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1. Introduction

Particulate processes play a key role in the manufactur-
ing of many important products. Some examples include
the crystallization of proteins for pharmaceutical appli-
cations, the emulsion polymerization for the production
of latex, and titania powder aerosol reactors used in the
production of white pigments. It is now widely recog-
nized that particulate processes present a number of
processing challenges, which are not encountered in gas-
phase or liquid-phase processes. One of these challenges
is the operation of a particulate process in a way that it

consistently makes products with a desired particle size
distribution (PSD), which is an important quality index
of a particulate product, e.g., the shape of the crystal size
distribution in crystallization processes strongly affects
crystal function and downstream processing such as fil-
tration, centrifugation and milling [1].
Population balance modeling is becoming more and
more important in particulate processes since it provides
a natural framework for the mathematical modeling of
PSDs (e.g., see the tutorial article [2] and the review
article [3]) and has been successfully applied to describe
PSDs in many particulate processes. Population balance
modeling of particulate processes typically leads to sys-
tems of nonlinear partial integro-differential equations
that describe the rate of change of the PSD. The popula-
tion balance models (PBMs) are also coupled with the
material, momentum and energy balances that describe
the rate of change of the state variables of the continu-
ous phase, leading to complete particulate process mod-
els. As was pointed out by Christofides [4], the main
difficulty in synthesizing practically implementable
model-based, nonlinear feedback controllers for particu-
late processes is the distributed parameter nature of the
PBMs, which does not allow their direct use for the
synthesis of low-order (and therefore, practically imple-
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Abstract

This work focuses on state feedback, model predictive
control of particulate processes subject to asynchronous
measurements. A population balance model of a typical
continuous crystallizer is taken as an application exam-
ple. Three controllers, i.e., a standard model predictive
controller and two recently proposed Lyapunov-based
model predictive controllers, are applied to stabilize the

crystallizer at an open-loop, unstable steady-state in the
presence of asynchronous measurements. The stability
and robustness properties of the closed-loop system
under the three predictive controllers are compared
extensively under three different assumptions on how
the measurements from the crystallizer are obtained.
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mentable with available computers) nonlinear feedback
controllers. To overcome this problem, earlier work of
the current authors’ group took advantage of the prop-
erty that the dominant dynamic behavior of many parti-
culate process models is low-dimensional and proposed
[5] a model reduction procedure. This procedure is
based on a combination of the method of weighted resi-
duals and the concept of approximate inertial manifold
and leads to the construction of low-order ordinary dif-
ferential equation (ODE) systems that accurately repro-
duce the dominant dynamics of broad classes of particu-
late process models. These ODE systems were
subsequently used for the synthesis of nonlinear [4–6],
robust [7, 8] and predictive [9, 10] controllers that
enforce desired stability, performance, robustness and
constraint handling properties in the closed-loop system.
In addition to these results, an online optimal control
methodology including various performance objectives
was developed for a seeded batch cooling crystallizer
by Xie et al. [11] and Zhang and Rohani [12]. The
reader may refer to other publications for reviews of
results on simulation and control of particulate pro-
cesses [13–16].
All of the above results on controller design for particu-
late processes are based on the assumption of continu-
ous sampling and perfect communication between the
sensor and the controller. However, one may encounter
measurement sample loss, intermittent failures asso-
ciated with measurement techniques, as well as data
packet losses over communication networks. Previous
work on control subject to actuator/sensor faults has
primarily focused on lumped parameter systems. Speci-
fically, El-Farra et al. [17], modeled communication
losses as delays in implementing the control action, and
reconfiguration-based strategies were devised to achieve
fault-tolerance subject to faults in the control actuators
by Mhaskar et al. [18]. In addition, Mhaskar et al. [19]
also developed a theoretical framework for the model-
ing, analysis and reconfiguration-based fault-tolerant
control of nonlinear processes subject to asynchronous
sensor data losses, and the method was applied to a
lumped parameter polyethylene reactor model. In addi-
tion, in a recent work by Gani et al. [20], a Lyapunov-
based nonlinear controller was designed in the presence
of input constraints to stabilize a continuous crystallizer
subject to asynchronous sensor data losses. These works
presume that a controller is designed under the assump-
tion of continuous measurements, and the robustness
properties of the closed-loop system under data losses
or actuator/sensor faults are then studied.
Within control theory, most of the work on the subject
of feedback control under asynchronous feedback or
sampling has been performed in the context of net-

worked control systems (NCS). NCS are control systems
that have the control loops closed via a network and can
often be modeled as asynchronous dynamical systems
[21, 22]. The stability and disturbance attenuation issues
for a class of linear NCS subject to data losses were
modeled as a discrete-time switched linear system with
arbitrary switching and were studied by Lin and Antsak-
lis [23]. Hassibi et al. [24] have studied the stability
properties of a class of NCS modeled as linear asynchro-
nous systems. NCS in which the plant is modeled by a
nonlinear system have received less attention. Limited
access systems where each unit must compete with the
others for access to the network have also been studied
within a sampled-data system framework [25, 26]. In
these works, the practical stability of the system is guar-
anteed if the maximum time for which access to the net-
work is not available is smaller than a given constant
denoted as the maximum allowable transmission inter-
val (MATI). Other recent results have dealt with the sta-
bility of continuous nonlinear systems under Lyapunov-
based control subject to data losses [19]. A common
theme of the above mentioned works is that the control-
ler is designed without taking the network dynamics into
account, and subsequently, the robustness of the closed-
loop system in the presence of the network dynamics is
studied. In another recent line of work, Montestruque
and Antsaklis [27, 28] have proposed a strategy based on
using an estimate of the state computed via the nominal
model of the plant to decide the control input over the
period of time in which feedback is lost between conse-
cutively received measurements. This framework was
applied to optimize the bandwidth needed by a net-
worked control system modeled as a sampled-data lin-
ear system with variable sampling rate. Other relevant
works related to this approach include those of Kim
et al. [29, 30], where different control schemes were
applied to a magnetic levitation test-bed controlled
through a network. To the best of the current authors’
knowledge, there are no previous results on the control
of particulate processes with asynchronous measure-
ments.
In the present work, nonlinear model predictive control
is applied to a continuous crystallization process subject
to asynchronous measurement sampling. Asynchronous
measurement sampling may arise due to measurement
system malfunctions or different sampling rates of the
measurement sensors. In particular, a standard model
predictive controller, a Lyapunov-based model predic-
tive controller proposed by Mhaskar et al. [31, 32], and a
Lyapunov-based model predictive controller developed
in recent work by the current authors [33], which is
designed taking into account explicitly data losses and
asynchronous measurements, are applied to stabilize
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the continuous crystallizer at an open-loop, unstable
steady-state. Extensive simulations are presented to
evaluate the closed-loop stability and robustness of the
three control methods with three different assumptions
on how the measurements from the crystallizer are
obtained.
The paper is organized as follows: In section 2, the
population balance model of a continuous crystallizer
and the corresponding reduced-order moments model
are introduced. In section 3, the modeling of a closed-
loop system subject to asynchronous measurements is
addressed. In section 4, three different model predictive
controllers are introduced. In section 5, the simulations
results are presented, while some concluding remarks
are presented in section 6.

2 Model of a Continuous Crystallizer

In this section the population balance model of a con-
tinuous crystallizer and the corresponding reduced-or-
der moments model are introduced.

2.1 Population Balance Model

Under the assumptions of isothermal operation, con-
stant volume, mixed suspension, nucleation of crystals
of infinitesimal size, and mixed product removal, a dy-
namic model for a continuous crystallizer can be derived
from a population balance for the particle phase and a
mass balance for the solute concentration. The resulting
model has the following form [34, 35]:

∂n
∂�t

� � ∂�R��t�n�
∂r

� n
s
� d�r � 0�Q��t�

dc
d�t

� �c0 � ��
�es

� ��� c�
s

� ��� c�
�e

d�e
d�t

� �1�

where n�r��t� is the number density of crystals of radius r
∈�0�∞� at time �t in the suspension, s is the residence
time, c is the solute concentration in the crystallizer, c0
is the solute concentration in the feed, �e � 1� � ∞

0 n�r��t�43
pr3dr is the volume of liquid per unit volume of suspen-
sion, R��t� is the growth rate, d�r � 0� is the standard
Dirac function, � is the density of crystals and Q��t� is the
nucleation rate. The term d�r � 0�Q��t� accounts for the
production of crystals of infinitesimal (zero) size via
nucleation. R��t� and Q��t� are assumed to follow

McCabe’s growth law and Volmer’s nucleation law,
respectively, i.e.:

R��t� � k1�c � cs�� Q��t� � �ek2exp �k3� c�cs � 1� �2
� �

� �2�

where k1, k2, and k3 are positive constants and cs is the
concentration of the solute at saturation.
The values of the parameters in Eqs. (1) and (2) that
define the process studied in this work are given in
Table 1. The open-loop crystallizer model exhibits a
highly oscillatory behavior, which is the result of the
interplay between growth and nucleation caused by the
relative nonlinearity of the nucleation rate as compared
to the growth rate. A detailed discussion on the nature
of the oscillations exhibited by this process is given else-
where [5]. The population model introduced provides a
good approximation of the dynamics of a continuous
crystallizer [4]. All simulations have been carried out
using the model given by Eq. (1).

2.2 Reduced-Order Moments Model

The population balance model is not appropriate for
synthesizing model-based, low-order feedback control
laws due to its distributed parameter nature. To over-
come this problem, following the same approach as pre-
viously presented by the current authors [5], a reduced-
order moments model, which accurately reproduces the
dominant dynamics of the system and is suitable for
directly synthesizing low-order feedback control laws, is
deduced.
The j th moment of n�r��t� is defined by:

lj � � ∞
0 rjn�r��t�dr� j � 0� 1� ����∞� �3�

By multiplying the population balance in Eq. (1) by rj,
integrating over all particle sizes, and introducing the
following set of dimensionless variables and parameters:
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Table 1: Process parameters of the continuous crystallizer.

cs = 980�2 kg m�3

c0s = 999�943 kg m�3

� = 1770�0 kg m�3

s = 1�0 hr
k1 = 5�065 × 10�2 mm m3 kg�1 hr�1

k2 = 7�958 mm�3 hr�1

k3 = 1�217 × 10�3
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�x0 � 8pr3l0� �x1 � 8pr2l1� �x2 � 4prl2� �x3 �
4
3

pl3� ����

t � �t
s
� r � k1s�c0s � cs�� Da � 8pr3k2s�

F � k3c2s
�c0s �cs�2

� a � ���cs�
�c0s �cs�

� �y � �c�cs�
�c0s �cs�

� u � �c0�c0s�
�c0s �cs�

�

�4�

where c0s is the steady-state solute concentration in the
feed, the dominant dynamics of Eq. (1) can be
adequately captured by the following fifth-order
moments model, which includes the dynamics of the
first four moments and those of the solute concentra-
tion:

d �x0

dt
� � �x0 ��1� �x3�Dae

�F
�y2

d �x1

dt
� � �x1 ��y �x0

d �x2

dt
� � �x2 ��y �x1

d �x3

dt
� � �x3 ��y �x2

d�y
dt

� 1� �y � �a � �y��y �x2

1� �x3
� u
1� �x3

� �5�

where �xm, m � 0� 1� 2� 3 are dimensionless moments of the
crystal size distribution, �y is the dimensionless concen-
tration of the solute in the crystallizer and u is a dimen-
sionless concentration of the solute in the feed. The
values of the dimensionless model parameters in Eq. (4)
are given in Table 2. It should be noted that since the
moments of order four and higher do not affect those of
order three and lower, the state of the infinite dimen-
sional system is bounded when �x3 and �y are bounded,
and it converges to a globally exponentially stable equi-
librium point when lim

t→∞
�x3 � c1 and lim

t→∞
�y � c2, where c1�

c2 are constants. In this work, the state of the crystallizer
is denoted as �x � ��x0 �x1 �x2 �x3 �y�T, and the reduced-or-
der moments model is used to define different model
predictive control strategies.
The reduced-order moments model is a very good ap-
proximation of the population balance model and is sui-
table for directly synthesizing model-based, low-order,
feedback control laws. The reader may refer to previous
work by the current authors [5, 8] for a detailed deriva-
tion of the moments model, and for further results and
references in this area [4]. The stability properties of the
fifth-order model of Eq. (5) have been also studied, and
it has been shown [35] that the global phase space of
this model has a unique unstable steady-state sur-
rounded by a stable periodic orbit at:

�xs � ��x0s �x1s �x2s �x3s �ys�T

� �0�0471 0�0283 0�0169 0�0102 0�5996�T �

and that the linearization of Eq. (1) around the unstable
steady-state includes two isolated complex conjugate
eigenvalues with a positive real part. The control objec-
tive is to regulate the system to the unstable steady-
state, �xs, by manipulating the solute feed concentration
c0.
Constraints have to be considered in the input. The
dimensionless solute feed concentration, u, is subject to
the constraints: �umax ≤ u ≤ umax, where umax � 3. For
umax � 3, the constraint on the inlet solute concentration
corresponds to 940 kg�m3 ≤ c0 ≤ 1060 kg�m3.
The state x is denoted as the error, i.e., x � �x � �xs.
Then, one can rewrite Eq. (5) in a more compact form
as follows:

�x�t� � f �x�t�� � g�x�t��u�t�� �6�

where x � �x0 x1 x2 x3 y�T, and f and g have the following
form:

f �x� �

��x0 � �x0s� � �1� x3 � �x3s�Dae
�F

�y��ys�2

��x1 � �x1s� � �y � �ys��x0 � �x0s�
��x2 � �x2s� � �y � �ys��x1 � �x1s�
��x3 � �x3s� � �y � �ys��x2 � �x2s�

1�y��ys ��a�y��ys��y��ys��x2��x2s�
1�x3��x3s

�
������

�
					

�

g�x� �

0
0
0
0
1

1�x3��x3s

�
�����

�
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Table 2: Dimensionless parameters of the continuous crystallizer.

r = k1s�c0s � cs� = 1�0mm
Da = 8pr3k2s = 200�0
F = k3c2s��c0s � cs�2 = 3�0
a = ��� cs���c0s � cs� = 40�0
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At this stage, a feedback control law is defined as
hL � Rn→R, which satisfies hL�0� � 0 and renders the
origin x � 0 of the closed-loop system of Eq. (6) asymp-
totically stable under continuous measurements. Stabi-
lizing state feedback control laws for nonlinear systems
have been developed using Lyapunov techniques and
result in this are presented elsewhere [36, 37]. In this
work, the Lyapunov-based feedback control proposed
by Lin and Sontag [38] is used (see also [39, 40]), which
is based on a control Lyapunov function of the open-
loop system.
Consider the control Lyapunov function V�x� � xTPx
with P � I of the system of Eq. (6). The following
Lyapunov-based feedback control law asymptotically
stabilizes the open-loop unstable steady-state under
continuous state feedback implementation for an appro-
priate set of initial conditions [38]:

hL�x� � �k�x�LgV�x�� �7�

where

with Lf V�x� � ∂V�x�
∂x f �x� and LgV�x� � ∂V�x�

∂x g�x�. The
feedback controller, hL�x�, will be used to design the
contractive constraints of the two Lyapunov-based
model predictive controllers, which are presented in
section 4.

3 Modeling Asynchronous Measurements

Most control systems assume that the measurements
from the sensors are obtained in a continuous periodic
pattern and that the communications between the differ-
ent components of the system are flawless. However,
these assumptions do not hold in many processes due to
a host of measurement difficulties and possible errors in
communications, e.g., if wireless links are used to imple-
ment the control system. In this case, the system is sub-
ject to asynchronous measurements. Measuring the con-
centration and the properties of the PSD of a
continuous crystallizer is a difficult task that might take
variable lengths of time. It is assumed that the sampling
of the state of the continuous crystallizer of Eq. (1)
takes at least 15 min, and if errors occur in the sampling

system or in the communication network, it may take a
much longer time. It is also assumed that the maximum
time interval (worst case occurrence) between two con-
secutive measurements is shorter than 2.5 h, which is
denoted as Tmax. Note that a Tmax value is needed in the
present stabilization problem because the open-loop
crystallizer is unstable.
Simulation results under three different assumptions on
how the measurements from the crystallizer are ob-
tained will be presented in section 5. In this section, the
method for modeling sampled-data systems subject to
asynchronous measurements, is presented. To account
for asynchronous sampling, the sampling times are de-
fined by an increasing time sequence, 	tk ≥ 0
. At each
sampling time, tk, a new measurement is obtained from
the sensors. The interval between two consecutive sam-
plings is not fixed. In the simulation section, three differ-
ent ways of generating the time sequence 	tk ≥ 0
 are pre-
sented. The only assumption made on the time sequence
	tk ≥ 0
 is that there is an upper bound on the maximum
time in which the system operates in open-loop, i.e.,

Tmax. This bound on the maximum period of time in
which the loop is open has been also used in other
studies [19, 25, 27] and is required in the present stabili-
zation problem since the open-loop crystallizer is un-
stable.
This paper also accounts for the fact that the controller
may not receive the whole state (x0� x1� x2� x3� y) at each
sampling instant, i.e., the state of PSD, (x0� x1� x2� x3) or
the solute concentration, y (see Figures 1 and 2) may be
transmitted only at a specific time instant. This is due to
the fact that PSD and solute concentration are mea-
sured by different sensors with different sampling rates.
At a sampling time tk, if only part of the state is avail-
able, an estimation of the current state �x�tk� is obtained
and sent to the controller to generate a new control in-
put. An auxiliary variable s�tk� is used to indicate the
part of the process state that is available at sampling
time tk as follows:
1) s�tk� � 1 implies that both measurements of PSD and

solute concentration are available at tk, and
�x�tk� � x�tk�.

2) s�tk� � 2 implies that only the measurement of PSD
is available at tk. The corresponding value of the

http://www.ppsc-journal.com © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

k�x� �
Lf V�x� �
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solute concentration at tk is estimated by using the
last available value of solute concentration, i.e.,
�y�tk� � �y�tk�1�.

3) s�tk� � 3 implies that only the measurement of solute
concentration is available at tk. The corresponding
state of PSD at tk is estimated by the reduced-order
moments model of Eq. (6). The last available esti-
mated state �x�tk�1� is taken as the initial state.

The estimated state used by the controller at each sam-
pling time is given by the following expression:

�x�tk� �
x�tk� if s�tk� � 1

	x0�tk�� x1�tk�� x2�tk�� x3�tk�� �y�tk�1�
 if s�tk� � 2
	�x0 �tk�� �x1 �tk�� �x2 �tk�� �x3 �tk�� y�tk�
 if s�tk� � 3�

��
�

�8�

where �xm� m � 0� 1� 2� 3� are estimated by using the re-
duced-order moments model. It should be noted that
one has to store the implemented manipulated input tra-
jectory.
Remark 1. Note that regardless of the method used to es-
timate the state when only partial state information is
available, errors exist between the estimated state �x and
the actual state of the system x, that have to be compen-
sated by the available feedback.
In this class of processes, the solute concentration is ob-
tained with a higher sampling rate than the crystallizer

PSD. This motivates the use of the last available value
of the solute concentration when a new PSD measure-
ment is obtained. On the other hand, instead of using
the last available values of the PSD each time a new
concentration measurement is undertaken, which may
introduce a large error because the PSD is sampled less
frequently, the reduced-order moments model can be
used to estimate the missing information, which in-
creases the computational complexity but decreases the
estimation error.
The controller has to take into account that the mea-
surements arrive in an asynchronous manner and that
the time in which it has to operate in open-loop may be
lengthy. In order to decide the manipulated input u�t�,
that has to be applied at each time t, the controller uses
the last estimated state �x�tk� and the corresponding
sampling time tk. It is assumed that each controller is
defined by a function h�D� �x�tk��, where �x is the last
available estimated state and D is the time that has
passed since that state was received. This function
allows one to model different implementation strategies,
e.g., h�D� �x� � hL��x� implements a sample-and-hold
strategy based on the Lyapunov-based controller of
Eq. (7). In this case, the input is maintained constant
between samples independently of the time D that has
passed since the last measurement.
In order to consider the models in this work in a unified
time scale and with the same manipulated input, Eq. (2),
the expressions of dimensionless time, t, and manipu-
lated input, u, are all substituted into Eq. (1). Therefore,
the following asynchronous nonlinear model for the
closed-loop system of the crystallizer is obtained:

1
s

∂n
∂t

� �k1�c � cs�
∂n
∂r

� n
s
� d�r � 0��ek2exp

�k3� c�cs � 1� �2
� �

1
s

dc
dt

� �c0s � ��
�es

� ��� c�
s

� ��� c�
�es

d�e
dt

� �c0s � cs�u�t�
�es

�

t∈�tk� tk�1�

u�t� � h�t � tk� �x�tk��� �9�

At time tk, new information is available from the sensors
and the content of the information is decided by the cor-
responding value of s�tk�. The state �x�tk� is an estimation
of the actual state x�tk� and it is estimated by the ap-
proach presented earlier in this section, see Eq. (8). The
controller generates a future manipulated input trajec-
tory h�D� �x� that depends on this estimated state, where
D is the time that has passed since tk.

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://www.ppsc-journal.com

Fig. 1: Closed-loop system with asynchronous measurements. The
entire state is sampled at the same time instants.

Fig. 2: Closed-loop system with asynchronous measurements.
The states of the PSD and solute concentration are sampled asyn-
chronously.
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4 Model Predictive Control

Model predictive control (MPC) is a popular control
strategy based on using a model of the process to pre-
dict, at each sampling time, the future evolution of the
system from the current state along a given prediction
horizon. Using these predictions, the manipulated input
trajectory that minimizes a given performance index is
computed by solving a suitable optimization problem.
To obtain finite-dimensional optimization problems,
MPC optimizes the system over the family of piecewise
constant trajectories with a fixed sampling time and a
fixed prediction horizon, i.e., a fixed length. This implies
that the MPC controllers are implemented in a sample
and hold scheme. The MPC framework is particularly
appropriate for controlling systems subject to asynchro-
nous measurements because the actuator can profit
from the predicted evolution of the system, to update
the manipulated input when feedback is lost, instead of
setting the manipulated input to a fixed value, which is
usually zero or to the last implemented manipulated in-
put. In this section, three different MPC controllers, i.e.,
a standard model predictive controller and two recently
proposed Lyapunov-based model predictive controllers
are introduced. These controllers are based on the re-
duced-order moments model of Eq. (6) and the Lyapu-
nov-based controller of Eq. (7) presented in section 2.

4.1 Standard Model Predictive Control

The standard MPC controller used in this paper is based
on the following optimization problem [41]:

J���x� � min
u�s�∈S�Dc�

� NDc

0 �x�s�TQcx�s� � u�s�TRcu�s��ds

s�t� �x�s� � f �x�s�� � g�x�s��u�s�
x�0� � �x

�u�s�� ≤ umax� 
s∈�0�NDc��
�10�

where S�Dc� is the family of piece-wise constant func-
tions with a sampling period Dc, x�s� is the predicted tra-
jectory of the system by the reduced-order moments
model for the manipulated input trajectory computed
by the MPC, Qc�Rc are positive definite weight matrices
that define the cost, �x is the initial condition, and umax is
the bound on the control action.
The initial state is provided as a parameter to the MPC
optimization problem. For a given time step, a new esti-
mate of the actual state, �x, is obtained, the optimization

problem defined in Eq. (10) is solved to obtain the opti-
mal manipulated input trajectory, u��s�, of length NDc.
Usually, only the first move of the trajectory
(u�s�∈�0�Dc�) is used. This is the standard receding hori-
zon strategy and it does not take into account that the
state might not be available at a given sampling time
due to data losses or asynchronous measurement sam-
pling. The control law corresponding to the MPC con-
troller that takes into account asynchronous measure-
ments is defined as follows:

h�D� �x� � u��D��

where u� is the solution of the optimization problem de-
fined in Eq. (10) for an initial state x�0� � �x. It should
be noted that this control law is not defined for all times.
The optimal trajectory, u�, is of length NDc. This limits
the maximum time in which the MPC controller can
operate in the open-loop configuration.
It should also be noted that the MPC of Eq. (10) as-
sumes a given sampling time, Dc, which is independent
of the asynchronous sampling sequence that defines the
closed-loop system as discussed in section 3, i.e., the
MPC scheme defines a sampling time to describe the
optimization problem and is different from the actual
sampling time of the process.

4.2 Lyapunov-based Model Predictive Control I

The standard MPC controller used in this work is based
on minimizing a given cost function defined by matrices
Qc and Rc, using the reduced-order moments model
subject to constraints on the input. No additional con-
straints are used to guarantee closed-loop stability prop-
erties. In order to guarantee the stability and robustness
of the closed-loop system, the MPC optimization pro-
blem has to be modified. In this subsection, the Lyapu-
nov-based model predictive controller (LMPC) pro-
posed by Mhaskar et al. [31, 32] is presented. This
controller guarantees the practical stability of the
closed-loop system under the assumption of synchro-
nous measurements and no measurement unavailability.
The controller is based on the previously designed
Lyapunov-based controller, hL, that guarantees asymp-
totic stability of the closed-loop system under continu-
ous measurements. It is used to define a contractive con-
straint, which guarantees that the LMPC inherits the
stability and robustness properties of the Lyapunov-
based controller. The controller introduced by Mhaskar
et al. [31, 32] is based on the following optimization pro-
blem:
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J���x� � min
u�s�∈S�Dc�

� NDc

0
�x�s�TQcx�s��u�s�TRcu�s��ds �11a�

s�t� �x�s� � f �x�s�� � g�x�s��u�s� �11b�

x�0� � �x �11c�

�u�s�� ≤ umax� 
 s∈�0� NDc� �11d�

∂V��x�
∂�x

f ��x� u�0�� ≤
∂V��x�

∂�x
f ��x� hL��x��� �11e�

The constraint of Eq. (11e) guarantees that the value of
the time derivative of the control Lyapunov function at
the initial evaluation time of the LMPC is lower or
equal to the value obtained when the value of the
Lyapunov-based controller u � hL�x� is implemented in
the closed-loop system. This is the contractive constraint
that allows one to prove (when no measurement una-
vailability is taken into account) that the LMPC inherits
the stability and robustness properties of the Lyapunov-
based controller, hL. The corresponding function,
h�D� �x�, is defined as in the standard MPC case.

4.3 Lyapunov-based Model Predictive Control II

In this section, the Lyapunov-based model predictive
control law developed by Muñoz de la Peña and Chris-
tofides [33] is given. This control law takes into account
data losses and asynchronous measurements explicitly.
In order to present the optimization problem that de-
fines this LMPC, one needs the following definition:

Definition 1. The sampled trajectory of Eq. (6) of length
NDc associated with the Lyapunov-based feedback
control law, hL�x�, with initial state, xL�0�, is denoted by
xL�s� and is obtained by solving Eq. (12) recursively:

�xL �s� � f �xL�s�� � g�xL�s��u�sk�� s∈�sk� sk�1�
u�sk� � hL�xL�sk�� � �12�

where sk � kDc and k � 0� ����N � 1.

The sampled trajectory of Eq. (6) associated with the
Lyapunov-based feedback control law, hL�x�, is the state
trajectory of the crystallizer in closed-loop with the Lya-
punov-based controller applied in a sample-and-hold
scheme. This state trajectory is used to define the con-
tractive constraint of the following LMPC optimization
problem:

J���x� � min
u�s�∈S�Dc�

� NDc

0
�x�s�TQcx�s�� u�s�TRcu�s��ds �13a�

s�t� �x�s� � f �x�s�� � g�x�s��u�s� �13b�

x�0� � �x �13c�

�u�s�� ≤ umax� 
 s∈�0� NDc� �13d�

V�x�s�� ≤ V�xL�s��� 
 s∈�0� NDc�� �13e�

where xL�s� is the sampled trajectory of Eq. (6) of defi-
nition 1 for an initial state xL�0� � �x.
The main difference between the LMPC of Eq. (13) and
the LMPC of Eq. (11) presented in the last subsection is
the contractive constraint. The constraint of Eq. (11e)
guarantees that the LMPC controller of Eq. (11) pro-
vides at least the same decrease of the control Lyapunov
function as the Lyapunov-based controller in the first
time step. When data losses or asynchronous measure-
ments are taken into account, in order to prove that the
LMPC of Eq. (13) inherits the same properties of the
Lyapunov-based controller, the contractive constraint of
Eq. (13e) must hold along the entire prediction horizon.
In this manner, when measurements are unavailable, the
optimal manipulated input trajectory evaluated guaran-
tees that the predicted decrease of the control Lyapunov
function is at least equal to the one obtained by applying
the Lyapunov-based controller. The corresponding func-
tion h�D� �x� is defined as in the MPC case.

Remark 2. The contractive constraints of Eqs. (11e) and
(13e) are needed to ensure stability of the closed-loop
moments model, and therefore, of the full infinite-dimen-
sional closed-loop system, under the LMPC of Eqs. (11)
and (13) in the presence of synchronous and asynchro-
nous sampling, respectively. Without these contractive
constraints, the stability of the closed-loop system cannot
be guaranteed. However, the addition of these contractive
constraints facilitates the proof of the feasibility of the
LMPC and closed-loop stability for a well-characterized
set of initial conditions [31, 32, 33] for the lumped para-
meter moments model.

Remark 3. Systems subject to bounded uncertainties have
been studies elsewhere [31, 32, 33] and it was shown that
if the LMPC controllers are appropriately designed, they
guarantee a certain degree of stability and robustness
properties of the closed-loop system that depend on the
size of the set that bounds the uncertainty. If the estima-
tion errors are bounded (as in this particular case), they
can be included as part of the uncertainty of the system,
increasing in some way the effect of the uncertainty and
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the set in which they are bounded. This implies that all
the LMPC controllers used in this work possess a certain
robustness property with respect to modeling and estima-
tion errors (see also the numerical results in the next
section).
It should be noted that the three model predictive
controllers presented in this section assume the same
sampling time Dc. In most control systems where the
measurements are obtained synchronously and the com-
munications are flawless, this sampling time is equal to
the sampling time used to obtain new measurements
and implement the manipulated input (sample-and-hold
schemes). However, this study deals with systems sub-
ject to asynchronous measurements, and the time
sequence as discussed in section 3 that determines when
new information is available, is independent of Dc.

4.4 MPC Parameters

In the remainder of this work, the three model predic-
tive controllers of Eqs. (10 –13) are denoted as MPC,
LMPC I and LMPC II, respectively. The cost functions
of these controllers are defined by matrices Qc � P and
Rc � 4. The weight matrices Qc and Rc have been cho-
sen to provide a performance similar to the one of the
Lyapunov-based controllers under a sample-and-hold
implementation. The sampling time of the MPC control-
lers is Dc � 0�25 h, which is equal to the minimum time
needed to obtain a new measurement.
Through simulations, the transition time for the crystalli-
zer in closed-loop with the Lyapunov-based controller
has been estimated as 2 h for states x0� y and 4 h for
states x1� x2� x3. The prediction horizon N � 11 is cho-
sen for the model predictive controllers so that the pre-
diction captures most of the dynamic evolution of the
process.

5 Simulation Results

In this section, the three model predictive control laws
MPC, LMPC I and LMPC II are applied to the continu-
ous crystallizer population balance model of Eq. (9) to
evaluate the stability and robustness properties of the
corresponding closed-loop systems in the presence of
measurement unavailability and asynchronous measure-
ments. Firstly, PSD and solute concentration sampled
synchronously and simultaneously subject to measure-
ment unavailability are simulated. Following that, the
system with asynchronous measurements in which
measurements of PSD and solute concentration are
obtained simultaneously are simulated, followed by
simulation of the system with asynchronous measure-

ments in which PSD and solute concentration are
sampled at different time instants. The control objective
is to suppress the oscillatory behavior of the crystallizer
and stabilize it at the open-loop unstable steady-state,
�xs, that corresponds to the desired PSD by manipulating
the solute feed concentration. The following initial con-
ditions are used in the simulations:

n�0� r� � 0�0� c�0� � 990�0 kg m�3� �x�0�

� �0 0 0 0 0�498�T � �14�

A second-order accurate finite-difference discretization
scheme is used to simulate the continuous crystallizer.
At every model evaluation step (which is different from
the sampling time and should be chosen to be suffi-
ciently small in order to get a continuous and accurate
solution) of Eq. (9), the values of n�t� r� and c�t� can be
obtained, so that they can be used to calculate the state
x at that time using Eqs. (3) and (4) and the steady-state
�xs.

5.1 Results of Synchronous Sampling Subject to
Measurement Unavailability

For this set of simulations, it is assumed that a new mea-
surement of the whole state of the crystallizer is made
every Dm, the synchronous sampling time, but that the
measurement might be lost due to errors in the mea-
surement or communication systems with a probability
p∈�0� 1�. To generate the time partition 	tk ≥ 0
 that indi-
cates when a new sample is available and the corre-
sponding auxiliary variable s�tk� for a simulation of
length tsim, the following algorithm is used:

t0 � 0, k � 0

while tk � tsim

tk�1 � tk� c � 0

while c ≤ p

tk�1 � tk�1 � Dm� c � rand �1�end

if tk�1 � tk � Tmax then tk�1 � tk � Tmax

s�tk� � 1, k � k � 1

end

where tsim is the simulation time, rand�1� generates a
uniformly distributed random value c between 0 and 1,
and Tmax is the maximum allowable transmission inter-
val.
As mentioned before Tmax is taken to be 2.5 h, and the
simulation time tsim is 30 h in this work. The sampling
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time Dm is equal to Dc, i.e., Dm = 0.25 h. For this sampling
time, the sampled-data system in a closed-loop with
u � hL�x� is practically stable and its performance is
similar to the closed-loop system with continuous mea-
surements. A value of c � 95� is chosen, i.e., there is a
probability of 95� that the measurement of the state is
unavailable at every sampling time. Firstly, LMPC II is
compared with MPC. The state and manipulated input
trajectories of this simulation are shown in Figure 3. In
this figure it can be seen that LMPC II provides a better
performance than MPC. In particular, LMPC II is able
to stabilize the process at the open-loop unstable
steady-state in about 5 h while the system in closed-loop
with MPC presents an oscillatory behavior indicating
that the stabilization of the operating unstable steady-
state has not been achieved. Secondly, LMPC II is com-
pared with LMPC I. The state and manipulated input
trajectories of this simulation are shown in Figure 4. In
this case LMPC I is not able to regulate the system to
the desired equilibrium. Finally, the two LMPC II con-
trollers are compared using the predicted manipulated
input trajectory and the “last implemented manipulated
input", respectively. The “last implemented manipulated
input" strategy keeps the manipulated input constant,
i.e., h�D� �x� � u��0� for all D where u���� is the optimal
solution of the optimization problem of Eq. (13) (the
optimization problem that defines LMPC II) with an
initial state �x. The state and manipulated input trajec-
tories of this simulation are shown in Figure 5. In this
case, this simulation demonstrates that it is not possible

to maintain the process at the desired steady-state, using
only the last implemented manipulated input.
The simulations demonstrate that LMPC II is more
robust to measurements unavailability than MPC and
LMPC I. This is because LMPC II is designed by expli-
citly taking measurement unavailability into account.
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Fig. 3: State and manipulated input trajectories of Eq. (9) with
PSD and solute concentration sampled synchronously and simul-
taneously, and 95% probability of measurement unavailability
using the predicted manipulated input trajectories of LMPC II of
Eq. (13) (solid curves) and MPC of Eq. (10) (dashed curves).

0 10 20 30
0

0.1

0.2

Time (hr)

x 0

0 10 20 30
0

0.05

0.1

Time (hr)

x 1

0 10 20 30
0

0.02

0.04

Time (hr)

x 2

0 10 20 30
0

0.005

0.01

0.015

Time (hr)

x 3

0 10 20 30
0.4

0.5

0.6

0.7

0.8

Time (hr)

y

0 10 20 30
−0.5

0

0.5

Time (hr)

u

Fig. 4: State and manipulated input trajectories of Eq. (9) with
PSD and solute concentration sampled synchronously and simul-
taneously, and 95% probability of measurement unavailability
using the predicted manipulated input trajectories of LMPC II of
Eq. (13) (solid curves) and LMPC I of Eq. (11) (dashed curves).
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Fig. 5: State and manipulated input trajectories of Eq. (9) with
PSD and solute concentration sampled synchronously and simul-
taneously, and 95% probability of measurement unavailability
using the predicted manipulated input trajectory (solid curves)
and the last implemented manipulated input (dashed curves) of
LMPC II of Eq. (13).
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Moreover, one should make full use of the predicted
manipulated input trajectory of LMPC II in order to get
the best closed-loop system performance.

5.2 Results of Asynchronous Sampling: PSD and
Solute Concentration Sampled Simultaneously

For the simulations in this subsection, it is assumed that
the time between consecutive measurements is obtained
using a random process and that the PSD and solute
concentration are measured simultaneously. To generate
the time intervals between samples, a random Poisson
process is used, as described elsewhere [18, 20]. The
Poisson process is defined by the number of events per
unit time W. At a given time t, an event takes place
which means that the state is sampled. The interval
between two consecutive sampling times is given by

Da �
�lnv

W
, where v is a random variable with uniform

probability distribution between 0 and 1. At t � Da, an-
other event occurs. The sequence 	tk ≥ 0
 and the corre-
sponding auxiliary variable s�tk� for a simulation of
length tsim are generated as follows:

t0 � 0, k � 0

while tk � tsim

v � rand�1�

tk�1 � tk �
�lnv

W

if tk�1 � tk � Tmax, then tk�1 � tk � Tmax

if tk�1 � tk � Tmin, then tk�1 � tk � Tmin

s�tk� � 1, k � k � 1
end

where rand�1� generates a uniformly distributed random
value v between 0 and 1, Tmax is the maximum allowable
transmission interval and Tmin is the minimum time in-
terval between two consecutive samplings. Note that
Tmin should be smaller than Tmax, i.e., Tmin � Tmax. As
mentioned before Tmax is 2.5 h. The minimum time limit
Tmin is equal to the synchronous sampling time, i.e.,
Tmin = Dm = 0.25 h. For the simulations carried out in
this subsection, the value of the number of events per
unit time is chosen to be W � 0�15. The sampling times
for the simulations are shown in Figure 6. Note that be-
cause the number of events is low, the time between
consecutive samplings, and hence, the time in which the
control system must operate in open-loop, may be large
but will always be smaller than Tmax.
The same comparisons are carried out as performed in
section 5.1. Firstly, LMPC II is compared with MPC.

The state and manipulated input trajectories of this si-
mulation are shown in Figure 7. In this simulation, MPC
cannot stabilize the process, while LMPC II is able to
maintain the process at the desired steady-state. Sec-
ondly, LMPC II is compared with LMPC I. The state
and manipulated input trajectories are shown in
Figure 8. Though LMPC II and LMPC I can both stabi-
lize the process, the transient of the closed-loop system
under LMPC II is shorter than the transient under
LMPC I and has a smaller overshoot. Finally, two
LMPC II controllers are implemented using the pre-
dicted manipulated input trajectory and the last imple-
mented manipulated input, respectively. As in the simu-
lation of section 5.1, the last implemented manipulated
input strategy is not able to stabilize the process.
From the results of this subsection, one can also con-
clude that LMPC II using the predicted manipulated
input trajectory is the most robust in the presence of
asynchronous sampling among the three controllers.
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Fig. 7: State and manipulated input trajectories of Eq. (9) with
PSD and solute concentration sampled asynchronously and simul-
taneously using the predicted manipulated input trajectories of
LMPC II of Eq. (13) (solid curves) and MPC of Eq. (10) (dashed
curves).



Part. Part. Syst. Charact. 25 (2008) 360–375 371

5.3 Results of Asynchronous Sampling: PSD and
Solute Concentration Sampled Separately

For the last set of simulations, it is assumed that one can
obtain the measurements of PSD and solute concentra-
tion sampled separately. This implies that one may get a
measurement of PSD at a sampling time but lack a cor-
responding measurement of solute concentration; or
that one may have a measurement of solute concentra-
tion but lack the corresponding measurement of PSD. In
addition, one can have asynchronous sampling, which
means that the length of the time interval between two
consecutive measurements is varying.
Using the same method as presented in section 5.2, one
can generate two different time sequences 	tp

k ≥ 0
 for
PSD (s � 2) and 	tc

k ≥ 0
 for solute concentration (s � 3)
using Wp � 0�15 and Wc � 1, respectively. Both time
sequences are generated with the same constraints
Tmax = 2.5 h and Tmin = 0.25 h. The choice of Wc � 1 for
	tc

k ≥ 0
 is based on the fact that one can obtain more
frequent measurements of concentration. The sampling
sequence 	tp

k ≥ 0
 corresponding to the PSD measure-
ments is shown in Figure 9, and the sampling sequence
	tc

k ≥ 0
 corresponding to the solute concentration mea-
surements is shown in Figure 10. Subsequently, the two
sequences are merged into an ordered one 	tk ≥ 0
 by in-
creasing the time, and the overlapping times correspond
to instants that both measurements of PSD and solute
concentration can be obtained, i.e. s � 1. The new
sequence 	tk ≥ 0
 is shown in Figure 11. Every sampling

instant in the new sequence represents a measurement
of PSD or solute concentration or both. The auxiliary
variable s�tk� is defined accordingly.
Firstly, LMPC II is compared with MPC. The state and
manipulated input trajectories are shown in Figure 12.
As expected, LMPC II is able to stabilize the process,
but MPC fails. This result is consistent with the previous
simulations. Following that, LMPC II is compared with
LMPC I. The state and manipulated input trajectories
are shown in Figure 13. In this figure it can be seen that
LMPC I can also stabilize the process but it takes a
longer time than LMPC II. Finally, two LMPC II con-
trollers are compared using the predicted manipulated
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Fig. 8: State and manipulated input trajectories of Eq. (9) with
PSD and solute concentration sampled asynchronously and simul-
taneously using the predicted manipulated input trajectories of
LMPC II of Eq. (13) (solid curves) and LMPC I of Eq. (11).
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Fig. 9: State and manipulated input trajectories of Eq. (9) with
PSD and solute concentration sampled asynchronously and simul-
taneously using the predicted manipulated input trajectory (solid
curves) and the last implemented manipulated input (dashed
curves) of LMPC II of Eq. (13).
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input trajectory and the last implemented input, respec-
tively. Figure 14 shows the trajectories of the state and
manipulated input. This simulation demonstrates that
for this case, using the last implemented manipulated
input of LMPC II alone cannot stabilize the process as
in the other simulations.
In this case, the overshoots of the trajectories generated
by MPC and the amplitudes of oscillations of the trajec-

tories generated by LMPC II using the last implemented
manipulated input are smaller compared with the case
discussed in section 5.2. This improvement is due to the
decrease of the average time interval between two con-
secutive measurements. Despite this decrease, the per-
formances of LMPC I and LMPC II using the predicted
manipulated input trajectories do not improve much
because some large intervals still exist between two con-
secutive measurements as shown in Figure 11.
Finally, to evaluate the robustness properties of the
LMPC controllers, another set of simulations was also
carried out to demonstrate that LMPC II is more robust
than the other two controllers when there are uncertain-
ties in the model parameters. It is assumed that uncer-
tainties are present in k1 and k2 of Eq. (9) and the actual
values used to evaluate the population balance model of
Eq. (9) are 1�1k1 and 1�1k2 (10% uncertainty), which
are different from the values (k1 and k2) used in the
reduced-order moments model of Eq. (6). Figure 15
shows the results when MPC and LMPC II are applied
and Figure 16 shows the results when LMPC I and
LMPC II are implemented. From the two figures, it can
be concluded that although LMPC II can stabilize the
system, both MPC and LMPC I fail.
In summary, LMPC II using the predicted manipulated
input trajectory yields a more robust closed-loop perfor-
mance when the process is subject to measurement un-
availability, asynchronous sampling and parametric
model uncertainties.

http://www.ppsc-journal.com © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

0 10 20 30
0

0.1

0.2

0.3

Time (hr)

x 0

0 10 20 30
0

0.05

0.1

0.15

Time (hr)

x 1

0 10 20 30
0

0.02

0.04

0.06

Time (hr)

x 2

0 10 20 30
0

0.01

0.02

Time (hr)
x 3

0 10 20 30
0.4

0.5

0.6

0.7

0.8

Time (hr)

y

0 10 20 30
−0.5

0

0.5

1

Time (hr)

u

Fig. 12: State and manipulated input trajectories of Eq. (9) with
PSD and solute concentration sampled asynchronously and sepa-
rately using the predicted manipulated input trajectories of LMPC
II of Eq. (13) (solid curves) and MPC of Eq. (10) (dashed curves).
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Fig. 13: State and manipulated input trajectories of Eq. (9) with
PSD and solute concentration sampled asynchronously and sepa-
rately using the predicted manipulated input trajectories of LMPC
II of Eq. (13) (solid curves) and LMPC I of Eq. (11) (dashed
curves).
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Fig. 14: State and manipulated input trajectories of Eq. (9) with
PSD and solute concentration sampled asynchronously and sepa-
rately using the predicted manipulated input trajectory (solid
curves) and the last implemented manipulated input (dashed
curves) of LMPC II of Eq. (13).
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6 Conclusions

In this work, the problem of controlling particulate pro-
cesses described by population balance models using
asynchronous measurements was considered. In particu-

lar, a continuous crystallizer was taken as an example to
study the problem of preserving the closed-loop stability
and robustness of a standard MPC and two recently pro-
posed Lyapunov-based model predictive controllers, in
the presence of measurement unavailability and asyn-
chronous measurements. The simulation results demon-
strate that the closed-loop system under the LMPC con-
troller that takes possible measurement unavailability
into account is more robust with respect to asynchro-
nous measurements.
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8 Nomenclature

�t time
v random variable with uniform probability

distribution between 0 and 1
D time elapsed since the last measurement
d�r � 0�standard Dirac function
Da interval between two consecutive sampling

times
Dc sampling period of model predictive controllers
Dm synchronous measurement sampling time
c random variable with uniform probability

distribution between 0 and 1
�x�tk� estimate of the state x�tk� at time tk

lj jth moment of n�r��t�
� density of crystals
s residence time
�xs unstable steady-state of the system of Eq. (5)
�xv dimensionless moments of the crystal size

distribution
x the state of the system, defined by x � �x � �xs

xL�s� sampled trajectory of Eq. (6) associated with
the Lyapunov-based feedback control law hL

�y dimensionless concentration of the solute in the
crystallizer

	tc
k ≥ 0
 sampling time sequence of solute concentration

	tp
k ≥ 0
 sampling time sequence of PSD

	tk ≥ 0
 sampling time sequence
c solute concentration in the crystallizer
c0 solute concentration in the feed
cs concentration of solute at saturation
c0s steady-state solute concentration in the feed
h�D� �x� control function that defines each controller
hL a Lyapunov-based feedback control law
k1 positive constant appearing in the crystal growth

rate
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Fig. 15: State and manipulated input trajectories of Eq. (9) with
10% uncertainty in parameters k1 and k2, when PSD and solute
concentration are sampled asynchronously and separately using
the predicted manipulated input trajectories of LMPC II of
Eq. (13) (solid curves) and MPC of Eq. (10) (dashed curves).
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Fig. 16: State and manipulated input trajectories of Eq. (9) with
10% uncertainty in parameters k1 and k2, when PSD and solute
concentration are sampled asynchronously and separately using
the predicted manipulated input trajectories of LMPC II of
Eq. (13) (solid curves) and LMPC I of Eq. (11) (dashed curves).
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k2 positive constant appearing in the crystal
nucleation rate

k3 positive constant appearing in the crystal
nucleation rate

N prediction horizon of model predictive
controllers

n�r��t� the number density of crystals of radius r∈�0�∞�
at time �t in the suspension

P weight matrix in control Lyapunov function
p a given probability that data may be lost
Q��t� crystal nucleation rate
Qc weight matrix that defines the cost of model

predictive controllers
r crystal radius
R��t� crystal growth rate
Rc weight matrix that defines the cost of model

predictive controllers
S�Dc� the family of piece-wise constant functions with

sampling period Dc

s�tk� an auxiliary variable to indicate the available
measurement at time tk

t dimensionless time
tk Sampling time
Tmax the maximum time interval between two

consecutive measurements
Tmin the minimum time interval between two

consecutive samplings
tsim length of simulation
u dimensionless concentration of the solute in the

feed
u� optimal control actions generated by model

predictive controllers
umax bound on control actions
V�x� a control Lyapunov function of the system of

Eq. (6)
W the number of events per unit time
Wc the number of events of solute concentration

sampling per unit time
Wp the number of events of PSD sampling per unit

time
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