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This work focuses on the study of the dynamic behavior and lattice-size dependence of the surface root-
mean-square slope of thin-film deposition processes that involve thermal balance between film growth and
surface relaxation. Two different deposition processes taking place on square and triangular lattices are
introduced and used to investigate the dynamics and lattice-size dependence of the surface root-mean-square
slope. The simulation results indicate that the expected mean slope square reaches quickly a steady-state
value and exhibits a very weak dependence with respect to lattice size variation. The simulation findings are
corroborated by an analysis of appropriate finite-difference discretizations of surface height profiles computed
by an Edwards-Wilkinson-type partial differential equation that can be used to describe the dynamics of
surface height profile in the deposition processes under consideration.

1. Introduction

Photovoltaic cells (solar cells) constitute an important source
of sustainable energy, which directly utilizes solar energy.
However, the limited conversion efficiency of the solar power
prevents the wide application of solar cells. Thin-film silicon
solar cells are currently the most developed and widely used
solar cells.1 Research on optical and electrical modeling of thin-
film silicon solar cells indicates that the scattering properties
of the thin-film interfaces are directly related to the light trapping
process and the efficiencies of thin-film silicon solar cells.2,3

For example, a higher diffused transmittance of incident light
is desired for the upper surface of solar cells for a maximum
energy input. The scattering properties of the interfaces are
characterized by the surface morphology, which includes root-
mean-square (rms) roughness and rms slope.4 It is desired to
improve the conversion efficiency of thin-film solar cells via
the regulation of surface morphology of thin-film solar cells
during the manufacturing process, i.e., thin-film deposition
process, by appropriately tailoring the surface rms slope and
rms roughness to desired specifications.

Kinetic Monte Carlo (kMC) methods have been widely used
to simulate thin-film microscopic processes by utilizing micro-
scopic film growth processes and kinetics that are obtained from
molecular dynamics simulations and experiments.5-8 KMC
lattice models based on a solid-on-solid (SOS) assumption were
initially developed, in which particles land on top of film
particles. However, the SOS models can only simulate the
growth of dense thin-films and are inadequate in capturing the
evolution of thin-film porosity, which has emerged as an
important film quality variable that strongly influences the
electrical and mechanical properties of semiconductor devices.
To overcome this limitation, triangular-lattice-based kMC
models have been developed that allow overhangs and vacancies
to develop inside the film.6-9 The dependence of the surface
roughness and porosity of kMC models of porous thin-film
deposition processes on lattice size and operating conditions
were recently investigated.10 Due to their ability to simulate

thin-film growth processes, kMC models have also been used
in the context of feedback control of thin-film surface
roughness.11,12

However, kMC models have several disadvantages that
prevent them from being widely used in the feedback control
design. First, the computational cost that kMC simulations
require is high for real-time monitoring and control purposes.
Second, the kMC models are not available in closed form, and
thus, they cannot be used to design model-based feedback
control systems and perform system-level analysis. Alternatively,
stochastic differential equation (SDE) models were introduced
to model surface morphology in a variety of thin-film prepara-
tion processes.13,14 SDE models can be derived from the
corresponding master equations of the microscopic processes
or identified from the available simulation data or experimental
data. SDE models have been successfully used to describe the
evolutions of surface height profiles and surface roughness.10

Furthermore, methodologies have been developed to construct
SDE models and estimate their parameters from first princi-
ples15-17 and numerical simulations.18 Recently, control of thin-
film microstructure using SDE models has attracted significant
attention.19-22 However, the dynamics and control of the rms
slope of surface height profiles in thin-film deposition processes
has not been studied.

Motivated by these considerations, this work focuses on the
study of the dynamic behavior and lattice size dependence of
the surface root-mean-square slope of thin-film deposition
processes. Two different deposition processes are investigated:
a random deposition with surface relaxation process and a
porous thin-film deposition process. Both deposition processes
involve a deposition (adsorption) process and a relaxation
(migration) process, which strongly influence the resulting thin-
film surface morphology. KMC methods are used to simulate
the deposition processes and generate film surface height profiles
and compute rms slope and roughness. The simulation results
indicate that the expected mean slope square reaches quickly a
steady-state value and exhibits a very weak dependence with
respect to lattice size variation. A theoretical analysis is provided
using an Edwards-Wilkinson (EW) type partial differential
equation (PDE) that can describe the dynamics of the surface
height profile in the deposition processes under consideration.
The kMC simulation findings are corroborated by the analytical
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results of appropriate finite-difference discretizations of the
solutions of the EW equation model.

2. Thin-Film Deposition Processes

In this section, two thin-film deposition processes are
considered and modeled by using on-lattice kMC models. The
first process is a random deposition process with surface
relaxation taking place on a square lattice where solid-on-solid
(SOS) assumption is made.23 The second process is a porous
thin-film deposition process taking place on a triangular lattice
where vacancies and overhangs are allowed to develop.10,22

Periodic boundary conditions (PBCs) are applied to both lattice
models. In both deposition processes, there are two competing
effects which influence the evolution of the surface height
profiles: a growth effect and a relaxation effect. The definitions
of surface height profile and root-mean-square slope are also
introduced.

2.1. Random Deposition with Surface Relaxation Process
Model. The random deposition process with surface relaxation
is modeled on a one-dimensional in the lateral direction square
lattice with SOS assumption, where particles land on top of the
existing surface particles. The lattice size in this model denotes
the number of sites. The deposition rate is denoted by W and
has the unit of deposited layers per second. Figure 1 shows the
lattice model of the random deposition process with surface
relaxation and examples of the deposition processes.

When a particle is deposited, a site is first randomly chosen
among all lattice sites. After the site is determined, an incident
particle deposits on the top of the highest particle on that site.
Upon deposition, a surface relaxation process takes places if
the height of the deposited site (before the deposition process)
is higher in the growth direction than the height of any of the
two adjacent sites. When the surface relaxation process is
conducted, the incident particle relaxes to the lowest site among
its two nearest neighboring sites. If both neighboring sites have
lower heights, the incident particle randomly chooses (with equal
probability) a neighboring site as its final deposition site.

2.2. Porous Thin-Film Deposition Process Model. Figure
2 shows the porous thin-film growth process taking place on a
one-dimensional in the lateral direction triangular lattice. In this
lattice model, the lattice size denotes the number of sites in the
lateral direction per layer, i.e., the maximum number of particles
that can be packed within one horizontal layer. The coordination
number of the triangular lattice is six, so a particle on the lattice
can have at most six nearest neighbors. In the bottom of the
lattice, a fully packed and fixed substrate layer is initially placed
and is used to initiate the thin-film deposition process.

We consider two different types of microprocesses taking
place in this deposition process: an adsorption process and a

migration process. In the adsorption process, incident particles
are deposited from the gas phase and are incorporated into the
thin-film. In this work, only vertical incidence is considered in
the adsorption process. When an incident particle is incorporated
into the film, it moves to the nearest vacant site of the contacting
particle. If the incident particle moves to a site that has only
one nearest neighbor, it is considered to be an unstable particle
in the lattice and relaxes instantaneously to the most stable
vacant site neighboring the unstable site, i.e., the site that has
the most nearest neighbors.

In a migration process, particles on the thin-film overcome the
energy barrier of their sites and move to their adjacent vacant
sites.9,24 Substrate particles cannot move. The migration rate follows
an Arrhenius-type law, where the pre-exponential factor and the
activation energy are taken from a silicon film [see ref 10 for
details].

The microstructure of the porous thin-film is the result of a
complex interplay between adsorption and migration processes.
The macroscopic operating variables of the deposition process
influence the resulting film microstructure. The two variables
that are considered in this process are the adsorption rate and
the substrate temperature. The adsorption rate, which is denoted
by W, is defined as the number of deposited layers per second.
The substrate temperature, which is denoted by T, has a strong
influence on the migration rate via the Arrhenius rate law.

In this work, the microscopic rules are used in kMC methods
to simulate both the random deposition with surface relaxation
process and the porous thin-film deposition process. Specifically,
a continuous-time Monte Carlo (CTMC) type method (e.g., ref
25) is used to carry out the kMC simulations.

2.3. Definition of Variables. In this section, the variables
that characterize the film surface morphology are defined.
Surface height profile represents the film surface morphology
and is defined as the connection of the centers of the surface
particles. For the porous thin-film deposition process, surface
particles are determined as the particles that can be reached from
above in the vertical direction without being fully blocked by
other particles on the film.10,22 Figure 3 shows an example of
the surface height profile of the porous thin-film deposition
process. For the random deposition process with surface
relaxation, the surface particles can be easily identified as the
top particles on all lattice sites due to the SOS assumption.

Surface roughness is a commonly used measure of thin-film
surface morphology and is defined as the root-mean-square (rms)
of surface height profile as follows:

where r denotes surface roughness, hi, i ) 1, 2, ..., nL, is the
surface height at the ith position in the unit of layer, and hj )

Figure 1. Random deposition process with surface relaxation and examples
of deposition and surface relaxation processes. A square lattice is used.

Figure 2. Thin-film growth process on a triangular lattice. The arrows denote
adsorption and migration processes.

r ) [ 1
nL

∑
i)1

nL

(hi - hj)2]1/2

(1)
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(1/nL)∑i)1
nL hi is the average surface height. We note that the

number of height positions in eq 1, nL, does not always equal
the lattice size, L. In the porous thin-film deposition process,
the number of height positions equals 2L due to the nature of
the triangular lattice in the porous thin-film deposition process;
see Figure 3 for example. For the random deposition process
with surface relaxation, nL is simply L due to the use of a square
lattice.

In addition to surface roughness, the gradient (slope) of
surface height profile is another important variable that deter-
mines the surface morphology. In this work, the root-mean-
square (rms) slope represents the extent of surface slope and is
defined in a similar fashion to surface roughness as follows:

where m denotes the rms slope, which is a dimensionless
variable, and km denotes the geometric ratio between the single-
layer height and the interval between adjacent height positions.
Due to the use of PBCs, the slope at the last position (i ) nL)
is computed as the surface height difference between the last
lattice site and the first lattice site. The value of the geometric
ratio in eq 2, km, is 1 for the random deposition process with
surface relaxation and �3 for the porous thin-film deposition
process. Figure 3 shows an example of the surface slope
obtained from the surface height profile in the porous thin-film
deposition process.

The two variables that are related to the surface morphology,
surface roughness, and rms slope, are defined in a similar
fashion, i.e., root mean squares of a spatial profile. However,
surface roughness is calculated on the basis of surface height
profile, while rms slope is based on the surface slope profile.
Thus, the two variables describe different properties of the
surface height profile. Surface roughness measures the correla-
tion of surface height at all sites with the average height, and
thus, the sequence of the surface sites does not affect the
calculation of surface roughness. On the contrary, surface slope
is the height difference between two adjacent surface sites. As
a result, rms slope measures the height correlation of adjacent
surface sites and is sensitive to the sequence of surface sites.
Therefore, two surface profiles with the same roughness may
have very different rms slope profiles. We also note that surface
roughness and rms slope are not fully independent. In the
extreme case of a flat surface, surface roughness and rms slope
both have zero values.

3. Rms Slope Behavior

In this section, the rms slope is calculated from the surface
height profiles of the two deposition processes. The behavior
of rms slope, i.e., its dynamics and dependence on lattice size,
is then investigated. For the convenience of theoretical analysis
and comparison with the simulations, the square of rms slope
(mean slope square), i.e., m2, is used to present the results.

3.1. Dynamics of rms Slope. To investigate the dynamics
of rms slope, kMC simulations of the two deposition processes
are carried out with fixed operating conditions throughout the
entire simulation. The lattice size is fixed to 100 sites for both
processes for the results to be presented in this section. The
simulation duration is large enough to allow the rms slope to
reach its steady-state value. Due to the stochastic nature of kMC
methods, different simulation runs may result in different lattice
configurations and different surface morphology. Multiple
independent simulations runs (10 000-25 000 runs) are carried
out to generate smooth profiles of statistical moments, i.e.,
expected values and variances.

Figures 4 and 5 show the profiles of the expected mean slope
square. The operating conditions are fixed at a substrate
temperature of 300 K (in the porous thin-film deposition process)
and an adsorption rate of 1 layer/s (in both deposition processes).
Figures 4 and 5 also include the profiles of the corresponding
expected roughness square. In both figures, the mean slope
square profiles evolve similarly to the roughness square profiles:
mean slope square increases from zero and approaches a finite
steady-state value at large times.

However, it can be seen from Figures 4 and 5 that the
dynamics of roughness square and mean slope square are

Figure 3. Example showing the definition of the surface height profile and
the calculation of the corresponding surface slope profile.

m ) [km
2

nL
∑
i)1

nL

(hi+1 - hi)
2]1/2

(2)

Figure 4. Profiles of the expected mean slope square (dashed line) and
surface roughness square (solid line) from kMC simulations with lattice
size L ) 100; random deposition process with surface relaxation with W )
1 layer/s.

Figure 5. Profiles of the expected mean slope square (dashed line) and
surface roughness square (solid line) from kMC simulations with lattice
size L ) 100; porous thin-film deposition process with W ) 1 layer/s and
T ) 300 K.
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different in many aspects. First, the mean slope square has faster
dynamics than roughness square. Here, the dynamics of a profile
refer to the steady-state time, tss, that is needed for the profile
to reach the steady-state value (practically, we take 99% of the
steady-state value as the threshold to calculate tss). In general,
a smaller steady-state time indicates faster dynamics. Specifi-
cally, in the random deposition with surface relaxation process
of Figure 4, tss = 125 s for slope and tss = 469 s for roughness;
in the porous thin-film deposition process of Figure 5, for T )
300 K, tss = 190 s for slope and tss = 467 s for roughness.
Second, the steady-state values of mean slope square are smaller
than the steady-state values of roughness square (even taking
into consideration the geometric ratios). These differences can
be explained as follows: the height correlation of adjacent
surface sites, which mean slope square measures, is higher than
the surface height correlation with the average height which is
measured by the surface roughness. The higher correlation
results in a smaller difference, i.e., a smaller steady-state value,
and faster dynamics of mean slope square than surface
roughness.

3.2. Dependence of rms Slope on Operating Conditions. The
dynamics of rms slope depend on operating conditions and
lattice size. KMC simulations are also carried out to find out
the dependence of rms slope with respect to different operating
conditions. For the random deposition with surface relaxation
process, the dynamics of the entire process scales proportionally
with the adsorption rate, i.e., the higher the adsorption rate, the
faster the rms slope and rms roughness approach their steady
state values. However, the dynamics of the porous thin-film
deposition process have a complex dependence on the operating
conditions, i.e., substrate temperature or adsorption rate below.

Figure 6 shows the profile of the expected mean slope square
and roughness square of the porous thin-film deposition process
at a substrate temperature of T ) 500 K; the adsorption rate is
kept at W ) 1 layer/s. From the comparison between Figures 5
and 6, it is evident that both the rms slope and the surface
roughness increase as the substrate temperature increases from
300 to 500 K. These consistent results indicate that the rms
slope and surface roughness can be captured by the same
analytical dynamic equation, as we will discuss in section 4.

Figure 7 shows the profiles of the expected mean slope square
at different substrate temperatures. The adsorption rate is kept
at W ) 1 layer/s. A lattice size of 100 sites is used in all
simulations for a meaningful comparison. It can be clearly seen
from Figure 7 that the substrate temperature has a strong
influence on the evolution of the rms slope. At low temperatures
(T e 400 K), the particles have limited mobility, and thus, the
evolution profiles of the mean slope square are nearly insensitive

to temperature variation. As temperature increases, however,
the mean slope square profiles have higher values. At high
temperatures (T g 700 K), the intensive mobility of particles
results in an almost flat surface and the mean slope square is
close to zero.

A similar dependence of the expected mean slope square on
adsorption rate can be found in Figure 8, which shows the
profiles of the expected mean slope square at different adsorption
rates with a fixed substrate temperature of T ) 500 K. The thin-
film morphology is determined by the thermal balance between
the adsorption process and the migration process. Thus, the
expected mean slope square under a high adsorption rate behaves
similarly to the one under a low substrate temperature (equiva-
lently a low migration rate) and vice versa. This strong
dependence on operating conditions can be used to design
feedback controllers that regulate the rms slope of the thin-film
surface at desired values that optimize thin-film reflectance and
transmittance.

3.3. Lattice-Size Dependence of rms Slope. In this subsec-
tion, the lattice-size dependence of rms slope is studied for both
deposition processes. To investigate the dependence of rms slope
on lattice size, kMC simulations of the deposition processes
are carried out for different lattice sizes (from 20 to 500). The
operating conditions are fixed at T ) 300 K and W ) 1 layer/s
for all simulations where applicable. Both evolution profiles and
steady-state dependence of the expected mean slope square are
presented. In the figures of steady-state dependence, the error

Figure 6. Profiles of the expected mean slope square (dashed line) and
surface roughness square (solid line) from kMC simulations with lattice
size L ) 100; porous thin-film deposition process with W ) 1 layer/s and
T ) 500 K. Figure 7. Profiles of the expected mean slope square from kMC simulations

at different substrate temperatures; porous thin-film deposition process with
W ) 1 layer/s and L ) 100.

Figure 8. Profiles of the expected mean slope square from kMC simulations
at different adsorption rates; porous thin-film deposition process with T )
500 K and L ) 100.
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bars are calculated from 20 averages of evenly divided groups
of all simulation runs.

Figure 9 shows the profiles of the expected mean slope square
of the random deposition with surface relaxation process for
different lattice sizes. From Figure 9, it can be seen that the
dynamics of mean slope square have a weak relationship with
the lattice size at large lattice sizes, i.e., the profiles of mean
slope square evolve and reach their steady states at similar time
instants regardless of the lattice size. Similar to the dynamics,
the steady-state values of mean slope square also have a weak
dependence on lattice size, especially at large lattice sizes. This
dependence of steady-state values on lattice size is different from
the scaling properties of the surface roughness,26 i.e., the lattice-
size dependence of mean slope square does not follow a power
law. The weak dependence can be observed more clearly in
Figure 10, which shows the steady-state values of the expected
mean slope square for different lattice sizes in a log-log plot.
Similar evolution profiles and lattice-size dependence can be
seen for the porous thin-film deposition process at different
operating conditions; see Figures 11 and 12 for T ) 300 K and
Figures 13 and 14 for T ) 500 K (the deposition rate is 1 layer/s
for both cases).

In previous work, a linear lattice-size dependence of the
steady-state value of expected surface roughness square was
found.10 In the next section, analytical and numerical results
will be obtained and discussed from a stochastic PDE model
of the thin-film deposition processes under consideration to
explain the behavior of the expected mean slope square.

Remark 1. For atomic depositions, the length scale of the
crystalline lattice (0.5 nm) is smaller than the scale of the
waVelength of the Visible light (400-700 nm). Thus, the surface
irregularity at the atom/molecular leVel cannot be related to
the optical property of thin films. To be able to simulate a
realistic domain size, we would need to haVe a lattice size of
the order of 106 (with each site corresponding to atomic
dimension) or higher, which is beyond the currently aVailable
computing power. If this simulation were possible, we would
look at subdomains of the lattice of dimension of the order
400-700 nm and estimate an oVerall subdomain slope that the
light “sees”. In this setup, the oVerall slope of a giVen

Figure 9. Profiles of the expected mean slope square from kMC simulations
with different lattice sizes; random deposition process with surface relaxation
with W ) 1 layer/s.

Figure 10. Dependence of the steady-state values of the expected mean
slope square with error bars from kMC simulations, on the lattice size, L;
random deposition process with surface relaxation with W ) 1 layer/s.

Figure 11. Profiles of the expected mean slope square from kMC simulations
for different lattice sizes; porous thin-film deposition process with W ) 1
layer/s and T ) 300 K.

Figure 12. Dependence of the steady-state values of the expected mean
slope square with error bars from kMC simulations, on the lattice size, L;
porous thin-film deposition process with W ) 1 layer/s and T ) 300 K.

Figure 13. Profiles of the expected mean slope square from kMC simulations
for different lattice sizes; porous thin-film deposition process with W ) 1
layer/s and T ) 500 K.
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subdomain could be computed in an approximate way by
computing aVerage heights of groups of sites embedded in the
subdomain and then connecting these aVerage heights to
compute the oVerall slope of the subdomain. We haVe applied
this approach to the maximum order of domain size that we
can simulate with our current computing power, L ) 1000, and
haVe computed aVerage heights of groups of 10 sites and the
corresponding m profile. Figure 15 shows the resulting m
profile; we can see that the fast dynamics and approach of m
to a finite steady-state Value that we obserVe for the small
lattice-size problem (L ) 100 and m defined between adjacent
heights as done in our work) from Figures 5 and 6 are also
obserVed in this larger scale problem. Therefore, the metric m
we haVe used for L ) 100 giVes us some insight into the
behaVior of a more complex problem that cannot be currently
simulated.

Remark 2. We note that, in the triangular lattice in the
porous thin-film growth process, particles are only stable with
two or more nearest neighbors, and thus, the typical height
difference between adjacent lattice sites is zero or one layer.
HoweVer, it can be inferred on the basis of the steady-state
Values in Figures 12 and 14 that an aVerage Vertical height
difference between adjacent lattice sites is between 2 and 3
layers. This difference is significantly higher than the typical
Value, which is less than one layer. Such a large height
difference between adjacent lattice size is the result of the
columnar growth film structure in the low temperature region
(T ) 300-500 K); as can be seen in Figure 16, which shows
that the surface height profile of the thin-film with a columnar

structure formed at T ) 500 K contains steep “cliffs” (large
differences between few adjacent surface height positions). These
large height differences, although Very few, contribute signifi-
cantly to the root-mean-square Value of the Vertical height
difference, i.e., 2 or 3 in the porous thin film growth process at
T ) 300 and 500 K.

4. Analytical and Numerical Results from the Stochastic
PDE Model

The thin-film deposition is a stochastic process, where
fluctuations are intrinsic and should be considered in the
dynamic equation that describes the dynamics of the process.
However, the surface irregularities of the thin-film are not purely
random; otherwise, the surface roughness square and the mean
slope square cannot reach their respective steady states but rather
increase (linearly) to infinity as time increases.

To this end, an Edwards-Wilkinson-type equation with
appropriately fitted parameters, which is a second-order sto-
chastic PDE, is used to describe the dynamics and evolution of
the surface height profile of the random deposition with surface
relaxationprocessandtheporous thin-filmgrowthprocess.10,13,27,28

Furthermore, due to the fact that stochastic PDEs are defined
on a continuous spatial domain, the dynamics of the rms slope
obtained from the EW equation are different from the kMC
simulations on the discrete lattice, i.e., an infinite value of mean
slope square and a reciprocal dependence on the domain size
are obtained from the continuum EW equation (see also remark
3 for more discussion on this issue). This inconsistency of the
dynamics of the rms slope originates from the discretization of
a continuous domain. Consistent numerical results to the ones
of the kMC simulation are obtained from the discretization of
the solution of the EW equation. This corroboration further
supports the use of the EW equation as a continuum model to
describe the evolution of surface height profile and the dynamics
of the rms slope in the deposition processes considered in this
work.

In the EW formalism, h(x, t) represents the surface height
profile in the continuum spatial domain case and the equation
takes the following form:10,13

subject to the following PBCs

and the initial condition:

Figure 14. Dependence of the steady-state values of the expected mean
slope square with error bars from kMC simulations, on the lattice size, L;
porous thin-film deposition process with W ) 1 layer/s and T ) 500 K.

Figure 15. Profiles of the expected mean slope square computed on the
basis of the average heights of groups of 10 surface particles from kMC
simulations with L ) 1000 at T ) 300 K and 500 K; porous thin-film
deposition process with W ) 1 layer/s.

Figure 16. Snapshot of the film surface morphology at steady state (t )
1000s); porous thin-film deposition process with T ) 500 K and W ) 1.0
layer/s.

∂h
∂t

) rh + ν ∂
2h

∂x2
+ �(x, t) (3)

h(-L0, t) ) h(L0, t),
∂h
∂x

(-L0, t) ) ∂h
∂x

(L0, t) (4)

h(x, 0) ) h0(x) (5)
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where x ∈ [-L0, L0] is the spatial coordinate, t is the time, and
�(x, t) is a Gaussian white noise with the following expressions
for its mean and covariance:

where 〈 · 〉 denotes the mean value, σ2 is a parameter which
measures the intensity of the Gaussian white noise, and δ( · )
denotes the standard Dirac delta function.

In the EW equation of eq 3, rh, ν, and σ2 are model
parameters. Specifically, rh is related to the growth of average
surface height, ν is related to the effect of surface particle
relaxation and migration, and σ2 is related to the noise intensity.
Since rh is only related to the averaged surface height, this term
can be ignored for the purpose of studying the dynamics and
scaling behavior of surface roughness and rms slope, i.e., rh )
0.10

4.1. Analytical Derivation. The behavior of surface rough-
ness can be derived from the EW equation of eq 3. Specifically,
the steady-state value of the expected surface roughness square
scales linearly with the domain size. This lattice-size dependence
of surface roughness is consistent with the kMC simulation
results of the porous thin-film deposition process as well as of
other processes.10

The dynamics of rms slope can be derived from the EW
equation using modal decomposition. A direct computation of
the following eigenvalue problem of the linear operator of eq 3
subject to the PBCs of eq 4,

yields the following solution for the eigenvalues, λn, and the
eigenfunctions, φjn(x):

where φn(x) and ψn(x) are the two eigenfunctions corresponding
to the same nonzero eigenvalue λn, n g 1, with a multiplicity
of 2, k ) π/L0 is used to satisfy the PBCs, and cn is introduced
for the purpose of normalization with the values of c0 )
1/(2L0)1/2 and cn ) 1/(L0)1/2, n ) 1, 2, 3, ... The solution of eq
3 is expanded into an infinite series in terms of the eigenfunc-
tions of the operator of eq 7 as follows:

Substituting the above expansion for the solution, h(x, t), into
eq 3 and taking the inner product with the adjoint eigenfunctions,
the following system of infinite stochastic ordinary differential
equations (ODEs) is obtained:

where �R
n ) ∫-L0

L0 �(x, t)φn(x) dx and ��
n ) ∫-L0

L0 �(x, t)ψn(x) dx
is the projection of the noise �(x, t) in the nth ODE. We note

that �R
n and ��

n, n ) 0, 1, ..., are independent Gaussian white
noise terms. Due to the linearity of the stochastic ODE system
of eq 10, the system state, Rn or �n, is independent from any
other state. Therefore, the analytical solution of the state variance
can be directly obtained from a direct computation as follows:

where only expressions of the nonzeroth state variance are
provided, since the zeroth state does not contribute to the mean
slope square due to the spatially invariant zeroth eigenfunction.

Specifically, the expression of the steady-state value of the
state variance can be obtained at the infinite-time limit as
follows:

Similar to the discrete lattice definition of eq 2, the continuum
form of the rms slope is defined as follows:

Substituting the infinite-series expansion of h(x, t) of eq 9
into 13, the expected mean slope square, 〈m2(t)〉, can be rewritten
as follows:

Equation 14 provides a direct link between the state variance
of the infinite stochastic ODEs of eq 10 and the expected mean
slope square of the surface height profile. The steady-state value
of the expected mean slope square, 〈m2〉ss, can be obtained as t
f ∞. By substituting the steady-state variances of eq 12 and
the expressions of the eigenvalues of eq 8, the analytical form
of 〈m2〉ss is as follows:

〈�(x, t)〉 ) 0
〈�(x, t)�(x', t')〉 ) σ2δ(x - x')δ(t - t')

(6)

ν
d2

φ̄n(x)

dx2
) λnφ̄n(x)

φ̄n(-L0) ) φ̄n(L0),
dφ̄n

dx
(-L0) )

dφ̄n

dx
(L0)

(7)

λn ) -νk2n2, n ) 0, 1, ...,
φn(x) ) cn sin(knx), n ) 1, 2, ...,
ψn(x) ) cn cos(knx), n ) 0, 1, ...,

(8)

h(x, t) ) ∑
n)1

∞

Rn(t)φn(x) + ∑
n)0

∞

�n(t)ψn(x) (9)

dRn

dt
) λnRn + �R

n(t), n ) 1, 2, ..., ∞

d�n

dt
) λn�n + ��

n(t), n ) 0, 1, ..., ∞
(10)

〈Rn
2(t)〉 ) - σ2

2λn
+ (〈Rn

2(t0)〉 +
σ2

2λn
)e2λn(t-t0), n ) 1, 2, ..., ∞

〈�n
2(t)〉 ) - σ2

2λn
+ (〈�n

2(t0)〉 +
σ2

2λn
)e2λn(t-t0), n ) 1, 2, ..., ∞

(11)

〈Rn
2〉ss ) 〈�n

2〉ss ) - σ2

2λn
) σ2

2νk2n2
)

σ2L0
2

2νπ2n2
,

n ) 1, 2, ..., ∞ (12)

m(t) ) { 1
2L0

∫-L0

L0 [∂h
∂x

(x, t)]2
dx}1/2

(13)

〈m2(t)〉 ) 〈 1
2L0

∫-L0

L0 [∂h
∂x

(x, t)]2
dx〉

) 1
2L0〈∫-L0

L0 [∑
n)1

∞

Rn(t)
∂φn

∂x
(x) + ∑

n)0

∞

�n(t)
∂ψn

∂x
(x)]2

dx〉
) 1

2L0〈∫-L0

L0 [∑
n)1

∞

Rn(t)knψn(x) - ∑
n)1

∞

�n(t)knφn(x)]2

dx〉
) 1

2L0〈∑n)1

∞

k2n2Rn
2(t) + ∑

n)1

∞

k2n2�n
2(t)〉

) 1
2L0

∑
n)1

∞

k2n2〈Rn
2(t)〉 + 1

2L0
∑
n)1

∞

k2n2〈�n
2(t)〉

(14)

〈m2〉ss ) 1
2L0

∑
n)1

∞

k2n2〈Rn
2〉ss +

1
2L0

∑
n)1

∞

k2n2〈�n
2〉ss

) -2
1

2L0
∑
n)1

∞

k2n2 σ2

2λn
) 1

2L0
∑
n)1

∞

k2n2 σ2

2νk2n2

) 1
L0

∑
n)1

∞
σ2

2ν
) σ2

2νL0
+ σ2

2νL0
+ σ2

2νL0
+ ...

(15)
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From eq 15, it can be seen that each state contributes an equal
finite part, σ2/(2νL0), to the steady-state value of the expected mean
slope square, 〈m2〉ss. Since the stochastic ODE system of eq 10
has infinite number of states, the steady-state value of the expected
mean slope square has an infinite value. It can be also seen that
〈m2〉ss has a reciprocal dependence on the domain size, L0.

4.2. Discretization Analysis. In the previous section, the
analytical derivation from the EW equation in a continuum
domain results in an infinite steady-state value and a reciprocal
domain-size dependence of the expected mean slope square.
This behavior is different from the one obtained from the kMC
simulations of the lattice model, which leads to a finite steady-
state value and a weak lattice-size dependence of the expected
mean slope square. This difference does not mean that the EW
equation cannot be used to describe the evolution of the surface
height profile and of the rms slope. The infinite value of the
expected mean slope square from the EW equation is due to
the infinitesimal discretization intervals in the continuum
domain. The same behavior of rms slope can be obtained from
the EW equation under a suitable finite-difference discretization
of the continuum surface height profile.

Specifically, a spatial discretization is introduced to the
continuum domain, [-L0, L0]. This spatial discretization contains
L evenly distributed nodes, where L corresponds to the lattice
size of the kMC models and is also referred to here as lattice
size. The spatial coordinates of the discretization nodes can be
obtained as follows:

where x1 ∈ [-L0, -L0 + ∆x) denotes the coordinate of the first
node and ∆x ) 2L0/L is the interval between two adjacent nodes.
The range of x1 indicates a freedom of choosing the discreti-
zation, as long as the continuum domain is evenly discretized.
The choice of the specific discretization does not affect the
analysis and the numerical results.

With the finite-dimensional discretization, the mean slope
square of a discrete surface height profile can be computed in
a similar fashion as in the kMC simulations:

where hi denotes the surface height at the ith node and hi(t) )
h(xi, t).

By substituting the definition of mean slope square of eq 17
and the expansion of the surface height profile of eq 9, the
expected mean slope square can be manipulated as follows (the
zeroth state does not contribute to the expected mean slope
square because φ0(x) is a constant function):

where ∆f(xi) ) f(xi+1) - f(xi) and ∆2f(xi) ) [∆f(xi)]2. We note
that, due to the independence of the system states, 〈Rn1(t)Rn2(t)〉

) 〈�n1(t)�n2(t)〉 ) 0, for n1 * n2, and 〈Rn1(t)�n2(t)〉 ) 0, for any
n1 and n2, n1 ) 1, 2, ..., and n2 ) 1, 2, ...

The expression of the expected mean slope square of eq 18
can be further simplified into the following form:

where Kn
R and Kn

� denote the coefficients of the state variance
and have the following analytical form:

With the solution expression of the expected mean slope
square of eq 19, it can be proved that the expected mean slope
square from finite discretization has a finite steady-state value,
which is consistent with the kMC simulation results of the lattice
models. Derivation of the analytical form of Kn of eq 20 and
proof of the finite steady-state value of the expected mean slope
square can be found in the Appendix at the end of this
manuscript.

Remark 3. We note that there is no connection, established
from a physical (first principles) point of View, between the
metric m computed on the basis of the surface profile of the
kMC simulations and the deriVatiVe of the surface height of
the EW equation. The reason we consider the EW equation and
present profiles of the metric m on the basis of the surface height
profile of the EW equation is because the EW equation with
appropriately fitted parameters to kMC data can be used to
approximately predict the eVolution of m of the kMC simulation
with finite lattice size, and thus, it can be incorporated in model-
based feedback control schemes to make predictions of the
eVolution of the mean slope m. In preVious work, we haVe
demonstrated that this approach leads to a controller design
that works well for simultaneous regulation of surface slope
and roughness.29 We also note that the EW equation is a
reasonable model for the thin-film growth process because it
captures the balance between random adsorption and thermal
migration (diffusion) and predicts certain scaling properties
(lattice-size dependence of roughness) obtained from kMC
simulation of the deposition processes under consideration.
Furthermore, EW equation-based control can be applied to an
actual thin-film manufacturing process when the EW equation
parameters are computed on the basis of experimental data.

4.3. Numerical Results of Discretized Solution. In this
subsection, the numerical simulations of the EW equation are
used to verify the solution of the expected mean slope square
derived in the previous subsection under the finite discretization.
The numerical results are also compared to demonstrate their
consistency with the kMC simulation results of the lattice
models.

To carry out the numerical calculations of the mean slope
square under the finite difference discretization, numerical
simulations are first carried out to compute solutions of the EW
equation, i.e., the solutions of surface height profile. The
numerical solutions of the EW equation can be obtained from
a high-order approximation of the infinite ODE system of eq
10. Due to the decoupled nature of the linear ODE system, the
solution of each state is a stochastic process, which is
independent from the other states. Since the ODE system
contains an infinite number of states and results in an infinite
computational time for the solution, a reduced-order system with
a sufficiently large number of modes (the number of modes is
100 times the number of discretization nodes) is used as an

xi ) x1 + (i - 1)∆x, i ) 2, 3, ..., L (16)

m2 ) 1
L ∑

i)1

L (hi+1 - hi

∆x )2

(17)

〈m2(t)〉 ) 〈 1

L∆2x
∑
i)1

L

[∑
n)1

∞

Rn(t)∆φn(xi) + ∑
n)1

∞

�n(t)∆ψn(xi)]
2〉

) 1

L∆2x
∑
i)1

L

[∑
n)1

∞

〈Rn
2(t)〉∆2

φn(xi) + ∑
n)1

∞

〈�n
2(t)〉∆2ψn(xi)]

) ∑
n)1

∞ [ 1

L∆2x
∑
i)1

L

∆2
φn(xi)]〈Rn

2(t)〉 +

∑
n)1

∞ [ 1

L∆2x
∑
i)1

L

∆2ψn(xi)]〈�n
2(t)〉

(18)

〈m2(t)〉 ) ∑
n)1

∞

Kn
R〈Rn

2(t)〉 + ∑
n)1

∞

Kn
�〈�n

2(t)〉 (19)

Kn
R ) Kn

� ) 4

L∆3x
sin2(nπ

L ) (20)
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approximation of the infinite-order system. The solution of the
surface height profile is then sampled at discrete positions to
obtain a discrete surface height profile. The sampled positions
are the coordinates of the discretization nodes defined in eq 16,
which are evenly distributed in the spatial domain. Finally, the
expected rms slope and the expected mean slope square can be
computed from the discrete surface height profile. Since the
numerical solutions are stochastic realizations of the analytical
solution, multiple independent numerical solutions are obtained
to calculate the expected mean slope square.

Figure 17 shows the profile of the expected mean slope square
of the discretized solution of the EW equation. In Figure 17,
the profile from numerical solutions is compared with the profile
from the analytical solution that is derived previously in section
4.2. The analytical solution is obtained from the same high-
order approximation as the numerical solutions. The values of
parameters of the EW equation are ν ) 1 and σ2 ) 1 for all
simulations in this subsection. The domain size is L0 ) 50 and
the discretization interval is ∆x ) 1. Thus, the lattice size is L
) 100. From Figure 17, it can be seen that the derived analytical
solution of the expected mean slope square fits very well with
numerical solutions of the EW equation. Therefore, the analyti-
cal solution can be used to predict the mean slope square
evolution.

Figure 18 shows the profiles of the expected mean slope
square obtained from the EW equation for different domain sizes
ranging from L0 ) 5 to L0 ) 250. We note that the lattice size
changes simultaneously and proportionally with the domain size.
As a result, the same discretization interval, ∆x, is preserved,
which corresponds to the size of particles in the lattice model.
Therefore, the number of discretization nodes, which is also

denoted by L, ranges from L ) 10 to 500. In Figure 18, the
expected mean slope square profiles evolve similarly to the
profiles from the discrete lattice kMC model shown in Figure
5.

The lattice-size dependence of the expected mean slope square
can be obtained from the analytical solution for different domain
sizes and correspondingly different lattice sizes. Figure 19 shows
the lattice-size dependence of the steady-state value of the
expected mean slope square. From Figure 19, it can be seen
that the steady-state value of the expected mean slope square
has a weak dependence on lattice size, especially at large lattice
sizes. We note that this lattice-size dependence is obtained on
the basis of the fixed discretization interval, ∆x.

From Figures 18 and 19, the same behavior is observed from
the discretized solution of the EW equation as the ones from
the kMC simulations of the lattice model, i.e., a finite steady-
state value and a weak lattice-size dependence of the steady-
state value of the expected mean slope square. The consistency
between the discretized solution of the EW equation and of the
kMC simulations supports the choice of the EW equation as
the dynamic model for the surface height profile evolution in
the deposition processes under consideration.

The discretization can also explain the infinite steady-state
value of the mean slope square of the EW equation in the
continuum domain of eq 15. The infinite value originates from
the infinitesimal discretization intervals in the continuum case,
which can be observed from the analytical results of the
discretized solutions of the EW equation with decreasing
discretization intervals. The domain size is kept constant, and
thus, the lattice size is proportional to 1/∆x. Figure 20 shows
the dependence of the steady-state value of the expected mean
slope square from the discretized solution of the EW equation
for different discretization intervals. It can be clearly seen that
as the discretization interval decreases to zero, the steady-state
means slope square increases and the dependence of 〈m2〉ss on
1/∆x is linear. The same behavior of the steady-state value of
〈m2〉ss can be obtained from the kMC simulations of both
deposition processes; see Figure 21 for the random deposition
with surface relaxation process and Figure 22 for the porous
thin-film deposition process. We note that the counterpart of
the discretization interval in the kMC models of the deposition
processes is the sampling interval, i.e., the distance between
the points of the surface height profile that are used to calculate
the surface slope and is denoted as ∆x as well. Thus, the
sampling intervals of the deposition process have a minimum

Figure 17. Profile of the expected mean slope square from the discretized
solution of the EW equation from numerical simulations (solid line) and
from analytical solutions (dashed line); ∆x ) 1, L ) 100.

Figure 18. Profile of the expected mean slope square from the discretized
solution of the EW equation with different domain sizes; ∆x ) 1.

Figure 19. Dependence of the steady-state value of the expected mean slope
square obtained from the discretized solution of the EW equation, on the
lattice size, L; ∆x ) 1.
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value of one; smaller sampling intervals are not possible due
to the lattice size limitation, which is different from the EW
equation in the continuum domain where ∆x can be chosen at
will.

Remark 4. The dependence of the steady-state Value of the
expected mean slope square on the sampling interVal, ∆x, in
the porous thin-film deposition process is linear for large ∆x,
as shown in Figure 22, which is similar to the linear dependence

obserVed in the random deposition with surface relaxation
process and in the EW equation shown in Figures 20 and 21,
respectiVely. HoweVer, at the discrete limit, ∆x ) 1, the
dependence on ∆x in the porous film process has a notable
deViation from the linear dependence. This deViation is due to
the triangular lattice structure and the porosity allowed in the
thin-film deposition process. To calculate the surface height
profile of the deposition process taking place on a triangular
lattice, 2L points are needed for the surface height positions,
i.e., h1, h2, ..., h2L. HoweVer, since there are only L lattice sites
in a row (in the lateral direction), the 2L surface heights are
not fully independent. Instead, these heights are correlated to
their neighboring heights Via the structure of the triangular
lattice. This correlation reduces the irregularity of the surface
and results in close steady-state Values of expected mean slope
square for ∆x ) 1 and ∆x ) 2 in the porous thin-film deposition
process.

Remark 5. This work mainly focuses on the dynamic
behaVior of the surface slope of thin-film growth processes that
can be described by the EW equation. A potential application
of this work is to improVe light trapping efficiency of thin-film
solar cells by simultaneously regulating surface roughness and
slope of the thin-films during the manufacturing process. To
achieVe the control objectiVes, macroscopic Variables including
the substrate temperature and the deposition rate or the inlet
concentration of the deposition reactor may be chosen as the
manipulated Variable(s). Model predictiVe control can be
designed based on state feedback or measurements by formulat-
ing an optimization problem that minimizes the deViations of
the surface roughness square and of the mean slope square from
desired set-point Values that optimize light trapping. With
respect to measurement of surface mean slope, atomic force
microscopy measurements of the film surface can be used to
obtain surface height profiles up to atomic dimensions and from
this compute the local surface mean slope Variable. Aggregate
surface height can also be computed from the atomic force
microscopy measurements of the film surface to compute surface
slope of aggregate surface height that is releVant to Visible light
trapping of thin-film solar cells. The detailed deVelopment of
this controller design approach has been the subject of another
work.

5. Conclusion

In this work, the dynamic behavior and lattice-size depen-
dence of the surface root-mean-square slope were investigated
in two thin-film deposition processes that involve thermal
balance between film growth and surface relaxation. Specifically,
two different deposition processes taking place on square and
triangular lattices were introduced and used to investigate the
dynamics and lattice-size dependence of surface root-mean-
square slope. The simulation results indicate that the expected
mean slope square reaches quickly a steady-state value and
exhibits a very weak dependence with respect to lattice size
variation. The simulation findings were corroborated by an
analysis of appropriate finite-difference discretizations of surface
height profiles computed by an EW-type partial differential
equation that can be used to describe the dynamics of surface
height profile in the deposition processes under consideration.
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Figure 20. Dependence of the steady-state value of the expected mean slope
square obtained from the discretized solution of the EW equation on the
discretization interval; L0 ) 100.

Figure 21. Dependence of the steady-state value of the expected mean slope
square with error bars on the sampling interval; random deposition with
surface relaxation process with W ) 1 layer/s and L ) 200.

Figure 22. Dependence of the steady-state value of the expected mean slope
square with error bars on the sampling interval; porous thin-film deposition
process with W ) 1 layer/s, T ) 300 K, and L ) 200.
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Appendix

Derivation of the state coefficients, Kn
R and Kn

�, of eq 20, can
be found in the following steps. Since Kn

R and Kn
� have the same

value and the derivation steps are similar, we only show the
derivation of Kn

R from φn(x). The same value of Kn
� can be

obtained from ψn(x) via a similar derivation procedure.
From eq 18, the state coefficient, Kn

R has the following form:

By substituting the expression of the eigenfunction φn of eq
8 into eq 21, the expression of Kn

R can be rewritten as follows:

Equation 22 can be further simplified into the following form
by substituting the expressions of ∆x ) 2L0/L, k ) π/L0, cn )
1/(L0)(1/2) for n g 1), and the expression of xi of eq 16:

The following result is used to simplify the expression of Kn
R

further:

Result 1

If (1) θ0 ∈ R, (2) n1 g 1 and n2 g 2 are integers, and (3) θ
) 2n1π/n2, then it can be deriVed that

Proof of Result 1

If n2 is an even integer and n1 ) n2/2, n2, 3n2/2, ..., i.e., θ )
2n1π/n2 ) π, 2π, ..., the sum of the series of cosine square can
be directly obtained as follows:

Otherwise, the sum of the series of cosine square can be
rewritten in the following form:

where j denotes the imaginary unit, and Re( · ) denote the real
part of a complex number. The sum of the geometric series can
be further simplified as follows:

since the denominator 1 - exp(j2θ) ) 1 - exp(j2π(2n1/n2)) *
0.

By using result 1, the expression of Kn can be obtained as
follows:

Equation 28 indicates that for certain values of n (n ) (1/
2)L, L, (3/2)L, ...), the value of Kn depends on the choice of the
spatial coordinate of the first discretization node, x1, which can
be any value from -L0 to -L0 + ∆x. Thus, a general expression
of Kn

R is desired and can be obtained by averaging over all
possible x1 ∈ [-L0, -L0 + ∆x) as follows:

Similarly, Kn
� can be obtained with the same value as Kn

R.
After the expressions of Kn

R and Kn
� are obtained, the steady-

state value of the expected mean slope square can be computed
by taking the infinite-time limit of eq 19 and substituting the
steady-state variance of eq 12 as follows:

Since 0 e sin 2(nπ/L) e 1, it can be shown that the steady-
state expected mean slope square has a finite upper bound as
follows:

Kn
R ) 1

L∆2x
∑
i)1

L

∆2
φ̄n(xi) (21)

Kn
R ) 1

L∆2x
∑
i)1

L

[φn(xi+1) - φn(xi)]
2

) 1

L∆2x
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i)1

L

[cn sin(knxi+1) - cn sin(knxi)]
2

) 1

L∆2x
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i)1

L

{2cn cos[kn
2

[xi+1 + xi)] sin[kn
2

[xi+1 - xi)]}2

) 4

L∆2x
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i)1

L

cn
2 cos2[kn

2
(xi+1 + xi)] sin2(kn∆x

2 )
) 4
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L
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2
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2 )
(22)
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+ i
2nπ
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) 8
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2nπ

L ] sin2(nπ
L )

(23)

∑
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Therefore, the expected mean slope square has a finite value at
the steady state.
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(2) Krč, J.; Smole, F.; Topič, M. Analysis of light scattering in
amorphous Si:H solar cells by a one-dimensional semi-coherent optical
model. Prog. PhotoVoltaics Res. Appl. 2003, 11, 15–26.

(3) Müller, J.; Rech, B.; Springer, J.; Vanecek, M. TCO and light
trapping in silicon thin-film solar cells. Sol. Energy 2004, 77, 917–930.

(4) Vorburger, T. V.; Marx, E.; Lettieri, T. R. Regimes of surface
roughness measurable with light scattering. Appl. Opt. 1993, 32, 3401–
3408.

(5) Christofides, P. D.; Armaou, A.; Lou, Y.; Varshney, A. Control and
Optimization of Multiscale Process Systems; Birkhäuser: Boston, 2008.
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