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This article focuses on nonlinear static (direct) output feedback control of parabolic partial
differential equations (PDE) systems with nonlinear spatial differential operators with application
to a rapid thermal chemical vapor deposition (RTCVD) process. Initially, a detailed mathematical
model is presented for the RTCVD process, which consists of a nonlinear parabolic PDE that
describes the spatiotemporal evolution of the wafer temperature, coupled with a set of nonlinear
ordinary differential equations (ODEs) that describes the time evolution of the chamber
temperature and the concentrations of the various species. Then, a systematic methodology is
presented for the synthesis of nonlinear static output feedback controllers for parabolic PDE
systems with nonlinear spatial differential operators. Initially, the Karhunen-Loéve expansion
is used to derive empirical eigenfunctions of the nonlinear parabolic PDE system, then the
empirical eigenfunctions are used as basis functions within a Galerkin model reduction
framework to derive low-order ODE systems that accurately describe the dominant dynamics
of the PDE system, and finally, these ODE systems are used for the synthesis of nonlinear static
output feedback controllers that guarantee stability and enforce output tracking in the closed-
loop system. The proposed control method is employed to synthesize a nonlinear easy-to-
implement controller for the RTCVD process that uses measurements of wafer temperature at
five locations to manipulate the power of the top lamps in order to achieve uniform temperature
and, thus, uniform deposition of a thin film on the wafer over the entire process cycle. The
performance of the developed nonlinear output feedback controller is successfully tested through
simulations and is shown to be superior to the one of a linear control scheme.

Introduction

Rapid thermal chemical vapor deposition (RTCVD) is
a rapidly growing technology in the microelectronics
industry. The central idea of RTCVD is to use a series
of lamps to radiatively heat a wafer from room temper-
ature to 1200 K at very high heating rates (more than
150 K/s), and then keep it at the high temperature for
a short time. This sharp increase in the temperature of
the wafer reduces significantly the overall thermal
budget of the process (the overall processing time is
usually less than 1 min) and the diffusion length,
thereby preserving dopant profiles from previous steps,
and allows the fabrication of very small devices by using
temperature as a switch in ending a process cycle. These
features make RTCVD an attractive alternative over
conventional furnace-based chemical vapor deposition
processes employed in the fabrication of devices with
submicrometer dimensional constraints. Even though
RTCVD possesses many significant advantages, its
widespread use is seriously limited by the lack of
adequate wafer temperature control to achieve the tight
requirements of uniformity and repeatability set by the
industry. The main obstacles in achieving spatially
uniform wafer temperature (and thus, uniform film
deposition) are the highly nonlinear, time-varying and
spatially varying nature of the RTCVD process that
makes the development and implementation of effective
model-based feedback controllers a very difficult task
(e.g. refs 4, 5, 17, and 21). The main challenge in the
design of model-based feedback controllers for RTCVD

processes is that the dynamic models of such processes
consist of nonlinear parabolic partial differential equa-
tion (PDE) systems, which are distributed parameter
(infinite-dimensional) systems, and thus, they cannot
be directly used for the design of practically implement-
able (low-dimensional) controllers.

Even though nonlinear parabolic PDE systems are
infinite dimensional in nature, their dominant dynamic
behavior is usually characterized by a finite (typically
small) number of degrees of freedom. This implies that
the dynamic behavior of such systems can be ap-
proximately described by ordinary differential equation
(ODE) systems. Therefore, the standard approach to the
control of linear/quasi-linear parabolic PDE systems
involves the application of Galerkin’s method (where the
basis functions used to expand the solution of the system
are typically the eigenfunctions of the spatial dif-
ferential operator) to the PDE system to derive ODE
systems that accurately describe the dynamics of the
dominant (slow) modes of the PDE system. These ODE
systems are subsequently used as the basis for controller
synthesis (see, for example, refs 1 and 16). The main
disadvantage of this approach is that the number of
modes that should be retained to derive an ODE system
that yields the desired degree of approximation may be
very large, leading to complex controller design and high
dimensionality of the resulting controllers. A natural
approach to the construction of low-dimensional ODE
systems that accurately reproduce the dynamics and
solutions of quasi-linear parabolic PDE systems is based
on the concept of approximate inertial manifold (see, for
example, refs 8, 9, and 22 and the references therein).
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This concept was used in ref 7 for the construction of
low-order controllers for parabolic PDE systems.

In the case of parabolic PDE systems with nonlinear
spatial differential operators, as the ones that arise in
the modeling of RTCVD processes, the selection of an
appropriate basis to expand the solution of the PDE
system is not an easy task because the eigenvalue
problem cannot be solved analytically. An approach to
address this problem is to utilize detailed finite differ-
ence (element) simulations of the PDE system to
compute a set of empirical eigenfunctions (dominant
spatial patterns) of the system through Karhunen-
Loéve (K-L) decomposition (also known as proper
orthogonal decomposition and principal component analy-
sis). The use of empirical eigenfunctions as basis func-
tions in Galerkin’s method has been shown to lead to
the derivation of accurate nonlinear low-dimensional
approximations of several dissipative PDE systems
arising in the modeling of diffusion-reaction processes
and fluid flows (e.g., refs 2, 3, 15, and 23). Recently,
linear feedback controllers were synthesized18,24 for
specific diffusion-reaction systems on the basis of low-
dimensional models obtained by using empirical eigen-
functions as basis functions in Galerkin’s method.

This work focuses on nonlinear static (direct) output
feedback control of parabolic PDE systems with non-
linear spatial differential operators with application to
an RTCVD process. Initially, a detailed mathematical
model is presented for a low-pressure RTCVD process
consisting of a nonlinear parabolic PDE that describes
the spatiotemporal evolution of the wafer temperature,
coupled with a set of nonlinear ODEs that describes the
time evolution of the chamber temperature and concen-
trations of the various species. Then, a systematic
methodology is presented for the synthesis of nonlinear
static output feedback controllers for parabolic PDE
systems with nonlinear spatial differential operators.
Initially, the Karhunen-Loéve expansion is used to
derive empirical eigenfunctions of the nonlinear para-
bolic PDE system, then the empirical eigenfunctions are
used as basis functions within a Galerkin’s model
reduction framework to derive low-order ODE systems
that accurately describe the dominant dynamics of the
PDE system, and finally, these ODE systems are used
for the synthesis of nonlinear static output feedback
controllers that guarantee stability and enforce output
tracking in the closed-loop system. The proposed control
method is employed to synthesize a nonlinear easy-to-
implement controller for the RTCVD process that uses
measurements of wafer temperature at five locations
to manipulate the power of the top lamps in order to
achieve uniform temperature and, thus, uniform deposi-
tion of a thin film on the wafer over the entire process
cycle. The performance of the developed nonlinear
output feedback controller is successfully tested through
simulations and is shown to be superior to the one of a
linear control scheme.

Rapid Thermal Chemical Vapor Deposition:
Description and Modeling

We consider a low-pressure RTCVD process shown
in Figure 1; all the details on the description and
modeling of the process can be found in ref 23. Here,
we limit our discussion to the essential features of the
process and the basic equations of the process model.
Specifically, the process consists of a quartz chamber,
three banks of tungsten heating lamps that are used to

heat the wafer and a fan, which is located at the bottom
of the reactor and is used to cool the chamber. The
furnace is designed so that the top lamp bank A and
the bottom lamp bank C heat the total area of the wafer,
while the lamp bank B, which surrounds the reactor, is
used to heat the wafer edge in order to compensate for
heat loss that occurs from the edge (radiative cooling
between wafer edge and quartz chamber). The wafer is
rotated while heated for azimuthal temperature uni-
formity. The objective of the process is to deposit a 0.5-
µm film of polycrystalline silicon on a 6-in. wafer in 40
s by feeding the reactor (from a small opening on the
top) with 10% SiH4 in Ar at 5 Torr pressure and using
the heating lamps to heat the wafer from room temper-
ature to 1200 K (this is the temperature where the
deposition reactions take place), at a heating rate of the
order of 180 K/s.

Under standard modeling assumptions, an energy
balance on the wafer yields the following nonlinear
parabolic PDE:

subject to the boundary conditions

In the above equations, Tamb denotes the ambient
temperature, T ) T′/Tamb denotes the dimensionless

Figure 1. Rapid thermal chemical vapor deposition process:
control configuration.
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wafer temperature, Fw, Cpw, and Rw denote the density,
heat capacity, and radius of the wafer, respectively, r
) r′/Rw denotes the dimensionless radial coordinate, qrad
is a term that accounts for radiative energy transfer
between the wafer and its environment, Tc ) T′c de-
notes the dimensionless temperature of the chamber, R
denotes the Boltzmann constant, εω denotes the emis-
sivity of the wafer, qedge denotes the energy flux at the
edge of the wafer, and ub denotes the percentage of the
side lamp power that is used. The wafer heat capacity
and thermal conductivity depend on temperature; their
expressions and the expression of the radiative energy
transfer terms qrad, qedge can be found in ref 23.

An energy balance on the quartz chamber yields the
following ordinary differential equation.

where Mc denotes the chamber thermal mass, εc denotes
the emissivity of the chamber, Ahem denotes the chamber
hemispherical area, Acyl denotes the chamber cylindrical
area, and Ac denotes the chamber outside area. qh and
qc denote the net energy radiated from the hemispheri-
cal and cylindrical portions of the quartz chamber,
respectively. The term Qlamps u represents energy ab-
sorbed by the chamber directly from the heating lamps,
while Qconvect denotes the energy transferred from the
quartz chamber to the cooling gas by forced convective
cooling. The explicit form of the terms in the right-hand
side of eq 4 is given in ref 23.

The low-pressure conditions in the chamber allow us
to assume perfect mixing of the reacting mixture, which,
in turn, allows us to derive the following set of ODEs,
which describe the time evolution of the molar fraction
of SiH4, XSiH4, and hydrogen, XH2:

where R is the mole to mole conversion factor, Aw is the
wafer area, τ is the residence time, XSiH4

in is the molar
fraction of SiH4 in the inlet stream to the reactor and
Rs is the rate of the deposition reactions:

where k0 is the pre-exponential constant, γ is the
activation energy for deposition, Ptot is the total pres-
sure, and b and c are constants. The deposition rate of
Si onto the wafer surface is governed by the following
expression:

where MWSi and FSi denote the molecular weight and
density of Si, respectively. Referring to the expression
of the deposition rate, we note the Arrhenius depen-
dence of the deposition rate on wafer temperature,
which clearly shows that nonuniform temperature
results in nonuniform deposition, thereby implying the
need to develop and implement a nonlinear feedback
controller on the the process in order to achieve radially
uniform wafer temperature. To this end, we present in
the next section a general method for the synthesis of
nonlinear static output feedback controllers for a class
of nonlinear parabolic PDE systems that include the eq
1.

Static Output Control of Nonlinear Parabolic
PDE Systems

(1) Description of Nonlinear Parabolic PDE
Systems. We consider nonlinear parabolic PDE systems
in one spatial dimension with the following state space
description:

subject to the boundary conditions

and the initial condition

where xj(z,t) ) [xj1(z,t)‚‚‚xjn(z,t)]T denotes the vector of
state variables, z ∈ [R,â] ⊂ IR is the spatial coordinate,
t ∈ [0,∞] is the time, u ) [u1 u2 ‚‚‚ ul]T ∈ IRl denotes the
vector of manipulated inputs, yc

i ∈ IR denotes the ith
controlled output, and yκ

m ∈ IR denotes the κth mea-
sured output. L(xj) is a nonlinear differential operator
that involves first- and second-order spatial derivatives,
f(xj) is a nonlinear vector function, w, k, and ω are
constant vectors, A, B, C1, D1, C2, and D2 are constant
matrices, R1 and R2 are column vectors, and xj0(z) is the
initial condition. b(z) is a known smooth vector function
of z of the form b(z) ) [b1(z) b2(z)‚‚‚bl(z)], where bi(z)
describes how the control action ui(t) is distributed in
the interval [R,â], ci(z) is a known smooth function of z,
which is determined by the desired performance speci-
fications in [R, â], and sκ is a known smooth function of
z, which is determined by the location and “shape” of
the measurement sensor (e.g., point/distributed sens-
ing). Throughout the paper, we will use the order of
magnitude notation O(ε). In particular, δ(ε) ) O(ε) if
there exist positive real numbers k1 and k2 such that
|δ(ε)| e k1|ε|, ∀ |ε| < k2.

In order to simplify the presentation of the theoretical
results of the paper, we formulate the parabolic PDE
system of eq 8 as an infinite dimensional system in the
Hilbert space H([R,â], IRn) with H being the space of
n-dimensional vector functions defined on [R,â] that
satisfy the boundary condition of eq 9, with inner
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product and norm (ω1,ω2) ) ∫R
â(ω1(z),ω2(z))IRn dz, ||ω1||2

) (ω1,ω1)1/2, where ω1,ω2 are two elements of H([R,â];IRn)
and the notation (‚,‚)IRn denotes the standard inner
product in IRn. Defining the state function x on
H([R,â],IRn) as x(t) ) xj(z,t), t > 0, z ∈ [R,â], the operator
A in H([R,â],IRn) as

and the input and output operators as Bu ) wbu, Cx )
(c, kx), and Sx ) (s, wx), where c ) [c1 c2 ‚‚‚ cl] and s )
[s1 s2 ‚‚‚ sp], the system of eqs 8-10 takes the form

where f(x(t)) ) f(xj(z,t)) and x0 ) xj0(z). We assume that
the nonlinear term f(x) is locally Lipschitz with respect
to its argument and satisfies f(0) ) 0 and lim|x|f0(|f(x)|/
|x|) ) 0 (i.e., f(x) does not include linear terms).

In the remainder of this section, we synthesize
nonlinear static output feedback controllers for nonlin-
ear parabolic PDE systems of the form of eq 8 by using
the following approach: Initially, assuming that the
solution of the parabolic PDE system of eq 8 is known,
a set of empirical eigenfunctions (dominant spatial
patterns) of the system will be computed using Kar-
hunen-Loéve expansion. Then, the empirical eigen-
functions will be used as basis functions within a
Galerkin model reduction framework to derive low-
dimensional ODE systems that accurately reproduce the
dynamics of the PDE system. Finally, these ODE
systems will be used for the synthesis of nonlinear static
output feedback controllers, which use on-line measure-
ments of process outputs to stabilize the closed-loop
system and force the outputs to follow their set-points.

(2) Karhunen-Loéve Expansion. In this section,
we review the K-L expansion in the context of nonlin-
ear one-dimensional parabolic PDE systems of the form
of eq 8 with n ) 1 (see refs 10 and 12 for a general
presentation and analysis of the K-L expansion). We
assume that the solution of the system of eq 8 is known
and consider a sufficiently large set (which is called,
ensemble), {vjκ}, consisting of N sampled states, vjκ(z),
(which are typically called “snapshots”) of the solution
of eq 8. To simplify our presentation, we assume uniform
in time sampling of, vjκ(z), (i.e., the time interval between
any two successive sampled states is the same), while
we define the ensemble average of snapshots as 〈vjκ〉: )
(1/K)∑n)1

K vjn(z) (we note that nonuniform sampling of
the snapshots and weighted ensemble average can be
also considered; see, for example, ref 11). Furthermore,
the ensemble average of snapshots 〈vjκ〉 is subtracted out
from the snapshots i.e.,

so that only fluctuations are analyzed. The problem is
to compute the most characteristic structure φ(z) among
these snapshots {vκ} that can be formulated as the one
of maximizing the following objective function:

The constraint (φ,φ) ) 1 is imposed to ensure that the
function, φ(z), computed as a solution of the above
maximization problem, is unique. The Lagrangian
functional corresponding to this constrained optimiza-
tion problem is

and necessary conditions for extremes is that the
functional derivative vanishes for all variations φ + δψ
∈ L2[R,â], where δ is a real number:

Using the definitions of inner product and ensemble
average, computing dLh (φ + δψ)/dδ) (δ ) 0), and using
that ψ(zj) is an arbitrary function, the following neces-
sary conditions for optimality can be obtained:

A computationally efficient way to obtain the solution
of the above integral equation is provided by the method
of snapshots,19,20 where the requisite eigenfunction, φ(z),
is expressed as a linear combination of the snapshots
as follows:

Substituting the above expression for φ(z) on eq 17, we
obtain the following eigenvalue problem

Defining

the eigenvalue problem of eq 19 can be equivalently
written as

The solution of the above eigenvalue problem yields the
eigenvectors c ) [c1‚‚‚cK], which can be used in eq 18 to
construct the eigenfunctions φ(z). From the structure
of the matrix B, it follows that is symmetric and positive
semidefinite, and thus, its eigenvalues, λκ, κ ) 1, ..., κ,
are real and non-negative. Furthermore, the computed
eigenfunctions are orthogonal.

(3) Galerkin’s Method. We derive an m-dimensional
approximation of the system of eq 12 using Galerkin’s
method. Let Hs and Hf be two subspaces of H, defined
as Hs ) span{φ1, φ2,...,φm} and Hf ) span{φm+1, φm+2,...}.
The basis functions φj may be obtained through K-L
expansion. Defining the orthogonal projection operators
Ps and Pf such that xs ) Psx, xf ) Pfx, the state x of the
system of eq 12 can be decomposed as

A(x) ) L(xj), x ∈ D(A) ) {x ∈ H([R,â]; IRn);

C1xj(R,t) + D1
∂xj
∂z

(R,t) ) R1;

C2xj(â,t) + D2
∂xj
∂z

(â,t) ) R2} (11)

x̆ ) A(x) + Bu + f(x), x(0) ) x0 (12)

yc ) Cx, ym ) Sx

vκ ) vjκ - 〈vjκ〉 (13)

maximize
〈(φ,vκ)

2〉
(φ,φ)

s.t.(φ,φ) ) 1, φ ∈ L2([R,â]) (14)

Lh ) 〈(φ,vκ)
2〉 - λ((φ,φ) - 1) (15)

dLh (φ + δψ)
dδ

(δ ) 0) ) 0, (φ,φ) ) 1 (16)

∫R

â
〈vκ(z)vκ(zj)〉φ(z) dz ) λφ(zj), (φ,φ) ) 1 (17)

φ(z) ) ∑
k

ckvk(z) (18)

∫R

â 1

K
∑
κ)1

K

vκ(z)vκ(zj)∑
k)1

K

ckvk(z) dzj ) λ∑
k)1

K
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Bκk ) 1
K∫R

â
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Bc ) λc (21)
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Applying Ps and Pf to the system of eq l2 and using the
above decomposition for x, the system of eq 12 can be
equivalently written in the following form:

where As(xs,xf) ) PsA(xs + xf), Bs ) PsB, fs ) Psf,
Af(xs,xf) ) PfA(xs + xf), Bf ) PfB, and ff ) Pff. Owing to
the parabolic nature of the spatial differential operator,
the nonlinear vector Af(xs,xf) satisfies Af(xs,xf) ) Afsxs
+ (1/ε)Afxf + fhf(xs,xf), where ε is a small positive
parameter quantifying the separation between the slow
(dominant) and fast (negligible) eigenmodes of the
spatial operator, and Afs and Af are matrices with Af
being stable, and fhf(xs,xf) is a nonlinear vector function
that does not include linear terms. Neglecting the
infinite dimensional xf subsystem in the system of eq
23 (this is equivalent to assuming that ε ) 0), the
following m-dimensional slow system is obtained:

where the subscript s in ycs
i and yms is used to denote

that these outputs are associated with a finite-dimen-
sional system, the subscript 0 in (F0, g0

i , u0
i , h0

i ) denotes
that they are elements of the O(ε) approximation of the
xs subsystem of eq 23 (see proof of theorem 1 below for
a precise characterization of the accuracy of the system
of eq 14). We note that higher-order m-dimensional
approximations of the system of eq 12 can be derived
through combination of Galerkin’s method with ap-
proximate inertial manifolds (see, for example, refs 6
and 7).

Remark 1. We note that when the approximate ODE
model of eq 24 is obtained through Galerkin’s method
with empirical eigenfunctions, it provides a valid ap-
proximation of the parabolic PDE model in a broad
region of the state space and not only in the region that
was used for the computation of the snapshots, provided
that the ensemble of snapshots is sufficiently large and
contains sufficient information of the global dynamics
of the PDE system. This property is a consequence of
the fact that the empirical eigenfunctions form an
orthogonal set of functions whose dimension is equal to
the number of snapshots, and thus, it can be made
arbitrarily large (even though completeness of this set
cannot be guaranteed). Therefore, the use of empirical
eigenfunctions for discretization of the PDE system is
not fundamentally different from the use of other
standard basis functions sets (sine and cosine functions,
Legendre polynomials, etc.) for discretization with
Galerkin’s method, and thus, the finite-dimensional
approximation obtained through Galerkin’s method with
empirical eigenfunctions is valid in a broad region of

the state space. Such an ODE approximation, under
standard smoothness assumptions of the solutions of the
PDE, converges to the PDE system in an L2 sense as
the number of eigenfunctions used increases. Therefore,
the ODE approximation of the PDE system obtained via
Galerkin’s method with empirical eigenfunctions is
independent of the selection of the snapshots, as long
as the dimension of this set is sufficiently large. Finally,
the major practical benefit of using empirical eigen-
functions is that they directly satisfy the boundary
conditions of the PDE system, a very important property
for the case of PDEs with nonlinear boundary conditions
(see, for example, the RTCVD process considered in the
section on Nonlinear Static Output Feedback Control
of RTCVD).

(4) Static Output Feedback Controller Design.
We consider the synthesis of static output feedback
control laws of the form

where p0(ym) is a vector function, Q0(ym) is a matrix, and
vj is a vector of the form vj ) V (vi,vi

(1),...,vi
(ri)) where V (vi,

vi
(1),...,vi

(ri)) is a smooth vector function, vi
(k) is the kth

time derivative of the external reference input vi (which
is assumed to be a smooth function of time), and ri is a
positive integer.

The controller is constructed through combination of
a state feedback controller design method and a proce-
dure for the computation of estimates of xs from the
measurements ym. Specifically, under the assumption
that xs is known, the computation of the explicit form
of the functions p0(ym), Q0(ym)vj in the control law of eq
25 to enforce stability and output tracking in the closed-
loop system will be done by utilizing standard geometric
control methods for nonlinear ODEs.13 Then, the fol-
lowing assumption is needed in order to obtain esti-
mates of the states xs of the system of eq 24 from the
measurements ym

κ , κ ) 1, ..., p.
Assumption 1. p ) m (i.e., the number of measure-

ments is equal to the number of slow modes), and the
inverse of the operator S exists so that x̂s ) S-1ym, where
x̂s is an estimate of xs.

Note that the existence of the inverse of the matrix S
depends on the location and shape (form of function sκ)
of the measurement sensors, and thus, sκ should be
properly chosen to ensure that S-1 exists. Theorem 1
below provides the synthesis formula of the output
feedback controller and conditions that guarantee closed-
loop stability. In order to state the theorem, we define
for the system of eq 24 the relative order of the output
ycs

i with respect to the vector of manipulated inputs u
as the smallest integer ri for which

or ri ) ∞ if such an integer does not exist, and the
characteristic matrix

x ) xs + xf ) Psx + Pfx (22)

dxs/dt ) As(xs,xf) + Bsu + fs(xs,xf)

dxf/dt ) Af(xs,xf) + Bfu + ff(xs,xf) (23)

yc ) Cxs + Cxf, ym ) Sxs + Sxf

xs(0) ) Psx(0) ) Psx0, xf(0) ) Pfx(0) ) Pfx0

dxs/dt ) As(xs) + Bsu + fs(xs,0) )

f0(xs) + ∑
i)1

l

g0
i u0

i (24)

ycs
i ) Cixs ) h0

i (xs), yms ) Sxs

u0 ) p0(ym) + Q0(ym)vj (25)

[Lg0
1 Lf0

ri-1 h0
i (xs) ‚ ‚ ‚ Lg0

l Lf0

ri-1 h0
i (xs)] ≡/ [0 ‚ ‚ ‚ 0] (26)

C0(xs) ) [Lg0
1 Lf0

r1-1 h0
1(xs) · · · Lg0

l Lf0

r1-1 h0
1(xs)

Lg0
1 Lf0

r2-1 h0
2(xs) · · · Lg0

l Lf0

r2-1 h0
2(xs)

·
·
·

·
·
·

L
0
1 Lf0

rl-1 h0
l (xs) · · · Lg0

l Lf0

rl-1 h0
l (xs)

] (27)
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Theorem 1. Consider the parabolic PDE system of
eq 12 and assume that assumption 1 holds. Consider
also the ODE system of eq 24 and suppose that the
following conditions hold: (1) The roots of the equation
det(B(s)) ) 0, where B(s) is a l × l matrix, whose (i, j)th
element is of the form ∑k)0

ri âjk
i sk, lie in the open left

half of the complex plane, and (2) the unforced (v ≡ 0)
zero dynamics of the system of eq 24 is locally expo-
nentially stable. Then, there exist constants µl, µ2, and
ε* such that if |xs(0)| e µ1,||xf(0)||2 e µ2 and ε ∈ (0,ε*),
then the static output feedback controller

(a) guarantees exponential stability of the closed-loop
system, and (b) ensures that the outputs of the closed-
loop system satisfy for all t ∈ [tb,∞):

where tb is the time required for the off-manifold fast
transients to decay to zero exponentially, and ycs

i (t) is
the solution of

Proof of Theorem 1. Substituting the controller of
eq 28 into the parabolic PDE system of eq 12, we obtain

A direct application of Galerkin’s method to the above
system with Hs ) span{φ1,φ2,...,φm} and Hf ) span-
{φm+1,φm+2,...}, and Ps and Pf such that xs ) Psx,xf )
Pfx, yields

or

The system of eq 33 is in the standard singularly
perturbed form (see ref l4 for a precise definition of
standard form), with xs being the slow states and xf
being the fast states. Introducing the fast time scale τ̃
) t/ε and setting ε ) 0, we obtain the following infinite-
dimensional fast subsystem from the system of eq 33:

Since Af is a stable matrix, we have that the above
system is globally exponentially stable. Setting ε ) 0
in the system of eq 33, we have that xf ) 0 and thus,
the finite-dimensional slow system takes the form

For the above system, one can show (see ref 13 for
details) that it is locally exponentially stable provided
that assumptions 1 and 2 of the theorem hold and that
the input/output response of eq 30 is enforced. Finally,
since the infinite-dimensional fast subsystem of eq 34
is exponentially stable, an application of proposition 1
in ref 7 (singular perturbation stability result for infinite
dimensional systems) yields that there exists an ε*, such
that if ε ∈ (0, ε*), max{|xs(0)|, ||xf(0)||2} e δ, then the
state of the closed-loop parabolic PDE system of eq 31
is asymptotically stable and that its outputs satisfy the
relation of eq 30.

Remark 2. We note that the controller of eq 28 uses
static feedback of the measured outputs ym

κ , κ ) 1, ..., p,
and thus, it feeds back both xs and xf. However, even
though the use of xf feedback could lead to destabiliza-
tion of the stable fast subsystem, the large separation
of the slow and fast modes of the spatial differential
operator (i.e., ε is sufficiently small) and the fact that
the controller does not include terms of the form O(1/ε)
do not allow such a destabilization to occur.

Remark 3. The main benefit of static output feedback
control versus dynamic (state observer-based) output
feedback control7 is the ease of on-line implementation
of the controller. In particular, the static output feed-
back controller of eq 28 does not use a state observer (a
dynamical system which has to be simulated on-line to
provide estimates of the state variables from the mea-
surements), and thus, the control action can be instan-
taneously computed on-line. On the other hand, it is
important to note that this computational benefit comes
at the expense of using a larger number of measure-
ments (note that according to assumption 1, p ) m: the
number of sensors needed is equal to the number of slow
modes) and higher sensitivity of the static output
feedback controller to measurement noise.

Nonlinear Static Output Feedback Control of
RTCVD

In this section, we illustrate the application of the
proposed output feedback control method to the RTCVD
process. Initially, an accurate solution of the model of
the RTCVD process (eqs 1, 4, and 5) was computed by
using a finite difference scheme with 100 discretization
points. The time integration was performed by using
explicit Euler, and the nonlinear boundary condition of
eq 3 was solved simultaneously at each time step using
a Gauss-Newton method.23 The values of the process
parameters used in our calculations are given in Table
1. A 40-s simulation run of the process with the
following initial conditions, T ) 1, Tc ) 1, S ) 0, XSiH4

) 0.1, and XH2 ) 0, was used to compute 600 snapshots
of the wafer temperature profile. The deviations of these
snapshots from a mean spatially uniform wafer tem-
perature profile were used as data for determining the
dominant spatial temperature modes (wafer tempera-
ture empirical eigenfunctions) through Karhunen-
Loéve expansion. Since we analyzed temperature profile
deviations, the first eigenfunction was taken to be a
spatially uniform one. We also found that the first three
empirical eigenfunctions account for more than 99.0%

u0 ) a0(xs,xf,vj,t) )

{[â1r1
‚ ‚ ‚âlrl

]C0(ym)}-1{v - ∑
i)1

l

∑
k)0

ri

âikLf0

k h0
i (ym)} (28)

yc
i(t) ) ycs

i (t) + O(ε), i ) 1, ..., l (29)

∑
i)1

l

∑
k)0

ri

âik

dkycs
i

dtk
) v, i ) 1, ... l (30)

x̆ ) Ax + Ba0(xs,xf,vj,t) + f(x), x(0) ) x0

yc ) Cx, ym ) Sx (31)

dxs/dt ) As(xs,xf) + Bsa0(xs,xf,vj,t) + fs(xs,xf)

dxf/dt ) Af(xs,xf) + Bfa0(xs,xf,vj,t) + ff(xs,xf) (32)

dxs/dt ) As(xs,xf) + Bsa0(xs,xf,vj,t) + fs(xs,xf)

ε dxf/dt ) εAfsxs,xf + Afxf + εfhf(xs,xf) +
εBfa0(xs,xf,vj,t) + εff(xs,xf) (33)

dxf/dτ̃ ) Afxf (34)

dxs/dt ) f0(xs) + ∑
i)1

l

B0
i a0

i (xs,0,vj,t)

ycs
i ) Cixs ) hi

0(xs) (35)
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of the energy contained in the ensemble of snapshots
(i.e., λ2 + λ3 + λ4 g 0.99, when λ2 + ‚ ‚ ‚ + λκ+1 ) 1 where
κ ) 600 is the number of snapshots). Then, a collocation
formulation of Galerkin’s method was used to obtain a
low-order model that describes the wafer temperature.
The first three empirical eigenfunctions together with
the spatially uniform eigenfunction were used as basis
functions. The roots of the highest-order trial function
were used as collocation points; thereby forcing the
residual to be orthogonal, and therefore zero, at these
points. Specifically, the following collocation points were
used: r ) 0.35, r ) 0.72, and r ) 0.99. Additional
collocation points were added at r ) 0.0 and r ) 1.0 to
satisfy the boundary conditions imposed there. This
fifth-order model was used to synthesize a nonlinear
multivariable static output feedback controller using the
controller synthesis formula of theorem 1. The controller
uses point measurements of the wafer temperature at
the five collocation points and adjusts the powers of the
four top lamps (see Figure 1 for a schematic of the
control configuration) to control the wafer temperature
at the following four points: r ) 0.0, r ) 0.35, r ) 0.72,
and r ) 0.99. Note that four controlled outputs are
considered because four manipulated inputs are used,
and five measurements are assumed to be available
since the dimension of the model used for controller
synthesis is also five (assumption 1).

A simulation run was performed to evaluate the
performance of the nonlinear controller for a 40-s cycle
with initial conditions T ) 1, Tc ) 1, S ) 0, XSiH4 ) 0.1,
and XH2 ) 0. Figure 2 shows the spatiotemporal evolu-
tion of the wafer (a), the temperature distribution along
the radius of the wafer at t ) 40 s (b), and the thickness
of the deposition (c). The profiles of the four manipulated
inputs are shown in Figure 3 (note that ui(t) ) (power
in ith concentric region of the top lamp)/(5000 W)). The
performance of the nonlinear controller is excellent,
achieving an almost uniform (less that 1% variation)
thin-film deposition. We also implemented on the pro-
cess four proportional integral (PI) controllers with the
following parameters for proportional gain: Kci ) 0.65

and integral time constant rIi ) 10.0 for i ) 1, 2, 4, 4
(these values were computed through extensive trial and
error). The first PI controller is used to adjust the power
of the first concentric lamp by using a point temperature
measurement at r ) 0, the second PI controller adjusts
the power of the second concentric lamp by using a
temperature measurement at r ) 1/3, the third PI
controller adjusts the power of the third concentric lamp
by using a temperature measurement at r ) 2/3, and
the fourth PI controller adjusts the power of the fourth
concentric lamp by using a temperature measurement
at r ) 1. The final film thickness at t ) 40 s obtained
under PI control is displayed in Figure 4 (dashed line)

Table 1. Process Parameters

Aw ) 182.41 × 10-4 m2

Ac ) 1217.31 × 10-4 m2

Acyl ) 794.83 × 10-4 m2

Ahem ) 422.48 × 10-4 m2

Lc ) 15.43 × 10-2 m
Ls ) 10 × 10-2 m
Rc ) 8.2 × 10-2 m
Rw ) 7.62 × 10-2 m
δz ) 0.05 × 10-2 m
Mc ) 1422.6 J K-1

qedge ) 49 × 104 J s-1 m-2
b ) 78.95 Torr-1

c ) 0.38 Torr1/2

ew ) 0.7
ec ) 0.37
Fc ) 2.6433 × 103 kg m-3

Vc ) 638.25 × 106 m3

Fw ) 2.3 × 103 kg m-3

XSiH4

in ) 0.1 kmolSiH4 kmolfeed
-1

Ptot ) 5.0 Torr
MWSi ) 28.086 kg kmol-1

FSi ) 2.3 × 103 kg m-3

R ) 8.314 × 103 J kmol-1 K-1

Tamb ) 300.0 K
R ) 12.961 × 106 kmol-1

k0 ) 263.158 × 101 kmol m-2 s-1 Torr-1

γ ) 153.809 × 106 J kmol-1

σ ) 5.6705 × 10-8 J s-1 m-2 K-4

τ ) 0.380 s

Figure 2. Closed-loop spatiotemporal wafer temperature profile
(top), wafer temperature profile at t ) 40 s (middle), and deposition
thickness profile at t ) 40 s (bottom) under nonlinear static output
feedback control.

4378 Ind. Eng. Chem. Res., Vol. 38, No. 11, 1999



and compared to the one achieved by the nonlinear
static output feedback controller (solid line). Clearly, the
performance of the four PI controllers is worst (more
than 5% variation in final thin-film thickness) than the
one by the nonlinear controller.

Conclusions

This work presented a general method for the syn-
thesis of nonlinear static output feedback controllers for
parabolic PDE systems with nonlinear spatial dif-
ferential operators. Initially, the Karhunen-Loéve ex-
pansion was employed to derive empirical eigenfunc-
tions of the nonlinear parabolic PDE system, then the
empirical eigenfunctions were used as basis functions
within a Galerkin model reduction framework to derive
low-order ODE systems that accurately describe the
dominant dynamics of the PDE system, and finally,
these ODE systems were utilized for the synthesis of
nonlinear static output feedback controllers that guar-
antee stability and enforce output tracking in the closed-
loop system. The proposed control method was success-
fully employed to synthesize a nonlinear easy-to-
implement controller for a RTCVD process that uses
measurements of wafer temperature at five locations
to manipulate the power of the top lamps in order to
achieve uniform temperature and, thus, uniform deposi-
tion of a thin film on the wafer over the entire process
cycle. The performance of the controller was successfully
tested through simulations and was shown to be supe-
rior to the one of a linear control scheme.
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