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This work focuses on feedback control of incompressible transitional Newtonian channel ¯ow described by the two-
dimensional linearized Navier±Stokes equations. The control objective is to use distributed feedback to achieve stabiliza-
tion of the parabolic velocity pro®le, for values of the Reynolds number for which this pro®le is unstable, and therefore to
reduce the frictional drag exerted on the lower channel wall compared to the open-loop values. The control system uses
measurements of shear stresses on the lower channel wall and the control actuation is assumed to be in the form of
electromagnetic Lorentz forces applied to the ¯ow near the bottom wall. Galerkin’s method is initially used to derive a
high-order discretization of the linearized ¯ow ®eld that captures the ¯ow instability and accounts for the e� ect of control
actuation on all the modes. Then, a low-order approximation of the linearized ¯ow ®eld is derived and used for the
synthesis of a linear output feedback controller that enforces stability in the high-order closed-loop system. The con-
troller is applied to a simulated transitional linearized channel ¯ow and is shown to stabilize the ¯ow ®eld at the parabolic
pro®le and signi®cantly reduce the drag on the lower channel wall.

1. Introduction

The problem of trying to in¯uence a ¯ow ®eld to

behave in a desirable way has received signi®cant atten-

tion in the past (see, for example, Gad-el-Hak (1994) for
results in this area and reference lists). This problem has

been motivated by many practical engineering applica-

tions, including reduction of the drag which is generated

by a turbulent ¯ow passing over a surface, by preventing

the transition from laminar to turbulent ¯ow inside the

boundary layer through active feedback control. Drag

reduction through active feedback control may have a
very signi®cant impact on the design and operation of

underwater vehicles, airplanes and automobiles. In gen-

eral, ¯uid ¯ow control can be classi®ed in two cate-

gories: passive and active. Passive control typically

involves some kind of design modi®cation of the surface

(e.g. wall-mounted, streamwise ribs or riblets) and

requires no auxiliary power, while active control
involves continuous adjustment of a variable that a� ects

the ¯ow based on measurements of quantities of the ¯ow

®eld (feedback). Methods for active ¯uid ¯ow control

have included injection of polymers (Lumley 1973, Virk

1975), mass transport through porous walls (e.g. blow-

ing/suction) (Choi et al. 1994, Carlson and Lumley

1996) and application of electromagnetic forcing
(Crawford and Karniadakis 1997, Singh and

Bandyopadhyay 1997).

Over the last decade, several e� orts have been made

on the design and implementation of feedback control

systems on various ¯uid ¯ows. The approach followed

for controller design typically involves the derivation of

low-order ordinary di� erential equation (ODE) approx-
imations of the Navier±Stokes equations which describe
the ¯ow ®eld using advanced discretization schemes
including linear and non-linear Galerkin methods

(e.g. Titi 1990, Deane et al. 1991, Baker et al. 2000)
and reduced basis methods (e.g. Ito and Ravindran
1997). These ODE systems are subsequently used for
the design of low-order output feedback controllers.
This approach has led to the design of robust optimal

controllers for ¯ow in a driven cavity (Burns and Qu
1994, Burns and King 1994, King and Qu 1995), linear
optimal and robust controllers for channel ¯ow using
boundary (blowing and suction) control actuation

(Joshi et al. 1995, Cortelezzi and Speyer 1998,
Cortelezzi et al. 1998), linear controllers for ¯ow over
¯at plate using distributed (electromagnetic forcing)
control actuation (Singh and Bandyopadhyay 1997),
and linear and non-linear controllers for suppression

of wavy behaviour exhibited by ¯uid dynamic systems
described by the Korteweg±de Vries±Burgers (Armaou and
Christo®des 2000 b) and Kuramoto±Sivashinsky
(Armaou and Christo®des 2000 a, Christo®des and

Armaou 2000, Armaou and Christo®des 2000 b) equa-
tions. An alternative approach to controller design is
based on the concept of designing a feedback controller
so that the time-derivative of an appropriate Lyapunov

functional along the trajectories of the closed-loop sys-
tem is negative de®nite and has been used to design
controllers for channel ¯ow (Kang and Ito 1992,
Balogh et al. 2001) and Kuramoto±Sivashinsky (Liu
and Krstic 2001) equations. Other results include the

solution of the optimal control problem for the
Navier±Stokes equations with distributed control
(Desai and Ito 1994, Hou and Yan 1997).

In this work, we focus on feedback control of incom-
pressible transitional Newtonian channel ¯ow described

by the two-dimensional linearized Navier±Stokes equa-
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tions. The control objective is to use distributed feed-
back to achieve stabilization of the parabolic velocity
pro®le, for values of the Reynolds number for which
this pro®le is unstable, and therefore to reduce the fric-
tional drag exerted on the lower channel wall compared
to the open-loop values. The control system uses measure-
ments of shear stresses on the lower channel wall and the
control actuation is assumed to be in the form of elec-
tromagnetic Lorentz forces applied to the ¯ow near the
bottom wall. Galerkin’s method is initially used to
derive a high-order discretization of the linearized ¯ow
®eld that captures the ¯ow instability and accounts for
the e� ect of control actuation on all the modes. Then, a
low-order approximation of the linearized ¯ow ®eld is
derived and used for the synthesis of a linear output
feedback controller that enforces stability in the high-
order closed-loop system. The controller is applied to a
simulated transitional linearized channel ¯ow and is
shown to stabilize the ¯ow ®eld at the parabolic pro®le
and signi®cantly reduce the drag on the lower channel
wall.

2. Two-dimensional channel ¯ow with distributed control

We consider a two-dimensional channel ¯ow and
address the problem of stabilizing a transitional ¯ow
®eld at the parabolic velocity pro®le using feedback con-
trol. The control actuation is assumed to be in the form
of electromagnetic Lorentz forces applied to the ¯ow
near the bottom wall (Crawford and Karniadakis
1997, Singh and Bandyopadhyay 1997). The Lorentz
forces are due to embedded permanent magnets and
electrodes in the bottom channel wall. In the presence
of a conducting ¯uid, the electrodes induce a current
near the bottom wall. Since the conducting ¯uid near
the wall is also subjected to magnetic ®elds, due to the

embedded magnets, a Lorentz force is generated which
acts as a body force on the ¯uid; see ®gure 1 for a sche-
matic of the ¯ow ®eld and the control actuation.

To present the various equations that describe the
¯ow, we use the characteristic time t ˆ h=Uc where h is
the half-channel height and Uc is the centre-channel
velocity, as well as the Reynolds number Re ˆ Uch=¸
where ¸ is the kinematic viscosity. In two dimensions,
the Navier±Stokes equations take the following
form
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where u
¤

and v
¤

are the components of the velocity along
the x (parallel to the wall) and y (normal to the wall)
axes, respectively, p

¤
is the pressure, ·uu…t† is the vector of

manipulated inputs and ~bb1
…x; y† and ~bb2

…x; y† are the dis-
tribution functions of the control actuators. Equation
(2) is subject to the following no-slip, no-penetration
boundary conditions at the top and bottom walls of
the channel

u
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Boundary conditions in the x-direction are taken to be
periodic
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The actuator distribution functions, ~bb1
…x; y† and

~bb2
…x; y†, are trigonometric functions in the x-direction

and decay exponentially in the y-direction and take the
form (see also Crawford and Karniadakis (1997), Singh
and Bandyopadhyay (1997) for similar actuator distri-
bution functions)
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Figure 1. Channel ¯ow with electromagnetic forcing on the
bottom wall.
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where ¬0
ˆ 2º=L is the fundamental wave number,

… ~NN £ ~MM† is the total number of control actuators,
~bb1ij ; ~bb2ij

are constants and qj are positive constants
related to the decay (in the y-direction) of the Lorentz
force of the i; jth actuator.

Since we are interested in stabilizing the ¯ow at the
parabolic base ¯ow, we assume that the ¯ow ®eld and
the pressure ®eld can be decomposed into a primary
component plus a perturbation

u
¤…x; y† ˆ U…y† ‡ u…x; y†

v
¤…x; y† ˆ V…x; y† ‡ v…x; y†

p
¤…x; y† ˆ P…x; y† ‡ p…x; y†

9
>>>=
>>>;

…6†

where u and v are the velocity perturbations in the x and
y directions, respectively, and U…y† ˆ Uc

…1 ¡ y
2†, the

parabolic pro®le corresponding to the base channel
¯ow. Also, note that V…x; y† and P…x; y†, the base velo-
city ®eld normal to the wall and the base pressure ®eld,
respectively, are equal to zero. Substituting (6) into (2),
we obtain
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where U
0

and U
00

are the ®rst and second-order deriva-
tives of the base ¯ow, U…y†, with respect to y. Utilizing
the perturbation stream function, Á, which satis®es

u ˆ @Á

@y
; v ˆ ¡ @Á

@x
…9†

taking the partial derivative of (7) with respect to y, and
subtracting the partial derivative of (8) with respect to x,
these two equations can be combined into a single equa-
tion for Á…x; y; t†, of the form
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where ¢ is the Laplacian in two dimensions and b…x; y†
is a non-linear function of the form
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Note that in the formulation of (10) the continuity con-
straint is automatically satis®ed. Equation (10) is sub-
jected to the following no-slip boundary conditions at
y ˆ ‡1 and y ˆ ¡1

Á…x; y ˆ ¡1; t† ˆ Á…x; y ˆ ‡1; t† ˆ 0
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and the following periodic boundary conditions at x ˆ 0
and x ˆ L

Á…x ˆ 0; y; t† ˆ Á…x ˆ L; y; t†
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9
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>;
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where L ˆ 2º is the length of the domain in the stream-
wise direction.

3. Solution of the ¯ow ®eld

We use Galerkin’s method to solve the system of
equations (10)±(12)±(13). To this end, we assume that
the stream function, Á…x; y; t†, can be written in the form

Á…x; y; t† ˆ
XN

nˆ1

XM

mˆ0

‰anm
…t† cos …n ¬0 x†

‡ bnm
…t† sin …n ¬0 x†ŠLm

…y† …14†

where Lm
…y† are linear combinations of Chebyshev poly-

nomials that are orthogonal , and satisfy the boundary
conditions at y ˆ ‡1 and y ˆ ¡1, namely,

Lm
…y ˆ ¡1† ˆ Lm

…y ˆ ‡1† ˆ 0

dLm

dy
…y ˆ ¡1† ˆ dLm

dy
…y ˆ ‡1† ˆ 0

9
>=
>;

…15†

Substituting the series expansion of (14) into the PDE of
(10), and taking the inner product with cos …n ¬0 x† and
sin …n ¬0 x† for n ˆ 1; 2; . . . N, x 2 ‰0; 2ºŠ, results in a sys-
tem of di� erential equations for anm

…t† and bnm
…t†,
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respectively. Picking appropriately the constants b1ij
and
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the linearization of the system of (10) takes the form
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Projecting the system of (17) onto the orthogonal (with
respect to …1 ¡ y

2†¡1=2
) set of M ‡ 1 linear combinations

of Chebyshev polynomials, Lm
…y†, we obtain the follow-

ing system of ODEs:
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where n ˆ 1; 2; . . . N and Mn0, Mn1 and Mn2 are matrices
of inner products of Lm

…y† and the system of (17) of the
form

Mn0
ˆ ‰…Mn0

†
lm

Š ˆ ‰…Ll ; L0nm
†Š

Mn1
ˆ ‰…Mn1

†
lm

Š ˆ ‰…Ll ; L1nm
†Š

Mn2
ˆ ‰…Mn2

†
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9
>>>=
>>>;
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where ‰…Mni
†
lm

Š denotes the lmth element of matrix Mni,
which is the inner product of Ll and Linm .

The time-integration of the system of ODEs of (18) is
performed by using a fourth-order Runge±Kutta
scheme. For Re ˆ 6500 and random initial conditions
of the form

anm
ˆ O…0:01=n2†; bnm

ˆ O…0:01=n2†

n ˆ 1; . . . ; N ; m ˆ 0; . . . ; M

9
=

; …20†

we found that N ˆ 20 and M ˆ 10 yield a numerically
stable discretization of the PDE system (further increase
on N and/or M led to identical simulation results).
Under these conditions, ®gure 2 (dashed line) shows
the sum of the squares of the modes of the open-loop
system (S ˆ

P
20
nˆ1

P
10
mˆ0 a

2
nm

…t† ‡ b
2
nm

…t†
¡ ¢

; this quantity

is closely related to the energy of the system) which
increases with time. This indicates that the ¯ow ®eld,
as expected from linear stability theory calculations, is
in the transition (unstable) regime.

4. Controller design ± closed-loop simulations

We synthesize and implement a linear output feed-
back controller to stabilize the perturbed ¯ow ®eld for
Re ˆ 6500 at the parabolic steady-state pro®le. To this
end, a reduced-order ODE approximation of the PDE
of (10) was initially obtained via Galerkin’s method with
N ˆ 2 and M ˆ 20, of the general form

_xx ˆ Ax ‡ B·uu

y ˆ Cx

9
=

; …21†

where x is the state vector consisting of the anm and bnm

mode amplitudes, A is the matrix resulting from the
discretization via Galerkin’s method, B is a matrix
which describes the interaction between the actuators
and the modes, u is the vector of manipulated inputs,
y is the vector of measured outputs and C is a matrix
describing the interaction between the shear measure-
ment sensors and the modes. The detailed expression
of these matrices are omitted for brevity. To achieve
the stabilization of the ¯ow ®eld, each state of the
reduced-order ODE model with n ˆ 1; 2 and
m ˆ 0; 1; 2; . . . ; 20 was considered as a controlled output
and a linear feedback controller of the form

·uu ˆ Kx …22†

was designed using geometric methods (see, for example,
Isidori (1989) for the design of state feedback controllers
for ODE systems with controlled outputs), to stabilize
the unstable open-loop system. To be able to regulate all
the outputs, 2 £ 20 £ 2 control actuators distributing
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body forces in the near vicinity of the bottom wall by
means of Lorentz forces were assumed to be available.
To implement the state feedback controller of (22), the
system of (21) was used as the basis for the design of a
state observer of the general form

_²² ˆ A² ‡ B·uu ‡ L…y ¡ C²† …23†

where the observer gain matrix, L, was calculated using
MATLAB, in order to make the matrix …A ¡ LC†
stable. The output feedback controller resulting from
the combination of the state feedback controller of
(22) and the state observer of (23) takes the form

_²² ˆ A² ‡ BK² ‡ L…y ¡ C²†

·uu ˆ K²

9
=

; …24†

The above controller was implemented on the high-
order discretization of the ¯ow ®eld described in } 3.
All the results shown below are for Re ˆ 6500 for
which the ¯ow ®eld is unstable.

Figure 2 (solid line) shows the pro®le of S for the
linearized two-dimensional channel ¯ow under the out-
put feedback controller. The controller successfully sta-
bilizes the perturbations (solid line) in the closed-loop
system, while the energy of the uncontrolled ¯ow stea-
dily increases due to linear instability of the ¯ow ®eld
(dashed line). Figure 3 (solid line) shows the average
drag at the bottom of the channel for the linearized
two-dimensional channel ¯ow under the output feed-
back controller. The controller reduces the drag to
that of laminar channel ¯ow (solid line), while the
drag of the unstable uncontrolled ¯ow steadily increases
with time.

Finally, we to note that we have tested the developed
output feedback controller for di� erent sets of initial
conditions for the ¯ow ®eld and several Reynolds num-

bers in the regime …6000-10 000† and have found similar
results to the ones shown in ®gures 2 and 3 for the
behaviour of the open- and closed-loop systems; these
results are omitted here for brevity. The reader may also
refer to Baker et al. (2000) for results on distributed non-
linear control of fully non-linear channel ¯ow for
Re ˆ 500 (for which the ¯ow ®eld is naturally stable)
which demonstrate that improved convergence rates to
the steady-state can be achieved when non-
linear control is used.

5. Conclusions

In this work, we presented some results on distribu-
ted feedback control of incompressible transitional
Newtonian channel ¯ow described by two-dimensional
linearized Navier±Stokes equations. The developed
feedback control system uses measurements of shear
stresses on the lower channel wall and the control actua-
tion is assumed to be in the form of electromagnetic
Lorentz forces applied to the ¯ow near the bottom
wall. The control objective is to use distributed feedback
to achieve stabilization of the parabolic velocity pro®le
and therefore to reduce the frictional drag exerted on the
lower channel wall compared to the open-loop values.
Galerkin’s method was initially used to derive a high-
order discretization of the linearized ¯ow ®eld that cap-
tures the ¯ow instability and accounts for the e� ect of
control actuation on all the modes. Then, a low-order
approximation of the linearized ¯ow ®eld was derived
and used for the synthesis of a linear output feedback
controller that enforces stability in the high-order
closed-loop system. The controller was applied to a
simulated transitional (Re ˆ 6500) linearized channel
¯ow and was shown to stabilize the ¯ow ®eld at the
parabolic pro®le and signi®cantly reduce the drag on
the lower channel wall. These results motivate applying
the developed output feedback controller to fully non-
linear, transitional channel ¯ow to achieve stabilization
of the parabolic pro®le using electromagnetic Lorentz
forces and this will be the subject of future research.
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