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a b s t r a c t

This work demonstrates the use of feedback control, coupled with a suitable actuator design, in

manufacturing thin films whose surface morphology is characterized by a desired visible light reflectance/

transmittance level. The problem is particularly important in the context of thin film manufacturing for

thin film solar cells where it is desirable to produce thin films with precisely tailored light trapping

characteristics. Initially, a thin film deposition process involving atom adsorption and surface migration is

considered and is modeled using a large-lattice (lattice size¼40,000) kinetic Monte Carlo simulation.

Subsequently, thin film surface morphology characteristics like roughness and slope are computed with

respect to different characteristic length scales ranging from atomic to the ones corresponding to visible

light wavelength and it is found that a patterned actuator design is needed to induce thin film surface

roughness and slope at visible light wavelength spatial scales, which lead to desired thin film reflectance

and transmittance levels. Then, an Edwards–Wilkinson-type equation (a second-order stochastic partial

differential equation) is used to model the surface evolution at the visible light wavelength spatial scale and

form the basis for the design of a feedback controller whose objective is to manipulate the deposition rate

across the spatial domain of the process. The model parameters of the Edwards–Wilkinson equation are

estimated from kinetic Monte Carlo simulations and their dependence on the deposition rate is used in the

formulation of the predictive controller to predict the influence of the control action on the surface

roughness and slope throughout the thin film growth process. Analytical solutions of the expected surface

roughness and surface slope at the visible light wavelength spatial scale are obtained by solving the

Edwards–Wilkinson equation and are used in the control action calculation. The cost function of the

controller involves penalties on both surface roughness and slope from set-point values as well as

constraints on the magnitude and rate of change of the control action. The controller is applied to the large-

lattice kinetic Monte Carlo simulation. Simulation results demonstrate that the proposed controller and

patterned actuator design successfully regulate aggregate surface roughness and slope to set-point values

at the end of the deposition that yield desired levels of thin film reflectance and transmittance.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Thin film solar cells constitute an important and growing
component of the overall solar cell market (see, for example,
Green, 2007; van Sark et al., 2007) owing to their reduced cost
relative to silicon-based solar cell modules as well as to the
potential of using various thin film materials which may lead to
improved light conversion efficiencies (currently on the order of 10%
for production modules). In addition to investigating the perfor-
mance with respect to light conversion efficiency and long-term

stability of an array of materials, thin film solar cell technology
stands to benefit from optimal thin film manufacturing (deposition)
control strategies that produce thin films with desired light reflec-
tance and transmittance properties. Specifically, extensive research
on optical properties of thin film, primarily silicon, solar cells has
demonstrated that the scattering properties of the thin film inter-
faces directly influence the light trapping ability and the efficiency
of thin film silicon solar cells (see, for example, Zeman and
Vanswaaij, 2000; Poruba et al., 2000; Muller and Rech, 2004;
Rowlands et al., 2004). Shaping the morphology of the various
surfaces and interfaces at the thin film deposition stage is therefore
critical in order to maximize the amount of light trapped within the
solar cell and converted to electrical energy. With respect to visible
light trapping by thin film solar cells, the light scattering properties
of the various surfaces/interfaces have a complex dependence on
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the surface morphology interface. While developing accurate mod-
els for predicting optical properties of thin films is an on-going
research topic, it is well-established that the root-mean-square
surface roughness and slope at characteristic length scales that are
comparable to the wavelength of the visible light are key factors
that influence thin film reflectance and transmittance (e.g., Davies,
1954; Vorburger et al., 1993). Specifically, significant increase of
conversion efficiency with appropriately roughened interfaces has
been reported in several works (Tao and Zeman, 1994; Leblanc and
Perrin, 1994; Springer and Poruba, 2001; Krč and Zeman, 2002;
Isabella et al., 2010). Despite the importance of these efforts and the
broad realization that surface morphology could be tailored to
improve thin film solar cell efficiency, the problem of shaping thin
film surface morphology during film deposition by appropriately
controlling the surface slope and roughness to desired levels has
received limited attention. Thus, it is desirable to develop systematic
approaches to manufacture thin film solar cells with optimal light
conversion efficiencies via computational multiscale modeling and
real-time model-based control of the manufacturing process.

Over the last 20 years within the control engineering litera-
ture, extensive efforts have been made on the modeling and
model-based feedback control of thin film deposition processes
with emphasis on the problems of film thickness, roughness and
porosity regulation. Microscopic modeling of thin film growth is
usually carried out via kinetic Monte Carlo (kMC) methods (see,
for example, Gillespie, 1976; Reese et al., 2001; Christofides et al.,
2008 for results and references in this area) as well as stochastic
partial differential equations (e.g., Edwards and Wilkinson, 1982;
Vvedensky et al., 1993; Lauritsen et al., 1996). With respect to
model-based feedback control of thin film deposition, early efforts
focused on deposition spatial uniformity control on the basis of
continuum-type distributed parameter models (e.g., Christofides,
2001), while within the last 10 years, most attention has focused
on control of thin film surface morphology and microstructure.
Since kMC models are not available in closed form and cannot be
readily used for feedback control design and system-level analy-
sis, stochastic differential equation (SDE) models (whose para-
meters are computed from kMC model data) have been used as
the basis for the design of feedback controllers to regulate thin
film surface roughness (e.g., Christofides et al., 2008; Ni and
Christofides, 2005; Varshney and Armaou, 2005, 2006; Hu et al.,
2009a), film porosity (Hu et al., 2009a, 2009b), and film thickness
(Hu et al., 2009c). In an attempt to manufacture thin film solar
cells with optimal light conversion efficiencies, we recently
initiated an effort toward modeling and control of thin film
surface morphology to optimize thin film light reflectance and
transmittance properties. To this end, we initially studied the
dynamics and lattice size dependence of surface mean slope
(Huang et al., 2010b) and developed predictive control algorithms
to regulate both surface roughness and slope at an atomic level
using stochastic PDEs in one spatial dimension (Zhang et al.,
2010b) and two spatial dimensions (Zhang et al., 2010a). Taking
advantage of these analysis and controller design results, we
recently (Zhang et al., in press) made the first attempt to control
thin film surface morphology at a length scale comparable to the
visible light wavelength. Specifically, we addressed aspects of this
problem with respect to predictive controller design using a
stochastic PDE with a patterned deposition rate profile but we
did not address the challenging problem of implementing the
predictive controller on a large-lattice kinetic Monte Carlo simu-
lation that can cover a significant number of visible light wave-
lengths (which is on the order of 400 nm–700 nm).

Motivated by the above considerations, this work presents an
integrated control actuator and control algorithm design for the
regulation of deposition of thin films such that the final thin film
surface morphology is characterized by a desired visible light

reflectance/transmittance level. To demonstrate the approach, we
focus on a thin film deposition process involving atom adsorption
and surface migration and use a large-lattice (lattice
size¼40,000) kinetic Monte Carlo simulation to describe its
spatiotemporal behavior; this allows computing surface rough-
ness and slope at different length scales ranging from atomic scale
to visible light wavelength scale. Subsequently, thin film surface
morphology characteristics like roughness and slope are com-
puted for different characteristic length scales and it is found that
a patterned actuator design is needed to induce thin film surface
roughness and slope at visible light wavelength spatial scales,
that lead to desired thin film reflectance and transmittance
values. Since a large-lattice kinetic Monte Carlo model cannot
be used as the basis for controller design and real-time controller
calculations, an Edwards–Wilkinson-type equation is used to
model the surface evolution at the visible light wavelength spatial
scale and to form the basis for feedback controller design within a
model predictive control framework. The cost function of the
predicted controller involves penalties on both surface roughness
and slope from set-point values as well as constraints on the
magnitude and rate of change of the control action. The Edwards–
Wilkinson equation model parameters are estimated from kinetic
Monte Carlo simulations and their dependence on the manipu-
lated input (deposition rate) is used to predict the influence of the
control action on the surface roughness and slope during the
growth process. The controller formulation takes advantage
of analytical solutions of the expected surface roughness and
surface slope at the visible light wavelength spatial scale and the
controller is applied to the large-lattice kinetic Monte Carlo
simulation. Extensive simulation studies demonstrate that the
proposed controller and patterned actuator design successfully
regulate surface roughness and slope at visible light wavelength
spatial scales to set-point values at the end of the deposition that
yield desired levels of thin film reflectance and transmittance.

2. Thin film deposition process description and modeling

In this section, a one-dimensional solid-on-solid (SOS) on-
lattice kinetic Monte Carlo (kMC) model is used to simulate the
thin film deposition process, which includes two microscopic
processes: an adsorption process, in which particles are incorpo-
rated onto the film from the gas phase, and a migration process, in
which surface particles move to adjacent sites (Levine et al., 1998;
Levine and Clancy, 2000; Wang and Clancy, 2001; Yang et al.,
1997). The model is valid for temperatures To0:5Tm, where Tm is
the melting point of the deposited material (Levine et al., 1998).
At high temperatures ðTtTmÞ, the particles cannot be assumed to
be constrained on the lattice sites and the on-lattice model may
not be valid. In this work, a square lattice is selected to represent
the structure of the film, as shown in Fig. 1. All particles are
modeled as identical hard spheres and the centers of the particles
deposited on the film are located on the lattice sites. The diameter
of the particles equals the distance between two neighboring
sites. The width of the lattice is fixed so that the lattice contains a
fixed number of sites in the lateral direction. The new particles
are always deposited from the top side of the lattice with vertical
incidence; see Fig. 1. Particle deposition results in film growth in
the direction normal to the lateral direction. The direction normal
to the lateral direction is thus designated as the growth direction.
The number of sites in the lateral direction is defined as the lattice
size and is denoted by L. Periodic boundary conditions (PBCs) are
applied at the edges of the lattice in the lateral direction.

The top particles of each column are defined as the surface
particles and the positions of the centers of all surface particles
form the surface height profile. The number of nearest neighbors
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of a surface particle ranges from zero to two. A surface particle
with zero nearest neighbors is possible to migrate to one of its
adjacent columns with equal probability. A surface particle with
one nearest neighbor is possible to migrate to its adjacent column
with lower height with appropriate probability based on the
migration rate (please see Eq. (1)). A surface particle with two
nearest neighbors cannot migrate. Particles that are not on the
film surface can not migrate.

In the adsorption process, a site is randomly selected with
uniform probability among all lattice sites and a particle is deposited
on top of this site. The overall adsorption rate, w, is expressed in the
unit of layer per second. In the migration process, a surface particle
overcomes the energy barrier of the site and jumps to a vacant
neighboring site. The migration rate (probability) of a particle
follows an Arrhenius-type law with a pre-calculated activation
energy barrier that depends on the local environment of the particle,
i.e., the number of the nearest neighbors of the particle chosen for a
migration event. The migration rate of the ith surface particle is
calculated as follows:

rm ¼ n0 exp � EsþniEn
kBT

� �
, ð1Þ

where n0 denotes the pre-exponential factor, ni is the number of the
nearest neighbors of the ith particle and can take the values of 0 and
1, (rm is zero when ni¼2 since in the one-dimensional lattice this
surface particle is fully surrounded by other particles and cannot
migrate), Es is the contribution to the activation energy barrier from
the site itself, En is the contribution to the activation energy barrier
from each nearest neighbor, kB is Boltzmann’s constant and T is the
substrate temperature of the thin film. Since the film is thin, the
temperature is assumed to be uniform throughout the film.

2.1. Surface morphology at atomic level

Thin film surface morphology, which can be expressed in
terms of surface roughness and slope, is a very important surface
property influencing the light trapping properties of thin films.
Surface roughness is defined as the root-mean-square (RMS) of
the surface height profile. Specifically, the definition of surface
roughness is given as follows:

r ¼ 1

L

XL
i ¼ 1

ðhi�hÞ2
" #1=2

, ð2Þ

where r denotes the surface roughness, hi, i¼ 1;2, . . . ,L, is
the surface height at the ith position in the unit of layer, L

denotes the lattice size, and the surface mean height is given by
h ¼ ð1=LÞPL

i ¼ 1 hi.
In addition to the surface roughness, another quantity that also

determines the surface morphology is the surface mean slope. In
this work, the surface mean slope is defined as the RMS of the
surface gradient profile as follows:

m¼ 1

L

XL
i ¼ 1

h2s,i

" #1=2

, ð3Þ

where m denotes the RMS slope and hs,i is the surface slope at the
ith lattice site, which is a dimensionless variable. The surface
slope, hs,i is computed as follows:

hs,i ¼
hiþ1�hi

1
: ð4Þ

Since the unit of height is layer and the distance between two
adjacent particles (the diameter of particles) always equal to one
layer, the denominator of hs,i is always one. Due to the use of
PBCs, the slope at the boundary lattice site (i¼L) is computed
as the slope between the last lattice site (hL) and the first lattice
site (h1).

To investigate the open-loop properties of surface morphology,
a set of kMC simulations is carried out at different w with T¼480
K and L¼40,000. In particular, the continuous-time Monte Carlo
(CTMC) method is used in the kMC simulations. In this method, a
list of events is constructed and an event is selected randomly
with its respective probability. After the execution of the selected
event, the list is updated based on the new lattice configuration.
The following values are used for the parameters of the migration
rate of Eq. (1), n0 ¼ 1013 s�1, Es¼1.2 eV and En¼0 eV. Figs. 2 and 3
show that both atomic roughness and slope increase with time
and approach steady-state values at different time scales. Further-
more, both surface roughness and slope increase with deposition
rate w. It is important to note that surface roughness and slope
are correlated to some extent in the deposition process, but they
are separate variables that describe different aspects of the film
surface. Films with the same surface roughness may have differ-
ent mean slope values.
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Fig. 2. Evolution of expected atomic surface roughness with respect to time

for different deposition rates (unit of w is layer/s) obtained from kMC simulations.
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2.2. Aggregate surface morphology and spatial deposition rate

profile

One of the most important applications of our work is to
simulate and control the deposition process of thin film solar cells
in order to improve solar cell efficiency via enhanced light trapping.
However, the wavelength of visible light (400 nm–700 nm) is much
larger than the diameter of silicon atoms ð � 0:25 nmÞ and thus, it is
necessary to define an aggregate surface morphology at length
scales comparable to visible light wavelength.

Specifically, the aggregate surface morphology is computed
similar to the atomic surface morphology, but on the basis of the
aggregate surface height profile, hD,i, which is defined as follows:

hD,i ¼ ðhiDþ1þhiDþ2þ � � � þhðiþ1ÞDÞ=D, i¼ 0;1, . . . ,L=D�1, ð5Þ
where hD,i denotes the averaged surface height over the length scale
of D sites, D denotes the aggregation size, i.e., the number of lattice
sites used to calculate the aggregate surface height, and L=D denotes
the number of aggregate sites of size D included in the spatial
domain of the process. For the wavelength of visible light and silicon
thin film solar cells, the corresponding D is around 400; this follows
from the fact that 0:25 nm � 400¼ 100 nm, which is a length scale
comparable to visible light wavelength. The definition of aggregate
surface roughness and slope is given as follows:

rD ¼
1

L

XL=D

i ¼ 1

ðhD,i�hDÞ2
" #1=2

,

mD ¼
1

L

XL=D

i ¼ 1

hD,i�hD,iþ1

D

� �2
" #1=2

: ð6Þ

The dynamics of the aggregate surface roughness and slope are
dependent on the characteristic length scale, D. To investigate
this dependence, kMC simulations with En¼0 eV and L¼40,000
were carried out. The expected aggregate surface roughness square,
/r2DðtÞS, and the expected aggregate surface slope square, /m2

DðtÞS,
are calculated from the aggregate surface height profile from kMC
simulations for different aggregation lengths. The simulation dura-
tion is tf¼1000 s and 100 independent simulations were carried out
to calculate the expected values of aggregate surface roughness and
slope. Figs. 4 and 5 show the profiles of aggregate surface roughness
square and slope square for different characteristic length scales, D.
It is clear that the larger the characteristic length scale, the smaller

the aggregate roughness and slope square. Furthermore, Fig. 5
shows that as the aggregation size increases, the aggregate slope
square decreases very fast; a much weaker dependence is observed
for aggregate roughness in Fig. 4. From these results, we see that
the corresponding aggregate slope square for D¼ 400 is very small
ð/m2

DSss � 10�5Þ. This close-to-zero value of aggregate slope square
reveals a smoothly changing surface profile with respect to char-
acteristic length scales that are comparable to visible light wave-
length. The smoothness of the surface profile persists at larger
lattice sizes as well, due to the very weak lattice-size dependence of
the mean slope square. This small aggregate slope square at large
characteristic length scales is partly because the operating condi-
tions are spatially uniform throughout the entire deposition pro-
cess, i.e., the same deposition rate and substrate temperature are
applied throughout the spatial domain. Thus, a spatially non-uni-
form deposition rate profile is necessary for the purpose of
optimizing thin film light reflectance/transmittance by manipula-
tion of film aggregate surface roughness and slope at length scales
comparable to visible light wavelength; this conclusion is also
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Fig. 3. Evolution of expected atomic surface slope with respect to time for
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consistent with recent experimental data (Isabella et al., 2010).
To this end, we introduce a patterned in space deposition rate
profile, which is defined as follows:

wðxÞ ¼w0þA sin
2kp
L

x

� �
, 0rArw0, ð7Þ

where x is a position along the lattice, w0 is the mean deposition
rate, A is the magnitude of the patterned deposition profile, k is the
number of sine waves along the entire lattice, and L is the lattice
size. Referring to the difference betweenw and w0, it is necessary to
point out that w0 is the mean deposition rate of the patterned
deposition rate profile, w(x), while the w used in Section 2.1 is a
spatially-uniform deposition rate.

The dynamics of aggregate surface morphology with patterned
deposition rate profile is studied by carrying out a series of
simulations at different mean deposition rates w0 with L¼
40,000, D¼ 400, T¼480 K, k¼5 and A¼ 0:1w0. The evolution
profiles are shown in Figs. 6 and 7. The introduction of patterned
deposition rate profiles significantly changes the dynamic profiles

of aggregate surface morphology. However, some properties of
uniform deposition rate evolution profiles remain valid, for
example, the expected values of aggregate surface roughness
and slope still increase with mean deposition rate w0. Further-
more, simulations are carried out at w0 ¼ 1 layer/s with different
magnitude, A, values to investigate the influence of the strength of
patterned deposition on the evolution profiles of aggregate sur-
face morphology. As shown in Figs. 8 and 9, the magnitude, A, has
substantial influence on the dynamics of aggregate surface
morphology. Both aggregate roughness and aggregate slope can
be increased by 10,000 times by manipulating A compared to the
aggregate surface morphology achieved with a uniform deposi-
tion rate profile. Thus, the introduction of a patterned deposition
rate profile substantially expands the range of surface morphol-
ogy values that can be obtained and makes light trapping
optimization at length scales comparable to visible light wave-
length possible. Finally, referring to the influence of the migration
activation energy values on the aggregate surface roughness and
slope steady state values, we note that such an influence exists
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but it is small at aggregation levels corresponding to visible light
wavelength.

3. Closed-form modeling and parameter estimation

3.1. Edward–Wilkinson-type equation of aggregate surface height

Given the complexity of the deposition process and the need to
control surface roughness and slope at spatial scales comparable to
the wavelength of visible light, the direct computation of a closed-
form model, describing the surface height evolution and is suitable
for controller design, from the microscopic deposition mechanisms
is a very difficult (if not impossible) task. Therefore, a hybrid
modeling approach should be used in which a basic closed-form
modeling structure is used and the model parameters are computed
such that the predictions of key variables from the closed-form
model are close to the one of the kinetic Monte Carlo model for a
broad set of operating conditions. To this end, we use an Edward-
Wilkinson (EW)-type equation, which is a second-order stochastic
PDE to describe the aggregate surface height evolution and compute
its parameters from kMC data. The choice of the EW-equation is
motivated by the fact that it has been used in many deposition
processes that involve a thermal balance between adsorption
(deposition) and migration (diffusion) (Buzea and Robbie, 2005).
Specifically, a one-dimensional EW-type equation is used to describe
the evolution of aggregate surface height profile:

@hD
@t

¼wðx,tÞþc2
@2hD
@x2

þxðx,tÞ ð8Þ

subject to the following periodic boundary conditions

hDð0,tÞ ¼ hDðL,tÞ, ð9Þ

@hD
@x
ð0,tÞ ¼ @hD

@x
ðL,tÞ ð10Þ

and the initial condition

hDðx,0Þ ¼ h0DðxÞ, ð11Þ
where xA ½0,L� is the spatial coordinate, t is the time, hDðx,tÞ is the
aggregate surface height and xðx,tÞ is a Gaussian white noise with
zero mean and the following covariance:

/xðx,tÞxðx0,t0ÞS¼ s2dðx�x0Þdðt�t0Þ, ð12Þ
where dð�Þ denotes the Dirac delta function. In Eq. (8), the para-
meters c2 and s2, corresponding to diffusion effects and stochastic
noise, respectively, depend on the deposition rate wðx,tÞ. In the case
of a patterned deposition rate profile (control actuation), the term
wðx,tÞ is of the form:

wðx,tÞ ¼w0ðtÞþAðtÞsin 2kp
L

x

� �
, ð13Þ

where w0ðtÞ is the mean deposition rate, A(t) is the magnitude of
patterned deposition rate, and k is the number of sine waves
between 0 and L.

To analyze the dynamics and obtain a solution of the EW
equation suitable for real-time controller calculations, we first
consider the eigenvalue problem of the linear operator of Eq. (8)
subject to the periodic boundary conditions of Eqs. (9)–(10):

AfnðxÞ ¼ c2
d2fnðxÞ

dx2
¼ lnfnðxÞ, ð14Þ

rjfnð0Þ ¼rjfnðLÞ, j¼ 0;1, ð15Þ
where ln denotes an eigenvalue, fn denotes an eigenfunction, and
rj, j¼0, 1, denotes the gradient of a given function. The solution of

the eigenvalue problem of Eqs. (14)–(15) is as follows:

ln ¼�
4c2p2n2

L2
, ð16Þ

f1,nðxÞ ¼fn ¼
ffiffiffi
2

L

r
sin

2np
L

x

� �
, ð17Þ

f2,nðxÞ ¼cn ¼

ffiffiffi
1

L

r
n¼ 0,ffiffiffi

2

L

r
cos

2np
L

x

� �
na0:

8>>><
>>>:

ð18Þ

The solution of the EW equation of Eq. (8) can be expanded in an
infinite series in terms of the eigenfunctions of the operator of Eq.
(14) as follows:

hDðx,tÞ ¼
XL=ð2DÞ

n ¼ 0

ðf1,nðxÞz1,nðtÞþf2,nðxÞz2,nðtÞÞ, ð19Þ

where z1,nðtÞ, z2,nðtÞ are time-varying coefficients.
Substituting the above expansion for the solution, hDðx,tÞ, into

Eq. (8) and taking the inner product with the adjoint eigenfunc-
tions, the following system of infinite stochastic linear ordinary
differential equations (ODEs) for the temporal evolution of the
time-varying coefficients in Eq. (19) is obtained:

dz2;0ðtÞ
dt

¼w2;0þx2;0ðtÞ, ð20Þ

dzp,nðtÞ
dt

¼wp,nþlnzp,nþxp,nðtÞ, p¼ 1;2, n¼ 1, . . . ,
L

2D
, ð21Þ

where xp,nðtÞ ¼
R L
0 xðx,tÞfp,nðxÞ dx is the projection of the noise

xðx,tÞ on the ODE for zp,n. The noise term, xp,n, has zero mean and
covariance

/xp,nðtÞxp,nðt0ÞS¼ s2dðt�t0Þ: ð22Þ
Similarly, wp,n is the projection of w on the ODE for zp,nðtÞ,
wp,n ¼

R L
0 fp,nðxÞwðxÞ dx

� If p¼1,

w1,n ¼
0, nak,

A

ffiffiffi
L

2

r
, n¼ k:

8><
>: ð23Þ

� If p¼2,

w2,n ¼
0, na0,

A
ffiffiffi
L

p
, n¼ 0:

(
ð24Þ

The temporal evolution of the variance of mode zp,n can be
obtained from the solution of the linear ODEs of Eqs. (20) and (21)
as follows:

/z2;0ðtÞS¼w2;0ðt�t0Þ, ð25Þ

varðz2;0ðtÞÞ ¼ s2ðt�t0Þ, ð26Þ

/zðtÞS¼ elðt�t0Þ/zðt0ÞSþ
wp

l
ðelðt�t0Þ�1Þ, ð27Þ

varðzðtÞÞ ¼ e2lðt�t0Þvarðzðt0ÞÞþs2 e
2lðt�t0Þ�1

2l
, ð28Þ

where zðtÞ ¼ zp,nðtÞ, l¼ ln and wp ¼wp,n for na0.
Finally, it is necessary to point out that, when aggregate

(discrete) surface height profile is used, the highest number of
modes that can be accurately estimated from hDðx,tÞ is limited by
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the spatial sampling points, nrL=2D; the reader may refer to
Zhang et al. (in press) for a detailed discussion of this issue.

3.2. Aggregate surface root-mean-square roughness

Aggregate surface roughness of the thin film is defined as the
standard deviation of the aggregate surface height profile from its
average height

rDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

Z L

0
½hDðx,tÞ�hDðtÞ�2 dx

s
, ð29Þ

where hDðtÞ ¼ ð1=LÞ R L0 hDðx,tÞ dx is the average aggregate surface
height. According to Eq. (19), we have

hDðtÞ ¼
1

L

Z L

0
f2;0z2;0 dx¼

ffiffiffi
1

L

r
z2;0: ð30Þ

Using that

hDðx,tÞ�hDðtÞ ¼
XL=ð2DÞ

n ¼ 1

X2
p ¼ 1

fp,nðxÞzp,nðtÞ ð31Þ

the expected aggregate surface roughness, /r2DðtÞS, of Eq. (29) can
be re-written as

/r2DðtÞS¼
1

L

Z L

0

X2
p ¼ 1

XL=ð2DÞ

n ¼ 1

zp,nðtÞfp,nðxÞ
" #2

dx

* +

¼ 1

L

Z L

0

XL=ð2DÞ

n ¼ 1

ðf2
1,nðxÞz21,nðtÞþf2

2,nðxÞz22,nðtÞÞ dx
* +

¼ 1

L

XL=ð2DÞ

n ¼ 1

ð/z21,nSþ/z22,nSÞ, ð32Þ

where

/z2p,nS¼ varðzp,nÞþ/zp,nS2: ð33Þ
The expression of Eqs. (32)–(33) will be used in the MPC

formulation; please see Eq. (42).

3.3. Aggregate surface root-mean-square slope

The aggregate RMS slope is defined as the root-mean-square of
the aggregate surface slope in the x-direction as follows:

mDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

Z L

0

@hD
@x

� �2

dx

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL=D

i ¼ 0

hDðiþ1,tÞ�hDði,tÞ
D

� �2

D

vuut : ð34Þ

Using the expansion of Eq. (19), Eq. (34) can be written as:

/m2
DðtÞS¼

1

L

XL=D

i ¼ 0

hDðiþ1,tÞ�hDði,tÞ
D

� �2

D

* +

¼ 1

LD

XL=D

i ¼ 0

X2
p ¼ 1

XL=ð2DÞ

n ¼ 0

zp,n½fp,nðiþ1Þ�fp,nðiÞ�
( )2* +

¼ 1

LD

XL=D

i ¼ 0

X2
p1 ¼ 1

XL=ð2DÞ

n1 ¼ 0

X2
p2 ¼ 1

XL=ð2DÞ

n2 ¼ 0

zp1 ,n1zp2 ,n2dfp1 ,n1
ðiÞdfp2 ,n2

ðiÞ
* +

¼ 1

LD

X2
p1 ¼ 1

XL=ð2DÞ

n1 ¼ 0

X2
p2 ¼ 1

XL=ð2DÞ

n2 ¼ 0

/zp1 ,n1
zp2 ,n2

S
XL=D

i ¼ 0

dfp1 ,n1
ðiÞdfp2 ,n2

ðiÞ
 !

,

ð35Þ
where

XL=D

i ¼ 0

dfp1 ,n1
ðiÞdfp2 ,n2

ðiÞ

¼
XL=D

i ¼ 0

ðfp1 ,n1
ðiþ1Þ�fp1 ,n1

ðiÞÞðfp2 ,n2
ðiþ1Þ�fp2 ,n2

ðiÞÞ

¼ 2

L

XL=D

i ¼ 0

sin
2n1p
L=D

ðiþ1Þ
� �

�sin 2n1p
L=D

i

� �� �
sin

2n2p
L=D

ðiþ1Þ
� �� 

�sin 2n2p
L=D

i

� ���

¼ 8

L
sin

n1p
L=D

� �
sin

n2p
L=D

� �XL=D

i ¼ 0

cos
n1p
L=D

ð2iþ1Þ
� �

cos
n2p
L=D

ð2iþ1Þ
� �� �

ð36Þ
or more compactly:

/m2
DðtÞS¼

1

LD

X2
p1 ¼ 1

XL=ð2DÞ

n1 ¼ 0

X2
p2 ¼ 1

XL=ð2DÞ

n2 ¼ 0

/zp1 ,n1zp2 ,n2
S

XL=D

i ¼ 0

dfp1 ,n1
ðiÞdfp2 ,n2

ðiÞ
 !

¼ 1

LD

X2
p ¼ 1

XL=ð2DÞ

n ¼ 0

/zp,nS2 8

L
sin2 np

L=D

� �XL=D

i ¼ 0

cos2
np
L=D

ð2iþ1Þ
� �� � !

¼
X2
p ¼ 1

XL=ð2DÞ

n ¼ 0

Kp,n/z2p,nS, ð37Þ

where

Kp,n ¼ 8

LD
sin2 pn

L=D

� � XL=ð2DÞ

i ¼ 0

cos2
np
L=D

ð2iþ1Þ
� �� �

¼

8

LD
sin2 pn

L=D

� �
n¼ 0,

4

LD
sin2 pn

L=D

� �
na0:

8>>><
>>>:

ð38Þ

Finally, using that

XL=ð2DÞ

i ¼ 0

cos2
np
L=D

ð2iþ1Þ
� �� �

¼
XL=ð2DÞ

i ¼ 0

cosð2npð2iþ1Þ=ðL=DÞÞþ1

2

� �

¼
L

D
if n¼ 0,

L

2D
if na0:

8>><
>>: ð39Þ

/m2
DðtÞS can be expressed as:

/m2ðtÞS¼
XL=ð2DÞ

m ¼ 1

ðK1,m/z21,mSþK2,m/z22,mSÞ: ð40Þ

The expression of Eq. (40) will be used in the MPC formulation;
please see Eq. (42).

3.4. Parameter estimation

Referring to the EW equation of Eq. (8), there are two model
parameters, c2 and s2 that must be determined as functions of the
mean deposition rate w0 and of the patterned deposition rate
magnitude A. These parameters affect the dynamics of aggregate
surface roughness and slope and can be estimated by fitting the
predicted evolution profiles for aggregate surface roughness and
slope from the EW equation to profiles of aggregate surface
roughness and slope from kMC simulations. Least-square meth-
ods are used to estimate the model parameters so that the EW-
model predictions are close in a least-square sense to the kMC
simulation data. Comparison of the predictions of both models is
shown in Fig. 10. It is necessary to point out that 20 groups of EW-
equation-simulations are carried out with mean deposition rate
w0 ranging from w0¼0.1 layer/s to w0¼2 layer/s, but in Fig. 10
only five groups of simulation results are shown. Based on c2 and
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s2 values obtained from these fitting results, polynomial func-
tions are chosen to estimate c2 and s2 values at different w0 with
the least-square method. Specifically, a fourth order polynomial
function with respect to w0 is chosen to estimate c2 and a linear
function is chosen to estimate s2, and the expressions are given as
follows:

c2ðwÞ ¼ ac2w
4þbc2w

3þcc2w
2þdc2wþec2 ,

s2 ¼ as2wþbs2 , ð41Þ
where ac2 , bc2 , cc2 , dc2 , ec2 , as2 and bs2 are time-invariant fitting
model parameters. The fitting results are shown in Figs. 11 and 12,
where ac2 ¼�0:0003, bc2 ¼�0:0002, cc2 ¼ 0:001, dc2 ¼ 0:0018,
ec2 ¼ 0:001, as2 ¼ 0:8739 and bs2 ¼�0:0043. These fitting results
are based on kMC simulations with uniform deposition rate profiles
(A¼0). For simulations with patterned deposition rate profiles

ðAa0Þ, it is assumed that c2 and s2 models obtained from uniform
deposition rate simulations (A¼0) can be used to estimate c2 and s2

values. To verify this assumption, the solutions of EW equations for
aggregate surface evolution with patterned deposition rate profile
are obtained based on c2 and s2 models from open-loop kMC data
with uniform deposition rate, and these dynamic evolution profiles
are compared with open-loop kMC dynamic evolution profiles with
patterned deposition rate profiles. As shown in Figs. 13 and 14, c2
and s2 models from open-loop kMC data with uniform deposition
rate can be used in the EW equation to predict aggregate surface
roughness and slope of the kMC model with patterned deposition
rate. It is important to emphasize that the y-axes in Figs. 13 and 14
are logarithmic in order to make this comparison clear. We note that
the approach presented for the computation of the parameters of
the closed-form PDE model of Eq. (8) is not limited to the specific
PDE system and can be used in the context of other dissipative PDE
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Fig. 10. Evolution of expected aggregate surface roughness with respect to time

for different spatially uniform deposition rates obtained from kMC simulations

(solid lines with symbols). The analytical solutions for the aggregate surface

roughness obtained from the corresponding EW equations with the fitted values

for c2 and s2 are also shown (dashed lines).
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systems that model the evolution of surface height of deposition
processes. Finally, referring to the dependence of surface roughness
and slope on lattice size, we note that both atomic and aggregate
surface roughness and slope increase with increasing lattice size
(this issue has been extensively studied in other works (Huang et al.,
2010a, 2010b)); however, the proposed approach to closed-form
modeling and MPC design is scalable and can be used in the context
of different lattice size as long as the parameters of the stochastic
PDE model of Eq. (8) and their dependence on deposition rate are
computed on the basis of data obtained from the lattice size
considered.

4. Model predictive control

In this section, we design a model predictive controller based
on the dynamic models of aggregate surface roughness and slope
to simultaneously control the expected values of aggregate sur-
face roughness and slope square to desired levels. The dynamics
of aggregate surface roughness and slope of the thin film are
described by the EW equation of aggregate surface height of
Eq. (8) with the computed parameters of Subsection 3.4. State
feedback control is considered in this work, i.e., hDðx,tÞ is assumed
to be available for feedback. In practice, real-time surface height
measurements can be obtained via atomic force microscopy
(AFM) systems.

4.1. MPC formulation for regulation of aggregate roughness

and slope

We consider the problem of regulation of aggregate surface
roughness and slope to desired levels within a model predictive
control framework. Due to the stochastic nature of the variables,
the expected values of aggregate surface roughness and slope,
/r2DðtÞS and /m2

DðtÞS, are chosen as the control objectives. The
mean deposition rate, w0, and magnitude of patterned deposition
rate, A, are chosen as the manipulated inputs; the substrate
temperature is fixed at T¼480 K during all closed-loop simula-
tions. To account for a number of practical considerations, several
constraints are added to the control problem. In particular, since

wðxÞZ0, the constraint 0rArw0 is imposed to ensure wðx,tÞ40,
8ðx,tÞ. To ensure the validity of the closed-form process model,
there is a constraint on the range of variation of the mean
deposition rate. Another constraint is imposed on the rate of
change of the mean deposition rate to account for actuator
limitations. The control action at time t is obtained by solving a
finite-horizon optimal control problem. The cost function in the
optimal control problem includes penalty on the deviation of
/r2DS and /m2

DS from their respective set-point values. Different
weighting factors are assigned to the aggregate surface roughness
and slope. Aggregate surface roughness and slope have very
different magnitudes, ð/r2DS ranges from 102 to 104 and /m2

DS
ranges from 10�5 to 10�2). Therefore, relative deviations are used
in the formulation of the cost function to make the magnitude of
the two terms comparable in the cost function. The optimization
problem is subject to the dynamics of the aggregate surface
height of Eq. (8). The optimal w0 and A values are calculated at
each sampling time by solving a finite-dimensional optimization
problem in a receding horizon fashion. Specifically, the MPC
problem at time t is formulated as follows:

min
w0 ,A

f ðw0,AÞ ¼ qr2
r2set�/r2Dðtf ÞS

r2set

" #2
þqm2

m2
set�/m2

Dðtf ÞS
m2

set

" #2
, ð42Þ

where

/r2Dðtf ÞS¼
1

L

XL=ð2DÞ

n ¼ 1

X2
p ¼ 1

/z2p,nðtf ÞS,

/m2
Dðtf ÞS¼

XL=ð2DÞ

n ¼ 1

X2
p ¼ 1

ðKp,n/z2p,nðtf ÞSÞ, ð43Þ

/z2p,nðtf ÞS¼ varðzp,nðtf ÞÞþ/zp,nðtf ÞS2, ð44Þ

/zp,nðtf ÞS¼ elnðtf�tÞ/zp,nðtÞSþ
wp

ln
ðelnðtf�tÞ�1Þ, ð45Þ

varðzp,nðtf ÞÞ ¼ e2lnðtf�tÞvarðzp,nðtÞÞþs2ðwÞ e
2lnðtf�tÞ�1

2ln
, ð46Þ

ln ¼�
4c2ðwÞp2

L2
n2 ð47Þ

and

c2ðwÞ ¼ ac2w
4þbc2w

3þcc2w
2þdc2wþec2 , ð48Þ

s2ðwÞ ¼ as2wþbs2 ð49Þ
subject to:

wminrw0rwmax, 9w0ðtÞ�w0ðt�dtÞ9rdwmax, ð50Þ

w¼w0þA sin
kpx
L

� �
, 0rArw0, ð51Þ

where t is the current time, dt is the sampling time, qr2 and qm2 are
the weighting penalty factors for the deviations of /r2DS and /m2

DS
from their respective set-points at the ith prediction step, wmin and
wmax are the lower and upper bounds on the mean deposition rate,
respectively, and dwmax is the limit on the rate of change of the
mean deposition rate. Given the batch nature of the deposition
process, the MPC of Eq. (42) includes penalty on the discrepancy of
the expected surface roughness and slope at the end of the
deposition from the set-points values of surface roughness and
slope that lead to desired film reflectance levels.

The optimal control actions are obtained from the solution of the
multivariable optimization problem of Eq. (42), and are applied to the
deposition process model over dt (i.e., either the EW equation model
or the kMC model) during the time interval ðt,tþdtÞ. At time tþdt,
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Fig. 14. Evolution of expected aggregate surface slope for different patterned

deposition magnitudes from the kMC model (solid lines with symbols) and expected

aggregate slope solutions from the corresponding EW equations (dashed lines). The c2
and s2 values of the EW equations were estimated from open-loop aggregate surface

roughness kMC model data with spatially uniform deposition rates.
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a new measurement of aggregate surface roughness and slope is
received by the controller and the MPC problem of Eq. (42) is solved
for the next set of control actions. An interior point method optimizer,
IPOPT (Wächter and Biegler, 2006), is used to solve the optimization
problem in the MPC formulation. With respect to the stability of the
closed-loop system, we note the following: the deposition process
considered including atom adsorption and atom migration is an
inherently stable process; this is evident by the negative values of all
the eigenvalues of the spatial differential operator of the Edwards–
Wilkinson-type equation (Eq. (8)) used to model the evolution of
surface height for all values of the deposition rate. Given this stability
property of the open-loop process and the specific MPC design, the
stability of the closed-loop system is ensured.

5. Simulation results

In this section, the model predictive controller of Eq. (42) is
applied to both the one-dimensional EW equation-type model of
Eq. (8) and the one-dimensional kMC model of the thin film growth
process. The mean deposition rate ranges from 0.1 to 2 layer/s, the
substrate temperature is fixed at 480 K, the lattice size of the kMC
model is fixed at 40,000 sites, the aggregation size is fixed at 400 to
make the results relevant to thin film solar cell applications and five
sine waves are used in the patterned deposition rate profile. The
sampling time is 5 s; this sampling time is enough for the MPC to
carry out the calculations needed to compute the control action. In
addition to the deposition rate, the temperature may be used as a
manipulated input but it should vary in space to induce substantial
aggregate surface roughness and slope values at spatial scales
corresponding to the visible light wavelength. Each closed-loop
simulation lasts for 100 s. Expected values are calculated from 100
independent closed-loop system simulation runs. In all the simula-
tions, the aggregate surface roughness and slope set-points remain
the same, specifically, r2set ¼ 10;000 and m2

set ¼ 0:002:

5.1. MPC application to EW equation model

In this subsection, the EW equation model is utilized in the
closed-loop control problem as the plant model. First, the problem
of regulating aggregate surface roughness is considered. In this
problem, the cost function has only penalty on the deviation of the
expected aggregate surface roughness square from its set-point, i.e.,
qr2 ¼ 1 and qm2 ¼ 0. Fig. 15 shows the evolution profile of /r2DðtÞS

under the model predictive controller of Eq. (42). It is clear that the
controller drives the expected aggregate surface roughness to its set-
point at the end of the simulation. Fig. 16 shows the input profiles of
w0 and A for these simulations. It is necessary to point out that
during the first half of the simulation time, the optimal solutions of
w0 are constrained by the rate of change constraint and the optimal
solutions of A are bounded by the values of w0.

Next, the aggregate surface slope is regulated. The cost func-
tion includes only penalty on the deviation of the expected value
of aggregate surface slope square from its set-point ðqm2 ¼ 1,
qr2 ¼ 0Þ. Fig. 17 shows the evolution profile of the expected
aggregate slope square. The aggregate slope reaches its set-point
at t¼100 s. Fig. 18 displays the input profile in this scenario.
Compared with Fig. 16, the controller requires less time to find
the input values needed to reach the desired slope value.

The next step is the simultaneous regulation of aggregate surface
roughness and slope. The weighting factor of aggregate slope square,
qm2 , is kept at 1, while the weighting factor of aggregate roughness
square, qr2 , increases from 10�2 to 103. Fig. 19 shows the values
of expected aggregate surface roughness and slope at the end of
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Fig. 15. Profile of expected aggregate surface roughness square with EW equation

as the plant model. qr2 ¼ 1, qm2 ¼ 0 and r2set ¼ 10;000.
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Fig. 16. Input profiles for aggregate roughness-only control problem with EW

equation as the plant model. qr2 ¼ 1, qm2 ¼ 0 and r2set ¼ 10;000.
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closed-loop simulations (tf¼100 s) as a function of qr2=qm2 . It can be
seen that as the weighting on aggregate roughness increases, the
expected value of aggregate roughness approaches its set-point at
the cost of larger deviation of the aggregate slope from its set-point.

5.2. MPC application to kMC model

In this subsection, the kMC model is used in the closed-loop
control problem as the plant model, while all the other settings
remain the same. Fig. 20 shows the aggregate surface roughness
in the case of roughness-only control while Fig. 21 shows the
aggregate surface slope in the case of slope-only control. From
both plots, we see that both aggregate roughness and slope
successfully reach their set-points at the end of the simulations.
Furthermore, the closed-loop evolution profiles with kMC as the
plant model are very similar to the closed-loop profiles that use
the EW equation as the plant model, which implies that the EW
equation model used in this work can accurately predict the kMC
simulation results.

Simultaneous regulation of aggregate surface roughness and
slope has also been investigated. Similar to the case where the EW
equation is used as the plant model, the weighting factor of
aggregate slope square, qm2 , is kept at 1, and the weighting factor
of aggregate roughness square, qr2 , ranges from 10�2 to 103.
Fig. 22 shows the values of expected aggregate roughness and
slope at the end of simulations as a function of qr2=qm2 . It can be
seen that the expected value of aggregate roughness approaches
its set-point as qr2 increases at the cost of larger deviation of the
aggregate slope from its set-point.

5.3. Application to light trapping efficiency

In this subsection, we demonstrate an application of the pro-
posed modeling and control framework to improve thin film solar
cell performance. When the incident light goes through a rough
interface, the light is divided into four components: specular
reflection, specular transmission, diffused reflection, and diffused
transmission (Tao and Zeman, 1994; Leblanc and Perrin, 1994). The
total reflectance of a beam of monochromatic light at normal
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Fig. 18. Input profiles for aggregate slope-only control problem with EW equation

as the plant model. qr2 ¼ 0, qm2 ¼ 1 and m2
set ¼ 0:002.
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set ¼ 0:002.
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incidence to a rough surface, which is denoted by R, can be
approximately calculated as follows (Davies, 1954):

R¼ R0 exp �4pr2D
l2

� �

þR0

Z p=20

0
2p4 aD

l

� �2 rD
l

� �2
ðcos yþ1Þ4 sin y exp � ðpa sin yÞ2

l2

" #
dy,

ð52Þ

where R0 is the reflectance of a perfectly smooth surface of the same
material, l is the light wavelength, aD is the auto-covariance length
of the interface, which can be rewritten as a ratio between the
aggregate roughness and aggregate slope as aD ¼

ffiffiffi
2

p
rD=mD (Bennett

and Porteus, 1961), and y is the incident angle. Eq. (52) is only valid
when y is small (Davies, 1954), so the integration upper limit of y is
assumed to be p=20. Furthermore, aggregate roughness and slope at
aggregation length D¼ 400 are used in Eq. (52).

Fig. 23 shows how films with different reflectance values can
be produced by simultaneous regulation of film surface aggregate
roughness and aggregate slope. Specifically, the weighting factor

of aggregate slope square, qm2 , is kept at 1, and the weighting
factor of aggregate roughness square, qr2 , ranges from 10�2 to
103, and the resulting aggregate roughness and slope are used to
compute the light reflectance of the thin film according to
Eq. (52). It is clear that films with different reflectance values
can be generated by regulating aggregate surface roughness and
slope; please see the small circles in Fig. 23.

Remark 1. Referring to the model predictive controller of
Eq. (42), we note that in the absence of measurement feedback
it can still be used to compute in an open-loop fashion an input
trajectory for manipulating the deposition rate profile to drive the
surface roughness and slope to desired levels at the end of the
deposition; however, such an approach is inherently non-robust
to process disturbances and model uncertainty owing to the lack
of feedback. Furthermore, when measurements of the film surface
height are available at specific locations across the film surface, a
state estimator based on the stochastic PDE model can be used to
provide estimates of the entire film thickness; these estimates
can be subsequently used in the model predictive controller of
Eq. (42). Finally, we note that even though the controller of
Eq. (42) focuses on the regulation of surface roughness and slope
at desired levels, it is possible to incorporate in the controller
additional objectives like, for example, achieving a desired film
thickness; this can be done by the incorporation of additional
thickness requirement constraints in the controller to ensure that
the deposition rate is above a certain value that ensures that final
film thickness is achieved at the end of the deposition that meets
the specifications.

6. Conclusions

In this work, a thin film deposition process is simulated via a
kinetic Monte Carlo method in a large lattice (L¼40,000) and a
patterned deposition rate profile is introduced to generate sig-
nificant aggregate surface roughness and slope at a length scale
comparable to the wavelength of visible light. An Edwards–
Wilkinson-type equation for the aggregate surface profile is used
to predict the surface temporal evolution of aggregate surface
roughness and slope. A model predictive controller is designed to
regulate aggregate surface roughness and slope to desired levels,
and the controller is applied to the EW equation and the kMC
model of the deposition process with L¼40,000. Simulation
results demonstrate the applicability and effectiveness of the
controller and of the spatially-patterned deposition rate profile
by demonstrating that different thin film reflectance values can
be generated by successfully controlling aggregate roughness and
slope to desired values.
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