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Traditionally, process control systems utilize dedicated, point-to-point wired communication links using
a small number of sensors and actuators to regulate appropriate process variables at desired values.
While this paradigm to process control has been successful, chemical plant operation could substantially
benefit from an efficient integration of the existing, point-to-point control networks (wired connections
from each actuator/sensor to the control system using dedicated local area networks) with additional
networked (wired or wireless) actuator/sensor devices. However, augmenting existing control networks
with real-time wired/wireless sensor and actuator networks challenges many of the assumptions made in
the development of traditional process control methods dealing with dynamical systems linked through
ideal channels with flawless, continuous communication. In the context of control systems which utilize
networked sensors and actuators, key issues that need to be carefully handled at the control system
design level include data losses due to field interference and time delays due to network traffic. Motivated
by the above technological advances and the lack of methods to design control systems that utilize hy-
brid communication networks, in the present work, we present a novel two-tier control architecture for
networked process control problems that involve nonlinear processes and heterogeneous measurements
consisting of continuous measurements and asynchronous, delayed measurements. This class of control
problems arises naturally when nonlinear processes are controlled via control systems based on hybrid
communication networks (i.e., point-to-point wired links integrated with networked wired/wireless com-
munication) or utilizing multiple heterogeneous measurements (e.g., temperature measurements which
can be taken to be continuous and species concentration measurements which are fed to the control
system at asynchronous time instants and frequently involve delays). While point-to-point wired links
are very reliable, the presence of a shared communication network in the closed-loop system introduces
additional delays and data losses and these issues should be handled at the controller design level. In the
two-tier control architecture presented in this work, a lower-tier control system, which relies on point-to-
point communication and continuous measurements, is first designed to stabilize the closed-loop system,
and an upper-tier networked control system is subsequently designed, using Lyapunov-based model pre-
dictive control theory, to profit from both the continuous and the asynchronous, delayed measurements
as well as from additional networked control actuators to improve the closed-loop system performance.
The proposed two-tier control architecture preserves the stability properties of the lower-tier controller
while improving the closed-loop performance. The applicability and effectiveness of the proposed control
method is demonstrated using two chemical process examples.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The chemical industry is a key economic sector in the US and glob-
ally, and is involved with the conversion of raw materials, through
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a series of chemical processing steps, to valued products. While the
range of valuable assets in a chemical plant is large, nearly all the
economic value in terms of operating profit is a direct result of plant
operations. This realization has motivated extensive research, over
the last 40 years, on the development of advanced operation and
control strategies to achieve economically optimal plant operation
by regulating process variables at appropriate values. With respect
to process control, control systems traditionally utilize dedicated,
point-to-point wired communication links using a small number of
sensors and actuators to regulate appropriate process variables at
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desired values. While this paradigm to process control has been suc-
cessful, chemical plant operation could substantially benefit from
an efficient integration of the existing, point-to-point control net-
works (wired connections from each actuator/sensor to the control
system using dedicated local area networks) with additional net-
worked (wired or wireless) actuator/sensor devices (Ydstie, 2002;
Davis, 2007; Neumann, 2007; Christofides et al., 2007). Such an aug
mentation in sensor information and network-based availability
of wired and wireless data is now well underway in the process
industries and clearly has the potential to be transformative in the
sense of dramatically improving the ability of the single-process and
plant-wide model-based control systems to optimize process and
plant performance. Hybrid communication networks allow for easy
modification of the control strategy by rerouting signals, having
redundant systems that can be activated automatically when com-
ponent failure occurs, and in general, they allow having a high-
level supervisory control over the entire plant (Christofides and
El-Farra, 2005). However, augmenting existing control networks
with real-time wired/wireless sensor and actuator networks chal-
lenges many of the assumptions made in the development of tra-
ditional process control methods dealing with dynamical systems
linked through ideal channels with flawless, continuous communica-
tion. In the context of hybrid communication networks which utilize
networked sensors and actuators, key issues that need to be care-
fully handled at the control system design level include data losses
due to field interference and time delays due to network traffic.

Motivated by the need to develop control architectures that
utilize hybrid communication networks, we recently introduced a
two-tier control architecture for nonlinear process systems with
both continuous and asynchronous measurements (Liu et al.,
submitted for publication). This class of systems arises in the con-
text of process control systems utilizing hybrid communication
networks consisting of point-to-point wired links integrated with
wireless actuator/sensor networks. Assuming that there exists a
lower-tier control system which relies on point-to-point commu-
nication and continuous measurements to stabilize the closed-loop
system, we proposed to use Lyapunov-based model predictive
control (LMPC) theory (Mhaskar et al., 2005, 2006; Muñoz de la
Peña and Christofides, 2008) to design an upper-tier networked
control system which profits from both the continuous and the
asynchronous measurements as well as from additional networked
control actuators. LMPC is based on the concept of uniting model
predictive control with control Lyapunov functions as a way of
guaranteeing closed-loop stability. The main idea is to formulate
appropriate constraints in the predictive controller's optimization
problem based on an existing Lyapunov-based controller, in such
a way that the MPC inherits the robustness and stability proper-
ties of the Lyapunov-based controller. LMPC schemes allow for an
explicit characterization of the stability region and lead to reduced
complexity optimization problems. We established in Liu et al.
(submitted for publication) that the proposed two-tier control sys-
tem architecture preserves the stability properties of the lower-tier
controller while improving the closed-loop performance. However,
the developed two-tier control architecture (Liu et al., submitted for
publication) does not account for the effect of time-varying network
delays as well as measurement sensor delays, which are particu-
larly important during the measurement of species concentrations
and particle size distributions in process control applications. Thus,
when time-varying measurement delays are present in the closed-
loop system, the developed two-tier control architecture (Liu et al.,
submitted for publication) is not guaranteed to maintain the desired
closed-loop stability and performance properties.

Within process control, other important recent work on the sub-
ject of networked process control includes the development of a
quasi-decentralized control framework for multi-unit plants that

achieves the desired closed-loop objectives with minimal cross com-
munication between the plant units under state (Sun and El-Farra,
2008) feedback control. In this work, the key ideas are to embed in
the local control system of each unit a set of dynamic models that
provide an approximation of the interactions between a given unit
and its neighbors in the plant when measurements are not trans-
mitted through the plant-wide network and to update the state of
each model using measurements from the corresponding unit when
communication is re-established. Using a switched system formula-
tion, the maximum allowable update period between the sensors of
each unit and the local controllers of its neighbors has been explicitly
characterized. In addition to these works, fault diagnosis and fault-
tolerant control methods that account for network-induced mea-
surement errors have been developed in Ghantasala and El-Farra
(2008). In terms of other research work pertaining to the control
problem studied in this paper, we note that most of the available re-
sults on MPC of systems with delays deal with linear systems (e.g.,
Jeong and Park, 2005; Liu et al., 2007). Furthermore, the importance
of time delays in the context of networked control systems has mo-
tivated significant research efforts in modeling such delays and de-
signing control systems to deal with them, primarily in the context
of linear systems (e.g., Lian et al., 2003; Montestruque and Antsak-
lis, 2004; Wang et al., 2005; Zhang et al., 2005; Witrant et al., 2007;
Gao et al., 2008). Finally, we recently developed an LMPC technique
for nonlinear systems with time-varying measurement delays (Liu
et al., in press).

In this work, we continue on our recent efforts (Liu et al., sub-
mitted for publication) on the development of two-tier control ar-
chitectures for networked process control problems. Specifically, we
focus on networked process control problems that involve nonlin-
ear processes, hybrid communication networks subjected to data
losses and time delays, and heterogeneous measurements consisting
of continuous measurements (e.g., temperature measurements) and
asynchronous, delayed measurements (e.g., species concentration
measurements which are fed to the control system at asynchronous
time instants and frequently involve delays). We propose a two-tier
control architecture which consists of: (a) a lower-tier control sys-
tem, which relies on point-to-point communication and continuous
measurements, to stabilize the closed-loop system, and (b) an upper-
tier networked control system, designed using LMPC, that profits
from both the continuous and the asynchronous, delayed measure-
ments as well as from additional networked control actuators to
improve the closed-loop system performance. The applicability and
effectiveness of the proposed control architecture is demonstrated
using two chemical process examples.

2. Preliminaries

2.1. Problem formulation

In this work, we consider nonlinear process systems described
by the following state-space model:

ẋ(t) = f (x(t),us(t),ud(t),w(t))

ys(t) = hs(x(t))

yd(t) = hd(x(t − d(t))) (1)

where x(t) ∈ Rnx denotes the vector of state variables, ys(t) ∈ Rnys
denotes continuous and synchronous measurements, yd(t) ∈ Rnyd
are sampled, asynchronous measurements subject to time-varying
measurement delays, us(t) ∈ Rnus and ud(t) ∈ Rnud are two dif-
ferent sets of possible manipulated inputs, d(t) is the size of the
time-varying measurement delay (see Section 2.2 below for pre-
cise definition of the measurement/network model) and w(t) ∈ Rnw

denotes the vector of disturbance variables (i.e., w(t) may include
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unknown/partially known time-varying process parameters and/or
external disturbances). The disturbance vector is assumed to be
bounded, i.e., w(t) ∈ W where

W := {w ∈ Rnw s.t. |w|��,� >0}1

We assume that f is a locally Lipschitz vector function, hs and hd are
sufficiently smooth vector functions, and f (0, 0, 0, 0)=0, hs(0)=0 and
hd(0) = 0. This means that the origin is an equilibrium point for the
nominal system (system (1) with w(t) ≡ 0 for all t) with us = 0 and
ud = 0.

Remark 1. The two sets of inputs include both systemswithmultiple
inputs and systems with a single input divided artificially into two
terms; i.e.,

ẋ(t) = f̂ (x(t),u(t),w(t))

with u(t) = us(t) + ud(t)

Remark 2. The set of manipulated inputs ud(t) can be used to
model actuators controlled via a shared communication network,
and hence, possibly affected by data losses or time-varying delays.
The set of manipulated inputs us(t) can be used to model control
actuators which are connected with the control system via dedi-
cated, wired links and are guided by a control system that only uses
continuous measurements of the outputs ys(t).

2.2. Modeling of measurements/network

System (1) is controlled using both continuous synchronous, ys,
and asynchronous, delayed measurements, yd. This class of systems
arises naturally in process control applications, where different pro-
cess variables have to be measured such as temperature, flow rates,
species concentrations or particle size distributions. This model is
also of interest in the context of processes controlled through a hy-
brid communication network in which networked wired/wireless
sensors and actuators are used to add redundancy to existing con-
trol loops (which use point-to-point wired communication links and
continuous measurements) because networked communication is
often subject to data losses due to field interference (for example, in
wireless communication) and time-varying delays due to network
traffic. We assume that ys is available for all t, while delayed yd sam-
ples are received at an asynchronous rate. We also assume that each
yd measurement is time-labeled, so the controller is able to discard
non-relevant information. Delays in the computation and implemen-
tation of control actions can be readily lumped with the measure-
ment delays and are not treated separately. The time instants at
which a new delayed yd sample is received are denoted tk, where
{tk�0} is a random increasing sequence of times. To model the time-
varying delay, an auxiliary variable dk is introduced to indicate the
delay corresponding to the sample received at time tk; that is, at
time instant tk, the sample yd(tk) = hd(x(tk − dk)) is received.

In general, if the sequence {dk�0} is modeled using a random
process, there exists the possibility of arbitrarily large delays. In this
case, it is improper to use all the delayed measurements to estimate
the current state and decide the control inputs, because when the
delays are too large, they may introduce enough errors to destroy
the stability of the closed-loop system. In order to study the stabil-
ity properties in a deterministic framework, in this paper, we only
take advantage of delayed measurements such that the delays asso-
ciated with the measurements are smaller than an upper bound D,

1 | · | denotes Euclidean norm of a vector.

Process

Sensors

x

Lower-tier
Controller

ys

Fig. 1. Lower-tier pre-existing controller with dedicated point-to-point, wired com-
munication links and continuous sensing/actuation.

i.e., dk�D, k = 0, 1 . . . . The sequence {tk�0} only indicates time in-
stants in which new measurements are available with a correspond-
ing measurement delay lesser than or equal to D.

We assume that the measurement of the full state x can be ob-
tained by proper integration of measurements ys and yd at a given
time instant. Due to the asynchronous nature of yd, the time interval
between two consecutive state x measurements is unknown, more-
over, due to the time-varying measurement delay of yd, the full state
x is also subject to time-varying delays. This implies that a controller
that is designed to profit from the extra information provided by
the asynchronous, delayed measurements yd must take into account
that between two consecutive state measurements it has to operate
in open-loop and that the received state measurements are delayed
so the real state of the system has to be estimated using the nominal
model of the system and the available measurement information.

Remark 3. The sequences {tk�0} and {dk�0} characterize the time
needed to obtain a new measurement in the case of asynchronous
measurements or the quality of the network link in the case of net-
worked (wired or wireless) communications subject to data losses
and time-varying delays. The proposed model is general and can be
used to model a wide class of systems subject to asynchronous, de-
layed measurements.

Remark 4. The sequence {tk�0} does not take into account time
instants in which a sample that does not provide new information
or a sample that involves a delay larger than D is received; that is,
the controller discards samples with already known information, or
with a delay too long to use this sample to estimate the current state
(recall that the measurements are time-labeled).

Remark 5. Wehave considered that the delayed full state is available
asynchronously to simplify the notation. The results can be extended
to controllers based on partial state information.

Remark 6. The main idea of the proposed two-tier architecture is
to design a controller (see Section 3 below) based not only on the
synchronous measurements, but also on the asynchronous measure-
ments to profit from the extra information. This is the case, for exam-
ple, when extra wireless sensors/actuators are added to an already
operating process which is controlled via a control system that uses
only continuous, synchronous measurements.

2.3. Lower-tier controller

The continuous measurement ys can be used to design a continu-
ous output-feedback controller to stabilize the system. We term the
control system based only on the continuous measurements ys as
lower-tier controller. This control scheme does not use the delayed
measurements yd. Fig. 1 shows a schematic of the lower-tier con-
troller which can also be thought of as an already-operating control
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system. To proceed, we assume that there exists an output feedback
controller us(t) = ks(ys(t)) (where ks(ys) is assumed to be a suffi-
ciently smooth function of ys) that renders the origin of the nom-
inal closed-loop system (i.e., w(t) ≡ 0) asymptotically stable with
ud(t) ≡ 0. Using converse Lyapunov theorems (see Khalil, 1996),
this assumption implies that there exist functions �i(·), i = 1, 2, 3, 4
of class K2 and a Lyapunov function V for the nominal closed-loop
system which is continuous and bounded in Rnx , that satisfy the
following inequalities:

�1(|x|)�V(x)��2(|x|)
�V(x)
�x

f (x, ks(hs(x)), 0, 0)� − �3(|x|)
∣∣∣∣�V(x)�x

∣∣∣∣ ��4(|x|) (2)

for all x ∈ O ⊆ Rnx where O is an open neighborhood of the ori-
gin. We denote the region ��3 ⊆ O as the stability region of the
closed-loop system under the controller ks(ys). In the remainder,
we will refer to the controller ks as the lower-tier controller. The
lower-tier controller based on the output-feedback controller ks is
able to stabilize the system, however, it does not profit from the
extra information provided by yd and does not utilize ud(t). In what
follows, we propose a two-tier control architecture that profits
from the extra measurements and control actuators to improve the
closed-loop system performance.

Remark 7. The assumption that there exists a lower-tier controller
which can stabilize the closed-loop system using only the continu-
ous measurements ys(t) and the inputs us(t) implies that, in princi-
ple, it is not necessary to use the additional information provided
by the asynchronous measurements and the extra inputs ud(t) in
order to achieve closed-loop stability. However, the main objective
of the proposed two-tier control architecture is to profit from this
extra information and control effort to improve the closed-loop per-
formance while maintaining the stability properties achieved by the
lower-tier controller.

Remark 8. We have considered static lower-tier controllers to sim-
plify the notation. The formulation can be readily extended to dy-
namic lower-tier controllers as long as they enforce asymptotic sta-
bility in the closed-loop system in the sense of (2). In the examples
in Sections 4 and 5, proportional-integral (PI) controllers are used as
the lower-tier controllers.

Remark 9. The lower tier controller provides some degree of ro-
bustness with respect to the uncertainty w. Condition (2) and the
Lipschitz property of f guarantee that: (a) the closed-loop nominal
system under the lower-tier controller is asymptotically stable; (b)
the closed-loop system under the lower-tier controller subject to the
disturbances is ultimately bounded, provided � is sufficiently small,
in a region that contains the origin that depends on the size of the
uncertainty. These properties are made explicit in Proposition 1 in
next section. See Khalil (1996) for more details.

3. Two-tier architecture

The main objective of the two-tier control architecture is to
improve the performance of the closed-loop system using the in-
formation provided by yd while guaranteeing that the stability

2 Class K functions are strictly increasing functions of their argument and
satisfy �(0) = 0.

3 We use �r to denote the set �r := {x ∈ Rnx |V(x)� r}.

Process

Sensors

x

Lower-tier
Controller

ys
yd

Upper-tier
Controller

us

ysyd

ud

Fig. 2. Two-tier control strategy (solid lines denote dedicated point-to-point, wired
communication links and continuous sensing/actuation; dashed lines denote net-
worked (wired/wireless) communication and/or asynchronous sampling/actuation).

properties of the lower-tier controller are maintained. This is done
by designing a controller (upper-tier controller) based on the full
state measurements obtained by integrating both the continuous
and the asynchronous, delayed measurements. In the two-tier con-
trol architecture, the upper-tier controller decides the trajectory of
ud(t) between successive samples, i.e., for t ∈ [tk, tk+1] while the
lower-tier controller decides us using the continuously available
measurements. Fig. 2 shows a schematic of the proposed strategy.
The upper-tier controller has to take into account time-varying de-
lays and that the time interval between two consecutive samples
is unknown. In the following subsections, we present a two-tier ar-
chitecture based on LMPC theory for the design of the upper-tier
controller, which maintains the stability properties of the lower-
tier controller while improving the closed-loop performance.

Remark 10. Note that since the lower-tier controller has already
been designed, this controller views the input ud as a disturbance
that has to be rejected if the controller that manipulates ud is not
properly designed. Therefore, the design of the upper-tier controller
has to take into account the decisions that will be made by the
lower-tier controller to maintain closed-loop stability and improve
the closed-loop performance.

3.1. Upper-tier LMPC design

In order to take advantage of the model of the system and the
asynchronous, delayed measurements yd, we propose to use LMPC
theory to decide ud. The main idea of the proposed model predictive
controller is the following: at each time instant tk when a new asyn-
chronous measurement yd(tk) is received, a delayed state measure-
ment x(tk−dk) is obtained by integrating this measurement with the
previously received synchronous measurement ys(tk −dk). Based on
this delayed state measurement x(tk −dk), the nominal model of the
system, the continuous measurements ys(t) and the control inputs
applied from tk − dk to tk, an estimate of the current state x̃(tk) is
computed. Note that this implies that the upper-tier controller has to
store its past control input trajectory, know the explicit expression
and parameters of the lower-tier controller and use the continuous
measurements ys(t) to predict the control inputs carried out by the
lower-tier controller. The estimated state x̃(tk) is then used to ob-
tain the optimal future control input trajectory ud = u∗

d,k by means
of an LMPC optimization problem. This input trajectory is imple-
mented until a new measurement arrives at time tk+1. If the time
between two consecutive measurements is longer than the predic-
tion horizon, ud is set to zero until a new measurement arrives and
the optimal control problem is solved again.

In order to define a finite dimensional optimization problem, ud is
constrained to belong to the family of piece-wise constant functions
with sampling period �, S(�). To guarantee that the resulting closed-
loop system is stable, we follow an LMPC approach for the design of
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the upper-tier controller, see Mhaskar et al. (2005, 2006) and Muñoz
de la Peña and Christofides (2008). LMPC is based on including a
contractive constraint that allows to prove practical stability of the
closed-loop system using an auxiliary Lyapunov-based controller. In
the previous LMPC schemes (Mhaskar et al., 2005, 2006; Muñoz de la
Peña and Christofides, 2008), the contractive constraints are defined
based on a known Lyapunov-based state feedback controller. In the
present work, the contractive constraint of the proposed upper-tier
LMPC design is based on the Lyapunov function of the closed-loop
system under the lower-tier controller ks. Specifically, the upper-tier
LMPC optimization problem is defined as follows:

u∗
d,k(t) = arg min

ud,k∈S(�)

∫ tk+�f

tk−dk
L(x̃(�), ks(hs(x̃(�))),ud,k(�)) d� (3a)

˙̃x(t) = f (x̃(t), ks(hs(x(t))),ud,k(t), 0), ∀t ∈ [tk − dk, tk) (3b)

˙̃x(t) = f (x̃(t), ks(hs(x̃(t))),ud,k(t), 0), ∀t ∈ [tk, tk + �f ] (3c)

x̃(tk − dk) = x(tk − dk) (3d)

ud,k(t) = u∗
d,k−1(t), ∀t ∈ [tk − dk, tk] (3e)

˙̂x(t) = f (x̂(t), ks(hs(x̂(t))), 0, 0), t ∈ [tk, tk + �f ] (3f)

x̂(tk) = x̃(tk) (3g)

V(x̃(t))�V(x̂(t)), ∀t ∈ [tk, tk + �f ] (3h)

where x(tk − dk) is the state obtained integrating both the measure-
ments of ys(tk − dk) and yd(tk) = hd(x(tk − dk)), x̃(t) is the predicted
trajectory of the two-tier nominal system for the input trajectory
computed by the LMPC, x̂(t) is the predicted trajectory of the two-
tier nominal system for the input trajectory ud(t) ≡ 0 for all t ∈
[tk, tk + �f ], L(x,us,ud) is a positive definite function of the state and
the inputs that define the cost, and �f is the prediction horizon. This
optimization problem does not depend on the uncertainty and as-
sures that the system in closed-loop with the upper-tier controller
maintains the stability properties of the lower-tier controller. The
optimal solution to this optimization problem is denoted by u∗

d,k(t).
This signal is defined for all t > tk with u∗

d,k(t) = 0 for all t > tk + �f .
The control inputs of the proposed two-tier control architecture

based on the above LMPC are defined as follows:

us(t) = ks(hs(x(t))), ∀t
ud(t) = u∗

d,k(t), ∀t ∈ [tk, tk+1) (4)

where u∗
d,k(t) is the optimal solution to the LMPC problem at time

step tk. This implementation technique takes into account that the
lower-tier controller uses the continuously available measurements,
while the upper-tier controller has to operate in open-loop between
consecutive asynchronous, delayed measurements.

Remark 11. Note that by definition, u∗
d,k(t) is defined for all t > tk

with u∗
d,k(t)=0 for all t > �f . This implies that the upper-tier controller

switches off when it has been operating in open-loop for a large
time, because in this case, the last received information is no longer
useful to improve the performance of the lower-tier controller. Fur-
thermore, we note that the extension of the LMPC scheme of Eq. (3)
to the case where the upper-tier controller receives the ys measure-
ments asynchronously subject to delays is conceptually straightfor-
ward.

Remark 12. In the proposed LMPC optimization problem both the
estimation of x(tk) from x(tk − dk) and the evaluation of the fu-
ture optimal input trajectory in [tk, tk+1] are carried out at the same
time. First, the constraints of the problem guarantee that x̃(tk) has

been estimated using the nominal model (constraint (3b)) and the
real inputs applied to the system (constraint (3e)) from the initial
state x(tk −dk) (constraint (3d)). Once the current state is estimated,
the future input trajectory is optimized to minimize the cost func-
tion taking into account the lower-tier controller (constraint (3c))
while guaranteeing that the contractive constraint is satisfied (con-
straint (3h)). This optimization problem has been proposed in order
to present a compact controller formulation. It is possible to decou-
ple the observer and the LMPC optimization problem as long as the
observer provides an upper bound on the estimation error of x(tk).
For example, a high-gain observer can be used to estimate x(tk) from
the continuous measurements and the applied inputs, and then use
this estimated state to define the LMPC optimization problem.

Remark 13. Constraints (3c) and (3h) are a key element of the
proposed two-tier control architecture. In general, guaranteeing
closed-loop stability of a distributed control scheme is a difficult
task because of the interactions between the different controllers
and can only be done under certain assumptions (see, for example,
Rawlings and Stewart, 2007; Camponogara et al., 2002). Constraint
(3c) guarantees that the upper-tier controller takes into account
the effect of the lower-tier controller to the applied inputs (recall
that the lower-tier controller is designed without taking ud into
account). Constraint (3h) will be used to guarantee that the value
of the Lyapunov function is a decreasing sequence of time with a
lower bound.

3.2. Two-tier controller stability

Using asynchronous and delayed measurements without proper
care in the control systemmay deteriorate the stability of the closed-
loop system. In order to maintain the closed-loop system stabil-
ity properties enforced by the lower-tier controller and improve
the performance of the closed-loop system, we propose to follow
a Lyapunov-based approach. The main idea, is to compute the in-
put ud applied to the system in a way such that it is guaranteed
that in the closed-loop system the value of the Lyapunov function at
time instants tk; that is, V(x(tk)), is a decreasing sequence of values
with a lower bound. Following Lyapunov-like arguments, this prop-
erty guarantees practical stability of the closed-loop system. This is
achieved thanks to the contractive constraint of the LMPC optimiza-
tion problem (3). This property is presented in Theorem 1 below. To
state and prove this theorem, we need to state the following three
propositions:

Proposition 1 (cf. Khalil, 1996). Consider system (1) in closed-loop
with the lower-tier controller. Taking into account (2), there exists a
KL4 function �, a K function 	 and a constant �max such that if
x(0) ∈ �� and ud(t) ≡ 0 then

V(x(t))��(V(x(t0)), t − t0) + 	

(
max

�∈[t0,t]
|w(�)|

)

for all w ∈ W with ���max.

This proposition provides us with a bound on the trajectories of
the Lyapunov function of the state of the system in closed-loop under
the lower-tier controller with ud(t) ≡ 0. We will use this bound to
prove the stability theorem. The proof of Proposition 1 can be found
in Khalil (1996).

4 Function �(r, s) is said to be a class KL function if, for each fixed s, �(r, s)
belongs to classK function with respect to r and, for each fixed r, �(r, s) is decreasing
with respect to s and �(r, s) → 0 as s → 0.
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Proposition 2. Consider the following state trajectories:

ẋa(t) = f (xa(t), ks(hs(xa(t))),ud(t),w(t))

ẋb(t) = f (xb(t), ks(hs(xb(t))),ud(t), 0) (5)

with initial states xa(t0)= xb(t0) ∈ ��. There exists a class K function
fW (s) such that

|xa(t) − xb(t)|� fW (t − t0) (6)

for all xa(t), xb(t) ∈ �� and all w(t) ∈ W .

Proof. Define the error vector as e(t)=xa(t)−xb(t). The time deriva-
tive of the error is given by

ė(t) = f (xa(t), ks(hs(xa(t))),ud(t), 0) − f (xb(t), ks(hs(xb(t))),ud(t), 0)

By continuity and the local Lipschitz property assumed for the vector
field f (x,us,ud,w), there exist positive constants Lw, Lx and Lu1 such
that

|ė(t)|�Lw|w(t) − 0| + Lx|xa(t) − xb(t)|
+ Lu1|ks(hs(xa(t))) − ks(hs(xb(t)))| (7)

for all xa(t), xb(t) ∈ �� andw(t) ∈ W . By continuity and local Lipschitz
property of ks and hs, there exists a positive constant Lu2 such that

|ks(hs(xa(t))) − ks(hs(xb(t)))|�Lu2|xa(t) − xb(t)|

Thus, the following inequality can be obtained from inequality (7):

|ė(t)|�Lw|w(t) − 0| + Lx|xa(t) − xb(t)| + Lu1Lu2|xa(t) − xb(t)|
� Lw� + (Lx + Lu1Lu2)|e(t)|

Integrating |ė(t)| with initial condition e(t0)=0 (recall that xa(t0)=
xb(t0)), the following bound on the norm of the error vector is ob-
tained:

|e(t)|� Lw�
L′x

(eL
′
x(t−t0) − 1)

where L′x = Lx + Lu1Lu2. This implies that Eq. (6) holds for

fW (�) = Lw�
L′x

(eL
′
x� − 1) �

The following proposition bounds the difference between the
magnitudes of the Lyapunov function of two different states in ��.

Proposition 3. Consider the Lyapunov function V(·) of system (1). There
exists a quadratic function fV (·) such that

V(x)�V(x̂) + fV (|x − x̂|) (8)

for all x, x̂ ∈ ��.

Proof. Because the Lyapunov function V(x) is continuous and
bounded on compact sets, we can find a positive constant M such
that a Taylor series expansion of V around x̂ yields

V(x)�V(x̂) + �V
�x

|x − x̂| + M|x − x̂|2, ∀x, x̂ ∈ ��

Note that the term M|x − x̂|2 bounds the high order terms of the
Taylor series of V(x) for all x, x̂ ∈ ��. Taking into account Eq. (2), the
following bound for V(x) is obtained:

V(x)�V(x̂) + �4(�
−1
1 (�))|x − x̂| + M|x − x̂|2, ∀x, x̂ ∈ ��

This implies that Eq. (8) holds for fV (x) = �4(�
−1
1 (�))x + Mx2. �

t
tk − D tk tk + τf tk+1

x (t)

x̃ (t)

x (t)
x̂ (t)

˜

Fig. 3. Possible worst scenario of the delayed measurements received by the up-
per-tier controller and the corresponding state trajectories defined in problem (3).

We are now in a position to state and prove the main stability
result for the proposed two-tier control architecture.

Theorem 1. Consider system (1) in closed-loop with the two-tier con-
trol architecture (4). If x(t0) ∈ ��, ���max, and there exist a concave
function g such that

g(x)��(x + fV (fW (D)), �f )

for all x ∈ ��, and a positive constant c�� such that

c − g(c)� fV (fW (D + �f )) (9)

then x(t) is ultimately bounded in a region that contains the origin.

Proof. In order to prove that system (1) in closed-loop under the
two-tier control architecture using the proposed LMPC (3) is ulti-
mately bounded in a region that contains the origin, we will prove
that the value of the Lyapunov function at times {tk�0}, V(x), is a
decreasing sequence of values with a lower bound on its magnitude
for the worst possible case from the communications point of view,
and hence for all possible sequences of measurement times and de-
lays. The worst possible case from the communications point of view
is that the measurements used to evaluate the upper-tier LMPC con-
troller are always received with the maximum delay D; that is dk=D
for all k, and that the upper-tier controller always operates in open-
loop for a period of time longer than �f between consecutive sam-
pling times, that is, tk+1 − tk > �f for all k. If the measurements are
received with a smaller delay or more often, the LMPC has more
precise information of the state of the system.

Fig. 3 shows the worst scenario for a system of dimension 1. Solid
vertical lines are used to indicate the times at which new measure-
ments are obtained (tk and tk+1) and when the upper-tier controller
switches off at time tk+�f . The dashed vertical line indicates the time
corresponding to the measurement obtained at tk (that is, tk − D).
In this figure, three different state trajectories are shown. The real
state trajectory of system (1) (including the uncertainty) is denoted
as x(t). The estimated state trajectory from tk −D to tk and the pre-
dicted sampled trajectory under the two-tier control architecture
computed by the LMPC (3) along the prediction horizon with initial
state the estimated state are denoted as x̃(t). The nominal trajectory
under the lower-tier controller ks with ud ≡ 0 along the prediction
horizon with initial state the estimated state x̃(tk) is denoted as x̂(t).
The state trajectories x̃(t) and x̂(t) are obtained using the two-tier
nominal model as defined in the LMPC optimization problem (3).

The trajectory x̂(t) corresponds to the nominal system in closed-
loop with the lower-tier controller with initial state x̃(tk). Taking into
account Proposition 1 the following inequality holds:

V(x̂(t))��(V(x̃(tk)), t − tk) (10)
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The contractive constraint of the proposed LMPC guarantees that

V(x̃(t))�V(x̂(t)), ∀t ∈ [tk, tk + �f ] (11)

Taking into account constraints (3b)–(3d) and that the closed-loop
trajectories are defined by the following equation:

ẋ(t) = f (x(t), ks(hs(x(t))),ud,k(t),w(t))

we can apply Proposition 2 to obtain the following upper bounds on
the deviation of x̃(t) from x(t)5 :

|x(tk) − x̃(tk)|� fW (D)

|x(tk + �f ) − x̃(tk + �f )|� fW (�f + D)

From Proposition 3 and the above inequalities, we obtain the follow-
ing inequalities:

V(x̃(tk))�V(x(tk)) + fV (fW (D))

V(x(tk + �f ))�V(x̃(tk + �f )) + fV (fW (D + �f )) (12)

From inequalities (10)–(12), the following upper bound on V(x(tk +
�f )) is obtained:

V(x(tk + �f ))��(V(x(tk)) + fV (fW (D)), �f ) + fV (fW (D + �f )) (13)

Taking into account that for all t > tk + �f the upper-tier controller
is switched off, i.e., ud(t) = 0, and only the lower-tier controller
is in action, the following bound on V(x(tk+1)) is obtained from
Proposition 1:

V(x(tk+1))� max{V(x(tk + �f )), 	(�max)}
for allw(t) ∈ W . Because function g is concave, z−g(z) is an increasing
function. If there is a constant c0�c�� satisfying Eq. (9), then Eq. (9)
holds for all z > c. Taking into account that g(z)��(z + fV (fW (D)), �f )
for all z��, the following inequality is obtained:

z − �(z + fV (fW (D)), �f )� fV (fW (D + �f ))

when c�z��. From this inequality and inequality (13), we obtain
that

V(x(tk+1))� max{V(x(tk)), 	(�max)}
for all V(x(tk))�c. It follows using Lyapunov arguments that

lim sup
t→∞

V(x(t))��c

where

�c = max
{
max
c

�(c + fV (fW (D)), �f )

+fV (fW (D + �f )), 	(�max)
}
. �

Remark 14. In general the size of the region in which the state is
ultimately bounded, depends on the maximum delay D and the pre-
diction horizon �f . The upper bound on delay D sets the largest size
of delay allowed in the measurements used to evaluate the upper-
tier controller and the prediction horizon �f sets the maximum
amount of time inwhich the upper-tier controller will be operating in
open-loop.

5 Proposition 2 is used to obtain a bound on the difference between x̃ and x
from tk −dk to tk to simplify the notation and the proof. Note that from tk −dk to tk ,
the real trajectory of us is applied to evaluate x̃, so tighter bound on the difference
between x̃ and x can be obtained. As mentioned before, the estimation of x(tk) can
be done using any observer which provides a bound on the estimation error.

Remark 15. Referring to Theorem 1, the assumption that there exists
a concave function g such that g(x)��(x + fV (fW (D)), �f ) for all x ∈
�� imposes upper bounds on D and �f and is made, without any
loss of generality, to simplify the proof of Theorem 1; i.e., the result
of Theorem 1 could still be proved without this assumption but the
proof would be more involved. The assumption that there exists a
positive constant c�� such that c− g(c)� fV (fW (D+ �f )) guarantees
that the derivative of the Lyapunov function of the state of the closed-
loop system outside the level set V(x)= c is negative under the two-
tier control architecture with the upper-tier LMPC (3).

Remark 16. Although the proofs provided are constructive, the con-
stants obtained are conservative. This is the case with most of the
results of the type presented in the literature, see for example Ne�si �c
et al. (1999) and Tabuada and Wang (2006) for further discussion on
this issue. In practice, the maximum time that the system can oper-
ate in open-loop is better estimated through closed-loop simulation.
The various inequalities proved in this theorem are more useful as
guidelines on the interaction between the various parameters that
define the system and the controller and may be used as guidelines
to design the controller.

4. Application to a chemical reactor

4.1. Process description and modeling

Consider a well mixed, non-isothermal continuous stirred tank
reactor (CSTR) where three parallel irreversible elementary exother-
mic reactions take place of the form A → B, A → C and A → D. Prod-
uct B is the desired product and C and D are byproducts. The feed
to the reactor consists of A at temperature TA0 and concentration
CA0 and flow rate F + �F, where �F is a time-varying uncertainty.
Due to the non-isothermal nature of the reactor, a jacket is used to
remove/provide heat from/to the reactor. Using first principles and
standard modeling assumptions, the following mathematical model
of the process is obtained:

dT
dt

= F + �F
Vr

(TA0 − T) −
3∑

i=1

�Hi

cp

ki0 e
−Ei/RTCA + Q


cpVr

dCA
dt

= F + �F
Vr

(CA0 − CA + �CA0) +
3∑

i=1

ki0 e
−Ei/RTCA (14)

where CA denotes the concentration of the reactant A, T denotes the
temperature of the reactor, Vr denotes the volume of the reactor,
�Hi, ki0 and Ei, i=1, 2, 3 denote the enthalpies, pre-exponential con-
stants and activation energies of the three reactions, respectively,
and cp and 
 denote the heat capacity and the density of the fluid
in the reactor, respectively. The inputs to the system are the rate of
heat input/removal Q and the change of the inlet reactant A concen-
tration �CA0. The values of the process parameters are presented in
Table 1.

System (14) has three steady-states (two locally asymptotically
stable and one unstable). The control objective is to stabilize the sys-
tem at the open-loop unstable steady-state Ts=388K, CAs=3.59mol/l.
The flow rate uncertainty is bounded by |�F|�4m3/h.

The process model (14) belongs to the class of nonlinear systems
described by system (1) where xT = [x1 x2]= [T − Ts CA − CAs] is the
state, us = Q and ud = �CA0 are the manipulated inputs, � = �F is a
time varying bounded disturbance, ys = x1 = T − Ts is obtained from
the continuous temperature measurements T and yd = x2 = CA − CAs
is obtained at time instants {tk�0} from the asynchronously sam-
pled concentration measurement CA subject to time-varying mea-
surement delays. We also have a lower bound Tmin = 0.15h on
the time interval between two consecutive concentration measure-
ments and an upper bound D on the size of the delay; both will be
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Table 1
Process parameters

F 4.998m3/h
Vr 1m3

R 8.314KJ/kmolK
TA0 300K
CA0s 4kmol/m3

�H1 −5.0 × 104 KJ/kmol
�H2 −5.2 × 104 KJ/kmol
�H3 −5.4 × 104 KJ/kmol
k10 3 × 106 h−1

k20 3 × 105 h−1

k30 3 × 105 h−1

E1 5 × 104 KJ/kmol
E2 7.53 × 104 KJ/kmol
E3 7.53 × 104 KJ/kmol

 1000kg/m3

cp 0.231KJ/kgK

computed via simulations even though conservative estimates could
be computed from the theoretical results.

To model the time sequence {tk�0}, we use a lower-bounded
random Poisson process. The Poisson process is defined by the num-
ber of events per unit time W. The interval between two consecu-
tive concentration sampling times (events of the Poisson process)
is given by �a = max{Tmin,− ln�/W}, where � is a random variable
with uniform probability distribution between 0 and 1. In order to
model the delay size sequence {dk�0}, the size of delay associated
with the concentration measurement at tk is modeled by an upper-
bounded random process given by dk=min{D,�L}, where � is a uni-
formly distributed variable between 0 and 1, and L= tk − tk−1 +dk−1
is the size of the time interval between current time tk and the time
corresponding to the last concentration measurement tk−1 − dk−1.
This generation method guarantees that dk�D for all k. We assume
that the initial state is known; that is, d0 = 0 and t0 = 0.

4.2. Lower-tier controller design

An output feedback controller (lower-tier controller) based on the
continuous temperature measurements (i.e., x1(t)) is first designed
to stabilize system (14) using only the rate of heat input us = Q as
the manipulated input. In particular, the following PI control law is
used as the lower-tier controller:

us(t) = K

(
x1(t) + 1

Ti

∫ t

0
x1(�) d�

)
(15)

where K is the proportional gain and Ti is the integral time constant.
To compute the parameters of the PI controller, the linearized model
ẋ=Ax+Bus of system (14) around the equilibrium point is obtained.
The proportional gain K is chosen to be −8100. This value guarantees
that the origin of ẋ = (A + BK[1 0])x is asymptotically stable with
its eigenvalues being 
1 = −1.06 × 105 and 
2 = −4.43. A quadratic
Lyapunov function V(x) = xTPx with

P =
[
0.024 5.21

5.21 1.13 × 103

]

is obtained by solving an algebraic Lyapunov equation ATc P + PAc +
Qc=0 for Pwith Ac=A+BK[1 0]. This Lyapunov function will be used
to design the upper-tier LMPC controller. The integral time constant
is chosen to be Ti = 49.6h. For simplicity, the Lyapunov function
V(x) is determined on the basis of the closed-loop system under
only the proportional (P) term of the PI controller; the effect of the
integral (I) term is very small for the specific choice of the controller
parameters used in the simulations and does not change the local
stability property of the equilibrium point of the closed-loop system
enforced by the proportional part of the PI controller.
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Fig. 4. State and input trajectories of system (14) under lower-tier PI control (15)
(ud ≡ 0).

The state and input trajectories of system (14) starting from x0 =
[370 3.41]T under the PI controller are shown in Fig. 4. From Fig. 4,
we see that the PI controller (15) drives the temperature and con-
centration states of system (14) close to the equilibrium point in
about 0.1 and 0.2h, respectively.

4.3. Two-tier control architecture design

We have implemented the proposed two-tier control architec-
ture to improve the performance of the closed-loop system obtained
under PI-only control. In this set of simulations, the PI controller (15)
with the same parameters is used as the lower-tier controller. In-
stead of abandoning the less frequent concentration measurements,
we take advantage of both the continuous measurements of the tem-
perature, T, and the asynchronous, delayed measurements of the
concentration, CA, together with the nominal model of system (14)
to design and implement the upper-tier LMPC. The inlet concentra-
tion change �CA0 is the manipulated input for the LMPC.

The LMPC is designed next. The performance index is defined by
the following positive definite function:

L(x,us,ud) = xTQcx (16)

where x is the state of the system and Qc is the following weight
matrix:

Qc =
[
1 0

0 104

]

The values of the weights in Qc have been chosen to account for
the different range of numerical values for each state. The sampling
time of the LMPC is � = 0.025h; the prediction horizon is chosen to
be �f =6� so that the prediction captures most of the dynamic evo-
lution of the process; the quadratic control Lyapunov function V(x)
is used in the design of the contractive constraint (3h) and the inlet
concentration change �CA0 is bounded by |ud|=|�CA0|�1kmol/m3.
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Fig. 5. Worst case state and input trajectories of system (14) under the proposed
two-tier control architecture.

For the simulations carried out in this subsection, we pick the
delay of each measurement to be dk = D = 0.15h for all k. These
settings correspond to the worst-case effect from a communication
point of view. Note that the minimum time interval between two
consecutive concentrationmeasurements Tmin is fixed by the system
dynamics and the prediction horizon is set be equal to the minimum
time interval between two consecutive yd measurements, that is
�f = Tmin.

The two-tier control architecture is implemented as discussed in
the previous section. The lower-tier controller uses the continuous
temperature measurements to decide us(t). When a new measure-
ment of CA is obtained at time instant tk with delay D, an estimate
of the state of system (14), x(tk − D), is obtained by integrating the
concentration measurement and the previously received continuous
measurement of the temperature T. Based on the state x(tk −D), the
model of the process and the control actions applied, an estimate
of the current state x̃(tk) is obtained. Based on this state estimate
x̃(tk), the LMPC optimization problem (3) is solved and an optimal
input trajectory u∗

d,k(�) is obtained. This optimal input trajectory is
implemented until a new concentration measurement is obtained
at time tk+1 (note that k indexes the number of concentration sam-
ples received, not a given sampling time). Note that because a PI
controller is used in the lower-tier, we need to incorporate the PI
controller dynamics in the optimization problem of the proposed
LMPC scheme (3).

A simulation of the closed-loop system under the two-tier control
architecture (4) with the same initial conditions x(0) = [370 3.41]T

has been carried out. The sampling sequence {tk�0} generated with
W = 1 and delay size sequence {dk�0} with simulation length of
0.5h are the following:

{tk�0} = {0 0.198 0.395 0.500}h

{dk�0} = {0 0.150 0.150 0.150}h

The state and input trajectories of system (14) under the proposed
two-tier control architecture are shown in Fig. 5. From Fig. 5, we see
that the two-tier control architecture (4) stabilizes the temperature

Table 2
Total performance cost along the closed-loop system trajectories

Sim. Two-tier PI control

1 107.60 557.06
2 124.98 1090.29
3 188.53 1392.73
4 169.06 403.82
5 143.07 376.15
6 179.22 1330.25
7 202.28 1252.36
8 152.23 749.93
9 141.84 732.20

10 157.99 1049.38

and concentration of the system at the desired equilibrium point
in about 0.1 and 0.05h, respectively. This implies that the resulting
closed-loop system response is faster for this particular simulation.
Moreover, the cost associatedwith the resulting closed-loop trajecto-
ries is lower. This result has been validated by extensive simulations.

Remark 17. We considered a performance index L(x,us,ud) that pe-
nalizes only the closed-loop system state and not the control action
because the two-tier control architecture utilizes different manipu-
lated inputs from the lower-tier PI controller and this would com-
plicate the comparison if penalty on the control action is included
in the cost. Since the performance index has only penalty on the
closed-loop system state, we have included an input constraint on
the upper-tier manipulated input, �CA0, to avoid computation of
unnecessarily large control actions by the upper-tier controller (i.e.,
|ud|�1kmol/m3).

4.4. Performance comparison

We also carried out a set of simulations to compare the proposed
two-tier control architecture with the lower-tier PI control system
from a performance index point of view. Table 2 presents the total
cost computed for 20 different closed-loop simulations under the
proposed two-tier control architecture and the PI control scheme.
To carry out this comparison, we have computed the total cost of
each simulation based on the integral of the performance index de-
fined by L(x,us,ud) of Eq. (16) from the initial time to the end of
the simulation tf = 0.5h. For each pair of simulations (one for each
control scheme) a different initial state inside the stability region, a
different uncertainty trajectory and a different random concentra-
tion measurement sequence with random delay size sequence are
generated using the methods described in Section 4.1. As it can be
seen in Table 2, the proposed two-tier control architecture has a cost
lesser than the corresponding total cost under the PI controller in all
the closed-loop system simulations.

Remark 18. Note that in this particular example, the improvement
in the closed-loop performance is achieved due to the extra control
input ud which is guided by the LMPC scheme (3) that uses all avail-
able measurements. Since PI controller is used as the lower-tier con-
troller, the extra available asynchronous measurements would not
have changed the closed-loop performance achieved by the lower-
tier controller because the PI controller cannot use the extra mea-
surements. This is also the case for the next example.

5. Application to a reactor–separator process

5.1. Process description and modeling

The process considered in this example is a three vessel,
reactor–separator system consisting of two CSTRs and a flash tank
separator (see Fig. 6). A feed stream to the first CSTR F10 contains
the reactant A which is converted into the desired product B. The
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Fig. 6. Reactor-separator system with recycle.

desired product B can then further react to form an undesired
side-product C. The effluent of the first CSTR along with additional
fresh feed F20 makes up the inlet to the second CSTR. The reactions
A → B and B → C (referred to as 1 and 2, respectively) take place
in the two CSTRs in series before the effluent from CSTR 2 is fed to
a flash tank. The overhead vapor from the flash tank is condensed
and recycled to the first CSTR, and the bottom product stream is
removed. A small portion of the overhead is purged before being
recycled to the first CSTR. All the three vessels are assumed to have
static holdup. The dynamic equations describing the behavior of
the system, obtained through material and energy balances under
standard modeling assumptions, are given as follows:

dxA1
dt

= F10
V1

(xA10 − xA1) + Fr
V1

(xAr − xA1) − k1 e
−E1/RT1xA1

dxB1
dt

= F10
V1

(xB10 − xB1) + Fr
V1

(xBr − xB1)

+ k1 e
−E1/RT1xA1 − k2 e

−E2/RT1xB1

dT1
dt

= F10
V1

(T10 − T1) + Fr
V1

(T3 − T1)

+ −�H1
Cp

k1 e
−E1/RT1xA1 + −�H2

Cp
k2 e

−E2/RT1xB1

+ Q1
�CpV1

dxA2
dt

= F1
V2

(xA1 − xA2) + F20
V2

(xA20 − xA2) − k1 e
−E1/RT2xA2

dxB2
dt

= F1
V2

(xB1 − xB2) + F20
V2

(xB20 − xB2)

+ k1 e
−E1/RT2xA2 − k2 e

−E2/RT2xB2

dT2
dt

= F1
V2

(T1 − T2) + F20
V2

(T20 − T2)

+ −�H1
Cp

k1 e
−E1/RT2xA2 + −�H2

Cp
k2 e

−E2/RT2xB2

+ Q2
�CpV2

dxA3
dt

= F2
V3

(xA2 − xA3) − Fr + Fp
V3

(xAr − xA3)

dxB3
dt

= F2
V3

(xB2 − xB3) − Fr + Fp
V3

(xBr − xB3)

Table 3
Process variables

xA1, xA2, xA3 Mass fractions of A in vessels 1–3
xB1, xB2, xB3 Mass fractions of B in vessels 1–3
xC1, xC2, xC3 Mass fractions of C in vessels 1–3
xAr , xBr , xCr Mass fractions of A–C in the recycle stream
T1, T2, T3 Temperatures in vessels 1–3
T10, T20 Feed stream temperatures to vessels 1 and 2
F1, F2 Effluent flow rate from vessels 1 and 2
F10, F20 Steady-state feed stream flow rates to vessels 1 and 2
Fr , Fp Flow rates of the recycle and purge streams
V1, V2, V3 Volumes of vessels 1–3
E1, E2 Activation energy for reactions (1) and (2)
k1, k2 Pre-exponential values for reactions (1) and (2)
�H1, �H2 Heats of reaction for reactions (1) and (2)
�A , �B , �C Relative volatilities of A–C
Q1, Q2, Q3 Heat inputs into vessels 1–3
Cp , R, � Heat capacity, gas constant and solution density

Table 4
Process parameters

T10 300K
T20 300K
F10 5.04m3/h
Fr 50.4m3/h
Fp 5.04m3/h
V1 1.0m3

V2 0.5m3

V3 1.0m3

E1 5 × 104 KJ/kmol
E2 6 × 104 KJ/kmol
k1 2.77 × 103 s−1

k2 2.5 × 103 s−1

�H1 −6 × 104 KJ/kmol
�H2 −7 × 104 KJ/kmol
�A 3.5
�B 1
�C 0.5
Cp 4.2KJ/kgK
R 8.314KJ/kmolK
� 1000kg/m3

dT3
dt

= F2
V3

(T2 − T3) + Q3
�CpV3

(17)

where the definitions for the variables can be found in Table 3, with
the parameter values given in Table 4. The model of the flash tank
separator operates under the assumption that the relative volatility
for each of the species remains constant within the operating tem-
perature range of the flash tank. This assumption allows calculating
the mass fractions in the overhead based upon the mass fractions in
the liquid portion of the vessel. It has also been assumed that there
is a negligible amount of reaction taking place in the separator. The
following algebraic equations model the composition of the over-
head stream relative to the composition of the liquid holdup in the
flash tank:

xAr = �AxA3
�AxA3 + �BxB3 + �CxC3

xBr = �BxB3
�AxA3 + �BxB3 + �CxC3

xCr = �CxC3
�AxA3 + �BxB3 + �CxC3

(18)

Each of the tanks has an external heat input. The manipulated
inputs to the system are the heat inputs to the three vessels,
Q1,Q2 and Q3, and the feed stream flow rate to vessel 2, F20.

System (17) was numerically simulated using a standard Euler
integration method. The system was modeled with process noise.
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Table 5
Noise parameters


p � �p

xA1 1 0.7 2
xB1 1 0.7 2
T1 10 0.7 20
xA2 1 0.7 2
xB2 1 0.7 2
T2 10 0.7 20
xA3 1 0.7 2
xB3 1 0.7 2
T3 10 0.7 20

Table 6
Steady-state values of manipulated inputs

Parameters Values

Q1s 12.6 × 105 KJ/h
Q2s 16.2 × 105 KJ/h
Q3s 12.6 × 105 KJ/h
F20s 5.04m3/h

Process noise was added to the right-hand side of each equation in
the system of ODEs found in Eq. (17) and generated as autocorre-
lated noise of the form wk = �wk−1 + �k where k = 0, 1, . . . is the
discrete time step of 0.001h, �k is generated by a normally dis-
tributed random variable with standard deviation 
p and � is the
autocorrelation factor and wk is bounded by �p, that is |wk|��p.
Table 5 contains the parameters used in generating the process
noise.

We assume that the measurements of temperatures T1, T2 and T3
are available continuously, and the measurements of mass fractions
xA1, xB1, xA2, xB2, xA3 and xB3 are available asynchronously at time
instants {tk�0} and are subject to time-varying measurement delay.
We also assume that there exists a lower bound Tmin = 0.2h on the
time interval between two consecutive measurements of the mass
fractions. The same method used in the example in Section 4 is used
in the present example to generate the time sequence {tk�0}. For
each set of steady-state inputs Q1s, Q2s, Q3s and F20s corresponding
to a different operating condition, system (17) has one stable steady-
state xTs . The control objective is to steer the system from the initial
state

x(0)T = [0.890, 0.110, 388.7, 0.886, 0.113, 386.3, 0.748, 0.251, 390.6]

to the steady-state

xTs = [0.383, 0.581, 447.8, 0.391, 0.572, 444.6, 0.172, 0.748, 449.6]

corresponding to the operating condition presented in Table 6.
The process model (17) belongs to the class of nonlinear systems

described by system (1) where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] =
[xA1 − xA1s xB1 − xB1s T1 − T1s xA2 − xA2s xB2 − xB2s T2 − T2s xA3 −
xA3s xB3−xB3s T3−T3s] is the state, uTs =[us1 us2 us3]=[Q1−Q1s Q2−
Q2s Q3 − Q3s] and ud = F20 − F20s are the manipulated inputs, w =
wk is a time varying bounded noise, yTs = [ys1 ys2 ys3] = [x3 x6 x9]
is obtained from the continuous temperature measurements and
yTd = [x1 x2 x4 x5 x7 x8] is obtained from the sampled asynchronous,
delayed mass fraction measurements.

The performance index used in the present example is defined
by a positive definite function L(x,us,ud) as in Eq. (16) with Qc being

Table 7
Control parameters for steady-state xs

Parameters Values

K1 −5000
K2 −5000
K3 −5000
Ti 5 h

the following weight matrix

Qc = diag6(104 104 1 104 104 1 104 104 1)

The values of the weights in Qc have been chosen to account for the
different range of numerical values for each state.

5.2. Lower-tier controller design

Based on the continuous temperature measurements (i.e., ys(t)),
three output feedback controllers (lower-tier controllers) are first
designed to stabilize system (17) from the initial state x(0) to the
steady-state xs using only the heat inputs us as the manipulated
inputs. In particular, three PI controllers are used as the lower-tier
controllers of the following form:

usj(t) = Kj

(
ysj(t) + 1

Tij

∫ t

0
ysj(�) d�

)
(19)

where j=1, 2, 3, Kj are the proportional gains and Tij are the integral
time constants.

As in the first example, to compute the parameters of the con-
trollers, the linearized model ẋ=Ax+ Bus of system (17) around the
equilibrium point is obtained. The parameters of the lower-tier con-
trollers are presented in Table 7. These values guarantee that the
origin of the linear system

ẋ = Acx (20)

where

Ac = A + B

⎡
⎢⎣
K1 0 0

0 K2 0

0 0 K3

⎤
⎥⎦
⎡
⎢⎣
0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎦

is asymptotically stable with the real parts of the eigenvalues of Ac
being 
Re=[−249 −73.9 −73.9 −2.07 −2.07 −131 −108 −24.0 −
56.4]T. Solving the algebraic Lyapunov equation ATc P+PAc +Qc =0, a
quadratic Lyapunov function V(x) = xTPx is obtained. The Lyapunov
function is used to design the upper-tier LMPC controller. The state
and input trajectories of system (17) under the PI control law (19)
are shown in Figs. 7 and 8. From Fig. 7, we see that the PI control
law (19) drives the temperatures and mass fractions in the three
vessels close to the equilibrium point in about 0.7h. For a simulation
length of tf =1h, the performance cost associated with the resulting

closed-loop trajectories is 2.105 × 105.

5.3. Two-tier control architecture design

We design next the upper-tier LMPC controller. The feed flow rate
to vessel 2, ud = F20 − F20s, is the manipulated input for the LMPC,
which is bounded by 1�F20�9m3/h. The sampling time of the
LMPC is chosen to be �=0.025h; the prediction horizon is chosen to
be �f =8�=0.2h so that the prediction captures most of the dynamic
evolution of the process; the quadratic control Lyapunov function
V(x) obtained in Section 5.2 is used in the design of the contractive

6 We use diag(V) to denote a matrix with its diagonal elements being the
elements of vector V and all the other elements being zeros.
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Fig. 7. State trajectories of system (17) under lower-tier control law (19).
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Fig. 8. Input trajectories of system (17) under lower-tier PI control (19) (ud(t) ≡ 0).

constraint (3h). For the simulations carried out in this subsection,
we set the prediction horizon �f to be equal to the minimum time
interval between two consecutive yd measurements, Tmin, and the
delay associated with each measurement to be dk = D = 0.2h for all
k which also corresponds to the worst-case effect of measurement
delay.

The two-tier control architecture (4) is implemented as discussed
in Section 3. The mass fraction measurement sequence {tk�0} (gen-
erated with W = 1) and the delay size sequence {dk�0} with a sim-
ulation length 0.75h are as follows:

{tk�0} = {0, 0.248, 0.495, 0.868, 1.000}

{dk�0} = {0, 0.200, 0.200, 0.200, 0.200}

The state and input trajectories of system (17) under the proposed
two-tier control architecture are shown in Figs. 9 and 10. Fig. 9 shows

that the two-tier control architecture (4) drives the temperatures and
the mass fractions in the closed-loop system close to the equilibrium
point in about 0.25h. This implies that the resulting closed-loop
system response is faster relative to the speed of the closed-loop
response under the lower-tier PI controllers. For the same simulation
length of tf =1h, the performance cost associated with the resulting

closed-loop trajectories is 8.658 × 104 which is much smaller than
that of the closed-loop system under the lower-tier PI control system
(2.105 × 105).

5.4. Performance comparison

We carried out a set of simulations to compare the proposed
two-tier control architecture with the lower-tier PI control system
with the same parameters from a performance index point of view.
Table 8 presents the total cost computed for 10 different closed-loop
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Fig. 9. State trajectories of system (17) under the proposed two-tier control architecture.

0 0.2 0.4 0.6 0.8 1.0
1

1.25

1.5

1.75
x 106

Q
1 

(K
J/

h)

0 0.2 0.4 0.6 0.8 1.0
1.5

1.75

2
x 106

Q
2 

(K
J/

h)

0 0.2 0.4 0.6 0.8 1.0
1

1.25

1.5

1.75
x 106

Q
3 

(K
J/

h)

Time (hr)

0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

F 20
 (m

3 /h
) 

Time (hr)

Fig. 10. Input trajectories of system (17) under the proposed two-tier control architecture.

Table 8
Total performance cost along the closed-loop system trajectories

Sim. Two-tier PI control

1 1.006 × 104 2.148 × 104

2 2.046 × 104 3.123 × 104

3 3.621 × 104 6.310 × 104

4 1.148 × 104 4.440 × 104

5 3.103 × 104 6.052 × 104

6 7.141 × 104 1.631 × 105

7 1.389 × 104 6.961 × 104

8 1.928 × 104 2.770 × 104

9 1.872 × 104 8.538 × 104

10 1.417 × 104 7.260 × 104

simulations under the proposed two-tier control architecture and
the lower-tier PI control system. To carry out this comparison, we
have computed the total cost of each simulation based on the inte-
gral of the performance index defined by L(x,us,ud) with different
operating conditions. The length of each simulation is tf =0.75h. For
this set of simulations W is chosen to be 1. For each pair of simu-
lations (one for each control scheme) a different initial state inside
the stability region, a different noise trajectory and a different ran-
dom mass fraction measurement sequence with random delay size
sequence are generated by the methods described in Section 5.1. As
can be seen in Table 8, the proposed two-tier control architecture
has a cost lower than the corresponding total cost under the lower-
tier PI control system in all the simulations.
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Fig. 11. State trajectories of system (17) subject to input constraints under the lower-tier control law (19).
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Fig. 12. Input trajectories of system (17) subject to input constraints under the lower-tier control law (19).

5.5. Effect of input constraints

In this section, we study the effect of input constraints on the
performance of the closed-loop system under the proposed two-
tier control architecture. Specifically, in the simulations carried out
in this subsection, we take into account input constraints in the
lower-tier controllermanipulated inputs us, namely |Q1|�1.48×105,
|Q2|�1.83 × 105 and |Q3|�1.48 × 105 KJ/h. The same simulation
settings (initial condition, target state, lower-tier controller design,
upper-tier controller design, mass fraction measurement sequence
and delay size sequence) as in Sections 5.1–5.3 are used in the sim-
ulations carried out in this subsection.

The state and input trajectories under the lower-tier PI controllers
(19) are shown in Figs. 11 and 12. From Fig. 11, we see that the PI
controllers stabilize the system at the target steady-state in about
0.8h which is a little slower than the corresponding closed-loop

response without input constraints (in such a case the closed-loop
system is stabilized in about 0.7h). From Fig. 12, we see that the
three heat inputs Q1,Q2 and Q3 operate at their maximum allowable
values for about 0.15h. The corresponding accumulated performance
cost is 2.180 × 105.

The state and input trajectories under the two-tier control archi-
tecture (4) with the same upper-tier controller design is shown in
Figs. 13 and 14. Fig. 13 shows that the two-tier control architecture
(4) drives the temperatures and the mass fractions of the closed-
loop system close to the equilibrium point in about 0.3h which is
a little slower than the closed-loop system response without input
constraints (in this case the closed-loop system stabilizes in about
0.25h). From Fig. 14, we see that the heat inputs Q1,Q2 and Q3 also
operate at their maximum allowable values for about 0.15h. The
corresponding accumulated performance cost is 9.443 × 104 which
is much lesser than the cost obtained under the lower-tier control
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Fig. 13. State trajectories of system (17) subject to input constraints under the proposed two-tier control architecture.
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Fig. 14. Input trajectories of system (17) subject to input constraints under the proposed two-tier control architecture.

system (2.180 × 105). From this set of simulations, we see that the
proposed two-tier control architecture maintains the property of
improving the performance of the closed-loop system when input
constraints are present. It is also important to note that advanced
anti-windup schemes could be used in conjunction with the lower-
tier PI controllers to mitigate the effect of integrator wind-up and
improve the closed-loop system performance; however, the basic
conclusion of this part of the study would not change.

Remark 19. In some applications, when input constraints are
present, the stability of the closed-loop system under the lower-tier
controller may be lost because of saturation of the control inputs.
To avoid losing stability, the lower-tier controller in the two-tier
control architecture can be detuned to primarily take care of the
closed-loop system stability by sacrificing closed-loop performance.

Thus, when input constraints are present, the lower-tier controller
can be potentially detuned to satisfy the input constraints (or sat-
urate for less time) and the upper-tier controller can be used to
recover the loss of closed-loop performance.

6. Conclusions

Traditionally, process control systems utilize dedicated, point-to-
point wired communication links using a small number of sensors
and actuators to regulate appropriate process variables at desired
values. While this paradigm to process control has been successful,
chemical plant operation could substantially benefit from an efficient
integration of the existing, point-to-point control networks (wired
connections from each actuator/sensor to the control system using
dedicated local area networks) with additional networked (wired or



Author's personal copy

J. Liu et al. / Chemical Engineering Science 63 (2008) 5394 -- 5409 5409

wireless) actuator/sensor devices. However, available control meth-
ods cannot be used for the design of process control systems which
utilize networked sensors and actuators because they do not deal di-
rectly with data losses due to field interference and time-delays due
to network traffic at the controller design level. Motivated by these
technological advances and the lack of methods to design control
systems that utilize hybrid communication networks, we presented
in this work a two-tier control architecture for process control prob-
lems that involve nonlinear processes and heterogeneous measure-
ments consisting of continuous measurements and asynchronous,
delayed measurements. The proposed architecture consists of: (a) a
lower-tier control system, which relies on point-to-point commu-
nication and continuous measurements, to stabilize the closed-loop
system, and (b) an upper-tier networked control system, designed
using Lyapunov-based model predictive control theory, that profits
from both the continuous and the asynchronous, delayed measure-
ments as well as from additional networked control actuators to im-
prove the closed-loop system performance. The applicability and ef-
fectiveness of the proposed control method was demonstrated using
two chemical process examples and constraints on the achievable
closed-loop system performance were evaluated.
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