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In this work, we focus on distributed model predictive control of large scale nonlinear pro-
cess systems in which several distinct sets of manipulated inputs are used to regulate the pro-
cess. For each set of manipulated inputs, a different model predictive controller is used to
compute the control actions, which is able to communicate with the rest of the controllers in
making its decisions. Under the assumption that feedback of the state of the process is avail-
able to all the distributed controllers at each sampling time and a model of the plant is avail-
able, we propose two different distributed model predictive control architectures. In the first
architecture, the distributed controllers use a one-directional communication strategy, are
evaluated in sequence and each controller is evaluated only once at each sampling time; in
the second architecture, the distributed controllers utilize a bi-directional communication
strategy, are evaluated in parallel and iterate to improve closed-loop performance. In the
design of the distributed model predictive controllers, Lyapunov-based model predictive con-
trol techniques are used. To ensure the stability of the closed-loop system, each model predic-
tive controller in both architectures incorporates a stability constraint which is based on a
suitable Lyapunov-based controller. We prove that the proposed distributed model predictive
control architectures enforce practical stability in the closed-loop system and optimal per-
formance. The theoretical results are illustrated through a catalytic alkylation of benzene
process example.VVC 2010 American Institute of Chemical EngineersAIChE J, 56: 2137–2149, 2010

Keywords: model predictive control, distributed control, distributed optimization,
large-scale systems, process control

Introduction

Model predictive control (MPC) is a popular control strat-
egy based on using a model of the process to predict at each
sampling time the future evolution of the system from the
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current state along a given prediction horizon. Using these
predictions, the manipulated input trajectory that minimizes
a given performance index is computed solving a suitable
optimization problem. To obtain finite dimensional optimiza-
tion problems, MPC optimizes over a family of piecewise
constant trajectories with a fixed sampling time and a finite
prediction horizon. Once the optimization problem is solved,
only the first manipulated input value is implemented, dis-
carding the rest of the trajectory and repeating the optimiza-
tion in the next sampling step.1,2 Typically, MPC is studied
from a centralized control point of view in which all the
manipulated inputs of a control system are optimized with
respect to an objective function in a single optimization prob-
lem. When the number of the state variable and manipulated
inputs of the process, however, becomes large, the computa-
tional burden of the centralized optimization problem may
increase significantly and may impede the applicability of a
centralized MPC, especially in the case where nonlinear pro-
cess models are used in the MPC. One feasible alternative to
overcome this problem is to utilize a distributed MPC archi-
tecture in which the manipulated inputs are computed by more
than one optimization problems in a coordinated fashion. The
objective of the present study is to propose two distributed
MPC architectures for nonlinear process systems to reduce the
computational burden of computing the values of the manipu-
lated inputs and to coordinate the distributed MPC controllers
in a suitable fashion to achieve stability and optimal perform-
ance of the closed-loop system.

With respect to available results on distributed MPC archi-
tectures, several distributed MPC methods have been pro-
posed in the literature that deal with the coordination of sep-
arate MPC controllers that communicate to obtain optimal
input trajectories in a distributed manner; see References 3–
5 for reviews of results in this area. More specifically, in
Reference 6, the problem of distributed control of dynami-
cally coupled nonlinear systems that are subject to decoupled
constraints was considered. In References 7, 8, the effect of
the coupling was modeled as a bounded disturbance compen-
sated using a robust MPC formulation. In Reference 9, it
was proven that through multiple communications between
distributed controllers and using system-wide control objec-
tive functions, stability of the closed-loop system can be
guaranteed. In Reference 10, distributed MPC of decoupled
systems (a class of systems of relevance in the context of
multi-agents systems) was studied. In Reference 11, an MPC
algorithm was proposed under the main condition that the
system is nonlinear, discrete-time, and no information is
exchanged between local controllers, and in Reference 12,
MPC for nonlinear systems was studied from an input-to-
state stability point of view. In Reference 13, a game theory
based distributed MPC scheme for linear systems coupled
through the inputs was proposed. In a recent study,14 we pro-
posed a distributed MPC architecture with one-directional
communication for general nonlinear process systems. In this
architecture, two separate MPC controllers designed via Lya-
punov-based MPC (LMPC) were considered, in which one
LMPC was used to guarantee the stability of the closed-loop
system and the other LMPC was used to improve the closed-
loop performance. Generally, the computational burden of
these distributed MPC methods is smaller compared to the
one of the corresponding centralized MPC because of the

formulation of optimization problems with a smaller number
of decision variables.

In this work, we focus on distributed MPC of large scale
nonlinear process systems in which several distinct sets of
manipulated inputs are used to regulate the process. For each
set of manipulated inputs, a different MPC is used to com-
pute the control actions, which is able to communicate with
the rest of the controllers in making its decisions. Under the
assumption that feedback of the state of the process is avail-
able to all the distributed controllers at each sampling time
and a model of the plant is available, we propose two differ-
ent distributed MPC architectures designed via LMPC tech-
niques. In the first architecture, the distributed controllers
use a one-directional communication strategy, are evaluated
in sequence and each controller is evaluated only once at
each sampling time; in the second architecture, the distrib-
uted controllers utilize a bi-directional communication strat-
egy, are evaluated in parallel and iterate to improve closed-
loop performance. To ensure the stability of the closed-loop
system, each model predictive controller in both architec-
tures incorporates a stability constraint which is based on a
suitable Lyapunov-based controller. We prove that the pro-
posed distributed MPC architectures enforce practical stabil-
ity in the closed-loop system and optimal performance. The
theoretical results are illustrated through a catalytic alkyla-
tion of benzene process example.

Preliminaries

Problem formulation

We consider nonlinear process systems described by the
following state-space model:

_xðtÞ ¼ f ðxðtÞÞ þ
Xm
i¼1

giðxðtÞÞuiðtÞ þ kðxðtÞÞwðtÞ (1)

where x(t) [ Rnx denotes the vector of process state variables,
ui(t) [ Rmui, i ¼ 1,…,m, are m sets of control (manipulated)
inputs and w(t) [ Rnw denotes the vector of disturbance
variables. The m sets of inputs are restricted to be in m
nonempty convex sets Ui ( Rmui, i ¼ 1,…,m, which are
defined as follows:

Ui :¼ fui 2 Rmui : juij � umax
i g�; i ¼ 1;…;m

whereumax
i , i¼ 1,…,m, are themagnitudes of the input constraints.

The disturbance vector is bounded, i.e., w(t) [W where

W :¼ fw 2 Rnw : wj j � h; h > 0g:
We assume that f, gi, i ¼ 1,…,m, and k are locally Lip-

schitz vector functions and that the origin is an equilibrium
of the unforced nominal system (i.e., system of Eq. 1 with
ui(t) ¼ 0, i ¼ 1,…,m, w(t) ¼ 0 for all t) which implies that
f(0) ¼ 0. We also assume that the state x of the system is
sampled synchronously and the time instants at which we
have state measurement samplings are indicated by the time
sequence {tk�0} with tk ¼ t0 þ kD, k ¼ 0,1,… where t0 is
the initial time and D is the sampling time.

*|�| denotes Euclidean norm of a vector.
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Remark 1. In general, distributed control systems are for-
mulated based on the assumption that the controlled process
systems consist of decoupled or partially coupled subsys-
tems. However, we consider a fully coupled process model;
this is a very common occurrence in chemical process con-
trol as we will illustrate in the Application to a Chemical
Process Example section. In our future study, we will extend
the proposed distributed control systems to the case in which
only local state information is available to each distributed
controller based on distributed state estimation.

Remark 2. Note that the assumption that f, gi, i ¼ 1,…,m
and k are locally Lipschitz vector functions is a reasonable
assumption for most of chemical processes. Note also that
the assumption that the state x of the system is sampled syn-
chronously is a widely used assumption in the research of
process control. The proposed control system designs can be
extended to the case where only part of the state x is meas-
urable by designing an observer to estimate the whole state
vector from output measurements and by designing the con-
trol system based on the measured and estimated states. In
this case, the stability properties of the resulting output feed-
back control systems are affected by the convergency of the
observer and need to be carefully studied.

Lyapunov-based controller

We assume that there exists a Lyapunov-based controller
h(x) ¼ [h1(x) … hm(x)]

T with ui ¼ hi(x), i ¼ 1,…,m, which
renders the origin of the nominal closed-loop system asymp-
totically stable while satisfying the input constraints for all
the states x inside a given stability region. We note that this
assumption is essentially equivalent to the assumption that
the process is stabilizable or that the pair (A, B) in the case
of linear systems is stabilizable. Using converse Lyapunov
theorems,15–17 this assumption implies that there exist func-
tions ai(�), i ¼ 1,2,3,4 of class K† and a continuously differ-
entiable Lyapunov function V(x) for the nominal closed-loop
system which is continuous and bounded in Rnx, that satisfy
the following inequalities:

a1ðjxjÞ � VðxÞ � a2ðjxjÞ;
@VðxÞ
@x

ðf ðxÞ þ
Xm
i¼1

giðxÞhiðxÞÞ � �a3ðjxjÞ;

@VðxÞ
@x

����
���� � a4ðjxjÞ;

hiðxÞ 2 Ui; i ¼ 1;…;m ð2Þ
for all x [ D ( Rnx where D is an open neighborhood of the
origin. We denote the region Xq

‡ ( D as the stability region
of the closed-loop system under the Lyapunov-based con-
troller h(x). The construction of V(x) can be carried out in a
number of ways using systematic techniques like, for example,
sum-of-squares methods.

By continuity, the local Lipschitz property assumed for
the vector fields f, gi, i ¼ 1,…,m, and k and taking into
account that the manipulated inputs ui, i ¼ 1,…,m, and the
disturbance w are bounded in convex sets, there exists a pos-
itive constant M such that

�����f ðxÞ þ
Xm
i¼1

giðxÞui þ kðxÞw
����� � M (3)

for all x [ Xq, ui [ Ui, i ¼ 1,…,m, and w [ W. In addition, by
the continuous differentiable property of the Lyapunov
function V(x) and the Lipschitz property assumed for the
vector field f, there exist positive constants Lx, Lui, i ¼ 1,…,m,
and Lw such that

����� @V@x f ðxÞ � @V

@x
f ðx0Þ

����� � Lxjx� x0j
����� @V@x giðxÞ � @V

@x
giðx0Þ

����� � Lui jx� x0j; i ¼ 1;…;m

����� @V@x kðxÞ
����� � Lw ð4Þ

for all x, x0 [ Xq, ui [ Ui, i ¼ 1,…,m, and w [ W.
Remark 3. Different state feedback control laws for non-

linear systems have been developed using Lyapunov techni-
ques; the reader may refer to References 17–21 for results in
this area including results on the design of bounded Lyapu-
nov-based controllers by taking explicitly into account input
constraints for broad classes of nonlinear systems.

Centralized LMPC

To take advantage of all the sets of manipulated inputs, one
option is to design a centralized MPC controller. To guarantee
robust stability of the closed-loop system, the MPC controller
must include a set of stability constraints. To do this, we pro-
pose to use the LMPC controller proposed in References 22
and 23, which guarantees practical stability of the closed-loop
system, allows for an explicit characterization of the stability
region, and yields a reduced complexity optimization problem.
LMPC is based on uniting receding horizon control with con-
trol Lyapunov functions and computes the manipulated input
trajectory solving a finite horizon constrained optimal control
problem. The LMPC controller is based on the Lyapunov-
based controller h(x). The controller h(x) is used to define a
stability constraint for the LMPC controller which guarantees
that the LMPC controller inherits the stability and robustness
properties of the Lyapunov-based controller h(x). The LMPC
controller introduced in References 22 and 23 is based on the
following optimization problem:

min
uc1…ucm2SðDÞ

Z ND

0

½~xTðsÞQc~xðsÞ þ
Xm
i¼1

uTciðsÞRciuciðsÞ�ds (5a)

s:t: _~xðsÞ ¼ f ð~xðsÞÞ þ
Xm
i¼1

gið~xðsÞÞuci (5b)

uciðsÞ 2 Ui; i ¼ 1;…;m (5c)

~xð0Þ ¼ xðtkÞ (5d)

Xm
i¼1

@VðxÞ
@x

giðxðtkÞÞucið0Þ �
Xm
i¼1

@VðxÞ
@x

giðxðtkÞÞhiðxðtkÞÞ (5e)

where S(D) is the family of piece-wise constant functions with
sampling period D, N is the prediction horizon, Qc and Rci, i ¼

†A continuous function a:[0,a) ! [0,1) is said to belong to class K if it is
strictly increasing and a(0) ¼ 0.

‡We use Xq to denote the set Xq:¼ {x [ Rnx|V(x) � q}.
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1,…,m, are positive definite weight matrices that define the
cost, x(tk) is the state measurement obtained at tk, ~x is the
predicted trajectory of the nominal system with ui, i ¼ 1,…,m,
the input trajectory computed by the LMPC of Eq. 5.

The optimal solution to this optimization problem is

denoted by u�ci(s|tk), i ¼ 1,…,m, which is defined for s [
[0,ND). The LMPC is implemented with a receding horizon

method; that is, at each sampling time tk, the new state x(tk)
is received from the sensors, the optimization problem of

Eq. 5 is solved, and u�ci(t � tk|tk), i ¼ 1,…,m are applied to

the closed-loop system for t 2 [tk,tkþ1).
The optimization problem of Eq. 5 does not depend on

the uncertainty and guarantees that the system in closed-loop

with the LMPC of Eq. 5 maintains the stability properties of

the Lyapunov-based controller. The constraint of Eq. 5e

guarantees that the value of the time derivative of the Lya-

punov function at the initial evaluation time of the central-

ized LMPC controller is lower or equal to the value obtained

if only the Lyapunov-based controller h(x) is implemented in

the closed-loop system in a sample-and-hold fashion. This is

the constraint that allows proving that the centralized LMPC

controller inherits the stability and robustness properties of

the Lyapunov-based controller.
The manipulated inputs of the closed-loop system under

the above centralized LMPC controller are defined as fol-
lows

uiðtÞ ¼ u�ciðt� tkjtkÞ; i ¼ 1;…;m; 8t 2 ½tk; tkþ1Þ: (6)

In what follows, we refer to this controller as the centralized

LMPC. The main property of the centralized LMPC is that the

origin of the closed-loop system is practically stable for all ini-

tial states inside the stability region Xq for a sufficient small

sampling time D and disturbance upper bound y. This property
is also guaranteed by the Lyapunov-based controller h(x)
when it is implemented in a sample-and-hold fashion (see

Refs. 24 and 25 for results on sampled-data systems). The

main advantage of LMPC approaches with respect to the Lya-

punov-based controller is that optimality considerations can be

taken explicitly into account (as well as constraints on the

inputs and the states23) in the computation of the control

actions within an online optimization framework to improve

closed-loop performance.

Distributed MPC Architectures

In our previous study,14 we introduced a distributed MPC
architecture for nonlinear process systems based on the

scheme shown in Figure 1. In this distributed MPC architec-
ture, two MPC controllers designed via LMPC were consid-
ered. One of the two LMPC controllers (LMPC 1) was
designed to guarantee the stability of the closed-loop system
and the other LMPC controller (LMPC 2) was designed to
improve the closed-loop performance while maintaining the
closed-loop stability achieved by LMPC 1. This distributed
MPC architecture required one-directional communication
between the two distributed controllers and was proved that
it guarantees practical stability of the closed-loop system and
has the potential to maintain the closed-loop stability and
performance in the face of new or failing controllers or
actuators (for example, a zero input of LMPC 2 does not
affect the closed-loop stability) and to reduce computational
burden in the evaluation of the optimal manipulated inputs
compared with a fully centralized LMPC controller of the
same input/output-space dimension.

In the present study, our objective is to extend our results in
Reference 14 and propose distributed MPC architectures
including multiple MPCs for large scale nonlinear process sys-
tems. Specifically, we propose two different distributed MPC
architectures. The first distributed MPC architecture is a direct
extension of our previous study in Reference 14 in which dif-
ferent MPC controllers are evaluated in sequence, only once
at each sampling time and require only one-directional com-
munication between consecutive distributed controllers (i.e.,
the distributed controllers are connected by pairs). In the sec-
ond architecture, different MPC controllers are evaluated in
parallel, once or more than once at each sampling time
depending on the number of iterations, and bi-directional com-
munication among all the distributed controllers (i.e., the dis-
tributed controllers are all interconnected) is used.

In each proposed architecture, we will design m LMPC
controllers to compute ui, i ¼ 1,…,m, and refer to the
LMPC controller computing the input trajectories of ui as
LMPC i.

Sequential distributed LMPC

In this subsection, we will discuss the direct extension of
the results in Reference 14 to include multiple LMPC con-
trollers, in which different LMPC controllers are evaluated
in sequence, once at each sampling time and one-directional
communication between consecutive distributed controllers
(i.e., the distributed controllers are connected by pairs) is
used. A schematic of this architecture is shown in Figure 2.
We first present the proposed implementation strategy of this

Figure 1. Distributed MPC scheme proposed in Refer-
ence 14.

Figure 2. Sequential distributed LMPC architecture.
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distributed MPC architecture and then design the correspond-
ing LMPC controllers. The proposed implementation strategy
of this distributed MPC architecture is as follows:

1. At each sampling time tk, all the LMPC controllers
receive the state measurement x(tk) from the sensors.

2. For j ¼ m to 1
2.1. LMPC j receives the entire future input trajecto-

ries of ui, i ¼ m,…, j þ 1, from LMPC j þ 1 and
evaluates the future input trajectory of uj based on
x(tk) and the received future input trajectories.

2.2. LMPC j sends the first step input value of uj to
its actuators and the entire future input trajectories
of ui, i ¼ m,…, j, to LMPC j � 1.

In this architecture, each LMPC controller only sends its
future input trajectory and the future input trajectories it
received to the next LMPC controller (i.e., LMPC j sends
input trajectories to LMPC j � 1). This implies that LMPC
j, j ¼ m,…, 2, does not have any information about the val-
ues that ui, i ¼ j � 1,…, 1 will take when the optimization
problems of the LMPC controllers are designed. To make a
decision, LMPC j, j ¼ m,…, 2 must assume trajectories for
ui, i ¼ j � 1,…, 1, along the prediction horizon. To this end,
the Lyapunov-based controller h(x) is used. To inherit the
stability properties of the controller h(x) (i.e., the stability
properties of h(x)), each control input ui, i ¼ 1,…,m must
satisfy a constraint that guarantees a given minimum contri-
bution to the decrease rate of the Lyapunov function V(x).
Specifically, the proposed design of the LMPC j, j ¼
1,…,m, is based on the following optimization problem:

u�s;jðsjtkÞ ¼ arg min
us;j2SðDÞ

Z ND

0

½~xTðsÞQc~xðsÞ

þ
Xm
i¼1

us;iðsÞTRcius;iðsÞ�ds ð7aÞ

s:t: _~xðsÞ ¼ f ð~xðsÞÞ þ
Xm
i¼1

gið~xðsÞÞus;i (7b)

us;iðsÞ ¼ hið~xðjDÞÞ; i ¼ 1;…; j� 1; 8 s 2 ½lD; ðlþ 1ÞDÞ;
l ¼ 0;…;N � 1 ð7cÞ

us;iðsÞ ¼ u�s;iðsjtkÞ; i ¼ jþ 1;…;m (7d)

us;jðsÞ 2 Uj (7e)

~xð0Þ ¼ xðtkÞ (7f)

@VðxÞ
@x

gjðxðtkÞÞus;jð0Þ � @VðxÞ
@x

gjðxðtkÞÞhjðxðtkÞÞ (7g)

where ~x is the predicted trajectory of the nominal system with
ui, i ¼ j þ 1,…,m, the input trajectory computed by the LMPC
controllers of Eq. 7 evaluated before LMPC j, ui, i ¼ 1,…, j �
1, the corresponding elements of h(x) applied in a sample-and-
hold fashion and u�s;i(s|tk) denotes the future input trajectory of
ui obtained by LMPC i of the form of Eq. 7. The optimal
solution to the optimization problem of Eq. 7 is denoted
u�s;j(s|tk), which is defined for s [ [0,ND).

The constraint of Eq. 7b is the nominal model of the system
of Eq. 1, which is used to predict the future evolution of the

system; the constraints of Eq. 7c define the value of the inputs
evaluated after uj (i.e., ui with i ¼ 1,…, j � 1); the constraints
of Eq. 7d define the value of the inputs evaluated before uj
(i.e., ui with i ¼ j þ 1,…,m); the constraint of Eq. 7e is the
constraint on the manipulated input uj; the constraint of Eq. 7f
sets the initial state for the optimization problem; the con-
straint of Eq. 7g guarantees that the contribution of input uj to
the decrease rate of the time derivative of the Lyapunov func-
tion at the initial evaluation time, if uj ¼ u�s;j(0|tk) is applied, is
bigger or equal to the value obtained when uj ¼ hj(x(tk)) is
applied. This constraint allows proving the closed-loop stabil-
ity properties of the proposed controller.

The manipulated inputs of the proposed control design of
Eq. 7 are defined as follows:

uiðtÞ ¼ u�s;iðt� tkjtkÞ; i ¼ 1;…;m; 8t 2 ½tk; tkþ1Þ: (8)

In what follows, we refer to this distributed LMPC archi-
tecture as the sequential distributed LMPC.

Remark 4. Note that, to simplify the description of the
implementation strategy proposed above in this subsection,
we do not distinguish LMPC m and LMPC 1 from the
others. We note that LMPC m does not receive any informa-
tion from the other controllers and LMPC 1 does not have to
send information to any other controller.

The proposed distributed LMPC architecture of Eqs. 7 and
8 computes the inputs ui, i ¼ 1,…,m, applied to the system
of Eq. 1 in a way such that in the closed-loop system, the
value of the Lyapunov function at time instant tk (i.e.,
V(x(tk))) is a decreasing sequence of values with a lower
bound. Following Lyapunov arguments, this property guaran-
tees practical stability of the closed-loop system. This is
achieved due to the constraint of Eq. 7g. This property is
presented in Theorem 1 below.

Theorem 1. Consider the system of Eq. 1 in closed-loop
under the distributed LMPC of Eqs. 7 and 8 based on the
controller h(x) that satisfies the condition of Eq. 2 with class
K functions ai(�), i ¼ 1,2,3,4. Let ew [0, D [ 0 and q [ qs
[ 0 satisfy the following constraint:

� a3ða�1
2 ðqsÞÞ þ L� � �ew=D (9)

where L� ¼ ðLx þ
Pm

i¼1 Luiu
max
i ÞM þ Lwh with M, Lx, Lui (i ¼

1,…,m) and Lw being defined in Eqs. 3 and 4. For any N �1, if
x(t0) [ Xq and if q* � q where

q� ¼ maxfVðxðtþ DÞÞ : VðxðtÞÞ � qsg; (10)

then the state x(t) of the closed-loop system is ultimately
bounded in Xq*.

Proof. The proof consists of two parts. We first prove that
the optimization problem of Eq. 7 is feasible for all j ¼
1,…,m and x [ Xq. Then we prove that, under the proposed
distributed LMPC of Eqs. 7 and 8, the state of the system of
Eq. 1 is ultimately bounded in Xq*. Note that the constraint
of Eq. 7g of each distributed controller is independent from
the decisions that the rest of the distributed controllers make.

Part 1: To prove the feasibility of the optimization problem
of Eq. 7, we only have to prove that there exists a us,j(0) which
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satisfies the input constraint of Eq. 7e and the constraint of Eq.
7g. This is because the constraint of Eq. 7g is only enforced on
the first prediction step of us,j(s) and in the prediction time s [
[D,ND), the input constraint of Eq. 8 can be easily satisfied
with us,j(s) being any value in the convex set Uj.

We assume that x(tk) [ Xq ( x(t) is bounded in Xq which
will be proved in Part 2). It is easy to verify that the value
of us,j such that us,j(0) ¼ hj(x(tk)) satisfies the input con-
straint of Eq. 7e (assumed property of h(x) for x [ Xq) and
the constraint of Eq. 7g, thus, the feasibility of the optimiza-
tion problem of LMPC j, j ¼ 1,…,m, is guaranteed.

Part 2: From the condition of Eq. 2 and the constraint of
Eq. 7g, if x(tk) [ Xq, it follows that

@V

@x
f ðxðtkÞð Þ þ

Xm
i¼1

giðxðtkÞÞu�s;ið0jtkÞÞ

� @V

@x
f ðxðtkÞÞ þ

Xm
i¼1

giðxðtkÞÞhiðxðtkÞ
 !

� �a3ðjxðtkÞjÞ: ð11Þ

The time derivative of the Lyapunov function V along the
actual state trajectory x(t) of the system of Eq. 1 in t [ [tk,
tkþ1) is given by

_VðxðtÞÞ ¼ @V

@x
f ðxðtÞÞ þ

Xm
i¼1

giðxðtÞÞu�s;ið0jtkÞ þ kðxðtÞÞwðtÞ
 !

:

(12)

Adding and subtracting @V
@x ðf ðxðtkÞÞ þ

Pm
i¼1 giðxðtkÞÞu�s;i

ð0jtkÞÞ and taking into account Eq. 11, we obtain the follow-
ing inequality

_VðxðtÞÞ � � a3ðjxðtkÞjÞ

þ @V

@x
f ðxðtÞÞ þ

Xm
i¼1

giðxðtÞÞu�s;ið0jtkÞ þ kðxðtÞÞwðtÞ
 !

� @V

@x
ðf ðxðtkÞÞ þ

Xm
i¼1

giðxðtkÞÞu�s;ið0jtkÞÞ ð13Þ

Taking into account Eqs. 2 and 3, the following inequality
if obtained for all x(tk) [ Xq/Xqs

§ from Eq. 13

_VðxðtÞÞ � � a3ða�1
2 ðqsÞÞ

þ Lx þ
Xm
i¼1

Luiu
�
s;ið0jtkÞ

 !
jxðtÞ � xðtkÞj

þ LwjwðtÞj: ð14Þ
Taking into account Eq. 3 and the continuity of x(t), the

following bound can be written for all t [ [tk, tkþ1)

jxðtÞ � xðtkÞj � MD:

Using this expression, the bounds on the disturbance w(t)
and the inputs ui, i ¼ 1,…,m, and Eq. 14, we obtain the fol-
lowing bound on the time derivative of the Lyapunov func-
tion for t [ [tk, tkþ1), for all initial states x(tk) [ Xq/Xqs

_VðxðtÞÞ � �a3ða�1
2 ðqsÞÞ þ Lx þ

Pm
i¼1

Luiu
max
i

� �
M þ Lwh:

(15)

If the condition of Eq. 9 is satisfied, then there exists ew
[ 0 such that the following inequality holds for x(tk) [ Xq/
Xqs

_VðxðtÞÞ � �ew=D (16)

for t [ [tk, tkþ1) . Integrating the inequality of Eq. 16 on t [ [tk,
tkþ1), we obtain that

Vðxðtkþ1Þ � VðxðtkÞÞ � ew (17)

and

VðxðtÞÞ � VðxðtkÞÞ; 8t 2 ½tk; tkþ1Þ (18)

for all x(tk) [ Xq/Xqs
. Using Eqs. 17 and 18 recursively it can

be proved that, if x(t0) [ Xq/Xqs
, the state converges to Xqs

in a
finite number of sampling times without leaving the stability
region. Once the state converges to Xqs

( Xq*, it remains
inside Xq* for all times. This statement holds because of the
definition of q*. This proves that the closed-loop system under
the proposed distributed LMPC of Eqs. 7 and 8 is ultimately
bounded in Xq*. n

Iterative distributed LMPC

An alternative to the sequential distributed LMPC archi-
tecture presented in the previous subsection is to evaluate all
the distributed LMPCs in parallel and iterate to improve
closed-loop performance. A schematic of this control archi-
tecture is shown in Figure 3. In this architecture, each dis-
tributed LMPC controller must be able to communicate with
all the other controllers (i.e., the distributed controllers are
all interconnected). More specifically, when a new state mea-
surement is available at a sampling time, each distributed
LMPC controller evaluates and obtains its future input tra-
jectory; and then each LMPC controller broadcasts its latest
obtained future input trajectory to all the other controllers.
On the basis of the newly received input trajectories, each
LMPC controller evaluates its future input trajectory again
and this process is repeated until a certain termination condi-
tion is satisfied. Specifically, we proposed to use the follow-
ing implementation strategy:

Figure 3. Iterative distributed LMPC.

§The operator ‘‘/’’ is used to denote set subtraction, i.e., A/B:¼ {x [ Rnx: x [ A,
x 62 B}.

2142 DOI 10.1002/aic Published on behalf of the AIChE August 2010 Vol. 56, No. 8 AIChE Journal



1. At each sampling time tk, all the LMPC controllers
receive the state measurement x(tk) from the sensors.

2. At iteration c (c � 1):
2.1. All the distributed LMPC controllers exchange

their latest future input trajectories.
2.2. Each LMPC controller evaluates its own future

input trajectory based on x(tk) and the latest
received input trajectories of all the other LMPC
controllers.

3. If the termination condition is satisfied, each
LMPC controller sends the first step input value
of its latest input trajectory to its actuators; if the
termination condition is not satisfied, go to step 2
(c ¼ c þ 1).

Note that at the initial iteration, all the LMPC control-
lers use h(x) to estimate the input trajectories of all the

other controllers. Note also that the number of iterations c

can be variable and it does not affect the closed-loop sta-

bility of the proposed distributed LMPC architecture; a

point that will be made clear below. For the iterations in

this distributed LMPC architecture, there are different

choices of the termination condition. For example, the

number of iterations c may be restricted to be smaller

than a maximum iteration number cmax (i.e., c � cmax) or

the iterations may be terminated when the difference of

the performance or the solution between two consecutive

iterations is smaller than a threshold value or the iterations

maybe terminated when a maximum computational time is

reached.

To proceed, we define x̂ðsjtkÞ for s [ [0, ND) as the nomi-
nal sampled trajectory of the system of Eq. 1 associated with
the feedback control law h(x) and sampling time D starting
from x(tk). This nominal sampled trajectory is obtained by
integrating recursively the following differential equation:

_̂xðsjtkÞ ¼ f ðx̂ðsjtkÞÞ þ
Xm
i¼1

giðx̂ðsjtkÞÞhiðx̂ðlDjtkÞÞ;

8s 2 ððlD; ðlþ 1ÞDÞÞ; l ¼ 0;…;N � 1:

On the basis of x̂ðsjtkÞ, we can define the following variable

u�;0p;j ðsjtkÞ ¼ hjðx̂ðlDjtkÞÞ;
j ¼ 1;…;m; 8s 2 ððlD; ðlþ 1ÞDÞÞ; l ¼ 0;…;N � 1;

which will be used as the initial guess of the trajectory of uj.
The proposed design of the LMPC j, j ¼ 1,…,m, at itera-

tion c is based on the following optimization problem:

u�;cp;j ðsjtkÞ ¼ arg min
up;j2SðDÞ

Z ND

0

ð~xTðsÞQc~xðsÞ

þ
Xm
i¼1

up;iðsÞTRciup;iðsÞ�ds ð19aÞ

s:t: _~xðsÞ ¼ f ð~xðsÞÞ þ
Xm
i¼1

gið~xðsÞÞup;i (19b)

up;iðsÞ ¼ u�;c�1
p;i ðsjtkÞ; 8i 6¼ j (19c)

up;jðsÞ 2 Uj (19d)

~xð0Þ ¼ xðtkÞ (19e)

@VðxÞ
@x

gjðxðtkÞÞup;jð0Þ � @VðxÞ
@x

gjðxðtkÞÞhjðxðtkÞÞ (19f)

where ~x is the predicted trajectory of the nominal system with
uk, the input trajectory, computed by the LMPCs of Eq. 19 and
all the other inputs are the optimal input trajectories at iteration
c � 1 of the rest of distributed controllers. The optimal
solution to the optimization problem of Eq. 19 is denoted
u�;cp;j (s|tk), which is defined for s [ [0,ND). Accordingly, we
define the final optimal input trajectory of LMPC j (that is, the
optimal trajectories computed at the last iteration) as u�p;j(s|tk),
which is also defined for s [ [0, ND).

The manipulated inputs of the proposed control design of
Eq. 19 are defined as follows:

uiðtÞ ¼ u�p;iðt� tkjtkÞ; i ¼ 1;…;m; 8t 2 ½tk; tkþ1Þ: (20)

In what follows, we refer to this distributed LMPC archi-
tecture as the iterative distributed LMPC. The stability prop-
erty of the iterative distributed LMPC is stated in the follow-
ing Theorem 2.

Theorem 2. Consider the system of Eq. 1 in closed-loop
under the distributed LMPC of Eqs. 19 and 20 based on the
controller h(x) that satisfies the condition of Eq. 2. Let ew [
0, D [ 0 and q [qs [ 0 satisfy the constraint of Eq. 9. For
any N � 1 and c � 1, if x(t0) [ Xq and if q* �q where q*
is defined as in Eq. 10, then the state x(t) of the closed-loop
system is ultimately bounded in Xq*.

Proof. Similar to the proof of Theorem 1, the proof of
Theorem 2 also consists of two parts. We first prove that the
optimization problem of Eq. 19 is feasible for each iteration
c and x [ Xq. Then we prove that, under the proposed dis-
tributed LMPC scheme of Eqs. 19 and 20, the state of the
system of Eq. 1 is ultimately bounded in Xq*.

Part 1: To prove the feasibility of the optimization prob-
lem of Eq. 19, we only have to prove that there exists a
up,j(0) which satisfies the input constraint of Eq. 19d and the
constraint of Eq. 19f. This is because the constraint of Eq.
19f is only enforced on the first prediction step of up,j(s) and
in the prediction time s [ [D, ND), the input constraint of
Eq. 20 can be easily satisfied with up,j(s) being any value in
the convex set Uj.

We assume that x(tk) [ Xq (x(t) is bounded in Xq, which
will be proved in Part 2). It is easy to verify that the value
of up,j such that up,j(0) ¼ hj(x(tk)) satisfies the input con-
straint of Eq. 19d (assumed property of h(x) for x [ Xq) and
the constraint of Eq. 19f for all possible c, thus, the feasibil-
ity of LMPC j, j ¼ 1,…,m, is guaranteed.

Part 2. By adding the constraints of Eq. 19f of each
LMPC together, we have

Xm
j¼1

@VðxÞ
@x

gjðxðtkÞÞu�;cp;j ð0jtkÞ �
Xm
j¼1

@VðxÞ
@x

gjðxðtkÞÞhjðxðtkÞÞ

It follows from the above inequality and condition of Eq.
2 that
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@V

@x
f ðxðtkÞÞ þ

Xm
j¼1

gjðxðtkÞÞu�;cp;j ð0jtkÞ
 !

� @V

@x
f ðxðtkÞÞ þ

Xm
j¼1

gjðxðtkÞÞhjðxðtkÞÞ
 !

� �a3ðjxðtkÞjÞ: ð21Þ

Following the same approach as in the proof of Theorem
1, we know that if condition of Eq. 9 is satisfied, then the
state of the closed-loop system can be proved to be main-
tained in Xq* under the proposed distributed MPC architec-
ture of Eqs. 19 and 20. n

Remark 5. Note that the distributed MPC designs have the
same stability region Xq as the one of the Lyapunov-based
controller h(x). When the stability of the Lyapunov-based con-
troller h(x) is global (i.e., the stability region is the entire state
space), then the stability of the distributed MPC designs is
also global. Note also that for any initial condition in Xq, the
distributed MPC designs are proved to be feasible.

Remark 6. We do not consider delays introduced into the
system by the communication network or by the time needed
to solve the optimization problems. In future studies, these
delays will be taken into account in the formulation of the
controllers. In this study, state constraints have also not been
considered but the proposed designs can be extended to han-
dle state constraints by restricting the closed-loop stability
region further to satisfy the state constraints.

Remark 7. The choice of the horizon of the distributed
MPC designs does not affect the stability of the closed-loop
system. For any horizon length N � 1, the closed-loop sta-
bility is guaranteed by the constraints of Eqs. 7g and 19f.
However, the choice of the horizon does affect the perform-
ance of the distributed MPC designs.

Remark 8. Note that because the manipulated inputs enter
the dynamics of the system of Eq. 1 in an affine manner, the con-
straints designed in the LMPC optimization problems of Eqs. 7
and 19 to guarantee the closed-loop stability can be decoupled
for different distributed controllers as in Eqs. 7g and 19f.

Remark 9. In the sequential distributed LMPC architec-
ture the distributed controllers are evaluated in sequence,
which implies that the minimal time to obtain a set of solu-
tions to all the LMPC controllers is the sum of the evalua-
tion times of all the LMPC controllers; whereas in the itera-
tive distributed LMPC architecture the distributed controllers
are evaluated in parallel, which implies that the minimal
time to obtain a set of solutions to all the LMPC controllers
in each iteration is the largest evaluation time among all the
LMPCs.

Remark 10. Note that the sequential (or iterative) distrib-
uted LMPC is not a direct decomposition of the centralized
LMPC because the set of constraints of Eq. 7g (or Eq. 19f)
for j ¼ 1,…,m in the distributed LMPC formulation of Eq. 7
(or Eq. 19) imposes a different feasibility region from the
one of the centralized LMPC of Eq. 5, which has a single
constraint (Eq. 5e).

Remark 11. In general, there is no guaranteed conver-
gence of the optimal cost or solution of an iterated distrib-
uted MPC to the optimal cost or solution of a centralized

MPC for general nonlinear constrained systems because of
the non-convexity of the MPC optimization problems. The
reader may refer to References 3 and 7 for discussions on
the conditions under which convergence of the solution of a
distributed linear or convex MPC design to the solution of a
centralized MPC or a Pareto optimal solution is ensured in
the context of linear systems.

Remark 12. Note also that, in general, there is no guaran-
tee that the closed-loop performance of one (centralized or
distributed) MPC architecture discussed in this study should
be superior than the others since the solutions provided by
these MPC architectures are proved to be feasible and stabi-
lizing but the superiority of the performance of one MPC
architecture over another is not established. This is because
the MPC designs are implemented in a receding horizon
scheme and the prediction horizon is finite; and also because
the different MPC designs are not equivalent as we dis-
cussed in Remark 10 and the non-convexity property as we
discussed in Remark 11. In applications of these MPC archi-
tectures, especially for chemical process control in which
non-convex problems is a very common occurrence, simula-
tions should be conducted before making decisions as to
which architecture should be used.

Application to a Chemical Process Example

The process of alkylation of benzene with ethylene to pro-
duce ethylbenzene is widely used in the petrochemical indus-
try. Dehydration of the product produces styrene, which is
the precursor to polystyrene and many copolymers. Over the
last 2 decades, several methods and simulation results of al-
kylation of benzene with catalysts have been reported in the
literature. The process model developed in this section is
based on the References 26–29. More specifically, the pro-
cess considered in this study consists of four continuously
stirred tank reactors (CSTRs) and a flash tank separator, as
shown in Figure 4. The CSTR-1, CSTR-2, and CSTR-3 are
in series and involve the alkylation of benzene with ethyl-
ene. Pure benzene is fed from stream F1 and pure ethylene
is fed from streams F2, F4, and F6. Two catalytic reactions

Figure 4. Process flow diagram of alkylation of ben-
zene.
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take place in CSTR-1, CSTR-2, and CSTR-3. Benzene (A)
reacts with ethylene (B) and produces the required product
ethylbenzene (C) (reaction 1); ethylbenzene can further react
with ethylene to form 1,3-diethylbenzene (D) (reaction 2)
which is the byproduct. The effluent of CSTR-3, including
the products and leftover reactants, is fed to a flash tank sep-
arator, in which most of benzene is separated overhead by
vaporization and condensation techniques and recycled back
to the plant and the bottom product stream is removed. A
portion of the recycle stream Fr2 is fed back to CSTR-1 and
another portion of the recycle stream Fr1 is fed to CSTR-4
together with an additional feed stream F10 which contains
1,3-diethylbenzene from further distillation process that we
do not consider in this example. In CSTR-4, reaction 2 and
catalyzed transalkylation reaction in which 1,3-diethylben-
zene reacts with benzene to produce ethylbenzene (reaction
3) takes place. All chemicals left from CSTR-4 eventually
pass into the separator. All the materials in the reactions are

in liquid phase due to high pressure. The dynamic equations
describing the behavior of the process, obtained through ma-
terial and energy balances under standard modeling assump-
tions, are given below:

dCA1

dt
¼ F1CA0 þ Fr2CAr � F3CA1

V1

� r1ðT1;CA1;CB1Þ (22a)

dCB1

dt
¼ F2CB0 þ Fr2CBr � F3CB1

V1

� r1ðT1;CA1;CB1Þ
� r2ðT1;CB1;CC1Þ ð22bÞ

dCC1

dt
¼ Fr2CCr � F3CC1

V1

þ r1ðT1;CA1;CB1Þ � r2ðT1;CB1;CC1Þ
(22c)

dCD1

dt
¼ Fr2CDr � F3CD1

V1

þ r2ðT1;CB1;CC1Þ (22d)

dT1
dt

¼ Q1 þ F1CA0HAðTA0Þ þ F2CB0HBðTB0Þ þ
PA;B;C;D

i ðFr2CirHiðT4Þ � F3Ci1HiðT1ÞÞPA;B;C;D
i Ci1CpiV1

þ�DHr1r1ðT1;CA1;CB1Þ � DHr2r2ðT1;CB1;CC1ÞPA;B;C;D
i Ci1CpiV1

(22e)

dCA2

dt
¼ F3CA1 � F5CA2

V2

� r1ðT2;CA2;CB2Þ (22f)

dCB2

dt
¼ F3CB1 þ F4CB0 � F5CB2

V2

� r1ðT2;CA2;CB2Þ � r2ðT2;CB2;CC2Þ ð22gÞ
dCC2

dt
¼ F3CC1� F5CC2

V2

þ r1ðT2;CA2;CB2Þ� r2ðT2;CB2;CC2Þ
(22h)

dCD2

dt
¼ F3CD1 � F5CR2

V2

þ r2ðT2;CB2;CC2Þ (22i)

dT2
dt

¼Q2þF4CB0HBðTB0Þþ
PA;B;C;D

i ðF3Ci1HiðT1Þ�F5Ci2HiðT2ÞÞPA;B;C;D
i Ci2CpiV2

þ�DHr1r1ðT2;CA2;CB2Þ � DHr2r2ðT2;CA2;CB2ÞPA;B;C;D

i
Ci2CpiV2

ð22jÞ

dCA3

dt
¼ F5CA2 � F7CA3

V3

� r1ðT3;CA3;CB3Þ (22k)

dCB3

dt
¼ F5CB2 þ F6CB0 � F7CB3

V3

� r1ðT3;CA3;CB3Þ � r2ðT3;CB3;CC3Þ ð22lÞ

dCC3

dt
¼ F5CC2 � F7CC3

V3

þ r1ðT3;CA3;CB3Þ � r2ðT3;CB3;CC3Þ
(22m)

dCD3

dt
¼ F5CD2 � F7CD3

V3

þ r2ðT3;CB3;CC3Þ (22n)

dT3
dt

¼Q3þF6CB0HBðTB0Þþ
PA;B;C;D

i ðF5Ci2HiðT2Þ�F7Ci3HiðT3ÞÞPA;B;C;D
i Ci3CpiV3

þ�DHr1r1ðT3;CA3;CB3Þ � DHr2r2ðT3;CB3;CC3ÞPA;B;C;D
i Ci3CpiV3

(22o)

dCA4

dt
¼ F7CA3 þ F9CA5 � FrCAr � F8CA4

V4

(22p)

dCB4

dt
¼ F7CB3 þ F9CB5 � FrCBr � F8CB4

V4

(22q)

dCC4

dt
¼ F7CC3 þ F9CC5 � FrCCr � F8CC4

V4

(22r)

dCD4

dt
¼ F7CD3 þ F9CD5 � FrCDr � F8CD4

V4

(22s)

dT4
dt

¼ Q4 þ
PA;B;C;D

i ðF7Ci3HiðT3Þ þ F9Ci5HiðT5Þ � FrCirHiðT4Þ � F8Ci4HiðT4Þ � FrCirHvapiPA;B;C;D
i Ci4CpiV4

(22t)
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dCA5

dt
¼ Fr1CAr � F9CA5

V5

� r3ðT5;CA5;CD5Þ (22u)

dCB5

dt
¼ Fr1CBr � F9CB5

V5

� r2ðT5;CB5;CC5Þ (22v)

dCC5

dt
¼ Fr1CCr� F9CC5

V5

� r2ðT5;CB5;CC5Þþ 2r3ðT5;CA5;CD5Þ
(22w)

dCD5

dt
¼ Fr1CDr þ F10CD0 � F9CD5

V5

þ r2ðT5;CB5;CC5Þ
� r3ðT5;CA5;CD5Þ ð22xÞ

dT5
dt

¼Q5þF10CD0HDðTD0Þþ
PA;B;C;D

i ðFrCirHiÞðT4Þ�F9Ci5HiðT5ÞPA;B;C;D
i Ci5CpiV5

þ�DHr2r2ðT5;CB5;CC5Þ � DHr3r3ðT5;CA5;CD5ÞPA;B;C;D
i Ci5CpiV5

ð22yÞ

where r1, r2, and r3 are the reaction rates of reactions 1, 2, and
3, respectively, and Hi, i ¼ A, B, C, D, are the enthalpies of the
reactants. The reaction rates are related to the concentrations
of the reactants and the temperature in each reactor as follows:

r1ðT;CA;CBÞ ¼ kr1C
0:32
A C1:5

B ; r2ðT;CB;CCÞ ¼ kr2C
2:5
B C0:5

C

ð1þ kEB2CDÞ;

r3ðT;CA;CDÞ ¼ kr3C
1:0218
A CD

ð1þ kEB3CAÞ
with

kr1 ¼ 0:0840eð�9502=RTÞ; kr2 ¼ 0:0850eð�20640=RTÞ;

kr3 ¼ 237:8eð�61280=RTÞ; kEB2 ¼ 0:0152eð�3933=RTÞ;

kEB3 ¼ 0:4901eð�50870=RTÞ

The heat capacities of the species are assumed to be con-
stants and the molar enthalpies have a linear dependence on
temperature as follows:

HiðTÞ ¼ Hiref þ CpiðT � TrefÞ; i ¼ A;B;C;D

where Cpi , i ¼ A, B, C, D are heat capacities.
The model of the flash tank separator is developed under the

assumption that the relative volatility of each species has a lin-
ear correlation with the temperature of the vessel within the
operating temperature range of the flash tank, as shown below:

aA ¼ 0:0449T4 þ 10; aB ¼ 0:0260T4 þ 10

aC ¼ 0:0065T4 þ 0:5; aD ¼ 0:0058T4 þ 0:25

where ai, i ¼ A, B, C,D, represent the relative volatilities. It has
also been assumed that there is a negligible amount of reaction
taking place in the separator. The following algebraic equations
model the composition of the overhead stream relative to the
composition of the liquid holdup in the flash tank:

Mi ¼ ðF7Ci3 þ F9Ci5Þ aiðF7Ci3 þ F9Ci5ÞPA;B;C;D
k akðF7Ck3 þ F9Ck5Þ

;

i ¼ A;B;C;D

where Mi, i ¼ A, B, C, D are the molar flow rates of the
overhead reactants. On the basis of Mi, i ¼ A, B, C, D, we can
calculate the concentration of the reactants in the recycle
streams as follows:

Cir ¼ MiPA;B;C;D
k Mi=Ck0

; i ¼ A;B;C;D

where Ck0, k ¼ A,B,C,D, are the mole densities of pure
reactants. The condensation of vapor takes place overhead, and
a portion of the condensed liquid is purged back to separator to
keep the flow rate of the recycle stream at a fixed value. The
temperature of the condensed liquid is assumed to be the same
as the temperature of the vessel.

Table 1. Process Variables

CA1, CB1, CC1, CD1 Concentrations of A, B, C, D in CSTR-1
CA2, CB2, CC2, CD2 Concentrations of A, B, C, D in CSTR-2
CA3, CB3, CC3, CD3 Concentrations of A, B, C, D in CSTR-3
CA4, CB4, CC4, CD4 Concentrations of A, B, C, D in separator
CA5, CB5, CC5, CD5 Concentrations of A, B, C, D in CSTR-4
CAr, CBr, CCr, CDr Concentrations of A, B, C, D in Fr, Fr1, Fr2

T1, T2, T3, T4, T5 Temperatures in each vessel
Tref Reference temperature
F3, F5, F7, F8, F9 Effluent flow rates from each vessel
F1, F2, F4, F6, F10 Feed flow rates to each vessel
Fr, Fr1, Fr2 Recycle flow rates
HvapA,HvapB,HvapC,HvapD Enthalpies of vaporization of A, B, C, D
HAref, HBref, HCref, HDref Enthalpies of A, B, C, D at Tref
DHr1, DHr2, DHr3 Heat of reactions 1, 2, and 3
V1, V2, V3, V4, V5 Volume of each vessel
Q1, Q2, Q3, Q4, Q5 External heat/coolant inputs to each vessel
CpA, CpB, CpC, CpD Heat capacity of A, B, C, D at liquid phase
aA, aB, aC, aD Relative volatilities of A, B, C, D
CA0, CB0, CC0, CD0 Molar densities of pure A, B, C, D
TA0, TB0, TD0 Feed temperatures of pure A, B, D

Table 2. Parameter Values

F1 ¼ 7.1 � 10�3 m3/s Fr ¼ 0.012 m3/s
F2 ¼ 8.697 � 10�4 m3/s Fr1 ¼ 0.006 m3/s
Fr2 ¼ 0.006 m3/s V1 ¼ 1 m3

F10 ¼ 2.31 � 10�3 m3/s V2 ¼ 1 m3

HvapA ¼ 3.073 � 104 J/mol V3 ¼ 1 m3

HvapB ¼ 1.35 � 104 J/mol V4 ¼ 3 m3

HvapC ¼ 4.226 � 104 J/mol V5 ¼ 1 m3

HvapD ¼ 4.55 � 104 J/mol CpA ¼ 184.6 J/mol K
DHr1 ¼ �1.536 � 105 J/mol CpB ¼ 59.1 J/mol K
DHr2 ¼ �1.118 � 105 J/mol CpC ¼ 247 J/mol K
DHr3 ¼ 4.141 � 105 J/mol CpD ¼ 301.3 J/mol K
CA0 ¼ 1.126 � 104 Mol/m3 Tref ¼ 450 K
CB0 ¼ 2.028 � 104 Mol/m3 TA0 ¼ 473 K
CC0 ¼ 8174 Mol/m3 TB0 ¼ 473 K
CD0 ¼ 6485 Mol/m3 TD0 ¼ 473 K

Table 3. Steady-State Input Values for xs

Q1s �4.4 � 106 [J/s] Q2s �4.6 � 106 [J/s] Q3s �4.7 � 106 [J/s]
Q4s 9.2 � 106 [J/s] Q5s 5.9 � 106 [J/s] F4s, F6s 8.697 � 10�4 [m3/s]
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The definitions for the variables used in the aforemen-
tioned model can be found in Table 1, with the parameter
values given in Table 2.

Each of the tanks has an external heat/coolant input. The
manipulated inputs to the process are the heat injected to or
removed from the five vessels, Q1, Q2, Q3, Q4, and Q5, and the
feed stream flow rates to CSTR-2 and CSTR-3, F4 and F6.

The states of the process consist of the concentrations of
A, B, C, D in each of the five vessels and the temperatures
of the vessels. The state of the process is assumed to be
available continuously to the controllers. We consider a sta-
ble steady state (operating point), xs, of the process which is
defined by the steady-state inputs Q1s, Q2s, Q3s, Q4s, Q5s,
F4s, and F6s, which are shown in Table 3. The steady-state
temperatures in the five vessels are the following:

T1s ¼ 477:24K; T2s ¼ 476:97K; T3s ¼ 473:47K; T4s
¼ 470:60K; T5s ¼ 478:28K:

The control objective is to regulate the system from an
initial state to the steady state. The temperatures of the five
vessels in the initial state are as follows:

T1o ¼ 443:02K; T2o ¼ 437:12K; T3o ¼ 428:37K; T4o
¼ 433:15K; T5o ¼ 457:55K:

The first distributed controller (LMPC 1) will be designed
to decide the values of Q1, Q2, and Q3, the second distrib-
uted controller (LMPC 2) will be designed to decide the val-
ues of Q4 and Q5, and the third distributed controller (LMPC
3) will be designed to decide the values of F4 and F6. Tak-
ing this into account, the process model of Eq. 22a belongs
to the following class of nonlinear systems:

_xðtÞ ¼ f ðxÞ þ g1ðxÞu1ðxÞ þ g2ðxÞu2ðxÞ þ g3ðxÞu3ðxÞ

where the state x is the deviation of the state of the process
from the steady state, uT1 ¼ [u11 u12 u13] ¼ [Q1 � Q1s Q2 � Q2s

Q3 � Q3s], u
T
2 ¼ [u21 u22] ¼ [Q4 � Q4s Q5 � Q5s] and uT3 ¼

[u31 u32] ¼ [F4 � F4s F6 � F6s] are the manipulated inputs
which are subject to the constraints shown in Table 4.

In the control of the process, u1 and u2 are necessary to keep
the stability of the closed-loop system, whereas u3 can be used
as an extra manipulated input to improve the closed-loop per-
formance. To illustrate the theoretical results, we first design
the Lyapunov-based controller h(x) ¼ [h1(x) h2(x) h3(x)]

T. Spe-
cifically, h1(x) and h2(x) are designed as follows

30:

hiðxÞ ¼ � Lf Vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLf VÞ2þðLgi VÞ4

p
ðLgi VÞ2

LgiV if LgiV 6¼ 0

0 if LgiV ¼ 0

8<
:

where i ¼ 1, 2, Lf V ¼ @V
@x f ðxÞ and LgiV ¼ @V

@x giðxÞ denote the
Lie derivatives of the scalar function V with respect to the
vector fields f and gi (i ¼ 1, 2), respectively. The controller
h3(x) is chosen to be h3(x) ¼ [0 0]T because the input set u3 is
not needed to stabilize the process. We consider a Lyapunov
function V(x) ¼ xT Px with P being the following weight
matrix

{

P ¼ diag{ð½1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10�Þ:

The weights in P are chosen by a trail-and-error proce-
dure. The basic idea behind this procedure is that more
weight should be put on the temperatures of the five vessels
because temperatures have more significant effect on the
overall control performance, and the Lyapunov-based con-
troller h(x) should be able to stabilize the closed-loop system
asymptotically with continuous feedback and actuation.

On the basis of h(x), we design the centralized LMPC, the
sequential distributed LMPC, and the iterative distributed
LMPC. The sampling time used is D ¼ 30 s and the weight
matrices

Qc ¼ diagð½1 1 1 1 103 1 1 1 1 103 10 10 10 10 104 1 1 1 1 103 1
1 1 1 103�Þ:
and Rc1 ¼ diag([10�8 10�8 10�8]), Rc2 ¼ diag([10�8 10�8]),
and Rc3 ¼ diag([1 1]).

First, we carried out a set of simulations which demon-
strate that the Lyapunov-based controller and the different
schemes of LMPCs can all stabilize the closed-loop system
asymptotically. Figure 5 shows the trajectories of the Lyapu-

Table 4. Manipulated Input Constraints

|u11| � 7.5
� 105 [J/s]

|u1i| � 5 � 105

[J/s],(i ¼ 2,3)
|u21| � 6
� 105 [J/s]

|u22| � 5
� 105 [J/s]

|u31| � 4.93 � 10�5

[m3/s]
|u32| � 4.93
� 10�5 [m3/s]

Figure 5. Trajectories of the Lyapunov function V(x)
under the Lyapunov-based controller h(x)
implemented in a sample-and-hold fashion
(solid line), the centralized LMPC (dashed
line), the sequential distributed LMPC (dash-
dotted line), and the iterative distributed
LMPC with c 5 1 (dotted line).

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Table 5. Mean Evaluation Time of Different LMPC
Optimization Problems for 100 Evaluations

Centralized LMPC

N ¼ 1 (s) N ¼ 3 (s) N ¼ 6 (s)

2.192 8.694 27.890

Sequential LMPC 1 0.472 2.358 6.515
LMPC 2 0.497 1.700 4.493
LMPC 3 0.365 1.453 3.991

Iterative LMPC 1 0.484 2.371 6.280
LMPC 2 0.426 1.716 4.413
LMPC 3 0.185 0.854 2.355

{diag(v) denotes a matrix with its diagonal elements being the elements of vec-
tor v and all the other elements being zeros.
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nov function V(x) under the different control schemes. Note
that because of the constraints of Eqs. 5e, 7g, and 19f, the
trajectories of the Lyapunov function of the closed-loop sys-
tem under the centralized LMPC, the sequential distributed
LMPC and the iterative distributed LMPC are guaranteed to
be bounded by the corresponding Lyapunov function trajec-
tory under the Lyapunov-based controller h(x) implemented
in a sample-and-hold fashion with the sampling time D. This
point is also illustrated in Figure 5.

Next, we compare the mean evaluation times of the central-
ized LMPC optimization problem and the sequential and itera-
tive distributed LMPC optimization problems. Each LMPC
optimization problem was evaluated 100 times at different
conditions. Different prediction horizons were considered in
this set of simulations. The simulations were carried out using
Java programming language in a Pentium 3.20 GHz computer.
The optimization problems were solved using the open source
interior point optimizer Ipopt.31 The results are shown in Ta-
ble 5. From Table 5, we can see that in all cases, the time
needed to solve the centralized LMPC is much larger than the
time needed to solve the sequential or iterative distributed
LMPCs. This is because the centralized LMPC has to solve a
much larger (in terms of decision variables) optimization prob-
lem than the distributed LMPCs. We can also see that the eval-
uation time of the centralized LMPC is even larger than the
sum of evaluation times of LMPC 1, LMPC 2, and LMPC 3 in
the sequential distributed LMPC, and the times needed to
solve the distributed LMPCs in both sequential and iterative
distributed schemes are of the same order of magnitude.

In the following set of simulations, we compare the cen-
tralized LMPC and the two distributed LMPC schemes from
a performance index point of view. In this set of simulations,
the prediction horizon is N ¼ 1. To carry out this compari-
son, the same initial condition and parameters were used for

the different control schemes and the total cost under each
control scheme was computed as follows:

J ¼
XM
i¼0

xðtiÞTQcxðtiÞ þ u1ðtiÞTRc1u1ðtiÞ þ u2ðtiÞTRc2u2ðtiÞ

þ u3ðtiÞTRc3u3ðtiÞ

where t0 ¼ 0 is the initial time of the simulations, ti ¼ t0 þ iD
are the time instants taken into account, and tM ¼ 1000 s is the
end of the simulations. Table 6 shows the total cost along the
closed-loop system trajectories (trajectories I) under the
different control schemes. For the iterative distributed MPC
design, different maximum number of iterations, cmax, are
used. From Table 6, we can see that in this set of simulations,
the centralized LMPC gives the lowest performance cost, the
sequential distributed LMPC gives lower cost than the iterative
distributed LMPC when there is no iteration (cmax ¼ 1).
However, as the iteration number c increases, the performance
cost given by the iterative distributed LMPC decreases and
converges to the cost of the one corresponding to the
centralized LMPC. This point is also shown in Figure 6.

Note that the above set of simulations only represents one
case of many possible cases. As we discussed in Remarks 11
and 12, there is no guaranteed convergence of the perform-
ance of distributed MPC to the performance of a centralized
MPC and there is also no guaranteed superiority of the per-
formance of one distributed LMPC scheme over the others.
In the following, we show two sets of simulations to illus-
trate these points. In both sets of simulations, we chose dif-
ferent matrices Rc1 and Rc2, and all the other parameters (Qc,
Rc3, D, N) remained the same as the previous set of simula-
tions. In the first set of simulations, we picked Rc1 ¼ diag([5
� 10�5 5 � 10�5 5 � 10�5]), and Rc2 ¼ diag([5 � 10�5 5
� 10�5]). The total performance cost along the closed-loop
system trajectories (trajectories II) under this simulation set-
ting are shown in Table 7. From Table 7, we can see that
the centralized LMPC provides a much lower cost than both
the sequential and iterative distributed LMPCs. We can also
see that as the number of iterations increases, the iterative
distributed LMPC converges to a value which is different
from the one obtained by the centralized LMPC. In the sec-
ond set of simulations, we picked Rc1 ¼ diag([1 � 10�4 1 �
10�4 1 � 10�4]), Rc2 ¼ diag([1 � 10�4 1 � 10�4]) and the
total performance cost along the closed-loop system

Figure 6. Total performance cost along the closed-loop
system trajectories of centralized LMPC
(dashed line), sequential distributed LMPC
(dash-dotted line), and the iterative distrib-
uted LMPC (solid line).

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Table 7. Total Performance Cost Along the Closed-Loop
System Trajectories II

J (� 107)
Centralized 5.052
Sequential 7.039
cmax 1 3 5 6
Iterative 7.2286 7.2241 7.2240 7.2240

Table 6. Total Performance Cost Along the Closed-Loop System Trajectories I

J (� 107)
Centralized 1.8858
Sequential 1.8891
cmax 1 3 5 7 9 11 13 15
Iterative 1.8955 1.8883 1.8867 1.8863 1.8862 1.8859 1.8858 1.8858
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trajectories (trajectories III) are shown in Table 8 from
which we can see that the centralized LMPC provides a
higher cost than both distributed LMPCs.

Conclusions

In the present study, we presented two different architec-
tures for distributed MPC for nonlinear process systems: se-
quential distributed MPC and iterative distributed MPC. In
both architectures, the MPC controllers were designed via
LMPC techniques. In the sequential distributed MPC archi-
tecture, the distributed LMPC controllers adopt a one-direc-
tional communication strategy and are evaluated in sequence
and once at each sampling time; in the iterative distributed
MPC architecture, the distributed LMPC controllers utilize a
bi-directional communication strategy, are evaluated in par-
allel and iterate to improve closed-loop performance. Each
LMPC controller in both architectures incorporates a suitable
stability constraint which ensures that the state of the closed-
loop system under the proposed distributed MPC architec-
tures is ultimately bounded in an invariant set. Extensive
simulations using a catalytic alkylation of benzene process
example were carried out to compare the proposed distrib-
uted MPC architectures with existing centralized LMPC
algorithms from computational time and closed-loop per-
formance points of view.
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Table 8. Total Performance Cost Along the Closed-Loop
System Trajectories III

J (� 107)
Centralized 3.8564
Sequential 3.6755
cmax 1 3 4
Iterative 3.6663 3.6639 3.6639
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