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This article proposes a rigorous and practical methodology for the derivation of accurate ® nite-dimensional approxima-
tions and the synthesis of non-linear output feedback controllers for non-linear parabolic PDE systems for which the
manipulated inputs, the controlled and measured outputs are distributed in space. The method consists of three steps:
® rst, the Karhunen± LoeÂ ve expansion is used to derive empirical eigenfunctions of the non-linear parabolic PDE system,
then the empirical eigenfunctions are used as basis functions within a Galerkin’s and approximate inertial manifold
model reduction framework to derive low-order ODE systems that accurately describe the dominant dynamics of the
PDE system, and ® nally, these ODE systems are used for the synthesis of non-linear output feedback controllers that
guarantee stability and enforce output tracking in the closed-loop system. The proposed method is used to perform
model reduction and synthesize a non-linear dynamic output feedback controller for a rapid thermal chemical vapour
deposition process. The controller uses measurements of wafer temperature at ® ve locations to manipulate the power of
the top lamps in order to achieve spatially uniform temperature, and thus, uniform deposition of the thin ® lm on the
wafer over the entire process cycle. The performance of the non-linear controller is successfully tested through simula-
tions and is shown to be superior to the one of a linear controller.

1. Introduction

There are many industrially important di� usion±
convection± reaction processes which are naturally
described by non-linear parabolic partial di� erential
equation (PDE) systems. Examples include rapid ther-
mal processing, plasma reactors, crystal growth pro-
cesses to name a few. The main feature of parabolic
PDEs is that their dominant dynamic behaviour is
usually characterized by a ® nite (typically small) number
of degrees of freedom (Temam 1988) (for example, in
the case of systems with linear spatial di� erential opera-
tors this follows from the fact that the eigenspectrum of
the spatial di� erential operator can be partitioned into a
® nite-dimensional slow one and an in® nite-dimensional
stable fast complement). This implies that the dynamic
behaviour of such systems can be approximately
described by ordinary di� erential equation (ODE)
systems. Therefore, the standard approach to the con-
trol of quasi-linear parabolic PDE systems (i.e. systems
which include linear spatial di� erential operators and
non-linear terms that enter the system in an additive
fashion) involves the application of Galerkin’s method
(where the basis used to expand the solution of the
system are typically the eigenfunctions of the spatial
di� erential operator) to the PDE system to derive
ODE systems that accurately describe the dynamics of
the dominant (slow) modes of the PDE system, which
are subsequently used as the basis for controller syn-
thesis (see, for example, Balas 1979, Ray 1981, Chen
and Chang 1992). The main disadvantage of this

approach is that the number of modes that should be
retained to derive an ODE system that yields the desired
degree of approximation may be very large, leading to
complex controller design and high dimensionality of
the resulting controllers.

A natural approach to the construction of low-
dimensional ODE systems that accurately reproduce
the dynamics and solutions of quasi-linear parabolic
PDE systems is based on the concept of inertial mani-
fold (IM) (see, for example, Temam 1988 and references
therein). An IM is a ® nite-dimensional Lipschitz mani-
fold which is positively invariant and attracts every tra-
jectory of the system exponentially. When the
trajectories of the parabolic PDE system are on the
IM, it is exactly described by a dynamical system (called
inertial form) whose dimension is equal to the number of
slow modes. However, the explicit derivation of the iner-
tial form requires the computation of the closed-form
expression of the IM, which is a very di� cult task in
most practical applications. In order to overcome this
problem, a novel procedure, based on singular perturba-
tions, was proposed in Christo® des and Daoutidis
(1997) for the construction of approximations of the
inertial manifold (called approximate inertial manifolds
(AIMs)), which were used to derive ODE systems of
dimension equal to the number of slow modes, that
yield solutions which are close, up to a desired accuracy,
to the ones of the PDE system (see also Foias et al. 1989
for alternative approaches for the construction of
AIMs). These ODE systems were used as the basis for
the synthesis of non-linear output feedback controllers
that guarantee stability and enforce the output of the
closed-loop system to follow, up to a desired accuracy,
a prespeci® ed response. These results were extended in
Christo® des (1998) to quasi-linear parabolic PDE
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systems with uncertainty, leading to the design of robust
non-linear controllers. The reader may refer to the
recent book by Christo® des (2000) for detailed results
and references in this area.

Unfortunately, the developed control methods for
quasi-linear parabolic PDE systems cannot be directly
employed for the design of low-dimensional controllers
for systems that include non-linear spatial di� erential
operators. The reason is that the eigenvalue problems
of non-linear spatial di� erential operators cannot be, in
general, solved analytically, and thus, it is di� cult to a
priori (without having any information about the sol-
ution of the system) choose an optimal (in the sense
that will lead to a low-dimensional ODE system) basis
to expand the solution of the PDE system. An approx-
imate way to address this problem (Ray 1981) is to lin-
earize the non-linear spatial di� erential operator around
a steady state and address the controller design problem
on the basis of the resulting quasi-linear system.
However, this approach is only valid in a small neigh-
bourhood of the steady state where the linearization is
valid. An alternative approach which is not based on
linearization is to utilize detailed ® nite di� erence (ele-
ment) simulations of the PDE system to compute a set
of empirical eigenfunctions (dominant spatial patterns)
of the system through Karhunen± LoeÂ ve expansion (also
known as proper orthogonal decomposition and prin-
cipal component analysis). The use of empirical eigen-
functions as basis functions in Galerkin’ s method has
been shown to lead to the derivation of accurate non-
linear low-dimensional approximations of several dissi-
pative PDE systems arising in the modelling of di� u-
sion± reaction processes and ¯ uid ¯ ows (Park and Cho
1996, Bangia et al. 1997, Banerjee et al. 1998,
Theodoropoulou et al. 1998). Recently, linear feedback
controllers were synthesized in Shvartsman and
Kevrekidis (1998) and Theodoropou-lou et al. (1999)
for speci® c di� usion-reaction systems on the basis of
low-dimensional models obtained by using empirical
eigenfunctions as basis functions in Galerkin’ s method.
At this stage, a rigorous method for the design of non-
linear output feedback controllers for general non-linear
parabolic PDE systems on the basis of ODE models
which are constructed by combining Galerkin’s method
with empirical eigenfunctions is not available.

In this paper, we consider non-linear parabolic PDE
systems for which the manipulated inputs, the controlled
and measured outputs are distributed in space, and pro-
pose a general method for the derivation of ® nite-dimen-
sional approximation and the synthesis of non-linear
output feedback controllers. The method is applied to
a rapid thermal chemical vapour deposition (RTCVD)
process.

The paper is structured as follows: Initially, the class
of non-linear parabolic PDE systems considered in this

work is given and the key steps of the proposed model
reduction and control method are articulated. Then, the
method is presented in detail: ® rst, the Karhunen± LoeÂ ve
expansion is used to derive empirical eigenfunctions of
the non-linear parabolic PDE system, then the empirical
eigenfunctions are used as basis functions within a
Galerkin’ s and approximate inertial manifold model
reduction framework to derive low-order ODE systems
that accurately describe the dominant dynamics of the
PDE system, and ® nally, these ODE systems are used
for the synthesis of non-linear dynamic output feedback
controllers that guarantee stability and enforce output
tracking in the closed-loop system. Finally, an applica-
tion of the proposed method to non-linear model reduc-
tion and control of an RTCVD process is presented. The
performance of the non-linear controller is successfully
tested through simulations and is shown to be superior
to the one of a linear controller.

2. Nonlinear parabolic PDE systems

2.1. Description of class of systems

We consider non-linear parabolic PDE systems in
one spatial dimension with the following state space
description

@ -x
@t

ˆ L … -x† ‡ wb…z†u ‡ f … -x†

yi ˆ
… ­

¬

ci…z†k -x dz; i ˆ 1 ; . . . ; l

9
>>>=

>>>;
…1†

subject to the boundary conditions

C1
-x…¬; t† ‡ D1

@ -x
@z

…¬;t† ˆ R1

C2
-x…­ ;t† ‡ D2

@ -x
@z

…­ ;t† ˆ R2

9
>>>=

>>>;
…2†

and the initial condition
-x…z ;0† ˆ -x0…z† …3†

where -x…z;t† ˆ ‰ -x1…z;t† ¢ ¢ ¢ -xn…z;t†ŠT denotes the vector
of state variables, z 2 ‰¬;­ Š » R is the spatial coordi-
nate, t 2 ‰0;1 † is the time, u ˆ ‰u1 u2 ¢ ¢ ¢ ulŠT 2 R l

denotes the vector of manipulated inputs, and yi 2 R
denotes the i th controlled output. L … -x† is a non-linear
di� erential operator which involves ® rst- and second-
order spatial derivatives, f … -x† is a non-linear vector
function, w ;k are constant vectors, A ;B ;C1 ;D1 ;C2 ;D2

are constant matrices, R1 ;R2 are column vectors, and
-x0…z† is the initial condition. b…z† is a known smooth
vector function of z of the form b…z† ˆ
‰b1…z† b2…z† ¢ ¢ ¢ bl…z†Š, where bi…z† describes how the
control action ui…t† is distributed in the interval ‰¬;­ Š,
and ci…z† is a known smooth function of z which is
determined by the desired performance speci® cations
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in the interval ‰¬;­ Š. Whenever the control action enters
the system at a single point z0 , with z0 2 ‰¬;­ Š (i.e. point
actuation), the function bi…z† is taken to be non-zero in a
® nite spatial interval of the form ‰z0 ¡ °;z0 ‡ °Š, where °
is a small positive real number, and zero elsewhere in
‰¬;­ Š. Throughout the paper, we will use the order of
magnitude notation O…°†. In particular, ¯…°† ˆ O…°† if
there exist positive real numbers k1 and k2 such that:
j¯…°†j µ k1j°j ; 8 j°j < k2. Furthermore, L f h denotes the
standard Lie derivative of a scalar ® eld h with respect to
the vector ® eld f , L k

f h denotes the k-th order Lie deri-
vative and L gL k¡1

f h denotes the mixed Lie derivative.
Finally, in order to simplify the presentation of the
theoretical results, we will not consider measured out-
puts separately from the controlled outputs, which
means that we need to assume the availability of on-
line measurements of the controlled outputs, yi…t†.

In order to simplify the presentation of the theor-
etical results of the paper, we formulate the parabolic
PDE system of equation (1) in an in® nite dimensional
system in the Hilbert space H…‰¬;­ Š; R n† (this allows us
to incorporate directly the boundary conditions of equa-
tion (2) in the formulation ; see equation (5) below), with
H being the space of n-dimensional vector functions
de® ned on ‰¬;­ Š that satisfy the boundary condition of
equation (2), with inner product and norm

…!1 ;!2† ˆ
… ­

¬

…!1…z†;!2…z††
R n dz

jj!1jj2 ˆ …!1 ;!1†1=2 where !1 ;!2 are two elements of
H…‰¬;­ Š; R n† and the notation …¢; ¢†R n denotes the stan-
dard inner product in R n. De® ning the state function x
on H…‰¬;­ Š; R n† as x…t† ˆ -x…z;t†; t > 0; z 2 ‰¬;­ Š, the
operator A in H…‰¬;­ Š; R n† as

A…x† ˆ L … -x†

x 2 D…A† ˆ

x 2 H…‰¬; ­ Š; R n†

C1
-x…¬;t† ‡ D1

@ -x
@z

…¬;t† ˆ R1

C2
-x…­ ; t† ‡ D2

@ -x
@z

…­ ;t† ˆ R2

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

…4†

and the input and output operators as Bu ˆ wbu;
Cx ˆ …c;kx†, where c ˆ ‰c1 c2 ¢ ¢ ¢ cl Š, the system of equa-
tions (1)± (2) takes the form

_x ˆ A…x† ‡ Bu ‡ f …x†; x…0† ˆ x0

y ˆ Cx

9
=

;
…5†

where f …x…t†† ˆ f … -x…z;t†† and x0 ˆ -x0…z†. We assume
that the non-linear terms f …x† are locally Lipschitz
with respect to their arguments and satisfy f …0† ˆ 0.
Finally, motivated by our objective to develop model
reduction and control methods for non-linear parabolic

PDEs that describe transport-reaction processes of prac-
tical interest, we will assume throughout the paper that
the system of equation (1) (with and without feedback
control) has a unique solution which is also su� ciently
smooth (i.e. all the spatial and time derivatives in the
system of equation (1) are smooth functions of space
and time).

2.2. Methodology for model reduction and control

The main obstacles in developing a general model
reduction and control method for systems of the form
of equation (1) are: (a) the spatial di� erential operator is
non-linear, and (b) the domain of de® nition of the pro-
cess is generally irregular (e.g. a chemical reactor with
complex geometry). These issues do not allow the com-
putation of analytic expressions for the eigenvalues and
eigenfunctions of the system, and thus, they prohibit the
direct use of Galerkin’ s methods or orthogonal colloca-
tion methods with standard basis function sets, to derive
® nite dimensional approximations of the PDE system.

To overcome the above problems, we employ the
following methodology for the derivation of ® nite-
dimensional approximations and the synthesis of low-
dimensional non-linear output feedback controllers for
systems of the form of equation (1).

(1) Initially, assuming that the solution of the para-
bolic PDE system of equation (1) is known, a set
of empirical eigenfunctions (dominant spatial
patterns) of the system will be computed using
Karhunen± LoeÂ ve expansion.

(2) These empirical eigenfunctions will be then used
as basis functions within a Galerkin’ s and
approximate inertial manifold model reduction
framework to derive low-dimensional ODE
systems that accurately reproduce the solutions
of the non-linear PDE system.

(3) These ODE systems are used as a basis for the
synthesis of low dimensional non-linear control-
lers, which use on-line measurements of process
outputs to stabilize the closed-loop system and
force the output to follow the set-point. Finally,
it is established that the output of the in® nite-
dimensional closed-loop system (PDE model and
controller) satis® es yi…t† ˆ yi

s…t† ‡ O… -°†; t ¶ 0,
where yi

s…t† being the i th output of the closed-
loop slow subsystem and -° is a small positive
parameter which depends on the degree of
approximation of the original parabolic PDE
model from the ® nite-dimensional system.

Remark 1: We note that the above control method-
ology can be readily generalized to systems of coupled
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non-linear parabolic PDEs and non-linear ordinary
di� erential equations of the form:

@x̂
@t

ˆ f̂ … -x ; x̂ ;u†

@ -x
@t

ˆ L … -x† ‡ wb…z†u ‡ f … -x ; x̂†

yi ˆ
… ­

¬

ci…z†k -xdz; i ˆ 1 ; . . . ; l

9
>>>>>>>>>=

>>>>>>>>>;

…6†

3. Computation of empirical eigenfunctions via

Karhunen± LoeÂ ve expansion

In this section, we review the K± L expansion in the
context of non-linear one-dimensional parabolic PDE
systems of the form of equation (1) with n ˆ 1 (see
Fukunaga 1990, Holmes et al. 1996 for a general pres-
entation and analysis of the K± L expansion). We
assume that the solution of the system of equation (1)
is known and consider a su� ciently large set (ensemble),
f-vµg, consisting of N sampled states, -vµ…z† (which are
typically called s̀napshots’ ), of the solution of equation
(1). To simplify our presentation, we assume uniform in
time sampling of , -vµ…z† (i.e. the time interval between
any two successive sampled states is the same), while
we de® ne the ensemble average of snapshots as
h -vµi :ˆ 1=K

P K
nˆ1

-vn…z† (we note that non-uniform sam-
pling of the snapshots and weighted ensemble average
can be also considered ; see, for example, Graham and
Kevrekidis (1996)). Furthermore, the ensemble average
of snapshots h -vµi is subtracted out from the snapshots,
i.e.

vµ ˆ -vµ ¡ h -vµi …7†

so that only ¯ uctuations are analysed. The issue is how
to obtain the most typical or characteristic structure
¿…z† among these snapshots fvµg. Mathematically, this
problem can be posed as the one of obtaining a function
¿…z† that maximizes the objective function

Maximize
h…¿;vµ†2i

…¿;¿† s:t: …¿;¿† ˆ 1 ; ¿ 2 L 2…‰¬;­ Š†

…8†

The constraint …¿;¿† ˆ 1 is imposed to ensure that the
function, ¿…z†, computed as a solution of the above
maximization problem, is unique. The Lagrangian func-
tional corresponding to this constrained optimization
problem is

-L ˆ h…¿;vµ†2i ¡ ¶……¿;¿† ¡ 1† …9†

and necessary conditions for extrema is that the func-
tional derivative vanishes for all variations ¿ ‡ ¯Á 2
L 2‰¬;­ Š, where ¯ is a real number:

d -L …¿ ‡ ¯Á†
d¯

…¯ ˆ 0† ˆ 0 ; …¿;¿† ˆ 1 …10†

Using the de® nitions of inner product and ensemble
average, d -L …¿ ‡ ¯Á†=d¯ …¯ ˆ 0† can be computed as

d -L …¿ ‡ ¯Á†
d¯

…¯ ˆ 0† ˆ d
d¯

‰h…vµ ;¿ ‡ ¯Á†…¿ ‡ ¯Á;vµ†i

¡ ¶…¿ ‡ ¯Á;¿ ‡ ¯Á†Š¯ 0̂

ˆ 2Re h…vµ ;Á†…¿;vµ†i ¡ ¶…¿;Á†‰ Š

ˆ
… ­

¬

Á…z†vµ…z† dz
… ­

¬

¿… -z†vµ… -z† d -z

¡ ¶

… ­

¬

¿… -z†Á… -z†d -z

ˆ
… ­

¬

… ­

¬

hvµ…z†vµ… -z†i¿…z† dz
¡

¡ ¶¿… -z†
¢

Á… -z† d -z …11†

Since Á… -z† is an arbitrary function, the necessary con-
ditions for optimality take the form

…­

¬

hvµ…z†vµ… -z†i¿…z† dz ˆ ¶¿… -z†; …¿;¿† ˆ 1 …12†

Introducing the two-point correlation function

K…z; -z† ˆ hvµ…z†vµ… -z†i ˆ 1
K

XK

µ 1̂

vµ…z†vµ… -z† …13†

and the linear operator

R :ˆ
… ­

¬

K…z; -z† d -z …14†

the optimality condition of equation (12) reduces to the
eigenvalue problem of the integral equation:

R¿ ˆ ¶¿ )̂
… ­

¬

K…z; -z†¿… -z† d -z ˆ ¶¿…z† …15†

The computation of the solution of the above integral
eigenvalue problem is, in general, a very expensive com-
putational task. To circumvent this problem, Sirovich
introduced in 1987 (Sirovich 1987 a, b) the method of
snapshots. The central idea of this technique is to
assume that the requisite eigenfunction, ¿…z†, can be
expressed as a linear combination of the snapshots, i.e.

¿…z† ˆ
X

k

ckvk…z† …16†

Substituting the above expression for ¿…z† on equation
(15), we obtain the eigenvalue problem

… ­

¬

1
K

XK

µ 1̂

vµ…z†vµ… -z†
XK

kˆ1

ckvk… -z† d -z ˆ ¶
XK

k 1̂

ckvk…z† …17†
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De® ning

Bµk :ˆ 1
K

… ­

¬

vµ… -z†vk… -z† d -z …18†

the eigenvalue problem of equation (17) can be equiva-
lently written as

Bc ˆ ¶c …19†

The solution of the above eigenvalue problem (which
can be obtained by utilizing standard methods from
matrix theory) yields the eigenvectors c ˆ ‰c1 ¢ ¢ ¢ cKŠ
which can be used in equation (16) to construct the
eigenfunction ¿…z†. From the structure of the matrix
B, it follows that it is symmetric and positive semi-
de® nite, and thus, its eigenvalues, ¶µ, µ ˆ 1 ; . . . ;K, are
real and non-negative. Furthermore

… ­

¬

¿µ…z†¿k…z† dz ˆ 0; µ 6̂ k …20†

Remark 2: The optimality of the empirical eigenfunc-
tions obtained via K± L expansion can be understood
as follows. Consider a snapshot vµ…z† of the ensemble
of snapshots, vµ , and the set of empirical eigenfunc-
tions obtained by applying K± L expansion to vµ, and
let

vµ…z† ˆ
XL

l 1̂

®l¿l…z† …21†

be the decomposition of vµ…z† with respect to this basis.
Assume that the eigenfunctions have been ordered so
the corresponding eigenvalues satisfy ¶1 > ¶2 > ¢ ¢ ¢ >
¶l‡ 1. Then, it can be shown (Holmes et al. 1996) that
if fÁ1 ;Á2 ; . . . ;Áµg is some arbitrary set of orthonormal
basis functions in which we expand vµ…z†, then the fol-
lowing result holds for any L

XL

l 1̂

h…¿l ;vµ†2i ˆ
XL

lˆ1

¶l ¶
XL

l 1̂

h…Ál ;vµ†2i …22†

This implies that the projection on the subspace spanned
by the empirical eigenfunctions will on average contain
the most energy possible compared to all other linear
decompositions, for any number of modes L .

4. Derivation of ® nite-dimensional approximations

In this section, we use a combination of Galerkin’s
method with the concept of approximate inertial mani-
folds, known as non-linear Galerkin’s method, to derive
low-dimensional dynamical systems of non-linear ordin-
ary di� erential equations that accurately reproduce the
dynamics and solutions of the non-linear parabolic PDE
system of equation (1). To this end, we assume that we
have available an orthogonal and complete set of global

(in the sense that they span the entire domain of de® ni-
tion of the process) basis functions, ¿n…z†, that satisfy
the boundary conditions of equation (2). In practice,
¿n…z† may be the set of empirical eigenfunctions
obtained through K± L expansion. In the remainder of
this section, we precisely characterize the accuracy of the
® nite-dimensional approximations obtained through
linear and non-linear Galerkin’s method.

4.1. L inear Galerkin’s method

Let Ha be a subspace, de® ned as

Ha ˆ span f¿1 ;¿2 ; ;¿Ng

where ¿n (n ˆ 1 ; . . . ;N) denotes a basis function, and
de® ne Pa to be a projection operator from
H…‰¬;­ Š; R n† to Ha, so that the state x of the system of
equation 5 can be written as

xa ˆ Pax …23†

Applying Pa to the system of equation (5) and using that
xa ˆ Pax, the system of equation (5) can be approxi-
mated by the following N-dimensional ODE system:

dxa

dt
ˆ Aa…xa† ‡ Bau ‡ fa…xa†

y ˆ Cxa

xa…0† ˆ Pax…0† ˆ Pax0

9
>>>>=

>>>>;

…24†

where Aa…xa† ˆ PaA…xa†, Ba ˆ PaB, fa…xa† ˆ Pa f …xa†,
and Aa…xa†; fa…xa† are Lipschitz vector functions.
Proposition 1 that follows establishes a convergence
property for the discrepancy between the solutions of
the PDE system of equation 5 and the approximation
of equation (24), for su� ciently large N. The proof of
the proposition is based on standard perturbation argu-
ments and the fact that the solutions of the systems of
equations (5) and (24) are assumed to be su� ciently
smooth and exponentially stable, and will not be pre-
sented for brevity.

Proposition 1: Consider the system of equation (5) with
u…t† ² 0 and assume that its solution is su� ciently
smooth. Suppose also that the system of equation (24) is
locally exponentially stable, for any N. Then, there ex-
ists an N su� ciently large so that 8t ¶ 0

jjx…t† ¡ xa…t†jj2 µ ·…N† …25†

where ·…N† is a small positive real number that depends
on N and satis ® es limN!1 ·…N† ˆ 0, and xa…t† is the sol-
ution of the system of equation (24) with u…t† ² 0.

Remark 3: The assumption that the system of equa-
tion (24) (and thus, the system of equation (5)) is
locally exponentially stable is necessary in order to
prove that the estimates of equation (25) hold for all
times. When the system of equation (24) is not expo-
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nentially stable, one can only prove that the estimates
of equation (25) hold for t 2 ‰0 ;½ Š where ½ is a positive
real number of O…1†.

4.2. Non-linear Galerkin’s method based on singular
perturbations

4.2.1. Singular perturbation formulation. The use of
linear Galerkin’s method for model reduction usually
leads (depending on the desired accuracy) to a large-
scale discretization of the parabolic PDE system of
equation (1) described by the system of equation (24).
To reduce further the dimension of the system of
equation (24) while preserving the accuracy of the
resulting low-dimensional approximation, we take
advantage of the fact that the dominant dynamics of
parabolic PDE systems are characterized by a small
number of degrees of freedom. To quantify this gen-
eric property, we initially compute the linearization of
the non-linear system of equation (24) around an equi-
librium point in the region of interest (which, for sim-
plicity, is assumed to be the origin) to obtain

dxa

dt
ˆ J axa ‡ Bau …26†

where J a is the Jacobian of the linearization of the non-
linear term Aa…xa† ‡ fa…xa† around the origin. Using the
above linearization, we can rewrite the system of equa-
tion (24) as

dxa

dt
ˆ J axa ‡ Bau ‡

-fa…xa†

y ˆ Cxa

xa…0† ˆ Pax…0† ˆ Pax0

9
>>>>>=

>>>>>;

…27†

where -fa…xa† :ˆ Aa…xa† ‡ fa…xa† ¡ J a…xa† is a non-linear
vector function which does not include any linear terms.
Let -

¶1 ;
-
¶2 ; ;

-
¶N be the eigenvalues of J a and

À1 ;À2 ; . . . ;ÀN be the corresponding eigenvectors, and
let ¼…J a† ˆ f -

¶1 ; . . . ;
-
¶Ng be the eigenspectrum of J a.

Assumption 1 that follows states that the eigenspectrum
¼…J a† can be partitioned into a small set consisting of
eigenvalues which are close to the imaginary axis and a
® nite complement consisting of eigenvalues which are
far in the left half of the complex plane (see also Ray
1981, Chen and Chang 1992, Christo® des and Daoutidis
1997 for similar assumptions and Remark 4 below for a
discussion on the nature of this assumption).

Assumption 1:

(1) Re f -
¶1g ¶ Re f -

¶2g ¶ ¢ ¢ ¢ ¶ Re f -
¶jg ¶ ¢ ¢ ¢,

where Re f -
¶jg denotes the real part of -

¶j .

(2) ¼…J a† can be partitioned as ¼…J a† ˆ ¼1…J a† ‡
¼2…J a†, where ¼1…J a† consists of the ® rst m (with

m ® nite) eigenvalues, i.e. ¼1…J a† ˆ f -
¶1 ; . . . ;

-
¶mg,

and jRe f -
¶1gj=jRe f -

¶mgj ˆ O…1†.
(3) Re -

¶m‡ 1 < 0 and jRe f -
¶mgj=jRe f -

¶m‡ 1gj ˆ O…°†
where ° :ˆ jRe -

¶1j=jRe -
¶m‡ 1j < 1 is a small posi-

tive number.

(4) The eigenvectors À1 ;À2 ; . . . ;ÀN are linearly inde-
pendent.

De® ning the matrix T ˆ ‰À1 À2 . . . ÀNŠ (note that
T is an invertible matrix) and using the coordinate
change ‰xT

s xT
f ŠT ˆ Txa , the system of equation (27)

can be written as

dxs

dt
ˆ Asxs ‡ Bsu ‡

-fs…xs ;xf †

@xf

@t
ˆ Af xf ‡ Bf u ‡ -f f …xs ;xf †

y ˆ Cxs ‡ Cxf

xs…0† ˆ Psx…0† ˆ Psx0 ; xf …0† ˆ Pf x…0† ˆ Pf x0

9
>>>>>>>>>>>=

>>>>>>>>>>>;

…28†

where xs 2 Hs , xf 2 Hf …dim …Hs†+ dim …Hf †=
dim …Ha††, As is a diagonal matrix of dimension
m £ m whose elements are … -

¶1 ; . . . ;
-
¶m †, Af is a diagonal

matrix of dimension …N ¡ m† £ …N ¡ m† whose ele-
ments are … -

¶m‡ 1 ; . . . ;
-
¶N† (this means that Af is a stable

matrix; it follows from part 3 of assumption 1), and
Bs ;Bf are constant vectors and -fs…xs ;xf †;

-f f …xs ;xf † are
vector functions whose explicit form is omitted for brev-
ity. Using that ° ˆ jRe -

¶1j=jRe -
¶m‡ 1j, the system of

equation (28) can be written in the form:

dxs

dt
ˆ Asxs ‡ Bsu ‡

-fs…xs ;xf †

°
@xf

@t
ˆ Af °xf ‡ °Bf u ‡ °

-f f …xs ;xf †

y ˆ Cxs ‡ Cxf

xs…0† ˆ Psx…0† ˆ Psx0 ; xf …0† ˆ Pf x…0† ˆ Pf x0

9
>>>>>>>>>>>=

>>>>>>>>>>>;

…29†

where Af ° ˆ °Af . Since ° is a small positive number less
than unity (assumption (1), part (3)), the system of equa-
tion (29) is in the standard singularly perturbed form,
with xs being the slow states and xf being the fast states.
De® ning the fast time-scale ½ ˆ t=°, obtaining the repre-
sentation of the system of equation (29) in the ½ time
scale, and setting ° ˆ 0, we get the fast subsystem

@xf

@½
ˆ Af °xf …30†

which is clearly exponentially stable.
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Remark 4: Referring to Assumption 1, we note that
the assumption of existence of only a few dominant
modes that describe the dominant dynamics of the
large scale discretizations of a non-linear parabolic
PDE system is usually satis® ed by the majority of dif-
fusion± reaction processes (Ray 1981, Chen and Chang
1992, Christo® des and Daoutidis 1996a). However, this
assumption is not satis® ed in the cases of: (a) ® rst-
order hyperbolic PDE systems (i.e. convection± reac-
tion processes) where the eigenvalues cluster along ver-
tical, or nearly vertical, asymptotes in the complex
plane (e.g. Christo® des and Daoutidis 1996b), and (b)
parabolic PDE systems for which the spatial coordi-
nate is de® ned in the in® nite domain, where the eigen-
spectrum is continuous and wave-like behaviour is
usually exhibited (e.g. Marquardt 1990).

4.2.2. Inertial manifold and approximate inertial mani-
fold. The time-scale multiplicity of the system of equa-
tion (29) and the exponential stability of its fast
dynamics suggest employing the concept of inertial
manifold (Temam 1988) to obtain an m-dimensional
ODE system which yields solutions that are close, up
to a desired accuracy, to the ones of the system of
equation (29). Speci® cally, referring to the system of
equation (29), an inertial manifold M, if it exists, is a
subset of Ha , which satis® es the following properties
(Temam 1988): (i) M is a ® nite-dimensional Lipschitz
manifold, (ii) M is a graph of a Lipschitz function
S…xs ;u ;°† mapping Hs £ R l £ …0 ;°¤Š into Hf and for
every solution xs…t†;xf …t† of equation (29) with
xf …0† ˆ S…xs…0†;u; °†, then

xf …t† ˆ S…xs…t†;u ;°†; 8 t ¶ 0 …31†

and (iii) M attracts every trajectory exponentially. The
evolution of the state xf on M is given by equation (31),
while the evolution of the state xs is governed by the
® nite-dimensional inertial form

dxs

dt
ˆ Asxs ‡ Bsu ‡

-fs…xs ;S…xs ;u ;°†† …32†

Assuming that u…t† is smooth, di� erentiating equation
(31) and utilizing equation (29), S…xs ;u ;°† can be com-
puted as the solution of the partial di� erential equation

°
@S
@xs

‰Asxs ‡ Bsu ‡ -fs…xs ;xf †Š ‡ °
@S
@u

_u

ˆ Af °xf ‡ °Bf u ‡ °
-ff …xs ;xf † …33†

where xs 2 Hs , u 2 R l , ° 2 …0 ;°¤Š. From the complexity
of equation (33), it is evident that the derivation of an
analytic form of S…xs ;u ;°† is an extremely di� cult (if
not impossible) task. To overcome the problems associ-
ated with the proof of existence of the inertial manifold
and the computation of S…xs ;u ;°†, the following stan-
dard approximation procedure, which takes advantage

of the two-time-scale property of the system of equation
(29), is employed to compute approximations of
S…xs ;u ;°† (approximate inertial manifolds) and approx-
imations of the inertial form, of desired accuracy (see
also Kokotovic et al. 1986, Christo® des and Daoutidis
1997). Consider an expansion of S…xs ;u ;°† and u in a
power series in °:

u ˆ -u0 ‡ ° -u1 ‡ °2 -u2 ‡ ¢ ¢ ¢ ‡ °k -uk ‡ O…°k‡ 1†

S…xs ;u; °† ˆ S0…xs ;u† ‡ °S1…xs ;u† ‡ °2S2…xs ;u†

‡ ¢ ¢ ¢ ‡ °kSk…xs ;u† ‡ O…°k‡ 1† …34†

where -uk ;Sk are smooth functions. Substituting the
expressions of equation (34) into equation (33), and
equating terms of the same power in °, one can obtain
approximations of S…xs ;u ;°† up to a desired order.
Substituting the expansion for S…xs ;u;°† and u up to
order k into equation (32), the following approximation
of the inertial form is obtained:

dxs

dt
ˆ Asxs ‡ Bs… -u0 ‡ ° -u1 ‡ °2 -u2 ‡ ¢ ¢ ¢ ‡ °k -uk†

‡ -fs…xs ;S
0…xs ;u† ‡ °S1…xs ;u† ‡ °2S2…xs ;u†

‡ ¢ ¢ ¢ ‡ °kSk…xs ;u†† …35†

The approach that we used for the derivation of the
above m-dimensional system is usually referred to as
non-linear Galerkin’ s method. Assuming that the
above system is exponentially stable, one can use stan-
dard results from singular perturbation theory for ® nite-
dimensional systems (Khalil 1992) (see also Kokotovic
et al. 1986) to show, that if ° is su� ciently small, then
the solutions xs…t†;xf …t† of the system of equation (29)
satis® es for all t 2 ‰tb ;1 †

xs…t† ˆ ~xs…t† ‡ O…°k‡ 1†

xf …t† ˆ ~xf …t† ‡ O…°k‡ 1†

9
=

;
…36†

where tb is the time required for xf …t† to approach ~xf …t†,
~xs…t† is the solution of equation (35) with u…t† ² 0, and
~xf …t† ˆ °S1…~xs ;0† ‡ °2S2…~xs ;0† ‡ ¢ ¢ ¢ ‡ °kSk…~xs ;0†. The
estimates of equation (25) and equation (36) can be in
turn used to characterize the discrepancy between the
solution of the open-loop in® nite-dimensional system
of equation (5), x…t† (and thus, the solution of the para-
bolic PDE system of equation (1) with u…t† ² 0) and the
solution

~xa…t† ˆ T ¡1‰~xT
s …t† ~xT

f …t†ŠT

ˆ T ¡1‰~xT
s …t† …°S1…~xs…t†;0†

‡ ¢ ¢ ¢ ‡ °kSk…~xs…t†;0††TŠT
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which is obtained from the O…°k† approximation of the
open-loop inertial form (i.e. equation (35) with
u…t† ² 0). In particular, substituting equation (36) into
the equation xa…t† ˆ T ¡1‰xT

s …t† xT
f …t†ŠT, we have that

xa…t† ˆ T ¡1‰…~xs…t† ‡ O…°k‡ 1††T …~xf …t† ‡ O…°k‡ 1††TŠT

ˆ ~xa…t† ‡ O…°k‡ 1†; 8 t ¶ tb …37†

Utilizing the de® nition of the order of magnitude and
the result of Proposition 1 that x…t† ˆ xa…t† ‡ O…·…N††,
we ® nally obtain the following characterization for the
discrepancy between x…t† and ~xa…t†

jjx…t† ¡ ~xa…t†jj2 µ k1°k‡ 1 ‡ ·…N†; 8 t ¶ tb …38†

where k1 is a positive real number.

Remark 5: Following the proposed approximation
procedure, it can be shown that the O…°† approxima-
tion of S…xs ;u ;°† is S0…xs ;u† ˆ 0 and the correspond-
ing approximate inertial form is of the form

dxs

dt
ˆ Asxs ‡ Bs

-u0 ‡
-fs…xs ;0†

ys ˆ Cxs

9
>=

>;
…39†

The above system with -u ² 0 does not utilize any infor-
mation about the structure of the fast subsystem, thus
yielding solutions which are only O…°† close to the sol-
utions of the open-loop system of equation (24). On the
other hand, the O…°2† approximation of S…xs ;u ;°† can
be shown to be of the form

S…xs ;u ;°† ˆ S0…xs ;0† ‡ °S1…xs ;0†

ˆ °…Af °†
¡1‰¡ -f f …xs ;0† ‡ Bf

-u0Š …40†

The corresponding open-loop approximate inertial form
has the form

dxs

dt
ˆ Asxs ‡ Bs

-u0 ‡ °Bs
-u1

‡
-fs…xs ;…Af †¡1‰¡ -f f …xs† ‡ Bf

-u0Š†

ys ˆ Cxs ‡ °C…Af °†
¡1‰¡ -f f …xs ;0† ‡ Bf

-u0Š

9
>>>>>=

>>>>>;

…41†

The above system does utilize information about the
structure of the fast subsystem, and thus allows to
obtain solutions which are O…°2† close to the solutions
of the open-loop system of equation (24).

Remark 6: We point out that when the approximate
ODE model of equation (35) is obtained through non-
linear Galerkin’ s method with empirical eigenfunctions,
it provides a valid approximation of the parabolic
PDE model in a broad region of the state space and
not only in the region that was used for the computa-
tion of the snapshots, provided that the ensemble of

snapshots is su� ciently large and contains su� cient in-
formation of the global dynamics of the PDE system.
This property is a consequence of the fact that the em-
pirical eigenfunctions form an orthogonal set of func-
tions whose dimension is equal to the number of
snapshots, and thus, it can be made arbitrarily large
(even though completeness of this set cannot be guar-
anteed). Therefore, the computation of approximate
ODE models through Galerkin’s method with empiri-
cal eigenfunctions is conceptually similar to the com-
putation of ODE models through Galerkin’s method
with other standard basis functions sets (sine and co-
sine functions, Legendre polynomials, etc.), and thus,
the result of Proposition 1 guarantees the convergence
of the ® nite-dimensional approximation when empiri-
cal eigenfunctions are used, as long as the ensemble
of snapshots is su� ciently representative and large.
Finally, the major practical bene® t of using empirical
eigenfunctions is that they directly satisfy the bound-
ary conditions of the PDE system; a very important
property for the case of PDEs with non-linear bound-
ary conditions (see, for example, the RTCVD process
considered in } 4).

5. Finite-dimensional non-linear control

In this section, we initially synthesize a ® nite-dimen-
sional non-linear output feedback controller on the basis
of the system of equation (35) that guarantees stability
and enforces output tracking in the closed-loop ODE
system. Then, the estimates of equation (36) are used
to establish that the same controller also exponentially
stabilizes the closed-loop PDE system and ensures that
the discrepancy between the output of the closed-loop
ODE system and the output of the closed-loop PDE
system is of O…°k‡ 1 ‡ ·…N††, provided that ° is su� -
ciently small.

The controller is constructed through a standard
combination of a state feedback controller with a state
observer. In particular, we consider a state feedback
control law of the general form

u ˆ -u0 ‡ ° -u1 ‡ ¢ ¢ ¢ ‡ °k -uk

ˆ p0…xs† ‡ Q0…xs†v ‡ °‰ p1…xs† ‡ Q1…xs†vŠ

‡ ¢ ¢ ¢ ‡ °k‰ pk…xs† ‡ Qk…xs†vŠ …42†

where p0…xs†; . . . ;pk…xs† are smooth vector functions,
Q0…xs†; . . . ;Qk…xs† are smooth matrices, and v 2 R l is
the constant reference input vector. The state feedback
law of equation (42) will be constructed by following a
sequential procedure to enforce stability and output
tracking in the O…°k‡ 1† approximation of the closed-
loop inertial form. Speci® cally, the component
-u0 ˆ p0…xs† ‡ Q0…xs†v will be initially synthesized on
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the basis of the O…°† approximation of the inertial form;
then the component -u1 ˆ p1…xs† ‡ Q1…xs†v will be
synthesized on the basis of the O…°2† approximation of
the inertial form. In general, at the k-th step, the com-
ponent -uk ˆ pk…xs† ‡ Qk…xs†v will be synthesized on the
basis of the O…°k‡ 1† approximation of the inertial form
(equation (35)). The synthesis of ‰ p¸…xs†;Q¸…xs†Š,
¸ ˆ 0 ; . . . ;k, will be performed, at each step, utilizing
standard geometric control methods for non-linear
ODEs (Isidori 1989) (see Theorem 1 below for an ex-
plicit controller synthesis formula).

The following m-dimensional state observer is also
considered for the implementation of the state feedback
law of equation (42):

d²

dt
ˆ As² ‡ Bs… p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ

‡ ¢ ¢ ¢ ‡ °k‰ pk…²† ‡ Qk…²†vŠ†

‡ -fs…²;°S1…²;u† ‡ °2S2…²;u† ‡ ¢ ¢ ¢ ‡ °kSk…²;u††

‡ L …y ¡ ‰C² ‡ Cf°S1…²;u† ‡ °2S2…²;u†

‡ ¢ ¢ ¢ ‡ °kSk…²;u†gŠ† …43†

where ² 2 Hs denotes the observer state vector, and
L is a matrix chosen so that the eigenvalues of the
matrix

CL ˆ As ‡
@

-fs

@²

¡ ¢
…² ²̂s †

¡ L C²s ‡ C @

@²
°S1…²;u…²†† ‡ °2S2…²;u…²††

¡

‡ ¢ ¢ ¢ ‡ °kSk…²;u…²†††…²ˆ²s†

lie in the open left-half of the complex plane, where
²s denotes the steady-state for the system of equation
(43).

Theorem 1 below provides the synthesis formula of
the output feedback controller and conditions that guar-
antee closed-loop stability in the case of considering an
O…°2† approximation of the exact slow system for the
synthesis of the controller. The derivation of synthesis
formulas for higher-order approximations of the out-
put feedback controller is notationally complicated,
although conceptually straightforward, and thus will
be omitted for reasons of brevity. In order to simplify
the statement of the theorem, we set Asxs ‡
fs…xs ;0† ˆ f0…xs†, Bs ˆ g0 , Cxs ˆ h0…xs†, Asxs ‡ Bsu0 ‡
-fs…xs ;…Af †¡1‰¡ -f f …xs† ‡ Bf

-u0Š† ˆ f1…xs ;°†, °Bs ˆ g1…xs ;°†,
and Cxs ‡ C°…Af °†

¡1‰¡ -f f …xs ;0† ‡ Bf
-u0Š ˆ h1…xs ;°†. Fur-

thermore, referring to the system of equation (39), we
de® ne the relative order of the output yi

s with respect to
the vector of manipulated inputs u as the smallest inte-
ger ri for which

‰L g1
0
L ri¡1

f0
hi

0…xs† ¢ ¢ ¢ L gl
0
L ri¡1

f0
hi

0…xs†Š 6² 0 ¢ ¢ ¢ 0‰ Š
…44†

or ri ˆ 1 if such an integer does not exist, and the
characteristic matrix

C0…xs† ˆ

L g1
0
L r1¡1

f0
h1

0…xs† ¢ ¢ ¢ L gl
0
L r1¡1

f0
h1

0…xs†

L g1
0
L r2¡1

f0
h2

0…xs† ¢ ¢ ¢ L gl
0
L r2¡1

f0
h2

0…xs†

..

.

L g1
0
L rl¡1

f0
hl

0…xs† ¢ ¢ ¢ L gl
0
L rl¡1

f0
hl

0…xs†

2
666666664

3
777777775

…45†

One can similarly de® ne the characteristic matrix,
C1…²;°†, for the system of equation (41) (the explicit
form of C1…²; °† is omitted for brevity).

Theorem 1: Consider the parabolic PDE system of
equation (5), for which Assumption 1 holds. Consider
also the O…°2† approximation of the inertial form, and
assume that its characteristic matrix C1…xs ;°† is invert-
ible 8xs 2 Hs , ° 2 ‰0; °¤Š. Suppose also that the following
conditions hold: …1† the roots of the equation
det …B…s†† ˆ 0 where B…s† is an l £ l matrix, whose
…i ; j†th element is of the form

P ri
k 0̂ ­ i

jksk , lie in the open
left-half of the complex plane, and …2† the unforced
(v ² 0) zero dynamics of the O…°2† approximation of
the inertial form is locally exponentially stable. Then,
there exist constants ·1 ;·2 ;°¤ such that if jxs…0†j µ ·1 ,
jjxf …0†jj2 µ ·2 and ° 2 …0 ;°¤Š, then if ²…0† ˆ xs…0†, the
dynamic output feedback controller

d²

dt
ˆ As² ‡ Bs p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ… †

‡ -fs…²;°S1…²;u†† ‡ L …y ¡ ‰C² ‡ CfS0…²;u†

‡ °S1…²;u†gŠ†

u ˆ p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ

:ˆ ‰­ 1r1
¢ ¢ ¢ ­ lrl

ŠC0…²† ¡1
v ¡

Xl

i 1̂

Xri

kˆ0

­ ikL k
f0

hi
0…²†

( )

‡ ° ‰­ 1r1
¢ ¢ ¢ ­ lrl

ŠC1…²;°† ¡1

£ v ¡
Xl

i 1̂

Xri

k 0̂

­ ikL k
f1 h

i
1…²;°†

( )
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(a) guarantees exponential stability of the closed-loop
system, and

(b) ensures that the outputs of the closed-loop system
satisfy for all t 2 ‰tb ;1 †

yi…t† ˆ yi
s…t† ‡ O…°2 ‡ ·…N††; i ˆ 1 ; . . . ; l …47†

where tb is the time required for the o� -manifold
fast transients to decay to zero exponentially, and
yi

s…t† is the solution of

Xl

i 1̂

Xri

k 0̂

­ ik
dkyi

s

dtk
ˆ v; i ˆ 1; . . . ; l …48†

Proof of theorem 1: Substituting the output feedback
controller of equation (46) into the in® nite dimensional
system of equation (5), we get

d²

dt
ˆ As² ‡ Bs… p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ†

‡
-fs…²;°S1…²; -u0†† ‡ L …Cxs ‡ Cxf ¡ C²

¡ °CS1…²; -u0††

_x ˆ A…x† ‡ B p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ… †

‡ f …x†

y ˆ Cx

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

…49†

where -u0 ˆ p0…²† ‡ Q0…²†v. Applying Galerkin’ s method
to the x-subsystem of the above set of equations and
using the linearization of equation (26), we obtain

d²

dt
ˆ As² ‡ Bs p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ… †

‡ -fs…²;°S1…²; -u0†† ‡ L …Cxs ‡ Cxf ¡ C²

¡ °CS1…²; -u0††

dxa

dt
ˆ J axa ‡ Ba p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ… †

‡ -fa…xa†

y ˆ Cxa

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

…50†

Since the matrix J a satis® es the properties of
Assumption 1, the above system can be directly written
in the singularly perturbed form

d²

dt
ˆ As² ‡ Bs p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ… †

‡
-fs…²;°S1…²; -u0†† ‡ L …Cxs ‡ Cxf ¡ C²

¡ °CS1…²; -u0††

dxs

dt
ˆ Asxs ‡ Bs p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ… †

‡ -fs…xs ;xf †

°
@xf

@t
ˆ Af °xf ‡ °Bf … p0…²† ‡ Q0…²†v ‡ °‰ p1…²†

‡ Q1…²†vŠ† ‡ °
-f f …xs ;xf †

y ˆ Cxs ‡ Cxf

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>;

…51†

Performing a two-time-scale decomposition in the above
system, the fast subsystem takes the form

@xf

@½
ˆ Af °xf …52†

which is exponentially stable (Assumption 1; part (3)).
The O…°2† approximation of the closed-loop inertial
form is

d²

dt
ˆ As² ‡ Bs p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ… †

‡ -fs…²;°S1…²; -u0†† ‡ L …Cxs ‡ °CS1…xs ; -u0† ¡ C²

¡ °CS1…²; -u0††

dxs

dt
ˆ Asxs ‡ Bs p0…²† ‡ Q0…²†v ‡ °‰ p1…²† ‡ Q1…²†vŠ… †

‡ -fs…xs ; °S1…xs ; -u0††

yi
s ˆ Cixs ‡ °CiS1…xs ; -u0†; i ˆ 1 ; . . . ; l

9
>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

…53†

Using the hypothesis ²…0† ˆ xs…0†, the above system can
be written as

dxs

dt
ˆ Asxs ‡ Bs… p0…xs† ‡ Q0…xs†v ‡ °‰ p1…xs†

‡ Q1…xs†vŠ† ‡
-fs…xs ;°S1…xs ; -u0††

ys
i ˆ Cixs ‡ °CiS1…xs ; -u0†; i ˆ 1 ; . . . ; l

9
>>>>>=

>>>>>;

…54†

where -u0 ˆ p0…xs† ‡ Q0…xs†v. Computing the time-
derivatives of the controlled output yi

s up to order ri
and substituting into equation (48), one can show
that the input/output response of equation (48) is
enforced in the above closed-loop system.
Furthermore, an approach, similar to the one in
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Isidori (1989), can be followed to establish that
Assumptions 1 and 2 of the theorem guarantee that
the system of equation (54) is locally exponentially
stable. Therefore, we have that the system of equation
(53) is locally exponentially stable and its outputs yi

s ,
i ˆ 1 ; . . . ; l , change according to equation (48). A direct
application of the estimates of equation (34) then yields
that there exist positive real numbers ·1 ;·2 ;°¤ such that
if jxs…0†j µ ·1 , kxf …0†k2 µ ·2 and ° 2 …0 ;°¤Š, the closed-
loop in® nite-dimensional system is exponentially stable
and the relation of equation (47) holds. &

Remark 7: The exponential stability of the closed-
loop system guarantees that in the presence of small
errors in process parameters, the states of the closed-
loop system will be bounded. Furthermore, since the
input/output spaces of the closed-loop system are ® nite
dimensional, and the controller of equation (46) en-
forces a linear input/output dynamics between y and v,
it is possible to implement a linear error feedback con-
troller around the …y ¡ v† loop to ensure asymptotic
o� setless output tracking in the closed-loop system, in
the presence of constant unknown process parameters
and unmeasured disturbance inputs.

Remark 8: We note that the approach followed here
for the synthesis of ® nite-dimensional controllers is not
directly applicable to hyperbolic PDE systems where
the eigenvalues cluster along vertical or nearly vertical
asymptotes in the complex plane and thus, the control-
ler has to be modi® ed to compensate for the destabiliz-
ing e� ect of the residual modes (Balas 1991).

Remark 9: Note that in the case of imperfect initiali-
zation of the observer states (i.e. ²…0† 6̂ xs…0†),
although a slight deterioration of the performance may
occur (i.e. the requirement of equation (47) will not be
exactly imposed in the closed-loop system), the output
feedback controller of Theorem 1 guarantees exponen-
tial stability and asymptotic output tracking in the
closed-loop system.

6. Non-linear model reduction and control of rapid

thermal chemical vapour deposition

We consider a low pressure rapid thermal chemical
vapour deposition (RTCVD) process shown in ® gure 1.
This process closely resembles an experimental RTCVD
reactor located at the North Carolina State University
Center for Advanced Electronic Materials Processing
(Kiether et al. 1994). The process consists of a quartz
chamber, three banks of tungsten heating lamps which
are used to heat the wafer and a fan which is located at
the bottom of the reactor and is used to cool the cham-
ber. The furnace is designed so that the top lamp bank A
and the bottom lamp bank C heat the total area of the
wafer, while the lamp bank B, which surrounds the reac-

tor, is used to heat the wafer edge in order to compen-
sate for heat loss that occurs from the edge (radiative
cooling between wafer edge and quartz chamber). The
wafer is rotated while heated for azimuthal temperature
uniformity. A small opening exists on the top of the
quartz chamber which is used to feed the reacting
gases. The objective of the process is to deposit a
0:5 mm ® lm of polycrystalline silicon on a 6-inch wafer
in 40 s. To achieve this objective, the reactor is fed with
10% SiH4 in Ar at 5 torr pressure and the heating lamps
are used to heat the wafer from room temperature to
1200 K (this is the temperature where the deposition
reactions take place), at a heating rate of the order of
180K/s.

In order to develop a non-linear model-based feed-
back controller for the RTCVD process, we initially
consider a detailed mathematical model for the process
which is similar to the one used in Theodoropoulou et al.
(1998) (see also Breedijk et al. 1993) and is based on the
following standard assumptions

(1) Wafer temperature uniformity in the azimuthal
direction due to wafer rotation and symmetric
reactor design.

(2) Negligible wafer temperature variations in the
axial direction due to small thickness of the
wafer.
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Figure 1. A rapid thermal chemical vapour deposition process.



(3) Negligible heat transfer from the wafer to the
reactant gases due to low pressure conditions
inside the chamber.

(4) Negligible heat of deposition reactions compared
to radiative heat transfer from the lamps to the
wafer.

(5) Constant optical properties of the wafer and the
chamber.

(6) Perfect mixing of the reacting mixture.

(7) Spatially uniform quartz chamber wall thermal
dynamics.

Under the above assumptions an energy balance on
the wafer yields the non-linear parabolic PDE

»wT amb
@

@t
…Cpw

…T †T † ˆ T amb

R2
w

1
r

@

@r
µ…T †r

@T
@r

¡ ¢

¡ qrad…T ;r†
¯z

…55†

subject to the boundary conditions

@T
@r

rˆ0

ˆ 0 …56†

µ…T †@T
@r

¡ ¢
rˆ1

ˆ ¡¼°wT 4
amb…T 4 ¡ T 4

c † ‡ qedgeub …57†

In the above equations, T amb denotes the ambient tem-
perature, T ˆ T 0=T amb denotes the dimensionless wafer
temperature, »w ;Cpw

;Rw denote the density, heat ca-
pacity and radius of the wafer, r ˆ r 0=Rw denotes the
dimensionless radial coordinate, qrad is a term that
accounts for radiative energy transfer between the
wafer and its environment (see below for an explicit
statement of the radiative phenomena contributing to
this term), T c ˆ T 0

c =T amb denotes the dimensionless tem-
perature of the chamber, ¼ denotes the Boltzmann con-
stant, °w denotes the emissivity of the wafer, qedge

denotes the energy ¯ ux at the edge of the wafer and ub
denotes the percentage of the side lamp power that is
used. The wafer heat capacity and thermal conductivity
depend on temperature according to the relations

µ…T † ˆ 50:5 ln …TT amb†2 ¡ 734:0 ln …TT amb†

‡ 2:69 £ 103 W=m K

Cpw
…T † ˆ 1:06 £ 103 ¡ 1:04 £ 105=…TT amb† J=…Kg K†

9
>>>>=

>>>>;

…58†

The radiative energy transfer term qrad consists of two
parts: the radiant energy absorbed from the heating
lamps and the radiant energy exchanged between the
wafer and reactor walls, i.e.

qrad ˆ ¡Q lamps ;w ¢ u ‡ qdw;t ‡ qdw;b …59†

where Q lamps;w is a vector of the total energy emitted
from the three lamp banks and absorbed by the wafer,
u ˆ ‰uAuBuCŠ is the percentage of the lamp power that is
used, qdw;t (qdw;b) is the net radiative energy transferred
to the wafer top (bottom) surface from sources other
than the lamps. The heating lamp energy ¯ ux to the
wafer surface, Q lamps;w, is computed by a ray-trace algor-
ithm, which calculates the radiant energy ¯ ux distribu-
tions directly from the lamps to the wafer as well as the
contribution of re¯ ected arrays. The radiant energy ¯ ux
distribution for each lamp bank as a function of wafer
radial position can be found in Theodoropoulou et al.
(1998). The radiation exchange between the wafer and
the walls (terms qdw;t and qdw;b) is computed using the
net-radiation method. We note that qdw;t ;qdw;b are highly
non-linear functions of the wafer and chamber tempera-
tures, geometry of the reactor and emissivity of wafer
and chamber.

An energy balance on the quartz chamber yields the
ordinary di� erential equation

T ambMc
dT c

dt
ˆ °cQ lamps ¢ u ¡ Ahem qh ¡ Acyl qc

¡ Qconvect ¡ ¼°cAcT
4
amb…T 4

c ¡ 1† …60†

where Mc denotes the chamber thermal mass, °c denotes
the emissivity of the chamber, Ahem denotes the chamber
hemispherical area, Acyl denotes the chamber cylindrical
area and Ac denotes the chamber outside area. qh and qc
denote the net energy radiated from the hemispherical
and cylindrical portions of the quartz chamber, respect-
ively, and their expressions computed from the net-
radiation method can be found in Theodoropoulou
et al. (1998). The term Q lamps ¢ u represents energy
absorbed by the chamber directly from the heating
lamps, while Qconvect denotes the energy transferred
from the quartz chamber to the cooling gas by forced
convective cooling. The explicit computation of Qconvect

can be done by a simple cooling gas energy balance and
is given in Theodoropoulou et al. (1998).

The assumption of perfect mixing of the reacting
mixture allows us to derive the following set of ODEs
which describe the time evolution of the molar fraction
of SiH4 , XSiH4

, and hydrogen, XH2

dXSiH4

dt
ˆ ¡¬

…

Aw

Rs…T ;XSiH4
;XH2

† dAw

‡
1
½
…Xin

SiH4
¡ XSiH4

†

dXH2

dt
ˆ 2¬

…

Aw

Rs…T ;XSiH4
;XH2

† dAw ¡ 1
½

XH2

9
>>>>>>>>>=

>>>>>>>>>;

…61†
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where ¬ is the mole to mole conversion factor, Aw is the
wafer area, ½ is the residence time, Xin

SiH4
is the molar

fraction of SiH4 in the inlet stream to the reactor and Rs
is the rate of the deposition reactions

Rs…T ;XSiH4
;XH2

† ˆ k0 exp …¡®=RT T amb†XSiH4
Ptot

1 ‡ bXSiH4
Ptot ‡

����������������
XH2

Ptot
p

=c

…62†

where k0 is the pre-exponential constant, ® is the activa-
tion energy for deposition, Ptot is the total pressure and
b ;c are constants. The deposition rate of Si onto the
wafer surface is governed by the expression:

dS
dt

ˆ MW Si

»Si
Rs…T ;XSiH4

;XH2
† …63†

where MW Si and »Si denote the molecular weight and
density of Si, respectively. Note the Arrhenius depen-
dence of the deposition rate on wafer temperature in
equation (63) which means that non-uniform tempera-
ture results in non-uniform deposition, thereby implying
the need to develop and implement a non-linear feed-
back controller on the process in order to achieve
radially uniform wafer temperature.

We now turn to the application of the proposed
model reduction and output feedback control methods
to the RTCVD process. The values of the process par-
ameters used in the simulations are given in table 1. A
second-order ® nite di� erence scheme with 100 discreti-
zation points was initially used to compute an accurate
solution of the model of the RTCVD process (equations
(55), (60) and (61)). For time integration, the Euler
method was used. Following Theodoropoulou et al.
(1998), the non-linear boundary condition of equation
(57) was solved simultaneously at each time step using a
Gauss± Newton method. We found through extensive
simulation runs of the open-loop process model that
the solution of the process exists and is well-de® ned
for a wide range of operating conditions. A 40 s simula-
tion run of the process with the following initial con-
ditions: T ˆ 1, T c ˆ 1, S ˆ 0, XSiH4

ˆ 0:1 and XH2
ˆ 0

was used to compute 600 snapshots of the wafer tem-
perature pro® le. The deviations of these snapshots from
a mean spatially uniform wafer temperature pro® le were
used as data for determining the dominant spatial tem-
perature modes (wafer temperature empirical eigenfunc-
tions) through Karhunen± LoeÂ ve expansion. The ® rst
three empirical eigenfunctions (denoted by ¿2 , ¿3 and
¿4, respectively) computed via Karhunen± LoeÂ ve expan-
sion are shown in ® gure 2. Since we analysed tempera-
ture pro® le deviations, the ® rst eigenfunction was taken
to be a spatially uniform one. We also found that the
® rst three empirical eigenfunctions account for more
than 99:0% of the energy contained in the ensemble

of snapshots (i.e. ¶2 ‡ ¶3 ‡ ¶4 ¶ 0:99, when ¶2 ‡ ¢ ¢ ¢ ‡
¶µ‡ 1 ˆ 1 where µ ˆ 600 is the number of snapshots).

Then, a collocation formulation of Galerkin’s
method was used to obtain a low-order model that
describes the wafer temperature. The wafer temperature
was expanded in terms of four global basis functions:
one spatially uniform function plus the three empirical
eigenfunctions of ® gure 2. The three roots of the fourth
empirical eigenfunction were used as collocation points,
thereby forcing the residual to be orthogonal, and
therefore zero, at these points. Additional collocation
points were added at r ˆ 0 and r ˆ 1 to satisfy the
boundary conditions. Therefore, the dimension of the
constructed low-order model was ® ve. In order to test
the validity of the low-order model, simulations of the
detailed and low-order models were performed by using
an open-loop recipe (obtained from a trial and error
procedure) to manipulate the power of the top lamps
in order to heat the wafer from room temperature to
1200 K. The wafer temperature pro® les obtained by
the detailed and low-order models, and their di� erence
at all positions and times, are shown in ® gure 3. Clearly,
the predictive capabilities of the low-order model are
excellent.

The ® fth-order model obtained above was used to
synthesize a non-linear multivariable output feedback
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Table 1. Process parameters

A2 ˆ 182:41 £ 10¡4 m2

Ac ˆ 1217:31 £ 10¡4 m2

Acyl ˆ 794:83 £ 10¡4 m2

Ahem ˆ 422:48 £ 10¡4 m2

L c ˆ 15:43 £ 10¡2 m
L s ˆ 10 £ 10¡2 m
Rc ˆ 8:2 £ 10¡2 m
Rw ˆ 7:62 £ 10¡2 m
¯z ˆ 0:05 £ 10¡2 m
Mc ˆ 1422:6 J K¡1

qedge ˆ 49 £ 104 J s¡1 m¡2

b ˆ 78:95 torr¡1

c ˆ 0:38 torr1=2

ew ˆ 0:7
ec ˆ 0:37
»c ˆ 2:6433 £ 103 kgm¡3

V c ˆ 638:25 £ 106 m3

»w ˆ 2:3 £ 103 kgm¡3

Xin
SiH4

ˆ 0:1 kmolSiH4
kmol¡1

feed
Ptot ˆ 5:0 torr
MWSi ˆ 28:086 kgkmol¡1

»Si ˆ 2:3 £ 103 kgm¡3

R ˆ 8:314 £ 103 J kmol¡1 K¡1

Tamb ˆ 300:0 K
¬ ˆ 12:961 £ 106 kmol¡1

k0 ˆ 263:158 £ 101 kmolm¡2 s¡1 torr¡1

® ˆ 153:809 £ 106 J kmol¡1

¼ ˆ 5:6705 £ 10¡8 J s¡1 m¡2 K¡4

½ ˆ 0:380 s



controller using the controller synthesis formula of
theorem 1 with ° ˆ 0. The controller uses measurements
of the wafer temperature at ® ve locations across the
wafer and adjusts the power of the top lamp (the top
lamp is assumed to be divided into four equispaced con-
centric independently-controlled lamps; see ® gure 4 for a

schematic of the control con® guration) to control the
temperature at the four interior collocation points. A
simulation run was performed to evaluate the perform-
ance of the non-linear controller for a 40 s cycle with
initial conditions: T ˆ 1, T c ˆ 1, S ˆ 0, XSiH4

ˆ 0:1
and XH2

ˆ 0. Figure 5 shows the spatiotemporal evolu-
tion of the wafer temperature (top plot), the temperature
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Figure 2. First three empirical eigenfunctions.

Figure 3. Spatiotemporal wafer temperature pro® lesÐ full
model (top ® gure), reduced-order model (middle
® gure), di� erence between full and reduced-order
models (bottom ® gure).



distribution along the radius of the wafer at t ˆ 40 s
(middle plot), and the thickness of the deposition (bot-
tom plot). The pro® les of the four manipulated inputs
are shown in ® gure 6 (note that ui…t† ˆ (Power in i th
concentric region of the top lamp)/(5000W)). The per-
formance of the non-linear controller is excellent,
achieving an almost uniform (less than 1% variation)
thin ® lm deposition. For the sake of comparison, we
also implemented on the process four proportional inte-
gral (PI) controllers with the following parameters for
proportional gain Kci ˆ 0:65 and integral time constant
½I i ˆ 10:0 for i ˆ 1 ;2 ;3 ;4 (these values were computed
through extensive trial and error). The i th PI controller
is used to adjust the power of the ith concentric lamp by
using a point temperature measurement at r ˆ …i ¡ 1†=3.
The spatiotemporal evolution of the wafer temperature
(top plot), the temperature distribution along the radius
of the wafer at t ˆ 40 s (middle plot), and the thickness
of the deposition (bottom plot± dashed line) are dis-
played in ® gure 7, and the corresponding manipulated
input pro® les are shown in ® gure 8. The performance of
the four proportional integral controllers is signi® cantly
inferior (more than 5% variation in ® nal thin ® lm
thickness) to the one obtained by the non-linear output
feedback controller (see comparison in bottom plot of
® gure 7).

Remark 10: We ® nally note that the ® fth-order model
which was used for the design of the non-linear output
feedback controllers in the above RTCVD process was
obtained by using standard Galerkin’ s method and no
improvement of its accuracy was pursued by using ap-
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Figure 5. Closed-loop spatiotemporal wafer temperature
pro® le (top ® gure), wafer temperature pro® le at
t ˆ 40 s (middle ® gure), and deposition thickness pro-
® le at t ˆ 40 s (bottom ® gure) under non-linear con-
trol.

Figure 4. Control problem speci® cation for rapid thermal
chemical vapour deposition process.



proximate inertial manifolds. The reason is that the
closed-loop performance of the non-linear controllers,
synthesized by using this model, is clearly excellent
(see the closed-loop deposition rate and temperature
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Figure 6. Manipulated input pro® les under non-linear
control.

Figure 7. Closed-loop spatiotemporal wafer temperature
pro® le (top ® gure) and wafer temperature pro® le at
t ˆ 40 s (middle ® gure) under proportional integral
control. Deposition thickness pro® les at t ˆ 40 s (bot-
tom ® gure) under proportional integral control
(dashed line) and non-linear control (solid line).



pro® les in ® gure 5), thereby leaving no room for
further improvement of the performance of the con-
troller by using approximate inertial manifolds.

7. Conclusions

This article presented a general and practical method
for the derivation of accurate ® nite-dimensional approx-
imations and the synthesis of non-linear output feed-
back controllers for non-linear parabolic PDE systems
for which the manipulated inputs, the controlled and
measured outputs are distributed in space. The method
involves three steps: ® rst, the Karhunen± LoeÂ ve expan-
sion is used to derive empirical eigenfunctions of the
non-linear parabolic PDE system, then the empirical
eigenfunctions are used as basis functions within a
Galerkin’ s and approximate inertial manifold model
reduction framework to derive low-order ODE systems
that accurately describe the dominant dynamics of the
PDE system, and ® nally, these ODE systems are used
for the synthesis of non-linear dynamic output feedback
controllers that guarantee stability and enforce output
tracking in the closed-loop system. The proposed
method was successfully applied to an RTCVD process
and was shown to outperform conventional control
schemes.
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