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a b s t r a c t

This work focuses on the monitoring and reconfiguration of two-tier control systems applied to general

nonlinear processes in the presence of control actuator faults. Specifically, a general class of nonlinear

process systems is first considered and is controlled by a two-tier control system integrating a local

control system using continuous sensing/actuation with a networked control system using

asynchronous sensing/actuation. To deal with control actuator faults that may occur in the closed-

loop system and eliminate the ability of the two-tier control system to stabilize the process, a fault

detection and isolation (FDI) and fault-tolerant control (FTC) system is designed which detects and

isolates actuator faults and determines how to reconfigure the two-tier control system to handle the

actuator faults and ensure closed-loop stability. The FDI/FTC system uses continuous measurements of

process variables like temperature and asynchronous measurements of variables like species

concentrations. We develop reconfiguration-based FTC schemes that effectively deal with faults in

the actuators of both the local and networked control systems. A detailed mathematical analysis

is carried out to determine precise conditions for the stabilizability of the FDI/FTC system. The method

is demonstrated using a reactor-separator process consisting of two continuously stirred tank reactors

and a flash tank separator with recycle stream.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few decades, advancements in monitoring and
control technology have led to higher efficiency and improved
economics in the process industries through better monitoring and
control of process systems. More recently, we have seen a trend
towards ‘‘smart’’ plants that are capable of highly automated control
with decision making at the plant level taking into account
environmental, health, safety and economic considerations (Chris-
tofides et al., 2007). Specifically, some of the recent advances in
process monitoring and control have been achieved due to a shift
from traditional control systems that utilize point-to-point wired
communication links using a small number of sensors and actuators
to control systems that take advantage of an efficient integration of
the existing, point-to-point communication networks and additional
networked (wired or wireless) actuator/sensor devices. Such an
augmentation in sensor information and network-based availability

of wired and wireless data is now well underway in the process
industries (Christofides et al., 2007; Ydstie, 2002; Davis, 2007;
Neumann, 2007) and clearly has the potential to dramatically
improve the ability of the single-process and plant-wide control
systems to optimize process and plant performance. Along with the
move towards ‘‘smart plant’’ operation that uses networked control
systems, improved methods of fault detection, isolation and
handling are necessary due to the issues raised by automation itself.
Specifically, despite the many benefits of automatic process control,
increased complexity and instrumentation can cause automated
plants to become more susceptible to control system failures. As part
of the continuing improvements to process monitoring and control,
it is important to design systems capable of detecting and handling
such process or control system abnormalities (Mhaskar et al., 2007,
2008; McFall et al., 2008).

Although there are many works focusing on the analysis and
design of networked control systems (Nešić and Teel, 2004a;
Montestruque and Antsaklis, 2003, 2004), from a control design
standpoint, augmenting preexisting, local control networks with
additional networked sensors and actuators poses a number of
challenges including the feedback of additional measurements
that may be asynchronous and/or delayed, for example, additional
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species concentrations or particle size distributions measure-
ments. In a previous work (Liu et al., 2010) (see also Muñoz de la
Peña and Christofides, 2008; Liu et al., 2008), we introduced a
two-tier control architecture for nonlinear process systems with
both continuous and asynchronous sensing and/or actuation. This
class of systems arises naturally in the context of process control
systems based on point-to-point wired links integrated with
networked wired/wireless communication and utilizing multiple
heterogeneous measurements (e.g., temperature and concentra-
tion). In this architecture, the local, pre-existing control system
uses continuous sensing and actuation and an explicit control law
(for example, the local controller may be a classical controller, like
a proportional-integral-derivative controller, or a nonlinear con-
troller designed via geometric or Lyapunov-based control meth-
ods for which an explicit formula for the calculation of the control
action is available). In addition, a networked control system was
designed using Lyapunov-based model predictive control to profit
from both the continuous and the asynchronous measurements as
well as from additional networked control actuators. The two-tier
control architecture preserves the stability properties of the local
control system while improving the closed-loop performance.
Within process control, other important recent work on the
subject of networked process control includes the development
of a quasi-decentralized control framework for multi-unit
plants that achieves the desired closed-loop objectives with
minimal cross communication between the plant units (Sun and
El-Farra, 2008).

The occurrence of faults in chemical processes poses a number
of challenges in process monitoring and has been studied using
both model-based and data-based approaches. Specifically, the
problem of using fundamental process models for the purpose of
detecting faults has been studied extensively in the context of
linear systems (Frank, 1990; Garcia and Frank, 1997); and
recently, some existential results in the context of nonlinear
systems have been derived (DePersis and Isidori, 2001; Saberi
et al., 2000). The analytical (model-based) approach to fault
detection relies on the use of fundamental models for the
construction of residuals, that capture some measure of the
difference between the normal and ‘‘faulty’’ dynamics, to achieve
fault detection and isolation. Statistical and pattern recognition
techniques for data analysis and interpretation (Raich and C- inar,
1996; Ohran et al., 2008), on the other hand, use past plant data to
construct indicators that identify deviations from normal
operation, and help in detecting faults. Recently, model-
based monitoring systems which utilize asynchronous measure-
ments from sensor networks have been developed (McFall et al.,
2008).

This work focuses on the monitoring and reconfiguration of
two-tier control systems applied to a general nonlinear processes
in the presence of control actuator faults. Specifically, a general
class of nonlinear process systems is first considered and is
controlled by a two-tier control system integrating a local control
system using continuous sensing/actuation with a networked
control system using asynchronous sensing/actuation. To deal
with control actuator faults that may occur in the closed-loop
system and eliminate the ability of the two-tier control system to
stabilize the process, a fault detection and isolation (FDI) and
fault-tolerant control (FTC) system is designed which detects and
isolates actuator faults and determines how to reconfigure the
two-tier control system to handle the actuator faults and ensure
closed-loop stability. The FDI/FTC system uses continuous and
asynchronous measurements and deals with faults in the
actuators of both the local and networked control systems. A
detailed mathematical analysis is carried out to determine precise
conditions under which the proposed FDI/FTC scheme guarantees
closed-loop system stability. The method is demonstrated using a

reactor-separator process consisting of two continuously stirred
tank reactors and a flash tank separator with recycle stream.

2. Problem formulation and preliminaries

2.1. Class of nonlinear systems

In this work, we consider nonlinear process systems described
by the following state-space model:

_xs ¼ fsðxs; xa;usþ ~us;uaþ ~uaÞ

_xa ¼ faðxs; xa;usþ ~us;uaþ ~uaÞ ð1Þ

where xsARns denotes the set of state variables that are available
continuously, xaARna denotes the set of state variables that are
sampled asynchronously, usARms denotes the inputs controlled
by the local control system (see discussion in Section 2.4), ~usARms

denotes the unknown fault vector for the inputs of the local
control system with usþ ~us taking values in a non-empty convex
set U1ARms where U1 ¼ fusþ ~usARms : jusþ ~usjrumax

s g,1 uaARma

denotes the inputs of the networked control system and ~uaARms

denotes the unknown fault vector for the inputs of the networked
control system with uaþ ~ua taking values in a non-empty
convex set U2ARma where U2 ¼ fuaþ ~uaARma : juaþ ~uajrumax

a g.
The entire state vector of the process is given by the vector
x¼ ½xT

s xT
a �

T ARnsþna . Using this definition for x, the system of
Eq. (1) can be written in the following equivalent compact form:

_x ¼ f ðx;usþ ~us;uaþ ~uaÞ ð2Þ

We consider a different fault ~uj, j=1,y,ms+ma, for each
element of the vector ½ ~uT

s
~uT

a �
T ARmsþma . Under fault-free operat-

ing conditions ~us ¼ 0 and ~ua ¼ 0, and hence, ~uj ¼ 0 for all
j=1,y,ms+ma. When fault j occurs, ~uj takes a non-zero value.

We assume that f is a locally Lipschitz vector function and that
f (0,0,0)=0. This means that the origin is an equilibrium point for
the fault-free system ( ~us ¼ 0 and ~ua ¼ 0 for all t) with us=0 and
ua=0.

Remark 1. In this work, we assume that the variables in the state
vector x can be either available continuously (i.e., variables in xs)
or sampled asynchronously (i.e., variables in xa). However, the
results presented in this work can be extended to the case that
some of the variables in the state vector are unmeasurable but
observable by designing an observer to estimate the unmeasured
state variables and designing the networked control system
(see Liu et al., 2010, 2008) based on the measured and estimated
states.

Remark 2. Note that in general an FDI system can only detect
faults, declare fault alarms and wait for process operators to deal
with the faults. However, when we focus on the faults that
happen in a known set of inputs, we can design an FTC system to
deal with such faults automatically and effectively. We note also
that even though we assume that the set of faults is known, we do
not limit its size, so we can consider any number of faults with
respect to fault detection. Further, if fault isolation is not done,
then the resulting reconfiguration (fault handling) strategy
(assuming a worst case scenario with respect to the possible
faults) would be very conservative.

Remark 3. The variable ~uj associated with the j th element in
[us

T, ua
T]T can be used to model different kinds of faults that may

occur in an actuator. For example, ~uj can model a constant
deviation of the control input from its calculated value uj; or it can

1
j � j denotes Euclidean norm of a vector.

J. Liu et al. / Chemical Engineering Science 65 (2010) 3179–31903180



Author's personal copy
ARTICLE IN PRESS

be a function of the form ~uj ¼�ujþc to model faults in an
actuator that keep the output of the actuator constant.

2.2. Modeling of asynchronous measurements

The system of Eq. (1) is controlled using both continuous and
asynchronous measurements. We assume that each state in xs is
sampled continuously (i.e., at intervals of fixed size D40 where D
is a sufficiently small positive number). Each state in xa is sampled
asynchronously and is only available at some time instants tk

where ftkZ0g is a random increasing sequence of times. A
controller design that takes advantage of the asynchronous
measurements must take into account that it will have to operate
in open loop when asynchronous measurements are unavailable.
This kind of systems are common in process control or networked
control systems.

In order to maintain reasonable stability and system perfor-
mance, we consider systems where there is a limit on the
maximum period of time in which measurements of xa are not
available between two successive asynchronous measurements,
i.e., maxðtkþ1�tkÞrDmax. This bound on the maximum period of
time in which the loop is open has been also used in other works
in the literature (Walsh et al., 2002; Nešić and Teel, 2004b;
Mhaskar et al., 2007). Note that this bound is also required for the
design of FDI systems which take advantage of asynchronous
measurements to detect faults within a reasonable time frame.

2.3. Local control system

The continuous measurement xs(t) can be used to design a
continuous output-feedback controller to stabilize the closed-loop
system. We term the control system based only on the continuous
measurements xs(t) as local control system. This control scheme
does not use the asynchronous measurements xa(t). We assume
that there exists a Lyapunov-based control law us=h1(xs) which
satisfies the input constraint on us for all x inside a given stability
region and renders the origin x=0 of the fault-free system
asymptotically stable with ua=0. Using converse Lyapunov
theorems (Massera, 1956; Lin et al., 1996), this assumption on
h1 implies that there exist functions aið�Þ; i¼ 1;2;3;4 of class K2

and a continuously differentiable Lyapunov function V(x) for the
fault-free system of Eq. (2) with us=h1(xs) and ua=0 that satisfy
the following inequalities:

a1ðjxjÞrVðxÞra2ðjxjÞ

@VðxÞ

@x
f ðx;h1ðxÞ;0Þr�a3ðjxjÞ

@VðxÞ

@x

����
����ra4ðjxjÞ

h1ðxÞAU1 ð3Þ

for all xADDRnx where D is an open neighborhood of the origin.
We denote the region Or

3 DD as the stability region of the
closed-loop system under the control u1=h1(xs) and u2=0.

By continuity, the local Lipschitz property assumed for the
vector field f (x, u1, u2) and the fact that the manipulated inputs u1

and u2 are bounded in convex sets, there exists a positive constant

M1 such that

jf ðx;usþ ~us;uaþ ~uaÞjrM1 ð4Þ

for all xAOr, usþ ~usAU1 and uaþ ~uaAU2.

Remark 4. The assumption that there exists a controller
us= h1(xs) which can stabilize the closed-loop system with ua=0
implies that, in principle, it is not necessary to use the extra input
ua in order to achieve closed-loop stability. However, ua together
with the asynchronous measurements can be used to improve the
closed-loop performance achieved only by us and continuous
measurements. See Section 2.4 for further discussions on the
design of two-tier control architecture using continuous and
asynchronous measurements. Moreover, the use of ua brings the
potential of FTC for the system without extra backup control
configurations. Also see Section 2.5 for further discussion on this
issue.

2.4. Two-tier control architecture

In the two-tier control architecture (Liu et al., 2010, 2008), the
networked control system decides the trajectory of ua(t) between
successive samples, i.e., for tA ½tk; tkþ1Þ and the local control
system decides us(t) using the continuously available measure-
ments. In order to take advantage of the model of the system and
the asynchronous state measurements, model predictive control
(MPC) is used to decide ua(t). In order to guarantee that the
resulting closed-loop system is stable, a Lyapunov-based MPC
(LMPC) which includes a contractive constraint is designed. The
contractive constraint of the LMPC design is based on the local
control system h1(xs(t)). The LMPC optimization problem is
defined as follows:

min
ua ASðDÞ

Z ND

0
LðxeðtÞ;h1ðx

e
s ðtÞÞ;uaðtÞÞdt

_xe
ðtÞ ¼ f ðxeðtÞ;h1ðx

e
s ðtÞÞ;uaðtÞÞ

_xl
ðtÞ ¼ f ðxlðtÞ;h1ðx

l
sðtÞÞ;0Þ

xlð0Þ ¼ xeð0Þ ¼ xðtkÞ

uaðtÞAU2

VðxeðtÞÞrVðxlðtÞÞ; 8 tA ½0;ND� ð5Þ

where x(tk) is the state obtained from both the measurements of xs

and xa, xe=[xs
eT xa

eT]T is the predicted trajectory of the fault-free
system with the input trajectories usðtÞ ¼ h1ðxsðtÞÞ and uaðtÞ
computed by the LMPC, xl=[xs

lT xa
lT]T is the predicted trajectory of

the fault-free system for the input trajectory uaðtÞ � 0 for all
tA ½0;ND�, L(x, us, ua) is a positive definite function of the state and
the inputs that defines the cost, and N is the prediction horizon. The
optimal solution to this optimization problem is denoted u�aðtjtkÞ.
This signal is defined for all t40 with u�aðtjtkÞ ¼ 0 for all t4ND.

The control inputs of the two-tier control architecture based
on the above LMPC of Eq. (5) corresponding to the measurements
provided by x(t) are defined as follows:

uL
s ðtjxÞ ¼ h1ðxsðtÞÞ; 8t

uL
aðtjxÞ ¼ u�aðt�tkjtkÞ; 8tA ½tk; tkþ1Þ ð6Þ

where u�aðt�tkjtkÞ is the optimal solution of the LMPC problem at
time step tk with xe (tk)=x(tk). This implementation technique
takes into account that the local control system uses the
continuously available measurements, while the networked
control system has to operate in open-loop between consecutive
asynchronous measurements.

The closed-loop system of Eq. (2) under the two-tier control
architecture with inputs defined by us=us

L and ua=ua
L maintains

the same stability region Or and asymptotic stability as the local
Lyapunov-based control law h1 (Liu et al., 2010, 2008). This

2 A continuous function a : ½0; aÞ-½0;1Þ is said to belong to class K if it is

strictly increasing and að0Þ ¼ 0.
3 We use Or to denote the set Or :¼ fxARnx jVðxÞrrg.
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property of the two-tier control architecture will be used in the
proof of Theorem 1 in Section 3.

2.5. FTC considerations

In order to carry out FTC, there must be a backup control
configuration for the system under consideration. The presence of
the networked control action ua and of the asynchronous
measurements xa brings extra control flexibility to the closed-
loop system which can be used to carry out FTC. Specifically, we
assume that the control input us can be decomposed into two
subsets, that is us=[us1

T us2
T ]T and there exists a Lyapunov-based

control law h2(x)=[h21(x)T h22(x)T]T such that when us1=h21(x)
and ua=h22(x) with us2=0 can asymptotically stabilize the closed-
loop system under continuous state measurements satisfying the
input constrains on us and ua.

Using converse Lyapunov theorems, this assumption on h2

implies that there exist functions a0ið�Þ; i¼ 1;2;3;4 of class K and a
continuously differentiable Lyapunov function V2(x) for the fault-
free system of Eq. (2) with us1=h21(x), ua=h22(x) and us2=0 that
satisfy the following inequalities:

a01ðjxjÞrV2ðxÞra02ðjxjÞ

@VðxÞ

@x
f ðx; ½h21ðxÞ

T 0T
�T ;h22ðxÞÞr�a03ðjxjÞ

@V2ðxÞ

@x

����
����ra04ðjxjÞ

h21ðxÞAU1; h22ðxÞAU2 ð7Þ

for all xAD2DRnsþna where D2 is an open neighborhood of the
origin. We denote O2;g

4 DD2 as the stability region of the closed-
loop fault-free system with us=[h21(x)T 0T]T and ua=h22(x).

By continuity and the local Lipschitz property assumed for the
vector field f (x, us, ua), the fact that the manipulated inputs u1 and
u2 are bounded in convex sets and the continuous differentiable
property of the Lyapunov function V2, there exist positive
constant M2 and Lx such that

jf ðx;usþ ~us;uaþ ~uaÞjrM2 ð8Þ

@V2

@x
f ðx;us;uaÞ�

@V2

@x
f ðx0;us;uaÞ

����
����rLxjx�x0j ð9Þ

for all x; x0AO2;g, usþ ~usAU1 and uaþ ~uaAU2.
Note that, in general, the Lyapunov-based controller h2 cannot

be used as a backup control configuration for FTC because x is not
available continuously. We propose to design an LMPC to decide
ua following the LMPC scheme proposed in Muñoz de la Peña and
Christofides (2008), which takes into account asynchronous
measurements explicitly, as follows:

min
ua ;us1 ASðDÞ

Z ND

0
Lðxe2ðtÞ;us1ðtÞ;uaðtÞÞdt ð10aÞ

_xe2
ðtÞ ¼ f ðxe2ðtÞ; ½us1ðtÞÞT 0T

�T ;uaðtÞÞ ð10bÞ

_xl2
ðtÞ ¼ f ðxl2ðtÞ; ½h21ðx

l2
s ðtÞÞ

T 0T
�T ;h22ðx

l2ðjDÞÞÞ; 8tA ½jD; ðjþ1ÞDÞ
ð10cÞ

xl2ð0Þ ¼ xe2ð0Þ ¼ x̂ðtkÞ ð10dÞ

uaðtÞAU2 ð10eÞ

us1ðtÞAU1 ð10fÞ

V2ðx
e2ðtÞÞrV2ðx

l2ðtÞÞ; 8tA ½0;ND� ð10gÞ

where x̂ðtkÞ is the state measurement obtained from xs (tk) and
xa(tk), xe2=[xs

e2T xa
e2T]T is the predicted trajectory of the fault-free

system with the input trajectories us1 and ua computed by the
optimization of Eq. (10), xl2=[xs

l2T xa
l2T]T is the predicted trajectory

of the fault-free system with the input trajectories us=[h21(x)T 0T]T

and ua=h22(x) applied in a sample-and-hold fashion with
j=0,y,N�1. The optimal solution to this optimization problem
is denoted ub;�

a ðtjtkÞ and ub;�
s1 ðtjtkÞ. The signals are defined for

tA ½tk; tkþND�.
The control inputs of the closed-loop system under the LMPC

of Eq. (10) are defined as follows:

ub
s1ðtjxÞ ¼ ub;�

s1 ðt�tkjtkÞ; 8tA ½tk; tkþ1Þ

ub
s2ðtjxÞ ¼ 0; 8t

ub
aðtjxÞ ¼ ub;�

a ðt�tkjtkÞ; 8tA ½tk; tkþ1Þ ð11Þ

The closed-loop system of Eq. (2) under the backup control
configuration with inputs defined by us1=us1

b , us2=0 and ua=ua
b

maintains the same stability region O2;g as h2 and provides
practical stability of the closed-loop system (Muñoz de la Peña
and Christofides, 2008). These properties will be used in the proof
of Theorem 2 in Section 3.

Remark 5. The assumption that there exists a Lyapunov-based
control law h2 that can stabilize the closed-loop system by
manipulating us1 and ua implies that when there is a fault in the
subset us2 of us, we can switch off the actuators associated with
us2 and the remaining control actions (i.e., us1 and ua) can still be
able to maintain the closed-loop stability. Further, we note that
the proposed backup control configuration is one of the many
possible options for FTC; however, under the proposed backup
control configuration, stability of the closed-loop system can be
proved (see Section 3 and Mhaskar et al., 2008, 2006, for further
discussion on these issues).

2.6. FDI using asynchronous measurements

In the two-tier control architecture, full state information is
not needed for all times, however, in order to design FDI filters,
full state information, obtained via measurement and estimation,
is needed. We will first design an observer to provide fault-free
estimates for the asynchronous states at any time t. The
asynchronous state observer takes the form

_̂x a ¼ faðxs; x̂a;u
L
s ðx̂Þ;u

L
aðx̂ÞÞ ð12Þ

where x̂ ¼ ½xT
s x̂

T
a �

T and, with a little abuse of notation, we have
dropped the time index of the two-tier controller functions and
denote uL

s ðtjxÞ;u
L
aðtjxÞ with us

L(x), ua
L(x), respectively, in order to

simplify the FDI definitions. Each time a new asynchronous
measurement is received, the estimated states x̂a are reset to
match the true process state; that is, x̂aðtkÞ ¼ xaðtkÞ for all tk.
Utilizing both continuous and asynchronous state measurements,
a filter can be defined for each element in the input vector
[us

T ua
T]T as follows (McFall et al., 2008):

_~x k ¼ fkð
~X k;u

L
s ð
~X kÞ;u

L
að
~X kÞÞ ð13Þ

where ~xk is the filter output for the kth state which is directly
affected by one of the control inputs, fk is the kth component of
the vector function f and ~X k is a state trajectory obtained from the
continuous measurements, the estimated and the corresponding
filter output as follows ~X k ¼ ½x̂1; . . . ; ~xk; . . . ; x̂nsþna �

T .
The FDI filters only initialized at t=0 such that

~xkð0Þ ¼ x̂kð0Þ ¼ xkð0Þ. For each state associated with a filter,
the FDI residual can be defined as rkðtÞ ¼ jx̂kðtÞ� ~xkðtÞj

4 We use O2;g to denote the set O2;g :¼ fxARns þna : V2ðxÞrgg.
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(Mhaskar et al., 2008; McFall et al., 2008). The objective of the FDI
scheme is to detect the fault when an actuator fault has occurred,
and then identify which of the ms+ma different faults (i.e., ~uj,
j=1,y,ms+ma) has occurred. Depending on the structure of the
system, faults can be classified into different types. A fault ~uj is a
type I fault if and only if

@fk

@ ~uj
¼ 0; 8kAfnsþ1; . . . ;nsþnag

where ~uj is the j th element in the vector ½ ~uT
s
~uT

a �
T . A fault ~uj is a

type II fault if there exists at least one kAfnsþ1; . . . ;nsþnag such
that

@fk

@ ~uj
a0

Because the effects of a type I fault are measured continuously,
only the filters of the states directly affected by the fault deviate
from normal when a fault occurs. The rest of the filters continue to
track the evolution of their corresponding states because the
effect of the fault is known and accounted for. This allows for both
fault detection and isolation in the case of a type I fault. However,
a type II fault affects states that are measured asynchronously,
and thus the effects of the fault are not immediately known and
cannot be accounted for by the observer x̂i. The error introduced
into x̂i will then propagate into the FDI filters. In order to isolate
the possible source of a fault and determine the type of the fault,
it is necessary to wait until the residuals of each asynchronous
state filters are updated after a new asynchronous measurement
is received. In general, multiple residuals may be non-zero,
making it impossible to isolate the specific fault.

In order to carry out FTC, all the possible faults should be
isolable or at least be grouped by the subset of inputs they may
affect. In the present work, we consider systems in which only a
known set of inputs affect the asynchronous states, hence, when a
type II fault is detected, the fault is known to belong to the
set allowing for a FTC to be implemented. Specifically, we assume
that for every element uj, jAf1; . . . ;msg in the input vector us, the
relative degree of xk with respect to uj is not equal to 1 for all
kAfnsþ1; . . . ;nsþnag. This assumption implies that the elements
in the local control system (i.e., us) only affect directly the
continuously available state xs and hence the local control system
cannot generate type II faults. When a type I occurs it can be
detected and isolated; on the other hand, when a type II fault
occurs, although the exact actuator that has failed is unknown, it
belongs to the networked control system. This property allows us
to carry out FTC in the two-tier control architecture as discussed
in Section 3, by shutting down the faulty actuator or subset
of actuators and activating an alternative non-faulty control
configuration.

3. Monitoring and FTC

In this section, we look at the monitoring and FTC of the
closed-loop system under the two-tier control architecture. The
structure of this integrated system is shown graphically in Fig. 1.
In general, an FTC switching rule may be employed to orchestrate
the reconfiguration of the control system in the event of control
system failure. This rule determines which of the backup control
loops can be activated, in the event that the main control loop
fails, in order to preserve closed-loop stability.

As discussed in Section 2.6, type I faults in actuators can be
detected and isolated for both local and networked control
systems, and type II faults can be grouped to networked control
system. When there is a fault in the networked control system
actuators (i.e., fault in ua), no matter what type the fault is, if the

fault can be detected and isolated in a reasonable time frame, we
can shut down the networked control system (i.e., let ua=0) and
leave the local control system in action alone. Note that in this
switching rule, when there is a fault in ua, the whole networked
control system is shut down. This switching rule ensures the
closed-loop stability because the local control system us=h1 can
stabilize the closed-loop system. Theorem 1 below describes the
switching rules and the stability properties of the closed-loop
system when there is an actuator fault in the networked control
system actuators.

In general, when there is an actuator fault in the local control
system, it is impossible to carry out FTC unless there is another
backup control system. However, in the two-tier control archi-
tecture, because the networked control system brings extra
control flexibility into the whole system, it is possible in some
cases to carry out FTC without activating new control actuators.
The assumption that there exists a Lyapunov-based control law
h2, manipulating us1 and ua, that asymptotically stabilizes the
closed-loop system ensures that FTC can be carried out without
other backup control systems when there are faults in the subset
us2 of the local control system. When there is a fault in us2, it must
be a type I fault and can be detected and isolated. In this case, the
proposed FTC strategy is to shut down the control actions of us2

and reconfigure the rest of the local control system and the
networked LMPC once the fault is isolated. Theorem 2 below
states the switching rule and reconfiguration strategy for this
case. However, when there is a fault in the subset us1 of us, it is
impossible to carry out FTC because of the lack of backup control
configurations within the two-tier control architecture and class
of nonlinear systems considered.

The proposed FTC switching rules for the system of Eq. (2)
within the two-tier control architecture are summarized as
follows:

1. When a fault in ua is detected at tf
a, the proposed FTC switching

rule is:

uaðtÞ ¼
uL

aðxÞ; tota
f

0; tZta
f

8<
:

usðtÞ ¼ h1ðxsÞ; 8t ð14Þ

2. When a fault in us2 is detected at tf
s, the proposed FTC

switching rule is:

uaðtÞ ¼
uL

aðxÞ; tots
f

ub
aðxÞ; tZts

f

8<
:

usðtÞ ¼

h1ðxsÞ; tots
f

ub
s1ðxÞ

0

" #
; tZts

f

8>><
>>: ð15Þ

Fig. 1. Two-tier control strategy with integrated monitoring and FTC.
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In what follows, we give sufficient conditions under which the
above switching rules of Eqs. (14) and (15) guarantee stability of
the closed-loop system. The sufficient conditions are provided in
Theorems 1 and 2. In order to state Theorems 1 and 2, we need the
following propositions.

Proposition 1 (c.f. Liu et al., 2010). Consider the Lyapunov

functions Vð�Þ, V2ð�Þ of system (2). There exists quadratic functions

fV ð�Þ and fV2
ð�Þ such that

VðxÞrVðx0Þþ fV ðjx�x0jÞ

V2ðx
00

ÞrV2ðx
000

Þþ fV2
ðjx
00

�x
000

jÞ ð16Þ

for all x; x0AOr and x
00

; x
00

AO2;g.

This proposition bounds the difference between the magnitudes
of the Lyapunov functions V(x) and V2(x) of two different states in
the Or and O2;g, respectively.

Proposition 2 (c.f. Muñoz de la Peña and Christofides, 2008). Con-

sider the sampled trajectory x̂ of the fault-free system of Eq. (2) in

closed-loop with the Lyapunov-based control law h2 applied in a

sample-and-hold fashion. Let D; es40 and g4gs40 satisfy

�a03ða
0
2
�1
ðgsÞÞþa04ða

0
1
�1
ðgÞÞLxM2Dr�es=D ð17Þ

Then, if gminog where

gmin ¼maxfV2ðx̂ðtþDÞÞ : V2ðx̂ðtÞÞrgsg ð18Þ

and x̂ð0ÞAO2;g, the following inequality holds:

V2ðx̂ðkDÞÞrmaxfV2ðx̂ð0ÞÞ�kes; gming ð19Þ

Proposition 2 ensures that if the fault-free system of Eq. (2)
under the control law h2(x) implemented in a sample-and-hold
fashion starts in O2;g, then it is ultimately bounded in O2;gmin

.

Theorem 1. Consider system (2) in closed-loop under the two-tier

control architecture of Eq. (6). If 0or0or and xðt0ÞAOr0
where t0

is the initial time, and a fault in ua is detected at time tf
a, if the

following condition is satisfied:

fV ðM1DmaxÞrr�r0 ð20Þ

then the switching rule of Eq. (14) guarantees that the state of the

closed-loop system x(t) is maintained in Or for all t and x(t)
converges to the origin asymptotically after tf

a.

Proof. A fault can only be detected when a new asynchronous
measurement is received after the fault occurred. In order to
prove the closed-loop stability, we will prove that V(x) is always
bounded in the stability region Or of h1 when the condition of
Eq. (20) is satisfied. Assume an asynchronous measurement is
received at tk, a fault in ua occurs at tf and is detected and isolated
when a new asynchronous measurement is received at tf

a, which
implies tkrtf rta

f .

According to the switching rule (14), from t0 to tf, the closed-

loop system (2) is controlled under the two-tier control

architecture based on h1. Following from the stability property

of the two-tier control architecture (Liu et al., 2010), if xðt0ÞAOr0
,

the state of the closed-loop system will converge to the origin

asymptotically which implies the state of the closed-loop system

at tf will be still maintained in Or0
, that is, xðtf ÞAOr0

.

From Eq. (4), the following inequality can be written:

j _xj ¼ jf ðx;h1;uaþ ~uaÞjrM1:

From this inequality, we can get the following bound on the

difference between x(tf) and x(tf
a):

jxðta
f Þ�xðtf ÞjrM1ðt

a
f �tf Þ ð21Þ

By Proposition 1 and the inequality of Eq. (21), we know that

Vðxðta
f ÞÞrVðxðtf ÞÞþ fV ðM1ðt

a
f �tf ÞÞ ð22Þ

After applying the switching rule (14) at tf
a, the closed-loop

system will be controlled by the local Lyapunov-based control law

h1. In order to maintain the stability of the closed-loop system,

x(tf
a) must be inside the stability region of h1, that is, xðta

f ÞAOr.

From the inequality of Eq. (22) and the above reasoning, the

following inequality must be satisfied:

Vðxðtf Þþ fV ðM1ðt
a
f �tf ÞÞrr

Moreover, this inequality needs to hold for the worst case, that is,

Vðxðtf ÞÞ ¼ r0 and ta
f �tf ¼Dmax, which leads to the following

inequality:

fV ðM1DmaxÞrr�r0

which is the condition of Eq. (20).

After tf
a, the closed-loop system will be controlled under the

local control system h1. This implies that x(t) will converge to the

origin asymptotically after tf
a because h1 renders the closed-loop

system asymptotically stable. This proves that x(t) of the closed-

loop system is always maintained in Or and converges asympto-

tically to the origin after tf
a under the switching rule of

Eq. (14). &

Theorem 1 above gives sufficient conditions under which the
switching rule of Eq. (14) guarantees the stability of the closed-
loop system in the presence of an actuator fault in ua. Below
Theorem 2 gives sufficient conditions under which the switching
rule of Eq. (15) guarantees the stability of the closed-loop system
in the presence of an actuator fault in us2.

Theorem 2. Consider system (2) in closed-loop under the two-tier

control architecture of Eq. (6). Let D; es40 and g4gs40 satisfy the

condition of Eq. (17). If NDZDmax, xðt0ÞAOr0
where t0 is the initial

time and a fault in us 2 is detected and isolated at time tf
s, and if

xðts
f ÞAO2;g, then the switching rule of Eq. (15) guarantees that the

state of the closed-loop system x(t) is ultimately bounded in O2;gmin
.

Proof. Assume an asynchronous measurement is received at tk, a
fault in us 2 occurs at tf and is detected and isolated when a new
asynchronous measurement is received at tf

s, which implies
tkrtf rts

f . According to the switching rule of Eq. (15), from t0 to
tf, the closed-loop system of Eq. (2) is controlled under the two-
tier control architecture with us=h1(xs) and ua=ua

L. Following from
the asymptotic stability property of the two-tier control archi-
tecture of Eq. (6), if xðt0ÞAOr0

, the state of the closed-loop system
will converge to the origin asymptotically.

According to the switching rule of Eq. (15), after tf
s, the closed-

loop system will be controlled with us=[us1
bT 0T]T and ua=ua

b. If

NDZDmax and xðts
f ÞAO2;g, following the results in Muñoz de la

Peña and Christofides (2008), we can prove that the closed-loop

system state x(t) is ultimately bounded in O2;gmin
. This proves

Theorem 2. &

Remark 6. The switching rule of Eq. (15) implies that when there
is a fault in us2: (a) the networked control system needs to be
reconfigured following the LMPC of Eq. (10), and (b) the
reconfigured networked control system needs to determine both
ua and us1. In this case, only the state measurements obtained
from xs and xa at time instants tk are utilized. If h21 only depends
on the continuously-measured state xs, (i.e., h21(x)=h21(xs)), in
order to take advantage of all the available measurements, we can
use h21 to determine us1 and use the networked LMPC of Eq. (10)
to optimize ua; this means that in the optimization problem of
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LMPC of Eq. (10), we let us1=h21. This point will be demonstrated
in the process example of Section 4. Finally, we note that when a
fault in us1 is detected at tf

s, there is no guarantee that closed-loop
system stability can be maintained via FTC.

4. Application to a reactor-separator process

4.1. Process description and modeling

The process considered in this study is a three vessel, reactor-
separator system consisting of two continuously stirred tank
reactors (CSTRs) and a flash tank separator (see Fig. 2). A feed
stream to the first CSTR contains the reactant, A, which is
converted into the desired product, B. Species A can also react
into an undesired side-product, C. The solvent does not react and
is labeled as D. The effluent of the first CSTR along with additional
fresh feed makes up the inlet to the second CSTR. The reactions
A-B and A-C (referred to as 1 and 2, respectively) take place in
the two CSTRs in series before the effluent from CSTR 2 is fed to a
flash tank. The overhead vapor from the flash tank is condensed
and recycled to the first CSTR, and the bottom product stream is
removed. All three vessels are assumed to have static holdup. The
dynamic equations describing the behavior of the system,
obtained through material and energy balances under standard
modeling assumptions, are given below:

dT1

dt
¼

F10

V1
ðT10�T1Þþ

Fr

V1
ðT3�T1Þþ

�DH1

rCp
k1e�E1=RT1 CA1

þ
�DH2

rCp
k2e�E2=RT1 CA1þ

Q1

rCpV1
ð23aÞ

dCA1

dt
¼

F10

V1
ðCA10�CA1Þþ

Fr

V1
ðCAr�CA1Þ�k1e�E1=RT1 CA1�k2e�E2=RT1 CA1

ð23bÞ

dCB1

dt
¼
�F10

V1
CB1þ

Fr

V1
ðCBr�CB1Þþk1e�E1=RT1 CA1 ð23cÞ

dCC1

dt
¼
�F10

V1
CC1þ

Fr

V1
ðCCr�CC1Þþk2e�E2=RT1 CA1 ð23dÞ

dT2

dt
¼

F1

V2
ðT1�T2Þþ

ðF20þDF20Þ

V2
ðT20�T2Þþ

�DH1

rCp
k1e�E1=RT2 CA2

þ
�DH2

rCp
k2e�E2=RT2 CA2þ

Q2

rCpV2
ð23eÞ

dCA2

dt
¼

F1

V2
ðCA1�CA2Þþ

ðF20þDF20Þ

V2
ðCA20�CA2Þ

�k1e�E1=RT2 CA2�k2e�E2=RT2 CA2 ð23fÞ

dCB2

dt
¼

F1

V2
ðCB1�CB2Þ�

ðF20þDF20Þ

V2
CB2þk1e�E1=RT2 CA2 ð23gÞ

dCC2

dt
¼

F1

V2
ðCC1�CC2Þ�

ðF20þDF20Þ

V2
CC2þk2e�E2=RT2 CA2 ð23hÞ

dT3

dt
¼

F2

V3
ðT2�T3Þ�

HvapFr

rCpV3

þ
Q3

rCpV3
ð23iÞ

dCA3

dt
¼

F2

V3
ðCA2�CA3Þ�

Fr

V3
ðCAr�CA3Þ ð23jÞ

dCB3

dt
¼

F2

V3
ðCB2�CB3Þ�

Fr

V3
ðCBr�CB3Þ ð23kÞ

dCC3

dt
¼

F2

V3
ðCC2�CC3Þ�

Fr

V3
ðCCr�CC3Þ ð23lÞ

The definitions for the variables used in Eq. (23) can be found
in Table 1, with the parameter values given in Table 2. Each of the
tanks has an external heat input.

The model of the flash tank separator operates under the
assumption that the relative volatility for each of the species
remains constant within the operating temperature range of the
flash tank. This assumption allows calculating the mass fractions
in the overhead based upon the mass fractions in the liquid
portion of the vessel. It has also been assumed that there is
a negligible amount of reaction taking place in the separator.
The following algebraic equations model the composition of the
overhead stream relative to the composition of the liquid holdup

Fig. 2. Two CSTRs and a flash tank with recycle stream.

Table 1
Process variables.

CA1, CA2, CA3 Concentration of A in vessels 1, 2, 3

CB1, CB2, CB3 Concentration of B in vessels 1, 2, 3

CC1, CC2, CC3 Concentration of C in vessels 1, 2, 3

CAr, CBr, CCr Concentration of A, B, C in the recycle

T1, T2, T3 Temperatures in vessels 1, 2, 3

T10, T20 Feed stream temp. to vessels 1, 2

F1, F2, F3 Effluent flow rate from vessels 1, 2, 3

F10, F20 Feed stream flow rate to vessels 1, 2

CA10, CA20 Concentration of A in the feed stream to vessels 1, 2

Fr Recycle flow rate

V1, V2, V3 Volume of vessels 1, 2, 3

u1, u2, u3, u4 Manipulated inputs

E1, E2 Activation energy for reactions 1, 2

k1, k2 Pre-exponential values for reactions 1, 2

DH1, DH2 Heats of reaction for reactions 1, 2

Hvap Heat of vaporization

aA , aB , aC , aD Relative volatilities of A, B, C, D

MWA, MWB, MWC Molecular weights of A, B, and C

Cp, R Heat capacity and gas constant

Table 2
Parameter values.

T10=300, T20= 300 K

F10 = 5, F20=5, Fr = 1.9 m3=h

CA10 = 4, CA20=3 kmol=m3

V1=1.0, V2=0.5, V3=1.0 m3

E1=5E4, E2 = 5.5E4 kJ=kmol

k1=3E6, k2= 3E6 1=h

DH1 ¼�5E4, DH2 ¼�5:3� 104 kJ=kmol

Hvap=5 kJ=kmol

Cp = 0.231 kJ=kg K

R = 8.314 kJ=kmol K

r¼ 1000 kg=m3

aA ¼ 2, aB ¼ 1, aC ¼ 1:5, aD ¼ 3 Unitless

MWA = 50, MWB = 50, MWC = 50 kg=kmol
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in the flash tank:

CAr ¼
aACA3

K
; CBr ¼

aBCB3

K
; CCr ¼

aCCC3

K

K ¼ aACA3
MWA

r
þaBCB3

MWB

r
þaCCC3

MWC

r
þaDxDr ð24Þ

where xD is the mass fraction of the solvent in the flash tank liquid
holdup and is found from a mass balance.

The system of Eq. (23) is modeled with sensor measurement
noise and Gaussian process noise. The sensor measurement noise
is generated using a zero-mean normal distribution with standard
deviation 10�1 for the temperature states and 10�2 for the nine
concentration states. Noise is also applied to each measurement
with a frequency of Dm ¼ 0:001 h. The process noise is generated
similarly, with a zero-mean normal distribution and with the
same standard deviation values. Process noise is added to the
right-hand side of the ODEs in the system of Eq. (23) and changes
with a frequency of Dw ¼ 0:001 h.

We assume that the measurements of temperatures T1, T2 and
T3 are available continuously and the measurements of the
species concentration CAi, CBi and CCi, i=1,2,3 are available
asynchronously at time instants tk with an average frequency of
W=10 measurements per hour. The measurement times ftkZ0g

are modeled as a Poisson process with the time between
measurements Da ¼minf�logðx=WÞ;Dmaxg where x is a uniformly
distributed random number between 0 and 1 and Dmax ¼ 0:05 h
which is the maximum time interval between two successive
asynchronous species concentration measurements.

The manipulated inputs to the process are the heat inputs to
the three vessels Q1, Q2 and Q3 and the change of the inlet flow
rate DF20 to the second tank. The process has one unstable and
two stable steady states and the operating set point is the
unstable steady state:

xs ¼ ½369:5 3:318 0:172 0:042 435:3 2:751

0:446 0:111 435:3 2:882 0:497 0:120�T ð25Þ

The process of Eq. (23) belongs to the class of nonlinear systems
described by Eq. (2) where the deviation of the actual state from
the steady-state x is the state, us=[u1 u3 u2]T=[Q1 Q3 Q2]T and
ua ¼ u4 ¼DF20 are the manipulated inputs which are subject to the
constraints juijr106 kJ=h ði¼ 1;2;3Þ and ju4jr4:998 m3=h.

The local control system consists of the three heat input
actuators operating under three PI controllers that control the
three heat input actuators (i.e., h1=[u1 u2 u3]T) with proportional
gains Kp1=Kp2=Kp3=8000 and integral times tI1 ¼ tI2 ¼ tI3 ¼ 10,
respectively. These PI controllers can asymptotically stabilize the
closed-loop process at the desired steady-state. A quadratic
Lyapunov function V(x)=xTPx with P=diag[10 103 103 103 10
103 103 103 10 103 103 103] is used. Based on the PI controllers
and the Lyapunov function V(x), an LMPC of the form given in
Eq. (5) is designed as the networked control system to manipulate
the change of the inlet flow rate to the second tank (i.e., u4) taking
advantage of the asynchronous concentration measurements to
improve the closed-loop performance. The cost function L(x, us,
ua) used in the networked LMPC is quadratic and takes the form
L(x, us, ua)=xT Qc x + Rc ua

2, where Qc=P, Rc=10. The horizon for the
optimization problem is N=5 with D¼ 0:01 h so that NDZDmax.
At each asynchronous measurement time, the networked LMPC
optimization problem is solved again and implemented over the
length of the horizon or until a new asynchronous concentration
measurement becomes available.
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Fig. 3. Temperature trajectories in each vessel with a fault in the networked

control actuator (u4 = 4.998 m3/h) at t = 0.3 h. Dashed lines represent trajectories

without FTC and solid lines represent trajectories with FTC.
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Fig. 4. Asynchronous concentration measurements (CA= � , CB = o, CC ¼�) in

each vessel (V 1, V 2, V 3) with a fault in the networked control actuator (u4 =

4.998 m3/h) at t = 0.3 h. Dotted lines represent observer trajectories. (a) No FTC is

implemented; (b) FTC is implemented.
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In order to perform FDI for the reactor-separator system, we
construct the asynchronous state observers of the form of Eq. (12),
where Ĉ Ai, Ĉ Bi, and Ĉ Ci; i¼ 1;2;3 are the asynchronous observer
states. Each observer state is reset to its actual value each time a
new asynchronous measurement becomes available at time tk.
The observer states provide estimates for the concentration states
between measurements allowing the computation of FDI filter
residuals.

Actuator fault-detection and isolation for the system in closed-
loop with the primary configuration is accomplished by generat-
ing FDI filters for the four manipulated inputs as in Eq. (13). In
addition, the FDI residuals take the following form:

rTi ;max ¼ jTiðtÞ� ~T iðtÞj; i¼ 1;2;3

rCi2 ;max ¼ jĈ i2ðtkÞ�
~C i2ðtkÞj; i¼ A;B;C ð26Þ

Due to sensor measurement and process noise, the residuals
will be non-zero even without a fault. This necessitates the use of
fault detection thresholds so that a fault is declared only when a
residual exceeds a specific threshold value, ri,max. This threshold
value is chosen to avoid false alarms due to process and sensor
measurement noise, but should still be sensitive enough to detect
faults in a timely manner so that effective FTC can be performed.

The threshold values used for each residual in the numerical
simulations are as follows:

rTi
¼ 5K; i¼ 1;2;3

rCi2
¼ 0:08 kmol=m3; i¼ A;B;C

Note that because only the networked control system affects
the asynchronously sampled states, when a concentration
residual exceeds its corresponding threshold, a fault in the
networked control system can be declared.

With respect to the decomposition of the input space for FTC
purposes, the inputs of the process us can be decomposed into
us1=[u1 u3]T and us2=u2. Furthermore, it was verified that for
specific process under consideration there exists a controller
design h2=[u1 u3 u4]T with u1, u3 controlled by the same PI
controllers introduced before in this section and u4 controlled by
another PI controller based on the measurement of T2 with the
proportional gain Kp4=�0.3 and the integral time tI4 ¼ 10, that
can stabilize the process at the operating steady-state. The control
design h2 can also stabilize the closed-loop system asymptotically
with continuous measurements and u2=0. Based on this
h2-controller, a new LMPC can be designed and used for FTC
purposes following Eq. (10) with us 1 determined by the PI
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Fig. 5. FDI filter residuals for temperatures (T1, T2, T3) and concentration (CA2, CB2, CC2) with a fault in the networked control actuator (u4 = 4.998 m3/h) at t = 0.3 h. (a) No

FTC is implemented; (b) FTC is implemented.
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controllers, which means that only u4 is optimized by this LMPC
(see also Remark 6), to stabilize the process. In the design of this
LMPC, the same Lyapunov function is used, that is, V2=V.

4.2. FTC for networked control system

In this subsection, we consider FTC for the process when there
is a fault in the actuator associated with u4. Specifically, we
consider a fault which renders the actuator keeps DF20 at the
maximum (i.e., u4=4.998 m3/h). Because DF20 affects both
asynchronously and continuously measured state directly, a fault
in DF20 can be declared when two or more of the residuals in rT2

,
rCA2

, rCB2
and rCC2

are greater than the corresponding thresholds
and rT1

, rT3
are found to be less than their respective thresholds at

an asynchronous sampling time tk.
We first simulate the process with the fault without imple-

menting FTC. The fault is introduced at time t=0.3 h. The state
trajectories of the process are shown in Fig. 3 (dashed lines) and
Fig. 4(a) when no FTC is implemented. From Figs. 3 and 4(a), we
see that without implementing FTC, the state of the process
cannot be maintained at the desired steady-state. The residuals in
Fig. 5(a) shows that the fault is detected at t=0.310 h when
rT24rT2;max. It can then be isolated when the next asynchronous
measurement is received at tk=0.356 h and rT24rT2;max and
rCB2

4rCB2;max
.

In contrast to the above scenario, we run the same simulation
again, but upon isolation of the fault we carry out the switching
rule of Eq. (14) and the networked control system is switched off.
The state trajectories of the process are shown in Fig. 3 (solid
lines) and Fig. 4(b). From Figs. 3 and 4(b), we see that the state
trajectories show the initial deviation from steady-state followed
by a return to the steady-state as the fault is isolated at t=0.356 h
and the networked control system is switched off (see Fig. 5(b) for
the corresponding residuals).

4.3. FTC for local control system

In this subsection, we consider FTC for the process when there
is a fault in the heat input actuator to vessel 2 which renders Q2=0
(i.e., u2=0 kJ/h). Since Q2 only affects the continuous available
measurement T2 directly, a fault in Q2 can be claimed when

rT24rT2;max and the other residuals are found to be less than their
respective thresholds at an asynchronous sampling time tk.

We first simulate the process with the failure without
implementing FTC nor updating the LMPC in the networked
control system. The fault is also introduced at time t=0.3 h. The
state trajectories of the process are shown in Figs. 6 (dashed lines)
and 7(a). From Figs. 6 and 7(a), we see that without implementing
FTC, the state of the process cannot be maintained at the required
steady-state. The residuals in Fig. 8(a) show that the fault is
detected at t=0.432 h when rT24rT2;max. It can then be isolated
when the next asynchronous measurement is received at
tk=0.442 h.

In contrast to the above scenario, we carry out the same
simulation again, but upon isolation of the fault we implement
the switching rule of Eq. (15) and reconfigure the networked
control system to reflect the failed actuator. In this case, despite
the failed actuator, the networked control system is able to
stabilize the process after reconfiguration. Figs. 6 (solid lines) and
7(b) show the temperature and concentration profiles for the
process. The temperature trajectories show the initial deviation
from the steady-state as the fault is first introduced followed by a
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Fig. 7. Asynchronous concentration measurements (CA= � , CB=o, CC ¼�) in each

vessel (V 1, V 2, V 3) with an actuator failure in the heat input to vessel 2 (u2=0) at

t=0.3 h. Dotted lines represent observer trajectories. (a) No FTC is implemented;

(b) FTC is implemented.
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return to steady-state as the fault is detected at t=0.432 h,
isolated at t=0.442 h and the switching rule of Eq. (15) is
implemented (see Fig. 8(b) for the corresponding residuals).

5. Conclusions

In this work, we studied the monitoring and reconfiguration of
two-tier control systems applied to a general nonlinear processes
in the presence of control actuator faults. Specifically, a general
class of nonlinear process systems was first considered and was
controlled by a two-tier control system integrating a local control
system using continuous sensing/actuation with a networked
control system using asynchronous sensing/actuation. To deal
with control actuator faults that may occur in the closed-loop
system and eliminate the ability of the two-tier control system to
stabilize the process, a FDI/FTC system was designed which
detects and isolates actuator faults and determines how to
reconfigure the two-tier control system to handle the actuator
faults and ensure closed-loop stability. The FDI/FTC system uses
continuous measurements of process variables like tempera-
ture and asynchronous measurements of variables like species
concentrations. The method was demonstrated using a

reactor-separator process consisting of two continuously stirred
tank reactors and a flash tank separator with recycle stream.
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