behave in a desirable way has received significant atten-
tion in the past (see e.g. Gad-el-Hak, 1994; Gad-el-Hak
& Bushnell, 1991 for results in this area and reference
lists). In general, fluid flow control can be classified in
two categories: passive and active. Passive control typi-
cally involves some kind of design modification of the
surface (e.g. wall-mounted, streamwise ribs or riblets)
and requires no auxiliary power, while active control
involves continuous adjustment of a variable that af-
fects the flow based on measurements of quantities of
the flow field (feedback). The approach of using active
feedback control is particularly attractive as it enables
drag reduction to occur by sensing and reacting to an
unanticipated local flow state, as opposed to optimizing
open-loop control actuation about a single, or multiple
flow configurations.

Recent advances in manufacturing of control actua-
tors (e.g. blowing/suction, synthetic jets, plasma-based

electromagnetic forcing) and measurement sensors (e.g.
shear stress sensors) make active feedback control of
aerodynamic flows for frictional drag reduction and
delay of separation a very real possibility. Within an
open-loop control setting, several studies have shown
that small devices with relatively little energy input can
be extremely effective in influencing a flow field, moti-
vating research interest on closed-loop feedback control
of fluids. Over the last decade, several efforts have been
made on the design and implementation of feedback
control systems on various fluid flows. The approach
followed for controller design typically involves the
derivation of low-order ordinary differential equations
(ODEs) approximations of the Navier–Stokes equa-
tions which describe the flow field using advanced
discretization schemes including linear and nonlinear
Galerkin’s methods and reduced basis methods. These
ODE systems are subsequently used for the design of
low-order output feedback controllers. This approach
has led to the design of robust optimal controllers for
flow in a driven cavity (Burns & King, 1994; Burns &
Ou, 1994; King & Qu, 1995), linear optimal and robust
controllers for channel flow using boundary (blowing
and suction) control actuation (Cortelezzi, Lee, Kim, &
Speyer, 1998; Cortelezzi & Speyer, 1998; Joshi, Speyer,
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& Kim, 1995), linear controllers for flow over flat plate
(Singh & Bandyopadhyav, 1997) and nonlinear con-
trollers for channel flow (Baker, Armaou, &
Christofides, 2000) using distributed (electromagnetic
forcing) control actuation, and linear and nonlinear
controllers for suppression of wavy behavior exhibited
by fluid dynamic systems described by the Korteweg-de
Vries-Burgers (Armaou & Christofides, 2000b) and
Kuramoto–Sivashinsky (Armaou & Christofides,
2000a,b; Christofides & Armaou, 2000) equations. An
alternative approach to controller design is based on
the concept of designing a feedback controller so that
the time-derivative of an appropriate Lyapunov func-
tional along the trajectories of the closed-loop system is
negative definite and has been used to design con-
trollers for the channel flow (Balogh, Liu, & Krstić,
2001; Kang & Ito, 1992), and the Kuramoto–Sivashin-
sky (Liu & Krstić, 2001) equation. Other results include
the solution of the optimal control problem for the
Navier–Stokes equations with distributed control (De-

sai & Ito, 1994; Hou & Yan, 1997) and proportional–
integral control (Beringen, 1984; Choi, Moin, & Kim,
1994; Choi, Temam, Mom, & Kim, 1993; Joshi, Speyer,
& Kim, 1997).

In this work, we focus on a two-dimensional incom-
pressible Newtonian fluid flow over a flat plate (Fig. 1)
and consider the problem of reducing the frictional
drag exerted on the plate using active feedback control.
Several alternative control configurations, including
both pointwise and spatially uniform control actuation
and sensing, are developed and tested through com-
puter simulations. All control configurations use con-
trol actuation in the form of blowing/suction on the
plate and measurements of shear stresses along the
plate. The simulation results indicate that the use of
active feedback control, which employs reasonable con-
trol effort, can significantly reduce the frictional drag
exerted on the plate compared to the open-loop values.

2. Flow field equations

We consider a two-dimensional incompressible New-
tonian fluid flow with uniform velocity, which is equal
to a constant U0, over a flat plate of length L. The exact
dimensions of the rectangular domain used for this
fluid dynamic system and the (x, y) axes specification
used in all of our calculations are shown in (Fig. 2).
Owing to symmetry, only one half (the upper half) of
the geometry is generated. The Navier–Stokes equa-
tions that describe the flow field take the following
form:
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where u and � are the components of the velocity along
the x and y axes, respectively, P is the pressure, � is the
fluid density, and � is the kinematic viscosity. The
above equations were considered subject to the follow-
ing set of boundary conditions:

u(0, y, t)=U0, �(0, y, t)=0

u(x, 0, t)=0, �(x, 0, t)=C(x, t)

nxu(x, 10, t)+ny�(x, 10, t)=0 (2)

where C(x, t) is the control input that will be deter-
mined in the next section and (nx, ny) are the compo-
nents of the vector normal to the boundary (i.e.
n=nxi+ny j). Note that the fact that we set �(x, 0,
t)=C(x, t) is motivated by our desire to control the
flow using vertical blowing/suction. For the open-loop

Fig. 1. Flow over a flat plate.

Fig. 2. Spatial domain and finite-element mesh for flow over a flat
plate.
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Fig. 3. Steady-state open-loop velocity profile for flow over flat plate
for the entire domain.

exact form of the spatial discretization mesh used in
our calculations for both the open-loop and the closed-
loop system is shown in Fig. 2. It is important to note
that the finer structure of the mesh towards the plate
was motivated by the presence of the plate which leads
to significant velocity gradients close to the plate and of
our closed-loop calculations (to be presented in the next
section) that require a finer mesh close to the area
where feedback control is applied to the system to
maintain a mesh-independent solution. The last require-
ment is a result of the modification of the value of C(x,
t) from 0 for the open-loop system to an expression
that is a function of the state of the system in the case
of the closed-loop system. To be able to make meaning-
ful comparisons for the frictional drag profiles along
the plate, we used the same mesh structure for the
open-loop and closed-loop simulations. Moreover, the
height of the computational domain was taken to be
about 30 times the thickness of the boundary layer (Fig.
3) to remove boundary effects to and ensure quick
convergence and accuracy of the solution.

Figs. 3 and 4 show the steady-state open-loop veloc-
ity (each point in the plot represents the value of
�u2+�2) profiles for the entire domain and close to
the plate, respectively, for Re=50 000 (where Re=
Vol/� is the Reynolds number); we can see the develop-
ment of a laminar boundary layer over the plate. This
is expected since for Re=50 000 the boundary layer
over the plate is stable (Batchelor, 1967, page 313). The
reason for which the time axis starts from 30 time units
is that it takes 30 time units for the flow to stabilize at
the laminar boundary layer configuration; this time axis
specification will facilitate the comparisons between the
open-loop and closed-loop system drag profiles. The
computation of the pressure gradients �P/�x and �P/�y
gave very small values for these two quantities every-
where in the flow field; this is expected in the case of
uniform external flow (see also Remark 3). Further-
more, owing to the very fine mesh used in our calcula-
tions, the velocity close to the inlet was found to be
uniform and equal to U0 (except from the plate where it
is zero), thereby eliminating the need to expand the
computational domain to some small distance before
the leading edge of the plate to achieve uniform flow in
the inlet of the computational domain.

Since the objective of this work is to investigate the
effect of feedback control (i.e. different choices for C(x,
t)) on the frictional drag exerted on the plate (i.e.
integral along x of the tangential force per unit area
exerted on the plate by the fluid), we will present our
results in terms of the quantity �u/�y at y=0 which is
directly proportional to the frictional drag; the drag
exerted on the two sides of unit width of a plate of
length L is

Fig. 4. Steady-state open-loop velocity profile for flow over flat plate
close to the plate.

system (i.e. C(x, t)=0), the first two boundary condi-
tions imply that the flow towards the plate is uniform,
the next two boundary conditions correspond to no-slip
on the plate, and the last boundary condition accounts
for the fact that far from the plate the flow should be
uniform. In addition, since the profile of the flow in the
outlet of the plate is unknown, following (Papanasta-
siou, Malamataris, & Ellwood, 1992; Renardy, 1997) a
free boundary condition was employed in the outlet
and the outlet pressure P(6.3, y) was set equal to one.

We developed a program within the FEMLAB simula-
tion environment that uses a finite element approach
with a very fine mesh to compute the solution of the
flow field as described by the dynamic Navier–Stokes
of Eqs. (6)– (8); further increase in the number of
discretization elements and decrease of the step of the
temporal integration did not influence the results. The
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Fig. 5 shows the spatio-temporal profile of �u/�y at
y=0, over a flat plate for the open-loop (i.e. C(x, t)=0)
steady-state flow field. As expected for steady-state
laminar boundary layer, (�u/�y)y=0 exhibits its maxi-
mum close to the edge of the plate (see Remark 3 for a
detailed discussion on this issue).

Remark 1. Owing to the consideration of an external flow
field with U=U0=constant, the possibility of separa-
tion of the flow from the plate at a certain position
downstream does not exist. Flow separation can occur
when the external flow accelerates/decelerates; active
feedback control of flow separation is a subject currently
studied by our group but it is outside of the scope of the
present paper.

Remark 2. We also verified that the use of the boundary
condition u(x, 10, t)=U0, �(x, 10, t)=0 on the top
side of the computational domain leads to identical
results to the ones of the slip boundary condition, nxu(x,
10, t)+ny�(x, 10, t)=0 used in the calculations reported
in the present paper. This is a consequence of the fact
that the height of the computational domain is much
larger than the thickness of the boundary layer.

Remark 3. The objective of this remark is to review the
approximate steady-state boundary layer equations for
laminar flow over flat plate and provide the resulting
analytic expression of the frictional drag per unit area of
the plate at distance x from the leading edge (the reader
may refer to Batchelor, 1967 for more discussion on this
subject). To proceed with this task, we first evaluate the
pressure gradient �P/�x outside of the boundary layer.
At the edge of the boundary layer using Euler’s equation
for the incident irrotational flow and using a no-penetra-
tion condition, we obtain:
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where U represents the known tangential component of
the velocity of the outer flow. For uniform flow outside
of the boundary layer, it follows directly from Eq. (4) that
U=U0 implies �P/�x=0.

To proceed with the derivation of the approximate
steady-state boundary layer equations, we need to obtain
a more natural coordinate system in which lateral dis-
tances are measured and velocities are measured with the
(representative) boundary layer thickness as the unit
length; this will allow to state clearly the main assump-
tions involved in this approximation. To this end, we
define the following dimensionless quantities:
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where L represents a distance in the x-direction over
which u changes appreciably and P0 is the value of P at
some convenient reference point in the fluid. Using these
new variables, the Navier–Stokes equations of Eq. (1)
with �P� /�x̄=0 that describe the flow field take the form:
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�x̄2+

�2ū
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The approximate steady-state laminar boundary layer
equations can be obtained under the assumptions that
Re�� and the magnitude of �u/�x is small compared
with that of �u/�y and have the form:
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The above equations are subjected to the following set
of boundary conditions:

ū(x̄, 0, t� )=0, �̄(x̄, 0, t� )=C� (x̄,t� )

ū(x̄, 0, t� )�1 as
ȳ
�0

�� (8)

where �0 is a small length representative of the boundary
layer thickness. The solution of Eqs. (7) and (8) can be
obtained with appropriate similarity transformations
and leads to the following expression for the frictional
force per unit area of the plate (expressed in terms of the
original coordinates) at distance x from the leading edge
(Batchelor, 1967):Fig. 5. Spatio-temporal profile of (�u/�y)y=0 for C(x, t)=0.
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Fig. 6. Spatio-temporal profile of (�u/�y)y=0 for the case of collo-
cated actuator/sensor control configuration.

control law is of the type C(t)=K�L
0 s(x)(�u/

�y)(x, 0, t)dx, where s(x) is a function which depends
on the type of measurements (pointwise, distributed)
that are available for feedback. The simple structure of
the above feedback laws is motivated by the following
three reasons: (a) the objective of this study is to see
whether it is possible to reduce frictional drag with any
type (in particular the simplest) of active feedback
control, (b) the design of Navier–Stokes-based feed-
back controls is not an easy task owing to the complex-
ity of the flow field under consideration, while the
on-line implementation of such controls would require
significant computational power which may not always
be available, and (c) the practical implementation of the
above linear control laws requires relatively less compu-
tational and hardware resources. The value of the
controller gain K was chosen, through trial and error,
to achieve a reasonable reduction in frictional drag and
to avoid perturbing the laminar nature of the flow field
in the domain of definition of the flow. In all the
simulation runs discussed below, Re=50 000.

We initially tested a fully localized control configura-
tion which uses the value of the wall shear stress at any
given point along the plate to determine the amount of
blowing/suction (i.e. value of the vertical component of
the velocity) at the corresponding point on the plate.
Mathematically, the control law for this case can be
expressed as:

�(xi, 0, t)=C(xi, t)=K
��u

�y
�

(xi, 0, t), i=1,…,N

(10)

where K=0.005 and N=350 is the number of dis-
cretization points used on the plate.

Fig. 6 shows the spatio-temporal profile of (�u/�y)y=

0 starting from initial conditions of the steady-state
open-loop simulation. Again as in the open-loop simu-
lations, the time axis starts from 30 time units; this is
the time needed for the flow to reach the steady-state
solution of the open-loop system and t=30 is the time
in which we activate the control system. As can be seen
in Fig. 6, this control configuration does a very good
job in reducing the frictional drag compared to the
open-loop operation (compare the profile of Fig. 6 with
the corresponding open-loop profile of Fig. 5). Fig. 7
shows the spatio-temporal profile of the wall-normal
velocity, �(x, 0, t), which is the manipulated input.
Clearly, the value of �(x, 0, t) is small and positive for
all times which means that blowing is applied to the
flow. Note also that, as expected in the case of collo-
cated actuation/sensing (control input at each point
depends only on the measurement at the same point),
the profile of �(x, 0, t) is not uniform along x.

We also tested several alternative control configura-
tions. Specifically, we considered a control configura-
tion which uses the average of five equally spaced point
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which clearly implies that (�u/�y)y=0 attains its maxi-
mum at the leading edge of the plate and decreases to
zero as x increases. Note that the calculation of the
frictional drag of Eq. (9) is not valid if the flow in the
boundary layer is not laminar (unstable flow occurs for
Re greater than 1.2×105 (Batchelor, 1967, page 313)
which is significantly above the value of Re=5×104

considered in our simulations) over the whole surface of
the flat plate. In the case of unstable flow, disturbances
in the boundary layer grow and a transition to a
different type of flow occurs at some distance down-
stream. The frictional force at the wall in such a
turbulent boundary layer is considerably larger than
that in a laminar boundary layer with the same external
stream speed, because the random cross-currents in the
boundary layer carry the fast moving fluid in the outer
layers into the neighborhood of the wall and are more
effective in promoting lateral transport than molecular
diffusion.

3. Control laws—closed-loop simulations

We developed several alternative control configura-
tions (i.e. different actuation/measurement structures)
which use wall shear stress measurements and apply
blowing/suction type of control actuation to reduce the
frictional drag exerted on the plate. All control configu-
rations utilize linear proportional control laws to com-
pute the control action. More specifically, in the case of
pointwise measurement/actuation, the control law is of
the type C(xi,t)=K(�u/�y)(xi, 0, t), where K is the
controller gain and xi is the location of actuation, while
in the case of spatially uniform control actuation, the
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measurements of (�u/�y)y=0 on the flat plate to apply
spatially uniform control actuation, that is:

�(x, 0, t)=C(t)=
K
5

�
5

i=1

��u
�y
�

(xi, 0, t) (11)

where K=0.005. The above control law can be derived
from the general integral feedback control structure
presented in the beginning of this section by setting
s(x)=1/5�i=1

5 �(x−xi), where �(·) is the standard
Dirac function. Fig. 8 shows the spatio-temporal profile
of (�u/�y)y=0 starting from initial conditions of the
steady-state open-loop simulation. This control
configuration does a very good job in reducing the
frictional drag compared to the open-loop operation.
Fig. 9 shows the spatio-temporal profile of the wall-
normal velocity, �(x, 0, t), which is the manipulated
input. Clearly the value of �(x, 0, t) is small and Fig. 9. Spatio-temporal profile of the wall-normal velocity, �(x, 0, t),

for the case of spatially uniform control actuation with five equally
spaced point measurements (the first measurement is taken at the
leading edge of the plate).

Fig. 7. Spatio-temporal profile of the wall-normal velocity, �(x, 0, t),
for the case of collocated actuator/sensor control configuration.

Fig. 10. Steady-state closed-loop velocity profile for flow over flat
plate for the entire domain, for the case of spatially uniform control
actuation with five equally spaced point measurements.

Fig. 8. Spatio-temporal profile of (�u/�y)y=0 for the case of spatially
uniform control actuation with five equally spaced point measure-
ments.

positive for all times which means that blowing is
applied to the flow. Note also that, as expected in the
case of spatially uniform control actuation, the profile
of �(x, 0, t) is uniform along x.

Fig. 10 shows the corresponding velocity profile for
the entire domain, respectively; the use of blowing on
the plate slows down the flow very close to the plate,
thereby reducing the frictional drag on the plate and
increasing the value of the velocity field close to the
edge of the boundary layer compared to the open-loop
velocity of Fig. 3 (see also Fig. 4). We also tested the
robustness of the control scheme of Eq. (11) with
respect to a sinusoidal profile of amplitude 0.1 which
was superimposed on the calculated average of the five
measurements to simulate a time-varying disturbance in
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the measurements. Fig. 11 shows the spatio-temporal
profile of (�u/�y)y=0 starting from initial conditions of
the steady-state open-loop simulation and Fig. 12
shows the spatio-temporal profile of �(x, 0, t) for this
simulation run. While the disturbance influences the
flow, the controller is capable of reducing the value of
(�u/�y)y=0 below the open-loop level using blowing.
Note also that owing to the persistent nature of the
disturbance, the profile of �(x, 0, t) exhibits a slight
variation with respect to time for large times (this is not
the case in the profile of �(x, 0, t) in the previous
simulation run, Fig. 9, where disturbances have not
been included).

Finally, we developed and tested a control configura-
tion which uses the average of many point measure-

Fig. 13. Spatio-temporal profile of (�u/�y)y=0 for the case of spa-
tially uniform control actuation with 350 equally spaced point mea-
surements.

Fig. 11. Spatio-temporal profile of (�u/�y)y=0 for the case of spa-
tially uniform control actuation with five equally spaced point mea-
surements; robustness with respect to measurement disturbances.

ments of �u/�y on the flat plate to calculate the
spatially uniform control actuation applied to the flow
field along the plate; this was done to evaluate the effect
of the number and location of measurements on con-
troller performance (amount of control action) and
closed-loop performance (frictional drag reduction).

In this case, the control law has the following form:

�(x,0,t)=C(t)=
K
N

�
N

i=1

��u
�y
�

(xi, 0, t) (12)

where K=0.005 and N=350. The above control law
can be also derived from the general integral feedback
control structure presented in the beginning of this

section by setting s(x)=
1
N

�i=1
N �(x−xi).

Fig. 13 shows the spatio-temporal profile of (�u/
�y)y=0 starting from initial conditions of the steady-
state open-loop simulation and Fig. 14 shows the
spatio-temporal profile of �(x, 0, t) for this simulation
run. While this control configuration reduces the fric-
tional drag compared to the open-loop system using
blowing, it does not provide a significant improvement
(in terms of reduction of the frictional drag) compared
to the closed-loop performance achieved with the con-
trol configuration of Eq. (11) which uses only five
measurements of (�u/�y)y=0. However, the advantage
of using a large number of measurements can be seen
by studying the input profile of Fig. 14 and comparing
it with the input profile of Fig. 9. Clearly, the use of a
large number of measurements taken at spatial loca-
tions that are not close to the edge of the plate (where
(�u/�y)y=0 attains its maximum value for both the
open- and closed-loop systems) leads to a substantially
smaller control action and a smoother control input
profile; thereby improving the robustness of the laminar
closed-loop flow field with respect to disturbances and
transition to turbulence.

Fig. 12. Spatio-temporal profile of the wall-normal velocity, �(x, 0, t),
for the case of spatially uniform control actuation with five equally
spaced point measurements; robustness with respect to measurement
disturbances.
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Fig. 14. Spatio-temporal profile of the wall-normal velocity, �(x, 0, t),
for the case of spatially uniform control actuation with 350 equally
spaced point measurements.
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The main conclusion of the present simulation study
is that the use of active feedback control, which em-
ploys reasonable control effort, can significantly reduce
the frictional drag exerted on the plate compared to the
open-loop values. Furthermore, our results suggest
that: (a) a small number of measurement sensors may
be sufficient to achieve drag reduction, and (b) the
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formance and should be carefully chosen to avoid using
unnecessarily large control action. Further work will be
needed to check the robustness of these results with
respect to variations of the Reynolds number and ex-
amine the derivation of flow models suitable for model-
based controller design and implementation.
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