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In this work, we introduce a two-tier control architecture for nonlinear process systems with both continuous and
asynchronous sensing and actuation. This class of systems arises naturally in the context of process control
systems based on hybrid communication networks (i.e. point-to-point wired links integrated with networked
wired or wireless communication) and utilising multiple heterogeneous measurements (e.g. temperature and
concentration). Assuming that there exists a lower-tier control system which relies on point-to-point
communication and continuous measurements to stabilise the closed-loop system, we propose to use
Lyapunov-based model predictive control to design an upper-tier networked control system to profit from
both the continuous and the asynchronous measurements as well as from additional networked control actuators.
The proposed two-tier control system architecture preserves the stability properties of the lower-tier controller
while improving the closed-loop performance. The theoretical results are demonstrated using two different
chemical process examples.

Keywords: networked control systems; model predictive control; nonlinear systems; fault-tolerant control
systems; process control applications

1. Introduction

Increasingly faced with the requirements of safety,
environmental sustainability and profitability, chemi-
cal process operation is relying extensively on highly
automated control systems. Traditionally, control
systems utilise point-to-point wired communication
links using a small number of sensors and actuators.
The operation of chemical processes, therefore, could
benefit from the deployment of control systems using
hybrid communication networks that take advantage
of an efficient integration of the existing, point-to-
point communication networks (wire connections from
each actuator or sensor to the control system using
dedicated local area networks) and additional net-
worked (wired or wireless) actuator and sensor devices.
Such an augmentation in sensor information and
network-based availability of wired and wireless data
is now well under way in the process industries (Ydstie
2002; Davis 2007; Neumann 2007; Christofides et al.
2007) and clearly has the potential to be transformative
in the sense of dramatically improving the ability of the
single-process and plantwide model-based control
systems to optimise process and plant performance

(in terms of achieving control objectives that go well

beyond the ones that can be achieved with control

systems using wired, point-to-point connections) and
prevent or deal with adverse and emergency situations

more quickly and effectively (fault-tolerance). Hybrid

communication networks allow for easy modification
of the control strategy by rerouting signals, having

redundant systems that can be activated automatically

when component failure occurs, and, in general, they
allow having a high-level supervisory control over the

entire process (Ydstie 2002; Davis 2007; Neumann

2007; Christofides et al. 2007). However, augmenting
existing control networks with real-time wired or

wireless sensor and actuator networks challenges

many of the assumptions in traditional process control
methods dealing with dynamical systems linked

through ideal channels with flawless, continuous

communication. In the context of hybrid communica-
tion networks which utilise networked sensors and

actuators, key issues that are important for process

control include robustness, reliability and interference.
These issues need to be carefully handled because

integrated wired and wireless communication networks
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introduce more components in order to substantially
improve closed-loop performance and fault-tolerance,
and this increases the probability of missing data at
any given point in time.

Within control theory, the study of control over
networks has attracted considerable attention in the
literature (Nair and Evans 2000; Brockett and
Liberzon 2000; Christofides and El-Farra 2005;
Mhaskar, Gani, McFall, Christofides, and Davis
2007) and early research focused on analysing and
scheduling real-time network traffic (Shin 1991; Hong
1995). Research has also studied the stability of
network-based control systems. A common approach
is to insert network behaviour between the nodes of a
conventional control loop. In Walsh, Ye, and Bushnell
(2002) it was proposed to first design the controller
using established techniques considering the network
transparent, and then to analyse the effect of the
network on closed-loop system stability and perfor-
mance. This approach was further developed in Nešić
and Teel (2004) using a small gain analysis approach.
However, the available results on network-based con-
trol have primarily utilised wired networks. In the last
few years, however, several research papers have
studied control using the IEEE 802.11 and Bluetooth
wireless networks (see Ye, Walsh, and Bushnell (2000),
Ye and Walsh (2001), Ploplys, Kawka, and Alleyne
(2004), Tabbara, Nešić, and Teel (2007) and the
references therein). In the design and analysis of
networked control systems, the most frequently studied
problem considers control over a network having
constant and time-varying delays. This network behav-
iour is typical of communications over the Internet
but does not necessarily represent the behaviour of
dedicated wireless networks in which the sensor,
controller and actuator nodes communicate directly
with one another but might experience data losses. An
appropriate framework to model lost data is the use of
asynchronous systems (Ritchey and Franklin 1989;
Su, Bhaya, Kaszkurewicz, and Kozyakin 1997;
Hassibi, Boyd, and How 1999). In this framework,
data losses occur in an stochastic manner, and the
process is considered to operate in an open-loop
fashion when the data is lost. The most destabilising
cause of packet loss is due to bursts of poor network
performance in which case large groups of packets are
lost nearly consecutively. A more detailed description
of bursty network performance using a two-state
Markov chain was considered in Nguyen, Katz,
Noble, and Satyanarayananm (1996). Modelling net-
works using Markov chains results in describing the
overall closed-loop system as a stochastic hybrid
system (Hespanha 2005). Stability results have been
presented for particular cases of stochastic hybrid
systems in Hassibi et al. (1999) and Mao (1999).

However, these results do not directly address the

problem of augmentation of dedicated, wired control

systems with networked actuator and sensor devices to
improve closed-loop performance.

In this work, we introduce a two-tier control

architecture for nonlinear process systems with both

continuous and asynchronous sensing and actuation.
This class of systems arises naturally in the context of

process control systems based on hybrid communica-

tion networks (i.e. point-to-point wired links integrated
with network wired or wireless communication) and

utilising multiple heterogeneous measurements (e.g.

temperature and concentration). Assuming that there
exists a lower-tier control system which relies on point-

to-point communication and continuous measure-

ments to stabilise the closed-loop system, we propose
to use Lyapunov-based model predictive control

(LMPC) to design an upper-tier networked control

system to profit from both the continuous and the
asynchronous measurements as well as from additional

networked control actuators. The proposed two-tier

control system architecture preserves the stability
properties of the lower-tier controller while improving

the closed-loop performance. The theoretical results

are demonstrated using two different chemical process
examples.

2. Preliminaries

2.1 Problem formulation

In this work, we consider nonlinear systems described
by the following state-space model:

_xðtÞ ¼ f ðxðtÞ, usðtÞ, uaðtÞ,wðtÞÞ

ysðtÞ ¼ hsðxðtÞÞ

yaðtÞ ¼ haðxðtÞÞ, ð1Þ

where xðtÞ2Rnx denotes the vector of state variables,

ysðtÞ2R
nys denotes continuous and synchronous mea-

surements, yaðtÞ 2 Rnya are asynchronous and sampled

measurements, usðtÞ 2 Rnus and uaðtÞ 2 Rnua are two

different sets of possible control inputs and wðtÞ 2 Rnw

denotes the vector of disturbance variables. The

disturbance vector is bounded, i.e. w(t)2W where

W :¼ fw 2 Rnw : jwj � �, �4 0g:

j�j denotes Euclidean norm of a vector.
We assume that f is a locally Lipschitz vector

function, hs and ha are sufficiently smooth functions,
f(0, 0, 0, 0)¼ 0, hs(0)¼ 0 and ha(0)¼ 0. This means that

the origin is an equilibrium point for the nominal

system (system (1) with w(t) � 0 for all t) with us(t)¼ 0
and ua(t)¼ 0.
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Remark 1: The two sets of inputs include both
systems with multiple inputs, or systems with a single
input divided artificially into two terms; i.e.

_xðtÞ ¼ f̂ ðxðtÞ, uðtÞ,wðtÞÞ

with u(t)¼ us(t)þ ua(t).

2.2 Modelling of measurements and network

System (1) is controlled using both continuous syn-
chronous and sampled asynchronous measurements.
We assume that ys(t) is available for all t, while ya(t) is
sampled and only available at some time instants tk
where {tk�0} is a random increasing sequence of times.
We assume that the measurement of the full state x(tk)
can be obtained by combining measurements ys(tk) and
ya(tk). Due to the asynchronous nature of ya(t), the
time interval between two consecutive state measure-
ments is unknown. A controller based on the
asynchronous measurements ya(t) must take into
account that during consecutive state measurements,
it has to operate in open loop. This class of systems
arises naturally in process control, where different
process variables have to be measured such as
temperature, flow rate or concentration. This model
is also of interest for systems controlled through a
hybrid communication network in which wireless
sensors are used to add redundancy to the existing
working control loops (which use point-to-point wired
communication links and continuous measurements)
because wireless communication is often subject to
data losses due to interference.

Remark 2: We have considered that the full state is
available asynchronously for the controller ua(t) to
simplify the notation. The results can be extended to
controllers based on partial state information.

2.3 Lower-tier controller

The continuous measurement ys(t) can be used to
design a continuous output-feedback controller to
stabilise the system. We term the control system
based only on the continuous measurements ys(t) as
lower-tier controller. This control scheme does not use
the asynchronous measurements ya(t). Figure 1 shows
a schematic representation of the lower-tier controller.
Following this idea, we assume that there exists an
output feedback controller us(t)¼ ks(ys) (where ks(ys) is
assumed to be a sufficiently smooth function of ys) that
renders the origin of the nominal closed-loop system
(i.e. w(t)� 0) asymptotically stable with ua(t)� 0.
Using converse Lyapunov theorems (Khalil 1996),
this assumption implies that there exist functions �i(�),

i¼ 1, 2, 3, 4 of class K (class K functions are strictly

increasing functions of their argument and satisfy
�(0)¼ 0) and a Lyapunov function V(x) for the

nominal closed-loop system which is continuous and

bounded in Rnx , that satisfy the following inequalities:

�1ðjxjÞ � VðxÞ � �2ðjxjÞ

@VðxÞ

@x
f ðx, ksðhsðxÞÞ, 0, 0Þ � ��3ðjxjÞ

���� @VðxÞ@x

���� � �4ðjxjÞ ð2Þ

for all x 2 D � Rnx where D is an open neighbourhood
of the origin. We denote the region �� � D (we use ��

to denote the set �� :¼ fx 2 Rnx : VðxÞ � �g) as the

stability region of the closed-loop system under

the controller ks( ys). In the remainder, we will refer
to the controller ks( ys) as the lower-tier controller.

The lower-tier controller ks( ys) is able to stabilise

the system; however, it does not profit from the extra

information provided by ya(t). In what follows, we
propose a two-tier control architecture that profits

from this extra information to improve the closed-loop

performance.

Remark 3: Note that in many application areas,

specifically in chemical plants, there are control
systems that have already been implemented using

dedicated, local control networks. These control

systems will not be replaced by networked control
systems. Instead, networked control systems should be

designed and implemented to augment the pre-existing

control systems to maintain stability and improve

closed-loop performance. This is why we assume that
there exists a pre-existing stabilising controller ks( ys)

for the lower-tier control system based on the contin-

uous measurements ys(t).

Remark 4: We have considered static lower-tier

controllers to simplify the notation. The formulation
can be extended to dynamic lower-tier controllers. In

the examples given in Sections 4 and 5, proportional-

integral (PI) controllers are used as the lower-tier
controllers.

Process

Sensors

x

Lower-tier
controller

us

ys

Figure 1. Lower-tier controller with dedicated point-to-
point, wired communication links and continuous sensing
and actuation.

International Journal of Control 259

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
 
L
o
s
 
A
n
g
e
l
e
s
]
 
A
t
:
 
1
8
:
5
4
 
2
0
 
J
a
n
u
a
r
y
 
2
0
1
0



2.4 Single-tier LMPC

In order to take advantage of the asynchronous
measurements, one option is to control the process
using a state feedback controller that decides the input
trajectories between consecutive samples. Model pre-
dictive control (MPC) is particularly appropriate for
controlling systems subject to asynchronous measure-
ments because the actuator can profit from the last-
computed optimal input trajectory, to update the input
when feedback is lost; the reader may refer to Mayne,
Rawlings, Rao, and Scokaert (2000) and Rawlings
(2000) for a tutorial and review of results on MPC. In
particular, we proposed to use the LMPC design
proposed in Muñoz de la Peña and Christofides
(2008a) which is designed taking data losses explicitly
into account, both in the optimisation problem formu-
lation and in the controller implementation. The LMPC
allows for an explicit characterisation of the stability
region and guarantees that this region is an invariant set
for the closed-loop system under data losses if the
maximum time in which the loop is open is shorter than
a given constant that depends on the parameters of the
system and the Lyapunov-based controller that is used
to formulate the optimisation problem. This controller
is based on solving an LMPCoptimisation problem that
optimises both us(t) and ua(t) when a new full state
measurement is available at time step tk. The optimal
input trajectories are applied in open loop until a new
full state measurement is available. This scheme does
not take full advantage of the continuous measurement
ys, and applies both us(t) and ua(t) in a sample-and-hold
fashion. The LMPC controller is based on the following
optimisation problem:

min
uaðDÞ,usðDÞ

Z �f

0

Lð ~xð�Þ, usð�Þ, uað�ÞÞd�

_~xð�Þ ¼ f ð ~xð�Þ, usð�Þ, uað�Þ, 0Þ

_̂xð�Þ ¼ f ðx̂ð�Þ, ksðhsðx̂ð jDÞÞÞ, 0, 0Þ

8� 2 ½ jD, ð jþ 1ÞDÞ

x̂ð0Þ ¼ ~xð0Þ ¼ xðtkÞ

Vð ~xð�ÞÞ � Vðx̂ð�ÞÞ 8� 2 ½0, �f�,

where x(tk) is the state obtained from both ys(tk) and
ya(tk), j¼ 0,1, . . . , and ~xð�Þ, x̂ð�Þ are predicted trajec-
tories of the nominal system controlled by the LMPC
and the lower-tier controller applied in a sample-and-
hold fashion, respectively. In the optimisation problem,
L(x, us, ua) is a positive definite function of the state and
of the inputs that define the cost and �f is the prediction
horizon. The optimal solution to this optimisation
problem is denoted as u	c,sð�jtkÞ and u	c,að�jtkÞ. These
signals are defined for all �� 0 with
u	c,sð�jtkÞ ¼ u	c,sð�f jtkÞ and u	c,að�jtkÞ ¼ u	c,að�f jtkÞ for all
�� �f.

This controller is based on the lower-tier controller
ks(ys) to design the contractive constraint (although in
a sample-and-hold fashion); however, the applied
control inputs us(t) and ua(t) are not decided using
the lower-tier controller, but the solution of the
optimisation problem, that is

usðtÞ ¼ u	c,sðt� tkjtkÞ, 8t 2 ½tk, tkþ1Þ

uaðtÞ ¼ u	c,aðt� tkjtkÞ, 8t 2 ½tk, tkþ1Þ:

In what follows, we denote this controller the single-
tier LMPC controller. Figure 2 shows a schematic
representation of this kind of state feedback control
system.

3. Two-tier architecture

The main objective of the two-tier control architecture
is to improve the performance of the closed-loop
system using the information provided by ya(t) while
guaranteeing that the stability properties of the lower-
tier controller are maintained. This is done by defining
a controller (upper-tier controller) based on the full
state measurements obtained from both the synchro-
nous and the asynchronous measurements at time steps
tk. In the two-tier control architecture, the upper-tier
controller decides the trajectory of ua(t) between
successive samples, i.e. for t2 [tk, tkþ1) and the lower-
tier controller decides us(t) using the continuously
available measurements. Figure 3 shows a schematic
representation of the proposed strategy. Due to the
asynchronous nature of ya(t), the upper-tier controller

Process

Sensors

x

Controller
ys

ya

ua us

Figure 2. Centralised control system.

Process

Sensors

x

Lower-tier
controller

Upper-tier
controller

ya

ua

us

yays
ys

Figure 3. Two-tier control strategy (solid lines denote
dedicated point-to-point, wired communication links and
continuous sensing and actuation; dashed lines denote
networked (wired or wireless) communication or asynchro-
nous sampling and actuation).

260 J. Liu et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
 
L
o
s
 
A
n
g
e
l
e
s
]
 
A
t
:
 
1
8
:
5
4
 
2
0
 
J
a
n
u
a
r
y
 
2
0
1
0



has to take into account that the time interval between

two consecutive samples is unknown and there exists

the possibility of an infinitely large interval.

Remark 5: Note that since the lower-tier controller

has already been designed, this controller views the

input ua(t) as a disturbance that has to be rejected if

the controller that is used to manipulate ua(t) is not

properly designed. Therefore, the design of the upper-

tier controller has to take into account the decisions

that will be made by the lower-tier controller to

maintain closed-loop stability and guarantee the

improvement of the closed-loop performance.

3.1 Upper-tier LMPC design

In order to take advantage of the model of the system

and the asynchronous state measurements, we propose

to use MPC to decide ua(t). The main idea is the

following: at each time instant tk a new state measure-

ment is obtained, an open-loop finite horizon optimal

control problem is solved and an optimal input

trajectory is obtained. This input trajectory is imple-

mented until a new measurement arrives at time tkþ1.

If the time between two consecutive measurements is

longer than the prediction horizon, ua(t) is set to zero

until a new measurement arrives and the optimal

control problem is solved again. In order to define a

finite-dimensional optimisation problem, ua(t) is con-

strained to the family of piece-wise constant functions

with sampling period D, S(D). In order to guarantee

that the resulting closed-loop system is stable, we

follow a Lyapunov-based approach; see Muñoz de la

Peña and Christofides (2008a). LMPC is based on

including a contractive constraint that allows one to

prove practical stability. In previous LMPC controllers

(Mhaskar, El-Farra, and Christofides 2005, 2006;

Muñoz de la Peña and Christofides 2008a), the

contractive constraints are defined based on a known

Lyapunov-based state feedback controller. In the

present work, the contractive constraint of the pro-

posed upper-tier LMPC design is based on the

lower-tier controller. The proposed upper-tier LMPC

optimisation problem is defined as follows:

min
ua2SðDÞ

Z �f

0

Lð ~xð�Þ, ksðhsð ~xð�ÞÞÞ, uað�Þ, 0Þd� ð3aÞ

_~xð�Þ ¼ f ð ~xð�Þ, ksðhsð ~xð�ÞÞÞ, uað�Þ, 0Þ ð3bÞ

_̂xð�Þ ¼ f ðx̂ð�Þ, ksðhsðx̂ð�ÞÞÞ, 0, 0Þ ð3cÞ

x̂ð0Þ ¼ ~xð0Þ ¼ xðtkÞ ð3dÞ

Vð ~xð�ÞÞ � Vðx̂ð�ÞÞ 8� 2 ½0, �f �, ð3eÞ

where x(tk) is the state obtained from ys(tk) and ya(tk),

x̃(�) is the predicted trajectory of the two-tier nominal

system for the input trajectory computed by the LMPC

(3), x̂ð�Þ is the predicted trajectory of the two-tier

nominal system for the input trajectory ua(�) � 0 for all

� 2 [0, �f). This optimisation problem does not depend

on the uncertainty and assures that the system in

closed-loop with the upper-tier controller maintains

the stability properties of the lower-tier controller.

The optimal solution to this optimisation problem is

denoted as u	u,að�jtkÞ. This signal is defined for all �� 0

with u	u,að�jtkÞ ¼ 0 for all �� �f.
The control inputs of the proposed two-tier control

architecture based on the above-mentioned LMPC are

defined as follows:

usðtÞ ¼ ksðhsðxðtÞÞÞ, 8t

uaðtÞ ¼ u	u,aðt� tkjtkÞ, 8t 2 ½tk, tkþ1Þ
ð4Þ

where u	u,aðt� tkjtkÞ, is the optimal solution of the

LMPC optimisation problem (3) at time step tk. This

implementation technique takes into account that the

lower-tier controller uses the continuously available

measurements, while the upper-tier controller has to

operate in open loop between consecutive asynchro-

nous measurements.
Note that the constraint (3e) in the LMPC (3) is

needed to ensure that the value of the Lyapunov

function of the closed-loop system under the proposed

two-tier control architecture (4) is lower than or equal

to the Lyapunov function of the closed-loop system

when it is only controlled by the lower-tier controller.

By imposing constraint (3e), we can prove the stability

of the closed-loop system under the two-tier control

architecture (4) which is shown in Section 3.2.

Remark 6: By definition, u	að�jtkÞ ¼ 0 for all �� �f.
This implies that the upper-tier controller switches off

when it has been operating in open loop for a large

time, because in this case, the last received information

is no longer useful to improve the performance of the

lower-tier controller. The two-tier control architecture

is (by design) stable because of the lower-tier controller

stability properties. The main problem is how to

improve the closed-loop performance using non-reli-

able communications in a way such that the stability

properties of the closed-loop system under the lower-

tier controller are not compromised. Setting the

control input of the upper-tier controller to zero after

a given time is necessary to maintain the stability

properties, because after a sufficiently large time, the

upper-tier input implemented in open loop is not

improving the closed loop performance and may act as

a disturbance.
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Remark 7: State and input constraints are beyond the

scope of this work; however, the results can be extended
as in previous LMPC results (Mhaskar et al. 2005, 2006;
Muñoz de la Peña and Christofides 2008a).

3.2 Two-tier controller stability

Combining the information from a hybrid communi-
cation system may lead to losing the stability proper-

ties of the lower-tier controller. The resulting closed-
loop system is an asynchronous system and studying
the stability of this class of systems is in general a
difficult task (Muñoz de la Peña and Christofides

2008b). This implies that the design of the upper-tier
controller is also a difficult task. In this work, we
propose to follow a Lyapunov-based approach.
The main idea is to compute the input ua(t) applied

to the system in a way such that it is guaranteed that
the value of the Lyapunov function at time steps tk,
V(x(tk)), is a decreasing sequence of values with a lower
bound. This guarantees the practical stability of

the closed-loop system. This is achieved due to the
contractive constraint (3e) of LMPC (3). This property
is presented in Theorem 1 below. To state this theorem,
we need the following propositions.

Proposition 1 (cf. Khalil 1996): Consider system (1) in
closed-loop with the lower-tier controller ks. Taking into
account (2), there exists a KL ( function �(r, s) is said to
be a class KL function if, for each fixed s, �(r, s) belongs
to class K function with respect to r and, for each fixed r,
�(r, s) is decreasing with respect to s and �(r, s)! 0 as
s! 0) function �(r, s), a K function � and a constant
�max such that if x(t0)2�� and ua(t)¼ 0 for all t, then

VðxðtÞÞ � �ðVðxðt0ÞÞ, t� t0Þ þ �ðmax
�2½t0,t�

jwð�ÞjÞ

for all w2W with �� �max.

This proposition provides us with a bound on the

trajectories of the Lyapunov function of the state of
the system in closed loop with the lower-tier controller
with ua(t)¼ 0. We will use this bound to prove the
stability theorem.

Proposition 2: Consider the following state
trajectories:

_xaðtÞ ¼ f ðxaðtÞ, ksðhsðxaðtÞÞÞ, uaðtÞ,wðtÞÞ

_xbðtÞ ¼ f ðxbðtÞ, ksðhsðxbðtÞÞÞ, uaðtÞ, 0Þ
ð5Þ

with initial states xa(t0)¼xb(t0)2��. There exists a
class K function fW such that

jxaðtÞ � xbðtÞj � fWðt� t0Þ ð6Þ

for all xa(t), xb(t)2�� and all w(t)2W.

Proof: Define the error vector as e(t)¼ xa(t)�xb(t).
The time derivative of the error is given by

_eðtÞ ¼ f ðxaðtÞ, ksðhsðxaðtÞÞÞ, uaðtÞ,wðtÞÞ

� f ðxbðtÞ, ksðhsðxbðtÞÞÞ, uaðtÞ, 0Þ:

By continuity and the local Lipschitz property assumed
for the vector field f (x, us, ua,w), there exist positive
constants Lw,Lx and Lu1 such that

j _eðtÞj � LwjwðtÞ � 0j þ LxjxaðtÞ � xbðtÞj

þ Lu1jksðhsðxaðtÞÞÞ � ksðhsðxbðtÞÞÞj ð7Þ

for all xa(t), xb(t)2�� and w(t) 2W. By continuity and
smooth properties of ks and hs, there exists a positive
constant Lu2 such that

jksðhsðxaðtÞÞÞ � ksðhsðxbðtÞÞÞj � Lu2jxaðtÞ � xbðtÞj

for all xa(t), xb(t) 2 ��. Thus the following inequality
can be obtained from inequality (7):

j _eðtÞj � LwjwðtÞj þ ðLx þ Lu1Lu2ÞjxaðtÞ � xbðtÞj

� Lw� þ ðLx þ Lu1Lu2ÞjeðtÞj:

Integrating j _eðtÞj with initial condition e(t0)¼ 0 (recall
that xa(t0)¼ xb(t0)), the following bound on the norm
of the error vector is obtained:

jeðtÞj �
Lw�

L0x
ðeL

0
xðt�t0Þ � 1Þ,

where L0x ¼ Lx þ Lu1Lu2. This implies that (6) holds for

fWð�Þ ¼
Lw�

L0x
ðeL

0
x� � 1Þ:

œ

The following proposition bounds the difference
between the magnitudes of the Lyapunov function of
two different states in ��.

Proposition 3: Consider the Lyapunov function V(�)
of system (1). There exists a quadratic function fV (�)
such that

VðxÞ � Vðx̂Þ þ fVðjx� x̂jÞ ð8Þ

for all x, x̂ 2 ��.

Proof: Because the Lyapunov function V(x) is con-
tinuous and bounded on compact sets, we can find a
positive constant M such that a Taylor series expan-
sion of V around x̂ yields

VðxÞ � Vðx̂Þ þ
@V

@x
jx� x̂j þMjx� x̂j2, 8x, x̂ 2 ��:

Note that the term Mjx� x̂j2 bounds the high-order
terms of the Taylor series of V(x) for all x, x̂ 2 ��.
Taking into account (2), the following bound for V(x)
is obtained:

VðxÞ �Vðx̂Þþ�4ð�
�1
1 ð�ÞÞjx� x̂jþMjx� x̂j2, 8x, x̂2��:
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This implies that (8) holds for fVðxÞ ¼
�4ð�

�1
1 ð�ÞÞxþMx2. œ

Theorem 1: Consider system (1) in closed-loop with the
two-tier control architecture (4). If x(t0)2��, �� �max,
and there exist a concave function g such that

gðxÞ � �ðx, �f Þ ð9Þ

for all x2��, and a positive constant c� � such that

c� gðcÞ � fVð fWð�f ÞÞ, ð10Þ

then x(t) is ultimately bounded in a region that contains
the origin.

Proof: In order to prove that the closed-loop system
is ultimately bounded in a region that contains the
origin, we will prove that V(x(tk)) is a decreasing
sequence of values with a lower bound for the worst
possible case, that is, the upper-tier controller always
operates in open loop for a period of time longer than
�f between consecutive samples, that is, tkþ1� tk4 �f
for all k. The trajectory x̂ðtÞ corresponds to the
nominal system in closed loop with the lower-tier
controller with initial state x(tk). Taking into account
Proposition 1 the following inequality holds:

Vðx̂ðtÞÞ � �ðVðxðtkÞÞ, t� tkÞ:

The contractive constraint (3e) of the proposed LMPC
(3) guarantees that

Vð ~xðtÞÞ � Vðx̂ðtÞÞ, 8t 2 ½tk, tk þ �f �:

Assuming that x(t)2�� for all times (which is auto-
matically satisfied when the system is proved to be
ultimately bounded below), we can apply Proposition 3
to obtain the following inequalities:

Vðxðtk þ �f ÞÞ � Vð ~xðtk þ �f ÞÞ þ fVðjxðtkÞ � ~xðtkÞjÞ:

Applying Proposition 2 we obtain the following upper
bounds on the deviation of x̃(t) from x(t):

jxðtk þ �f Þ � ~xðtk þ �f Þj � fWð�f Þ:

Using the above inequalities the following upper
bound on V(x(tkþ �f)) is obtained:

Vðxðtk þ �f ÞÞ � �ðVðxðtkÞÞ, �f Þ þ fVð fWð�f ÞÞ: ð11Þ

Taking into account that for all t4 tkþ �f the upper-
tier controller is switched off, i.e. ua(t)¼ 0, and only the
lower-tier controller is in action, the following bound
on V(x(tkþ1)) is obtained from Proposition 1:

Vðxðtkþ1ÞÞ � maxfVðxðtk þ �f ÞÞ, �ð�maxÞg

for all w(t)2W. Because function g is concave, z� g(z)
is an increasing function. If there is a positive constant
c� � satisfying (10), then (10) holds for all z4 c.

Taking into account that g(z)��(z,�f) for all z� �, the
following inequality is obtained:

z� �ðz, �f Þ � fVð fWð�f ÞÞ

when c� z� �. From this inequality and inequality
(11), we obtain that

Vðxðtkþ1ÞÞ � maxfVðxðtkÞÞ, �ð�maxÞg

for all V(x(tk))� c. It follows using Lyapunov argu-
ments that

lim sup
t!1

VðxðtÞÞ � �c,

where

�c ¼ maxfmax
c
�ðc, �f Þ þ fVð fWð�f ÞÞ, �ð�maxÞg: h

Remark 8: In general, the size of the region in which
the state is ultimately bounded depends on the predic-
tion horizon �f. The prediction horizon �f sets the
maximum amount of time on which the upper-tier
controller will be operating in open loop.

Remark 9: Although the proof of Theorem 1 is
constructive, the constants obtained are conservative.
This is the case with most of the results of the type
presented in this article. In practice, the maximum time
that the upper-tier controller should operate in open
loop is better estimated through closed-loop simula-
tions. The various inequalities provided are more
useful as guidelines on the interaction between the
various parameters that define the system and the
upper-tier controller and may be used as guidelines to
design the controller and the network; see, for example,
Nešić, Teel, and Kokotovic (1999) and Tabuada and
Wang (2006) for further discussion on this issue.

Remark 10: Referring to Theorem 1, the assumption
that there exists a concave function g such that
g(x)��(x,�f) imposes an upper bound on �f and is
made, without any loss of generality, to simplify the
proof of Theorem 1; i.e. the result of Theorem 1 could
still be proved without this assumption but the proof
would be more involved. The assumption that there
exists a positive constant c� � such that c� g(c)�
fV( fW(�f)) guarantees that the derivative of the
Lyapunov function of the state of the closed-loop
system outside the level set V(x)¼ c is negative under
the two-tier control architecture with the upper-tier
LMPC (3).

Remark 11: As in all MPC schemes, it is not possible
to provide quantitative results that guarantee that the
performance of the closed-loop system is better than
any other controller, unless an infinite horizon is used.
It makes sense that the system in closed loop with the
two-tier control architecture has, in general, a better
performance because the cost function is taken into
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account in the optimisation problem of the upper-tier
controller. The case studies provide results that dem-
onstrate this point.

4. Application to a chemical reactor

Consider a well-mixed, non-isothermal continuous
stirred tank reactor where three parallel irreversible
elementary exothermic reactions take place of the form
A!B, A!C and A!D. The product B is the
desired product and C and D are byproducts. The feed
to the reactor consists of A at temperature TA0 and
concentration CA0 and flow rate FþDF, where DF is a
time-varying uncertainty. Due to the non-isothermal
nature of the reactor, a jacket is used to remove or
provide heat from or to the reactor. Using first
principles and standard modelling assumptions the
following mathematical model of the process is
obtained:

dT

dt
¼

Fþ DF
Vr

ðTA0 � T Þ �
X3
i¼1

DHi

�Cp
ki0e

�Ei
RT CA þ

Q

�CpVr

dCA

dt
¼

Fþ DF
Vr

ðCA0 � CA þ DCA0Þ þ
X3
i¼1

ki0e
�Ei
RT CA,

ð12Þ

where CA denotes the concentration of the reactant A,
T denotes the temperature of the reactor, Vr denotes
the volume of the reactor, DHi, ki0, Ei, i¼ 1, 2, 3 denote
the enthalpies, pre-exponential constants and activa-
tion energies of the three reactions, respectively, and Cp

and � denote the heat capacity and the density of the
fluid in the reactor. The inputs to the system are the
rate of heat input or removal Q and the change of
the inlet reactant A at concentration DCA0. The values
of the process parameters are shown in Table 1.

System (12) has three steady states (two locally
asymptotically stable and one unstable). The control
objective is to stabilise the system at the open-loop
unstable steady state Ts¼ 388K, CAs¼ 3.59 mol/l. The
flow rate uncertainty is bounded by jDFj � 3m3/h.

We assume that the measurements of temperature
T are available continuously, and the measurements of
the concentration CA are available asynchronously at
time instants {tk�0}. We also assume that there exists a
lower bound Dmin on the time interval between two
consecutive concentration measurements.

In order to model the time sequence {tk�0}, we use
a lower-bounded random Poisson process. The Poisson
process is defined by the number of events per unit
time W. The interval between two consecutive concen-
tration sampling times (events of the Poisson process)
is given by Da ¼ maxfDmin,

�ln�
W g, where � is a random

variable with uniform probability distribution between

0 and 1. For the simulations carried out in this work we
pick Dmin¼ 0.025 h, which is meaningful from a prac-
tical point of view with respect to concentration
measurements.

The process model (12) belongs to the class of
nonlinear systems described by system (1) where xT ¼
½x1 x2� ¼ ½T� Ts CA � CAs� is the state, us¼Q and ua ¼
DCA0 are the manipulated inputs, w¼DF is a time
varying bounded disturbance, ys ¼ x1 ¼ T� Ts is
obtained from the continuous temperature
measurement T and ya ¼ x2 ¼ CA � CAs is obtained
from the asynchronously sampled concentration
measurement CA.

First, an output feedback controller (lower-tier
controller) based on the continuous temperature
measurements (i.e. x1) is designed to stabilise system
(12) using only the rate of heat input us¼Q as the
manipulated input, which is bounded by
jusj � 105 KJ=h. In particular, the following PI control
law is used as the lower-tier controller:

usðtÞ ¼ K

�
x1ðtÞ þ

1

Ti

Z t

0

x1ð�Þd�

�
, ð13Þ

where K is the proportional gain and Ti is the integral
time constant. To compute the parameters of the PI
controller, the linearised model _x ¼ Axþ Bus of
system (12) around the equilibrium point is obtained.
The proportional gain K is chosen to be �8100. This
value guarantees that the origin of _x ¼ ðAþ BK½1 0�Þx
is asymptotically stable with its eigenvalues being
	1 ¼ �1:06
 105 and 	2 ¼ �4:43. A quadratic
Lyapunov function V(x)¼ xTPx with

P ¼
0:024 5:21

5:21 1:13
 103

� �

is obtained by solving an algebraic Lyapunov equation
AT

c Pþ PAc þQc ¼ 0 for P with Ac ¼ Aþ BK ½1 0�.
This Lyapunov function will be used to design the
upper-tier LMPC and the single-tier LMPC.
The integral time constant is chosen to be Ti¼ 49.6 h.
For simplicity, the Lyapunov function V(x) is deter-
mined on the basis of the closed-loop system under
the proportional (P) term of the PI controller only;
the effect of the integral (I) term is very small for the

Table 1. Process parameters.

F 4.998 (m3/h) k10 3
 106 (h�1)
Vr 1(m3) k20 3
 105 (h�1)
R 8.314 (KJ/kmolK) k30 3
 105 (h�1)
TA0 300 (K) E1 5
 104 (KJ/kmol)
CA0s 4 (kmol/m3) E2 7.53
 104 (KJ/kmol)
DH1 �5.0
 104 (KJ/kmol) E3 7.53
 104 (KJ/kmol)
DH2 �5.2
 104 (KJ/kmol) � 1000 (kg/m3)
DH3 �5.4
 104 (KJ/kmol) Cp 0.231 (KJ/kgK)
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specific choice of the controller parameters used in the
simulations. The state and input trajectories of system
(12) starting from x0¼ [370 3.41]T under the PI

controller are shown in Figure 4. From Figure 4, we
see that the PI controller (13) stabilises the temperature
and concentration of system (12) at the equilibrium
point in about 0.1 and 0.2 h, respectively.

Next, we implemented the proposed two-tier control

architecture to improve the performance of the closed-
loop system. In this set of simulations, the PI controller
(13) is used as the lower-tier controller. Instead of
abandoning the less frequent concentration measure-

ment, we take advantage of both the continuous
measurements of the temperature T and the asynchro-
nous concentration measurements CA together with the
nominal model of system (12) to design the upper-tier

LMPC. The inlet concentration change DCA0, which is
bounded by jDCA0j � 1 kmol=m3, is the manipulated
input for the upper-tier LMPC. In the design of the
upper-tier LMPC, the performance index is defined by

the following positive definite function:

Lðx, us, uaÞ ¼ xTQcx, ð14Þ

where x is the state of the system and Qc is the
following weight matrix:

Qc ¼
1 0

0 104

� �
:

The values of the weights in Qc have been chosen to
account for the different range of numerical values

for each state. The sampling time of the LMPC is
D¼ 0.025 h; the prediction horizon is �f ¼ 11D so that
the prediction captures most of the dynamic evolution
of the process.

The two-tier control architecture is implemented as
discussed in the previous section. The lower-tier
controller uses the continuous temperature measure-
ments to control us(t). When the measurements of T
and CA are obtained at time instant tk, an estimate of
the state of system (12), xe(tk), is obtained from the two
measurements at tk. Based on the estimated state xe(tk),
the LMPC optimisation problem (3) is solved and an
optimal input trajectory u	u,að�jtkÞ is obtained. This
optimal input trajectory is implemented until a new
concentration measurement is obtained at time tkþ1
(note that k indexes the number of concentration
samples received, not a given sampling time). Note that
because a PI controller is used in the lower tier, we
need to predict the controller dynamics (the control
effects generated by the integral part) in the optimisa-
tion problem of the proposed LMPC scheme (3).

The stability and robustness of the two-tier control
architecture (4) have been studied with two different
initial conditions x(0)¼ [370 3.41]T and x(0)¼ [375
3.46]T associated with two different concentrations
measurement sequences {tk� 0} (Figure 5) generated
with W¼ 30 and W¼ 20, respectively. The average
time intervals between two consecutive sampling times
are 0.0625 h for W¼ 30 and 0.0833 h for W¼ 20. In
addition, two different disturbance trajectories of w(t)
with a random value at each simulation step are added
to the closed-loop system. The state and inputs
trajectories of system (12) under the proposed two-
tier control architecture are shown in Figure 6. From
Figure 6, we see that the two-tier control architecture
(4) stabilises the temperature and concentration of the
system in about 0.1 and 0.05 h respectively. This
implies that the resulting closed-loop system response
is faster. Moreover, the cost associated with the
resulting closed-loop trajectories is lower.

Moreover, another set of simulations was carried
out to compare the proposed two-tier control archi-
tecture with the lower-tier PI control system from a
performance index point of view. Table 2 shows the
total cost computed for 20 different closed-loop
simulations under the proposed two-tier control archi-
tecture and the PI control scheme. To carry out this
comparison, we have computed the total cost of each
simulation based on the integral of the performance

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

370

380

390
T

3.4

3.6

3.8

C
A

−1

0

1

x 105

Time (h)

U
s

Figure 4. State and input trajectories of system (12) under
lower-tier PI control (13).

0 0.1 0.2 0.3 0.4 0.5
0

1

2

t k

Time (h)

Figure 5. Concentration sampling times, þ: sampling times
generated with W¼ 30, {
}: sampling times generated with
W¼ 20.
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index defined by L(x, us, ua) from the initial time to
the end of the simulation tf¼ 0.5 h. For this set of
simulations W is chosen to be 10. For each pair of
simulations (one for each control scheme) a different
initial state inside the stability region, a different
uncertainty trajectory and a different random concen-
tration measurement sequence are chosen. As can be
seen in Table 2, the proposed two-tier control archi-
tecture has a cost lower than the corresponding total
cost under the PI controller in all the simulations.

We have also carried out another set of simulations
to compare the proposed two-tier scheme with a
controller using the measurements of T and CA to
decide both control inputs us and ua in the single-tier
LMPC framework; see Section 2.4. This implies that
this approach does not take full advantage of the
continuous measurement of T. The LMPC optimises
the future sampled input trajectory ua(t), us(t) with
sampling time D. When at a time instant tk, both the
measurements of T and CA are available (an estimate
of the state is available), this optimisation problem is
evaluated and two optimal input trajectories u	c,sð�jtkÞ
and u	c,að�jtkÞ are obtained and implemented until the
next measurement of both T and CA are available.

For these simulations, the single-tier LMPC uses
the same parameters as the ones of the two-tier
controller. The same initial conditions, concentration
sampling times (Figure 5) and disturbance trajectories
are used in this set of simulations. The state and inputs

trajectories of the closed-loop system under the LMPC

scheme are shown in Figure 7. From Figure 7, it can be

seen that the single-tier LMPC stabilises the system

(solid curves) when the time intervals between two

consecutive measurements are small (0.0625 h on

average), but loses stability and cannot stabilise the

system (dashed curves) when these time intervals get

bigger (0.0833 h on average). The single-tier LMPC

does not profit from the continuous measurements of

the temperature, thus, the stability region of the closed-

loop system is, in general, reduced to a much smaller

one compared to that obtained under the two-tier

control architecture.

Table 2. Total performance cost along the closed-loop
trajectories.

Sim. Two-tier PI controller Sim. Two-tier PI controller

1 203.92 704.54 11 224.03 831.63
2 188.74 815.47 12 203.78 738.47
3 198.33 922.87 13 265.44 617.15
4 221.76 640.87 14 210.58 704.95
5 240.44 656.47 15 190.68 723.05
6 226.44 847.43 16 209.66 695.60
7 199.19 779.03 17 205.90 808.71
8 233.40 736.65 18 211.29 749.24
9 200.45 702.26 19 214.79 737.62
10 198.74 753.25 20 217.13 813.70

0 0.1 0.2 0.3 0.4 0.5
370

380

390

T

0 0.1 0.2 0.3 0.4 0.5
3.4

3.6

3.8

C
A

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

x 105

u s

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

u a

Time (hr)

Figure 6. State and inputs trajectories of system (12) under
the proposed two-tier control architecture when W¼ 30
(solid curves) and W¼ 20 (dashed curves).
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−1

0

1

x 105

u s

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

u a

Time (hr)

Figure 7. State and inputs trajectories of system (12) under
the single-tier LMPC scheme with concentration sampling
times generated with W¼ 30 (solid curves) and W¼ 20
(dashed curves).
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5. Application to a reactor–separator process

The process considered in this example is a three vessel
reactor–separator system consisting of two continu-
ously stirred tank reactors (CSTRs) and a flash tank
separator (Figure 8). A feed stream to the first CSTR
F10 contains the reactant A which is converted into the
desired product B. The desired product B can then
further react into an undesired side-product C. The
effluent of the first CSTR along with additional fresh
feed F20 makes up the inlet to the second CSTR. The
reactions A!B and B!C (referred to as 1 and 2,
respectively) take place in the two CSTRs in series
before the effluent from CSTR 2 is fed to a flash tank.
The overhead vapour from the flash tank is condensed
and recycled to the first CSTR, and the bottom
product stream is removed. A small portion of the
overhead is purged before being recycled to the first
CSTR. All the three vessels are assumed to have static
holdup. The dynamic equations describing the behav-
iour of the system, obtained through material and
energy balances under standard modelling assump-
tions, are given below.

dxA1
dt
¼

F10

V1
ðxA10 � xA1Þ þ

Fr

V1
ðxAr � xA1Þ � k1e

�E1
RT1xA1

dxB1
dt
¼

F10

V1
ðxB10 � xB1Þ þ

Fr

V1
ðxBr � xB1Þ

þ k1e
�E1
RT1xA1 � k2e

�E2
RT1xB1

dT1

dt
¼

F10

V1
ðT10 � T1Þ þ

Fr

V1
ðT3 � T1Þ þ

�DH1

Cp
k1e

�E1
RT1xA1

þ
�DH2

Cp
k2e

�E2
RT1xB1 þ

Q1

�CpV1

dxA2
dt
¼

F1

V2
ðxA1 � xA2Þ þ

F20

V2
ðxA20 � xA2Þ � k1e

�E1
RT2xA2

dxB2
dt
¼

F1

V2
ðxB1 � xB2Þ þ

F20

V2
ðxB20 � xB2Þ

þ k1e
�E1
RT2xA2 � k2e

�E2
RT2xB2

dT2

dt
¼

F1

V2
ðT1 � T2Þ þ

F20

V2
ðT20 � T2Þ þ

�DH1

Cp
k1e

�E1
RT2xA2

þ
�DH2

Cp
k2e

�E2
RT2xB2 þ

Q2

�CpV2

dxA3
dt
¼

F2

V3
ðxA2 � xA3Þ �

Fr þ Fp

V3
ðxAr � xA3Þ

dxB3
dt
¼

F2

V3
ðxB2 � xB3Þ �

Fr þ Fp

V3
ðxBr � xB3Þ

dT3

dt
¼

F2

V3
ðT2 � T3Þ þ

Q3

�CpV3
: ð15Þ

The model of the flash tank separator operates
under the assumption that the relative volatility for
each of the species remains constant within the
operating temperature range of the flash tank.

This assumption allows calculating the mass fractions
in the overhead based upon the mass fractions in the
liquid portion of the vessel. It has also been assumed
that there is a negligible amount of reaction taking
place in the separator. The following algebraic
equations model the composition of the overhead
stream relative to the composition of the liquid holdup
in the flash tank:

xAr ¼
�AxA3

�AxA3 þ �BxB3 þ �CxC3

xBr ¼
�BxB3

�AxA3 þ �BxB3 þ �CxC3

xCr ¼
�CxC3

�AxA3 þ �BxB3 þ �CxC3
:

ð16Þ

The definitions for the variables used in (15) can be
found in Table 3, with the parameter values given in
Table 4.

Each of the tanks has an external heat input. The
manipulated inputs to the system are the heat inputs to
the three vessels, Q1, Q2 and Q3, and the feed stream
flow rate to vessel 2, F20.

We assume that the measurements of temperatures
T1, T2 and T3 are available continuously, and the

CBA CBA

Fr Fp

Q1 Q2 F3

T3

F2T2
F1

F20

F10 T1

Q3

Figure 8. Reactor–separator system with recycle.

Table 3. Process variables.

xA1, xA2, xA3 Mass fractions of A in vessels 1, 2, 3
xB1, xB2, xB3 Mass fractions of B in vessels 1, 2, 3
xC1, xC2, xC3 Mass fractions of C in vessels 1, 2, 3
xAr, xBr, xCr Mass fractions of A, B, C in the recycle
T1, T2, T3 Temperatures in vessels 1, 2, 3
T10, T20 Feed stream temperatures to vessels 1, 2
F1, F2 Effluent flow rate from vessels 1, 2
F10, F20 Feed stream flow rates to vessels 1, 2
Fr, Fp Flow rates of the recycle and purge
V1, V2, V3 Volumes of vessels 1, 2, 3
E1, E2 Activation energy for reactions 1, 2
k1, k2 Pre-exponential values for reactions 1, 2
DH1, DH2 Heats of reaction for reactions 1, 2
�A, �B, �C Relative volatilities of A, B, C
Q1, Q2, Q3 Heat inputs into vessels 1, 2, 3
Cp, R, � Heat capacity, gas constant and

solution density
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measurements of mass fractions xA1, xB1, xA2, xB2, xA3
and xB3 are available asynchronously at time instants

{tk�0}. The same method used in the example in

Section 4 is used in this example to generate the time

sequence {tk�0}.
For each set of steady-state inputs Q1s, Q2s, Q3s and

F20s corresponding to a different operation condition,

system (15) has one stable steady state xTs . In this

example, we will study two different operating condi-

tions corresponding to two different steady states xs1
and xs2. The parameters of the steady-state operation

points and the values of the two steady states are given

in Tables 5 and 6. The control objective is to steer the

system to the steady states from the initial state

xð0ÞT ¼ ½0:890 0:110 388:732 0:886 0:113 386:318

0:748 0:251 390:570�:

The process model (15) belongs to the class

of nonlinear systems described by system (1) where

xT¼ ½x1 x2 x3 x4 x5 x6 x7 x8 x9� ¼ ½xA1�xA1s xB1�xB1s
T1�T1sxA2�xA2s xB2�xB2s T2�T2s xA3�xA3s xB3�

xB3s T3�T3s� is the state, uTs ¼ ½us1 us2 us3� ¼ ½Q1�Q1s

Q2�Q2s Q3�Q3s� and ua¼F20�F20s are the manipu-

lated inputs, yTs ¼ ½ys1 ys2 ys3� ¼ ½x3 x6 x9� is obtained

from the continuous temperature measurements and

yTa ¼ ½x1 x2 x4 x5 x7 x8� is obtained from the asynchro-

nously sampled mass fraction measurement. Time

varying bounded process noise was added to the

simulations.
Based on the continuous temperature measurements

(i.e. ys), three PI controllers (lower-tier controllers) are

first designed following (13) to stabilise system (15)

from the initial state x(0) to the steady state xs using

only the heat inputs as the manipulated inputs, which

are bounded by jQij � 2
 106 KJ=h (i¼ 1, 2, 3). Using

the same method as described in Section 4, the

parameters of the PI controllers are obtained as

shown in Table 7, and two different quadratic

Lyapunov functions are obtained, one for each steady

state xs1, xs2. The two Lyapunov functions are used to

design the upper-tier LMPC controller and the single-

tier LMPC controller. The state and input trajectories

of system (15) under the lower-tier PI control are shown

in Figures 9 and 10. From Figure 9, we see that the

PI control law stabilises the temperatures and mass

fractions in the three vessels in about 0.7 h for both

steady states.
We design next the upper-tier LMPC controller.

The feed flow rate to vessel 2, ua ¼ F20 � F20s, is the

manipulated input for the LMPC, which is bounded by

1 � F20 � 9m3=h. The performance index is defined by

the positive definite function L(x, us, ua) as in (14) in

the previous example with Qc being the following

weight matrix:

Qc ¼ diag

�
104 104 1 104 104 1 104 104 1
� ��

:

diag(V ) denotes a matrix with its diagonal elements

being the elements of vector V and all the other

elements being zeros.
The sampling time of the LMPC is D¼ 0.025 h; the

prediction horizon is �f ¼ 15D.
Two different simulations have been carried out

with different mass fraction measurement sequences

ftk�0g (Figure 11) generated with W¼ 1 and W¼ 0.5

for steady states xs1 and xs2, respectively. The average

time intervals between two consecutive sampling times

are 0.188 h for W¼ 1 and 0.375 h for W¼ 0.5.

The state and input trajectories of system (15) under

the proposed two-tier control architecture are shown in

Table 4. Process parameters.

T10 300 (K) k1 2.77
 103 (s�1)
T20 300 (K) k2 2.5
 103 (s�1)
F10 5.04 (m3/h) DH1 �6
 104 (KJ/kmol)
Fr 50.4 (m3/h) DH2 �7
 104 (KJ/kmol)
Fp 5.04 (m3/h) �A 3.5
V1 1.0 (m3) �B 1
V2 0.5 (m3) �C 0.5
V3 1.0 (m3) Cp 4.2 [KJ/kgK]
E1 5
 104 (KJ/kmol) R 8.314 (KJ/kmolK)
E2 6
 104 (KJ/kmol) � 1000 (kg/m3)

Table 5. Steady-state operation parameters of xs1 and xs2.

xs1 xs2

Q1s 12.6
105 (KJ/h) Q1s 12.6
105 (KJ/h)
Q2s 16.2
105 (KJ/h) Q2s 13.32
105 (KJ/h)
Q3s 12.6
105 (KJ/h) Q3s 11.88
105 (KJ/h)
F20s 5.04 (m3/h) F20s 5.04 (m3/h)

Table 6. Steady states xs1 and xs2.

xA1s xB1s T1s xA2s xB2s T2s xA3s xB3s T3s

xs1 0.383 0.581 447.8 0.391 0.572 444.6 0.172 0.748 449.6
xs2 0.605 0.386 425.9 0.605 0.386 422.6 0.346 0.630 427.3

Table 7. Control parameters for steady states xs1 and xs2.

xs1 xs2

K1 �5000 K1 �5000
K2 �5000 K2 �5000
K3 �5000 K3 �5000
Ti 5 (h) Ti 5 (h)
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Figures 12 and 13. Figure 12 shows that the two-tier
control architecture (4) stabilises the temperatures and
the mass fractions of the system in about 0.3 h. This
implies that the resulting closed-loop system response
is faster relative to the speed of the closed-loop
response under the low-tier PI controllers.

Another set of simulations was also carried out to
compare the proposed two-tier control architecture
with the lower-tier controller from a performance
index point of view. Table 8 shows the total cost
computed for 10 different closed-loop simulations
under the proposed two-tier control architecture and
the lower-tier controller. To carry out this comparison,
we have computed the total cost of each simulation
based on the integral of the performance index defined
by L(x, us, ua) with different operation conditions in a
simulation length of tf¼ 0.75 h. For this set of
simulations W is 1. As it can be seen in Table 8, the
proposed two-tier control architecture has a cost lower
than the corresponding total cost under the lower-tier
controller in all the simulations.
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Figure 9. State trajectories of system (15) under lower-tier control law for steady state xs1 (solid curves) and steady state xs2
(dashed curves).
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Figure 10. Inputs trajectories of system (15) under lower-tier control law for steady state xs1 (solid curves) and steady state xs2
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Figure 11. Mass fractions sampling times generated with
W¼ 1 (þ) and W¼ 0.5 (
).
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We have also carried out another set of simulations
to compare the computational time needed to evaluate
the two-tier LMPC with that of the single-tier LMPC.
For these simulations, the single-tier LMPC uses the
same parameters as the ones of the two-tier controller
in the present example. The simulations have been
carried out using Matlab in a Pentium 3.20GHz. The
nonlinear optimisation problem has been solved using
the function fmincom. To solve the ODEs model (15),
both in the simulations and in the optimisation
algorithm, an Euler method with a fixed integration
time of 0.001 h has been implemented in a mex DLL
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Figure 12. State trajectories of system (15) under the proposed two-tier control architecture when W¼ 1 (solid curves) and
W¼ 0.5 (dashed curves).
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Figure 13. Inputs trajectories of system (15) under the proposed two-tier control architecture when W¼ 1 (solid curves) and
W¼ 0.5 (dashed curves).

Table 8. Total performance cost along the closed-loop
trajectories.

Sim. Two-tier PI controllers Sim. Two-tier PI controllers

1 1.179
 105 2.760
 105 6 1.560
 105 3.742
 105

2 1.164
 105 2.795
 105 7 1.645
 105 3.951
 105

3 1.273
 105 2.991
 105 8 1.701
 105 4.107
 105

4 1.351
 105 3.177
 105 9 1.962
 105 4.408
 105

5 1.364
 105 3.240
 105 10 1.848
 105 4.492
 105
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using the C Programming Language. The mean time
to solve the LMPC optimisation problem of this set
of simulations is 23.24 s for the two-tier LMPC and
37.59 s for the single-tier LMPC. From this set of
simulations, we see that the computation time needed
to solve the single-tier LMPC optimisation problem is
substantially larger even though the closed-loop per-
formance in terms of the total performance cost is
comparable to the one of the two-tier control
architecture. This is because the single-tier LMPC
has to optimise both the inputs us and ua.

6. Conclusion

In this work, a two-tier control architecture was
proposed for nonlinear process systems with both
continuous and asynchronous measurements. The
two-tier control architecture takes advantage of both
the continuous and asynchronous measurements to
improve the performance of the closed-loop system
while guaranteeing that the stability properties
obtained by the lower tier controller are maintained.
While classical control schemes can be used at the
lower tier, a LMPC scheme was proposed as the upper-
tier controller to explicitly account for asynchronous
measurements and the influence of the lower-tier
controller on the closed-loop system. The proposed
two-tier control architecture was demonstrated
through two chemical process examples.
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