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a b s t r a c t

In this work, we design distributed Lyapunov-based model predictive controllers for nonlinear systems
that coordinate their actions and take asynchronous measurements and delays explicitly into account.
Sufficient conditions underwhich the proposed distributed control designs guarantee that the state of the
closed-loop system is ultimately bounded in a region that contains the origin are provided. The theoretical
results are demonstrated through a chemical process example.
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1. Introduction

Process control systems traditionally utilize dedicated, point-
to-point wired communication links to measurement sensors and
control actuators to regulate process variables at desired values.
While this paradigm to process control has been successful, we are
currently witnessing an augmentation of the existing, dedicated
local control networks, with additional networked (wired and/or
wireless) actuator/sensor devices which have become cheap and
easy-to-install the last few years. Such an augmentation in sensor
information and networked-based availability of data has the po-
tential (Christofides et al., 2007; Neumann, 2007; Ydstie, 2002) to
significantly improve: (i) the achievable closed-loop system per-
formance, and (ii) the ability of the plant management systems
to prevent or deal with abnormal situations more quickly and
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effectively. However, augmenting local control networks with ad-
ditional networked sensors and actuators poses a number of new
challenges including the feedback of additionalmeasurements that
may be asynchronous and/or delayed. Furthermore, augmenting
dedicated, local control networks with additional networked sen-
sors and actuators gives rise to the need to design/redesign and
coordinate separate control systems that operate on the process.
Model predictive control (MPC) is a natural control framework

to deal with the design of coordinated, distributed control systems
because it can account for the actions of other actuators in com-
puting the control action of a given set of actuators in real-time.
Motivated by the lack of available methods for the design of net-
worked control systems (NCS) for chemical processes, in a previous
work (Liu, Muñoz de la Peña, Ohran, Christofides & Davis, 2008),
we introduced a decentralized control architecture for nonlinear
systemswith continuous and asynchronousmeasurements. In this
architecture, the pre-existing local control system (LCS) uses con-
tinuous sensing and actuation and an explicit control law. On the
other hand, the NCS uses networked sensors and actuators and
has access to additional measurements that are not available to
the LCS. The NCS is designed via Lyapunov-based model predic-
tive control (LMPC). Following up on this work, in another recent
work (Liu, Muñoz de la Peña & Christofides, 2009), we proposed
a distributed model predictive control (MPC) method for the de-
sign of networked control systemswhere both the pre-existing LCS
and the NCS are designed via LMPC. This distributed MPC design
utilizes continuous feedback, requires one-directional communi-
cation between the two distributed controllers, and may reduce

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:jinfeng@ucla.edu
mailto:davidmps@cartuja.us.es
mailto:pdc@seas.ucla.edu
http://dx.doi.org/10.1016/j.automatica.2009.10.033


J. Liu et al. / Automatica 46 (2010) 52–61 53
the computational burden in the evaluation of the optimal manip-
ulated inputs compared with a fully centralized LMPC. The results
obtained in Liu et al. (2009) are based on the assumption that con-
tinuous state feedback is available. In the present work, we con-
sider the design of distributed MPC schemes in a more common
setting for chemical processes. That is, measurements of the state
are not available continuously but asynchronously andwith delays.
With respect to other available results on distributed MPC design,
several distributed MPC methods have been proposed in the liter-
ature that deal with the coordination of separate MPC controllers
(Camponogara, Jia, Krogh, & Talukdar, 2002; Dunbar, 2007; Ke-
viczky, Borrelli, & Balas, 2006;Magni & Scattolini, 2006; Raimondo,
Magni, & Scattolini, 2007; Rawlings & Stewart, 2007; Richards &
How, 2007). All of the above results are based on the assumption
of continuous sampling and perfect communication between the
sensor and the controller. Previous work on MPC design for sys-
tems subject to asynchronous or delayed measurements has pri-
marily focused on centralized MPC design (Liu, Muñoz de la Peña,
Christofides, & Davis, 2009;Muñoz de la Peña & Christofides, 2008)
and has not addressed distributed MPC with the exception of a re-
cent paper (Franco,Magni, Parisini, Polycarpou, & Raimondo, 2008)
which addresses the issue of delays in the communication between
the distributed controllers.
This work focuses on the distributed MPC of nonlinear systems

subject to asynchronous and delayedmeasurements. In the case of
asynchronous feedback, under the assumption that there exists an
upper bound on the interval between two successive state mea-
surements, distributed LMPC controllers are designed that utilize
one-directional communication and coordinate their actions to en-
sure that the state of the closed-loop system is ultimately bounded
in a region that contains the origin. Subsequently, we focus on
distributed MPC of nonlinear systems subject to asynchronous
measurements that also involve time-delays. Under the assump-
tion that there exists an upper bound on the maximum measure-
ment delay, a distributed LMPC design is proposed that utilizes
bi-directional communication between the distributed controllers
and takes the measurement delays explicitly into account to en-
force practical stability in the closed-loop system. The proposed
distributed MPC designs also possess explicitly characterized sets
of initial conditions starting fromwhere they are guaranteed to be
feasible and stabilizing. The theoretical results are demonstrated
through a chemical process example.

2. Preliminaries

2.1. Control problem formulation

We consider nonlinear systems described by the following
state-space model

ẋ(t) = f (x(t), u1(t), u2(t), w(t)) (1)

where x(t) ∈ Rnx is the state, u1(t) ∈ Rnu1 is the set of inputs
of controller 1 (which can be thought of as corresponding to an
LCS) and u2(t) ∈ Rnu2 is the set of inputs of controller 2 (which
can be thought of as corresponding to an NCS). The inputs u1 and
u2 are restricted to be in two nonempty convex sets U1 ⊆ Rnu1
and U2 ⊆ Rnu2 containing the origin, respectively. The disturbance
w(t) ∈ Rnw is bounded, i.e., w(t) ∈ W where W := {w ∈
Rnw s.t. |w| ≤ θ, θ > 0}.1 We assume that f is a locally Lipschitz
vector function and f (0, 0, 0, 0) = 0. This means that the origin is
an equilibrium point for the nominal system.

1
| · | denotes Euclidean norm of a vector.
Remark 1. In general, distributed control systems are formulated
based on the assumption that the controlled systems are decoupled
or partially decoupled. However, we consider a fully coupled
process model with two sets of possible manipulated inputs; this
is a common occurrence in process control as we illustrate in
Section 5.

Remark 2. In order to simplify the notation, we consider the case
of full state feedback that may be asynchronous and/or delayed.
The results can be extended to controllers based on partial state
measurements by introducing a state observer; the results can also
be extended to the case in which measurements are corrupted by
bounded noise by introducing a filter to estimate the state.

2.2. Lyapunov-based controller

We assume that there exists a Lyapunov-based controller
u1(t) = h(x(t))which satisfies the input constraints on u1 for all x
inside a given stability region and renders the origin of the nomi-
nal closed-loop system asymptotically stable with u2(t) = 0. The
importance and justification of this requirementwill bemade clear
in Sections 3 and 4 below. Using converse Lyapunov theorems (Lin,
Sontag, & Wang, 1996; Massera, 1956), this assumption implies
that there exist functions αi(·), i = 1, 2, 3, 4 of class K2 and a
continuously differentiable Lyapunov function V for the nominal
closed-loop system that satisfy the following inequalities

α1(|x|) ≤ V (x) ≤ α2(|x|),
∣∣∣∣∂V (x)∂x

∣∣∣∣ ≤ α4(|x|)
∂V (x)
∂x

f (x, h(x), 0, 0) ≤ −α3(|x|), h(x) ∈ U1

(2)

for all x ∈ O ⊆ Rnx where O is an open neighborhood of the origin.
We denote the regionΩρ ⊆ O3as the stability region of the closed-
loop system under the control u1 = h(x) and u2 = 0.
By continuity and the local Lipschitz property assumed for the

vector field f (x, u1, u2, w) and the fact that themanipulated inputs
u1 and u2 are bounded in convex sets, there exists a positive
constantM such that

|f (x, u1, u2, w)| ≤ M (3)

for all x ∈ Ωρ , u1 ∈ U1, u2 ∈ U2 and w ∈ W . In addition, by the
continuous differentiable property of the Lyapunov function V and
the Lipschitz property assumed for the vector field f (x, u1, u2, w),
there exist positive constants Lx, Rx, Rw such that∣∣∣∣∂V∂x f (x, u1, u2, 0)− ∂V∂x f (x′, u1, u2, 0)

∣∣∣∣ ≤ Lx|x− x′| (4)

and

|f (x, u1, u2, w)− f (x′, u1, u2, 0)| ≤ Rx|x− x′| + Rw|w| (5)

for all x, x′ ∈ Ωρ , u1 ∈ U1, u2 ∈ U2 andw ∈ W .

3. Distributed LMPC with asynchronous measurements

In this section, we design distributed LMPC for systems subject
to asynchronous measurements. In Section 4, we will extend the
results to systems subject to delayed measurements.

2 A continuous function α : [0, a) → [0,∞) is said to belong to classK if it is
strictly increasing and α(0) = 0.
3 We useΩρ to denote the setΩρ := {x ∈ Rnx |V (x) ≤ ρ}.
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3.1. Modeling of asynchronous measurements

We assume that the state of the system of Eq. (1), x(t), is avail-
able asynchronously at time instants tkwhere {tk≥0} is a random in-
creasing sequence. The distribution of {tk≥0} characterizes the time
needed to obtain a new measurement. In general, if there exists a
possibility of arbitrarily large periods of time in which a newmea-
surement is not available, then it is not possible to provide guar-
anteed stability properties. This is because there exists a non-zero
probability that the system may operate in an open-loop for a pe-
riod of time large enough for the state to leave the stability region.
In order to study the stability properties in a deterministic frame-
work, in the present work, we assume that there exists an upper
bound Tm on the interval between two successive measurements,
i.e., maxk{tk+1 − tk} ≤ Tm. This assumption is reasonable from a
process control perspective.

3.2. Distributed LMPC formulations

In Liu et al. (2009), we introduced a distributed MPC design
where both controller 1 and controller 2 were designed via LMPC.
Under the assumption of continuous measurements in Liu et al.
(2009), it was proved that this control scheme guarantees practical
stability of the closed-loop system and has the potential to main-
tain the closed-loop stability and performance in the face of new
or failing controllers/actuators and to reduce computational bur-
den in the evaluation of the optimal manipulated inputs compared
with a centralized LMPC controller. However, when asynchronous
measurements are present, the results obtained in Liu et al. (2009)
no longer hold. In order to simplify (but without loss of generality)
the notations and description of the proposed distributed LMPC for
system subject to asynchronous measurements (as well as asyn-
chronous and delayed measurements discussed in Section 4), we
will adopt the same strategy as used in Liu et al. (2009); that is,
to design one LMPC controller for controller 1, and one for con-
troller 2. The LMPC controllers computing the input trajectories of
u1 and u2 are referred to as LMPC 1 and LMPC 2, respectively. In
this section, we extend the results of Liu et al. (2009) to take into
account asynchronous measurements explicitly, both in the con-
straints imposed on the LMPC controllers and in the implementa-
tion strategy. A schematic diagram of the considered closed-loop
system is shown in Fig. 1.
In the presence of asynchronousmeasurements, the controllers

need to operate in an open-loop between successive state mea-
surements. We propose taking advantage of the MPC scheme to
update the inputs based on a prediction obtained using the model.
This is achieved by having the control actuators to store and imple-
ment the last computed optimal input trajectories. The proposed
implementation strategy is as follows

(1) When a measurement is available at tk, LMPC 2 computes the
optimal input trajectory of u2.

(2) LMPC 2 sends the entire optimal input trajectory to its ac-
tuators and also sends the entire optimal input trajectory to
LMPC 1.

(3) Once LMPC 1 receives the entire optimal input trajectory for
u2, it evaluates the optimal input trajectory of u1.

(4) LMPC 1 sends the entire optimal input trajectory to its actua-
tors.

(5) When a newmeasurement is received (k← k+1), go to step 1.

We first design the optimization problem of LMPC 2. This
optimization problem depends on the latest state measurement
x(tk), however, LMPC 2 does not have any information about the
value that u1 will take. In order to make a decision, LMPC 2 must
assume a trajectory for u1 along the prediction horizon. To this end,
Fig. 1. Distributed LMPC design for systems subject to asynchronous measure-
ments.

the Lyapunov-based controller u1 = h(x) is used. The LMPC 2 is
based on the following optimization problem

min
ua2∈S(∆)

∫ tk+N∆

tk
(x̃(t)TQc x̃(t)+ ua1(t)TRc1ua1(t)

+ ua2(t)TRc2ua2(t))dt (6a)

s.t. ˙̃x(t) = f (x̃(t), ua1(t), ua2(t), 0), ∀t ∈ [tk, tk + N∆) (6b)

ua1(t) = h(x̃(tk + j∆)), ∀t ∈ [tk + j∆, tk + (j+ 1)∆) (6c)
ua2(t) ∈ U2, ∀t ∈ [tk, tk + N∆) (6d)
˙̂x(t) = f (x̂(t), h(x̂(tk + j∆)), 0, 0),
∀t ∈ [tk + j∆, tk + (j+ 1)∆) (6e)

x̃(tk) = x̂(tk) = x(tk) (6f)

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [tk, tk + NR∆) (6g)

where S(∆) is the family of piece-wise constant functions with a
sampling time ∆, N is the prediction horizon, Qc , Rc1 and Rc2 are
positive definite weight matrices, x̃ is the predicted trajectory of
the nominal system with u2 being the input trajectory computed
by the LMPC of Eq. (6) (i.e., LMPC 2) and u1 being the Lyapunov-
based controller h(x) applied in a sample-and-hold fashion with
j = 0, . . . ,N − 1, x̂ is the predicted trajectory of the nominal
system with u1 being h(x) applied in a sample-and-hold fashion
and u2 = 0, and NR is the smallest integer that satisfies the
inequality Tm ≤ NR∆. To take full advantage of the nominal
model in the computation of the control action, we take N ≥ NR.
The optimal solution to this optimization problem is denoted by
u∗a2(t|tk) which is defined for t ∈ [tk, tk + N∆). Once the optimal
input trajectory of u2 is available, it is sent to LMPC 1 as well as to
its corresponding control actuators.
Note that the constraints of Eqs. (6e)–(6f) generate a reference

state trajectory (i.e., a reference Lyapunov function trajectory) of
the closed-loop system; and the constraint of Eq. (6g) ensures that
the predicteddecrease of the Lyapunov function from tk to tk+NR∆,
if u1 = h(x) and u2 = u∗a2(t) are applied, is at least equal to
the one obtained from the constraint of Eq. (6e). By imposing the
constraint of Eq. (6g) (as well as the constraint of Eq. (7g)), we can
prove that the proposed distributed control system inherits the
stability properties of the Lyapunov-based controller h(x) when it
is implemented in a sample-and-hold fashion. Note also that we
have considered input constraints, see Eq. (6d).
The optimization problem of LMPC 1 depends on x(tk) and

the decision taken by LMPC 2 (i.e., u∗a2). This allows LMPC 1 to
compute a u1 such that the closed-loop performance is optimized,
while guaranteeing that the stability properties of the Lyapunov-
based controller are preserved. Specifically, LMPC 1 is based on the
following optimization problem

min
ua1∈S(∆)

∫ tk+N∆

tk
(x̌(t)TQc x̌(t)+ ua1(t)TRc1ua1(t)

+ ua2(t)TRc2ua2(t))dt (7a)

s.t. ˙̌x(t) = f (x̌(t), ua1(t), ua2(t), 0),
∀t ∈ [tk, tk + N∆) (7b)
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˙̃x(t) = f (x̃(t), h(x̃(tk + j∆)), ua2(t), 0),
∀t ∈ [tk + j∆, tk + (j+ 1)∆) (7c)

ua2(t) = u∗a2(t|tk), ∀t ∈ [tk, tk + N∆) (7d)

ua1(t) ∈ U1, ∀t ∈ [tk, tk + N∆) (7e)

x̌(tk) = x̃(tk) = x(tk) (7f)

V (x̌(t)) ≤ V (x̃(t)), ∀t ∈ [tk, tk + NR∆) (7g)

where x̌ is the predicted trajectory of the nominal system if u2 =
u∗a2(t) and u1 = ua1(t) are applied, and x̃ is the predicted trajectory
of the nominal system if u2 = u∗a2(t) and the Lyapunov-based
controller h(x) are applied in a sample-and-hold fashion with j =
0, . . . ,N − 1. The optimal solution to this optimization problem
is denoted by u∗a1(t|tk) which is defined for t ∈ [tk, tk + N∆).
The constraint of Eq. (7g) guarantees that the predicted decrease
of the Lyapunov function from tk to tk + NR∆, if u1 = u∗a1(t) and
u2 = u∗a2(t) are applied, is at least equal to the one obtained when
u1 = h(x) and u2 = u∗a2(t) are applied. Note that the trajectory
x̃(t) predicted by the constraint of Eq. (7c) is the same as the
optimal trajectory predicted by LMPC 2 of Eq. (6). This trajectory
will be used in the proof of the closed-loop stability properties of
the proposed controller. The manipulated inputs of the proposed
control scheme of Eqs. (6)–(7) are defined as follows

u1(t) = u∗a1(t|tk), ∀t ∈ [tk, tk+1)
u2(t) = u∗a2(t|tk), ∀t ∈ [tk, tk+1).

(8)

Note that, as explained before, the actuators apply the last evalu-
ated optimal input trajectories between two successive state mea-
surements.

3.3. Stability properties

In this subsection, we prove that the proposed distributed con-
trol scheme of Eqs. (6)–(7) inherits the stability properties of the
Lyapunov-based controller h(x) implemented in a sample-and-
hold fashion. This property is presented in Theorem 1 below. To
state this theorem, we need the following propositions.

Proposition 1 (c.f. Muñoz de la Peña and Christofides (2008)). Con-
sider the nominal sampled trajectory x̂ of the system of Eq. (1) in
a closed-loop with the Lyapunov-based controller h(x) applied in a
sample-and-hold fashion and u2(t) = 0. Let ∆, εs > 0 and ρ >
ρs > 0 satisfy

− α3(α
−1
2 (ρs))+ α4(α

−1
1 (ρ))LxM∆ ≤ −εs/∆. (9)

Then, if ρmin < ρ where

ρmin = max{V (x̂(t +∆)) : V (x̂(t)) ≤ ρs} (10)

and x̂(0) ∈ Ωρ , the following inequality holds

V (x̂(k∆)) ≤ max{V (x̂(0))− kεs, ρmin}. (11)

Proposition 1 ensures that if the nominal system under the
control u1 = h(x) implemented in a sample-and-hold fashion and
u2 = 0 starts in Ωρ , then it is ultimately bounded in Ωρmin . The
following proposition provides an upper bound on the deviation
of the state trajectory obtained using the nominal model, from the
real-state trajectory when the same control actions are applied.

Proposition 2 (c.f. Liu et al. (2008)). Consider the systems

ẋa(t) = f (xa(t), u1(t), u2(t), w(t))
ẋb(t) = f (xb(t), u1(t), u2(t), 0)

(12)
with initial states xa(t0) = xb(t0) ∈ Ωρ . There exists a class K
function fW (·) such that

|xa(t)− xb(t)| ≤ fW (t − t0), (13)

for all xa(t), xb(t) ∈ Ωρ and allw(t) ∈ W with

fW (τ ) =
Rwθ
Rx
(eRxτ − 1).

Proposition 3 bounds the difference between themagnitudes of
the Lyapunov function of two states inΩρ .

Proposition 3 (c.f. Liu et al. (2008)). Consider the Lyapunov function
V (·) of the system of Eq. (1). There exists a quadratic function fV (·)
such that

V (x) ≤ V (x̂)+ fV (|x− x̂|) (14)

for all x, x̂ ∈ Ωρ with fV (s) = α4(α−11 (ρ))s+Ms
2 and M > 0.

In Theorem 1 below, we provide sufficient conditions under
which the distributed LMPC design of Eqs. (6)–(7) guarantees that
the state of the closed-loop system is ultimately bounded in a
region that contains the origin.

Theorem 1. Consider the system of Eq. (1) in a closed-loop with
the distributed LMPC of Eqs. (6)–(7) based on a controller h(x) that
satisfies the condition of Eq. (2). Let ∆, εs > 0, ρ > ρmin > 0,
ρ > ρs > 0 and N ≥ NR ≥ 1 satisfy the conditions of Eqs. (9)
and (10) and the following inequality

− NRεs + fV (fW (NR∆)) < 0 (15)

with NR being the smallest integer satisfying NR∆ ≥ Tm. If x(t0) ∈
Ωρ , then x(t) is ultimately bounded inΩρa ⊆ Ωρ where

ρa = ρmin + fV (fW (NR∆)).

Proof. In order to prove that the closed-loop system is ultimately
bounded in a region that contains the origin,we prove thatV (x(tk))
is a decreasing sequence of values with a lower bound.
Part 1: In this part, we prove that the stability results stated in
Theorem 1 hold in the case that tk+1 − tk = Tm for all k and
Tm = NR∆. This case corresponds to the worst possible situation
in the sense that LMPC 1 and LMPC 2 need to operate in an open-
loop for themaximumpossible amount of time. In order to simplify
the notation, we assume that all the signals used in this proof refer
to the different optimization variables of the problems solved at
time step tk; that is, x̂(tk+1) is obtained from the nominal closed-
loop trajectory of system of Eq. (1) under the Lyapunov-based
controller u1 = h(x) implemented in a sample-and-hold fashion
and u2 = 0 starting from x(tk). By Proposition 1 and the fact that
tk+1 = tk + NR∆, the following inequality can be obtained

V (x̂(tk+1)) ≤ max{V (x̂(tk))− NRεs, ρmin}. (16)

From the constraints of Eqs. (6g) and (7g) in LMPC 2 and LMPC 1,
the following inequality can be written

V (x̌(t)) ≤ V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [tk, tk + NR∆). (17)

From inequalities of Eqs. (16) and (17) and taking into account that
x̂(tk) = x̃(tk) = x̌(tk) = x(tk), the following inequality is obtained

V (x̌(tk+1)) ≤ max{V (x(tk))− NRεs, ρmin}. (18)

When x(t) ∈ Ωρ for all times (this point will be proved below), we
can apply Proposition 3 to obtain the following inequality

V (x(tk+1)) ≤ V (x̌(tk+1))+ fV (|x̌(tk+1)− x(tk+1)|). (19)
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Applying Proposition 2 we obtain the following upper bound on
the deviation of x̌(t) from x(t)

|x(tk+1)− x̌(tk+1)| ≤ fW (NR∆). (20)

From inequalities of Eqs. (19) and (20), the following upper bound
on V (x(tk+1)) can be written

V (x(tk+1)) ≤ V (x̌(tk+1))+ fV (fW (NR∆)). (21)

Using the inequality of Eq. (18), we can re-write the inequality of
Eq. (21) as follows

V (x(tk+1)) ≤ max{V (x(tk))− NRεs, ρmin} + fV (fW (NR∆)). (22)

If the conditions of Eq. (15) is satisfied, from the inequality of Eq.
(22), we know that there exists εw > 0 such that the following
inequality holds

V (x(tk+1)) ≤ max{V (x(tk))− εw, ρa} (23)

which implies that if x(tk) ∈ Ωρ/Ωρa , then V (x(tk+1)) < V (x(tk)),
and if x(tk) ∈ Ωρa , then V (x(tk+1)) ≤ ρa.
Because the upper bound on the difference between the Lya-

punov function of the actual trajectory x and the nominal trajec-
tory x̌ is a strictly increasing function of time (see Propositions 2
and 3 for the expressions of fV and fW ), the inequality of Eq. (23)
also implies that

V (x(t)) ≤ max{V (x(tk)), ρa}, ∀t ∈ [tk, tk+1]. (24)

Using the inequality of Eq. (24) recursively, it can be proved that
if x(t0) ∈ Ωρ , then the closed-loop trajectories of the system of
Eq. (1) under the proposed distributed LMPC design of Eqs. (6)–(7)
stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, using the
inequality of Eq. (23) recursively, it can be proved that if x(t0) ∈
Ωρ , the closed-loop trajectories of the system of Eq. (1) under the
proposed distributed LMPC design of Eqs. (6)–(7) satisfy

lim sup
t→∞

V (x(t)) ≤ ρa.

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately
bounded in Ωρa for the case when tk+1 − tk = Tm for all k and
Tm = NR∆.

Part 2: In this part, we extend the results proved in Part 1 to the
general case, that is, tk+1 − tk ≤ Tm for all k and Tm ≤ NR∆
which implies that tk+1 − tk ≤ NR∆. Because fV and fW are strictly
increasing functions of their arguments and fV is convex, following
similar steps as in Part 1, it can be shown that the inequality of
Eq. (22) still holds. This proves that the stability results stated in
Theorem 1 hold. �

Remark 3. The distributed LMPC design proposed in this subsec-
tion can be extended to include multiple LMPC controllers by us-
ing a one direction sequential communication strategy (i.e., LMPC k
sends information to LMPC k − 1) and by letting each LMPC send
alongwith its trajectory, all the trajectories received from previous
controllers to its successor LMPC (i.e., LMPC k sends both its trajec-
tory and the trajectories received from LMPC k+1 to LMPC k−1). A
similar extension of the distributed LMPC design for systems sub-
ject to asynchronous anddelayedmeasurements in Section4 is also
possible.

4. Distributed LMPC with delayed measurements

In this section, we consider distributed LMPC of systems subject
to asynchronous and delayed measurements.
Fig. 2. A possible sequence of delayed measurements.

4.1. Modeling of delayed measurements

We assume that the state of the system of Eq. (1) is received
by the controllers at asynchronous time instants tk where {tk≥0}
is a random increasing sequence of times and that there exists an
upper bound Tm on the interval between two successive measure-
ments. We also assume that there are delays in the measurements
received by the controllers due to delays in the sampling process
and data transmission. In order to model delays in measurements,
another auxiliary variabledk is introduced to indicate thedelay cor-
responding to the measurement received at time tk, that is, at time
tk, the measurement x(tk − dk) is received. In general, if the se-
quence {dk≥0} is modeled using a random process, there exists the
possibility of arbitrarily large delays. In this case, it is improper to
use all the delayedmeasurements to estimate the current state and
decide the control inputs, because when the delays are too large,
they may introduce enough errors to destroy the stability of the
closed-loop system. In order to study the stability properties in
a deterministic framework, we assume that the delays associated
with the measurements are smaller than an upper bound D, which
is, in general, relevant to measurement sensors and data transmis-
sion networks.
Note that because the delays are time-varying, it is possible that

at a time instant tk, the controllers may receive a measurement
x(tk − dk) which does not provide new information (i.e., tk −
dk < tk−1 − dk−1); that is, the controller has already received a
measurement of the state after time tk − dk. We assume that each
measurement is time-labeled and hence the controllers are able to
discard a newly received measurement if tk − dk < tk−1 − dk−1.
Fig. 2 shows part of a possible sequence of {tk≥0}. At time tk, the
state measurement x(tk− dk) is received. There exists a possibility
that between tk and tk+j, with tk+j − tk = D − dk and j being an
unknown integer, all the measurements received do not provide
new information. Note that any measurements received after tk+j
provide new information because the maximum delay is D and
the latest received measurement was x(tk − dk). The maximum
possible time interval between tk+j and tk+j+1 is Tm. Therefore, the
maximum amount of time the system might operate in open-loop
following tk is D + Tm − dk. This upper bound will be used in
the formulation of distributed LMPC design for systems subject to
delayed measurements below.

4.2. Distributed LMPC formulations

As in the previous section, we propose taking advantage of
the system model both to estimate the current system state from
a delayed measurement and to control the system in open-loop
when new information is not available. To this end, when a
delayed measurement is received the controllers use the system
model and the manipulated inputs that have been applied to
the system to get an estimate of the current state and then a
standard MPC optimization problem is solved in order to decide
the optimal future input trajectory that will be applied until new
measurements are received. However, in the distributed schemes
previously proposed (see Fig. 1), LMPC 2 does not know the
input trajectory which has been implemented by LMPC 1 because
there is only one-directional communication from LMPC 2 to
LMPC 1. In order to get a good estimate of the current state from
a delayed measurement, the distributed LMPC structure of Eqs.
(6)–(7) needs to bemodified to have bi-directional communication
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Fig. 3. Distributed LMPC design for systems subject to delayed measurements.

so that LMPC 1 can send its optimal input trajectory to LMPC 2.
A schematic of the distributed LMPC scheme for systems subject
to asynchronous and delayed measurements considered in this
section is shown in Fig. 3.When at tk, a delayedmeasurement x(tk−
dk) is received, the information sent from LMPC 1 to LMPC 2 allows
LMPC 2 to estimate the current state by using the systemmodel of
Eq. (1) and the input trajectories u1(t) (which has received from
LMPC 1) and u2(t) (which LMPC 2 has stored in memory) applied
in t ∈ [tk − dk, tk). The proposed implementation strategy in the
presence of delayed measurements is as follows

(1) When a measurement x(tk − dk) is available at tk, LMPC 2
checks whether the measurement provides new information.
If tk−dk > maxl<k tl−dl, go to step 2. If themeasurement does
not contain new information and is discarded, go to step 6.

(2) LMPC 2 estimates the current state of the system x̃(tk) and
computes the optimal input trajectory of u2 based on x̃(tk).

(3) LMPC 2 sends the entire optimal input trajectory to its actua-
tors and also sends x̃(tk) and the entire optimal input trajectory
to LMPC 1.

(4) Once LMPC 1 receives x̃(tk) and the entire optimal input trajec-
tory for u2, it evaluates the optimal input trajectory of u1 based
on x̃(tk).

(5) LMPC 1 sends the entire optimal input trajectory to its actua-
tors and LMPC 2.

(6) When a newmeasurement is received (k← k+1), go to step 1.

The proposed LMPC 2 for systems subject to delayed measure-
ments is based on the following optimization problem

min
ud2∈S(∆)

∫ tk+N∆

tk
(x̃(t)TQc x̃(t)+ ud1(t)TRc1ud1(t)

+ ud2(t)TRc2ud2(t))dt (25a)

s.t. ˙̃x(t) = f (x̃(t), u∗d1(t), u
∗

d2(t), 0),

∀t ∈ [tk − dk, tk) (25b)
˙̃x(t) = f (x̃(t), ud1(t), ud2(t), 0),
∀t ∈ [tk, tk + N∆) (25c)

ud1(t) = h(x̃(tk + j∆)),
∀t ∈ [tk + j∆, tk + (j+ 1)∆) (25d)

ud2(t) ∈ U2,∀t ∈ [tk, tk + N∆) (25e)

x̃(tk − dk) = x(tk − dk) (25f)
˙̂x(t) = f (x̂(t), h(x̂(tk + j∆)), 0, 0),
∀t ∈ [tk + j∆, tk + (j+ 1)∆) (25g)

x̂(tk) = x̃(tk) (25h)

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [tk, tk + NDk∆) (25i)

where j = 0, . . . ,N−1, andNDk is theminimum integer satisfying
NDk∆ ≥ Tm + D − dk and u∗d1(t), u

∗

d2(t) are the latest input
trajectories sent by the controllers to the actuators. The optimal
solution to this optimization problem is denoted by u∗d2(t|tk)which
is defined for t ∈ [tk, tk + N∆). Once this optimal input trajectory
of u2 is available, it is sent to the control actuators controlled by
LMPC 2 and to LMPC 1 together with the estimate of the current
state x̃(tk).
There are two types of calculations in the optimization problem

of Eq. (25). The first type of calculation is to estimate the current
state x̃(tk) based on the delayed measurement x(tk− dk) and input
values have applied to the system from tk − dk to tk (constraints of
Eqs. (25b) and (25f)). The second type of calculation is to evaluate
the optimal input trajectory of u2 based on x̃(tk) while satisfying
the input constraint of Eq. (25e) and the constraint of Eq. (25i). The
constraint of Eq. (25i) is required to ensure the practical closed-
loop stability. Note that the length of the constraint NDk depends
on the current delay dk, so it may have different values at different
time instants andhas to beupdatedbefore solving the optimization
problem of Eq. (25).
The proposed LMPC 1 for systems subject to delayed measure-

ments depends on x̃(tk) and u∗d2(t|tk). Specifically, it is based on the
following optimization problem

min
ud1∈S(∆)

∫ tk+N∆

tk
(x̌(t)TQc x̌(t)+ ud1(t)TRc1ud1(t)

+ ud2(t)TRc2ud2(τ ))dt (26a)

s.t. ˙̃x(t) = f (x̃(t), h(x̃(tk + j∆)), ud2(t), 0),
∀t ∈ [tk + j∆, tk + (j+ 1)∆) (26b)
˙̌x(t) = f (x̌(t), ud1(t), ud2(t), 0),
∀t ∈ [tk, tk + N∆) (26c)

ud2(t) = u∗d2(t|tk), ∀t ∈ [tk, tk + N∆) (26d)

ud1(t) ∈ U1, ∀t ∈ [tk, tk + N∆) (26e)

x̌(tk) = x̃(tk) (26f)

V (x̌(t)) ≤ V (x̃(t)), ∀t ∈ [tk, tk + NDk∆). (26g)

The optimal solution to this optimization problem is denoted
by u∗d2(t|tk) which is defined for t ∈ [tk, tk + N∆) and it is
send to the control actuators controlled by LMPC 1 and LMPC 2.
Note that LMPC 1 gets x̃(tk) from LMPC 2, so it does not need
to estimate the current state and only needs to evaluate the
optimal input trajectory of u1 based on x̃(tk) while satisfying the
input constraint of Eq. (26e) and the constraint of Eq. (26g). The
constraint of Eq. (26g) is required to ensure closed-loop practical
stability. Themanipulated inputs of the distributed control scheme
of Eqs. (25)–(26) for systems subject to asynchronous and delayed
measurements are defined as follows

u1(t) = u∗d1(t|tk), ∀t ∈ [tk, tk+i)
u2(t) = u∗d2(t|tk), ∀t ∈ [tk, tk+i)

(27)

for all tk such that tk − dk > maxl<k tl − dl and for a given tk, the
variable i denotes the smaller integer that satisfies tk+i − dk+i >
tk − dk.

4.3. Stability properties

In this subsection, we present the stability property of the pro-
posed distributed control scheme of Eqs. (25)–(26). This property
is presented in Theorem 2 below.

Theorem 2. Consider the system of Eq. (1) in a closed-loop with the
distributed LMPC design of Eqs. (25)–(26) based on a controller h(x)
that satisfies the condition of Eq. (2). Let ∆, εs > 0, ρ > ρmin > 0,
ρ > ρs > 0, N ≥ 1 and D ≥ 0 satisfy the conditions of Eqs. (9) and
(10) and the following inequality

− NRεs + fV (fW (ND∆))+ fV (fW (D)) < 0 (28)

with ND being the smallest integer satisfying ND∆ ≥ Tm + D, and
NR being the smallest integer satisfying NR∆ ≥ Tm. If N ≥ ND,
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x(t0) ∈ Ωρ and d0 = 0, then x(t) is ultimately bounded inΩρd ⊆ Ωρ

where

ρd = ρmin + fV (fW (ND∆))+ fV (fW (D)).

Proof. We assume that at tk, a delayed measurement containing
new information x(tk − dk) is received, and that the next
measurementwith new state information is not received until tk+i.
This implies that tk+i − dk+i > tk − dk and that the distributed
LMPCproblemof Eqs. (25)–(26) is solved at tk and the optimal input
trajectories u∗d1(t|tk) and u

∗

d2(t|tk) are applied from tk to tk+i (see
constraint of Eqs. (25b) and (27)). We follow a similar approach
as the one used in the proof of Theorem 1; that is, to prove that
V (x(tk)) is a decreasing sequence of values with a lower bound.

Part 1: In this partweprove that the stability results stated in Theo-
rem2hold for tk+i−tk = NDk∆ and all dk ≤ D. By Proposition 1, the
following inequality can be obtained (see constraint of Eq. (25g))

V (x̂(tk+i)) ≤ max{V (x̂(tk))− NDkεs, ρmin}. (29)

From the constraints of Eqs. (25i) and (26g) in LMPC 2 of Eq. (25)
and LMPC 1 of Eq. (26), the following inequality can be written

V (x̌(t)) ≤ V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [tk, tk + NDk∆). (30)

From the inequalities of Eqs. (29), (30) and taking into account that
x̂(tk) = x̌(tk) = x̃(tk), the following inequality is obtained

V (x̌(tk+i)) ≤ max{V (x̃(tk))− NDkεs, ρmin}. (31)

When x(t) ∈ Ωρ for all times (this point will be proved below), we
can apply Proposition 3 to obtain the following inequalities

V (x̃(tk)) ≤ V (x(tk))+ fV (|x(tk)− x̃(tk)|)

V (x(tk+i)) ≤ V (x̌(tk+i))+ fV (|x(tk+i)− x̌(tk+i)|).
(32)

Applying Proposition 2 we obtain the following bounds on the de-
viation of x̃(t) and x̌(t) from x(t)

|x(tk)− x̃(tk)| ≤ fW (dk)

|x(tk+i)− x̌(tk+i)| ≤ fW (ND∆).
(33)

Note that Proposition 2 can be applied because (25b), (26c), (26d),
(26f) and the implementation procedure guarantee that x̃(tk) and
x̌(tk+i) have been estimated using the same inputs applied to the
system. We also have taken into account that ND∆ ≥ NDk + dk
for all dk. Using inequalities of Eqs. (31)–(33), the following upper
bound on V (x(tk+i)) is obtained

V (x(tk+i)) ≤ max{V (x(tk))− NDkεs, ρmin}

+ fV (fW (ND∆))+ fV (fW (dk)). (34)

In order to prove that the Lyapunov function is decreasing be-
tween two consecutive newmeasurements, the following inequal-
ity must hold

NDkεs > fV (fW (ND∆))+ fV (fW (dk)) (35)

for all possible 0 ≤ dk ≤ D. Taking into account that fW and fV are
strictly increasing functions of their arguments, that NDk is a de-
creasing function of the delay dk and that if dk = D then NDk = NR,
if condition of Eq. (28) is satisfied, condition of Eq. (35) holds for
all possible dk and there exists εw > 0 such that the following in-
equality holds

V (x(tk+i)) ≤ max{V (x(tk))− εw, ρd} (36)

which implies that if x(tk) ∈ Ωρ/Ωρd , then V (x(tk+i)) < V (x(tk)),
and if x(tk) ∈ Ωρd , then V (x(tk+i)) ≤ ρd.
Fig. 4. Asynchronous measurement sampling times {tk≥0} with Tm = 3∆: the x-
axis indicates {tk≥0} and the y-axis indicates the size of the interval between tk and
tk−1 .

Because the upper bound on the difference between the Lya-
punov function of the actual trajectory x and the nominal trajec-
tory x̌ is a strictly increasing function of time, the inequality of
Eq. (36) also implies that

V (x(t)) ≤ max{V (x(tk)), ρd}, ∀t ∈ [tk, tk+i]. (37)

Using the inequality of Eq. (37) recursively, it can be proved that if
x(t0) ∈ Ωρ , then the closed-loop trajectories of system of Eq. (1)
under the proposed distributed LMPC design of Eqs. (25)–(26) stay
in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, using the in-
equality of Eq. (36) recursively, it can be proved that if x(t0) ∈ Ωρ ,
the closed-loop trajectories of systemof Eq. (1) under the proposed
distributed LMPC design of Eqs. (25)–(26) satisfy

lim sup
t→∞

V (x(t)) ≤ ρd.

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately
bounded inΩρd for the case when tk+i − tk = NDk∆.
Part 2: In this part, we extend the results proved in Part 1 to the
general case, that is, tk+i − tk ≤ NDk∆. Taking into account that
fV and fW are strictly increasing functions of their arguments and
following similar steps in Part 1, it is easy to prove that the inequal-
ity of Eq. (35) holds for all possible dk ≤ D and tk+i − tk ≤ NDk∆.
Using this inequality and following the same line of argument as in
the previous part, the stability results stated in Theorem 2 can be
proved. �

Remark 4. The sufficient conditions presented in Theorem 2 state
that in order to guarantee practical stability, V (x(tk)) must be a
decreasing sequence of values with a lower bound for the worst
possible case from a feedback control point of view; that is, the
measurements are received every Tm (themaximum time between
successive measurements) with a delay equal to the maximum
delay D.

Remark 5. Although the proofs of Theorems 1 and 2 provided are
constructive, the constants obtained are conservative. This is the
case with most of the results presented in the literature, see for
example Neĭć, Teel, and Kokotovic (1999) for further discussion
on this issue. In practice, the maximum time that the system can
operate in an open-loop is better estimated through closed-loop
simulations. The various inequalities proved in Theorems 1 and
2 are more useful as guidelines on the interaction between the
various parameters that define the system and the controllers and
may be used as guidelines to design the controllers.

Remark 6. In this work, state constraints have not been con-
sidered but the proposed distributed LMPC approaches can be
extended to handle such constraints by restricting the closed-
loop stability region further; please see Mhaskar, El-Farra, and
Christofides (2006) for more results on this issue.

Remark 7. In this work, we do not explicitly consider delays intro-
duced in the system by the communication network or by the time
needed to solve each of the LMPC optimization problems. Such de-
lays are usually small compared to the measurement delays and
can be modeled as part of an overall measurement delay.
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Fig. 5. State trajectories under the distributed LMPC design of Eqs. (6)–(7) (solid lines) and the distributed LMPC design proposed in Liu et al. (2009) (dashed lines) in the
presence of asynchronous measurements.
Fig. 6. Input trajectories under the distributed LMPC design of Eqs. (6)–(7) (solid
lines) and the distributed LMPC design proposed in Liu et al. (2009) (dashed lines)
in the presence of asynchronous measurements.

5. Application to a chemical process

5.1. Process and control problem description

The process considered in this example is a three vessel,
reactor-separator process consisting of two continuously stirred
tank reactors and a flash tank separator. The description and
modeling of the process can be found in Liu et al. (2009). The
process was numerically simulated using a standard Euler integra-
tion method, and bounded process noise was added to all the sim-
ulations in this work to simulate disturbances/model uncertainty.
Each of the vessels in the process has an external heat input.

The manipulated inputs to the system are the heat inputs, Q1, Q2
and Q3, and the feed stream flow rate to vessel 2, F20. For each
set of steady-state inputs Q1s, Q2s, Q3s and F20s corresponding to
a different operating condition, the process has one steady-state
xs. The control objective is to steer the process from the initial
state xT0 = [0.89 0.11 388.7 0.11 386.3 0.75 0.25 390.6] to
xTs = [0.61 0.39 425.9 0.61 0.39 422.6 0.35 0.63 427.3]which is
the steady state corresponding to the operating condition: Q1s =
12.6× 105 KJ/h, Q3s = 11.88× 105 KJ/h, Q2s = 13.32× 105 KJ/h
and F20s = 5.04 m3/h.
The process belongs to the following class of nonlinear systems:

ẋ(t) = f (x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(t) where
xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1 − xA1s xB1 − xB1s T1 −
T1s xA2 − xA2s xB2 − xB2s T2 − T2s xA3 − xA3s xB3 − xB3s T3 − T3s]
is the state, uT1 = [u11 u12 u13] = [Q1 − Q1s Q2 − Q2s Q3 − Q3s]
and u2 = F20 − F20s are the manipulated inputs which are subject
to the constraints |u1i| ≤ 106 KJ/h (i = 1, 2, 3) and |u2| ≤ 3 m3/h,
andw is a bounded noise.
We use the same design of h(x) as in Liu et al. (2009), and we

consider a Lyapunov function V (x) = xTPx with P = diag(5.2 ×
1012[4 4 10−4 4 4 10−4 4 4 10−4]).4 The values of the weights
in P have been chosen in a way such that the Lyapunov-based
controller h(x) satisfies the input constraints, stabilizes the closed-
loop system asymptotically with continuous state feedback and
provides good closed-loop performance.

5.2. Asynchronous measurements without delay

For this set of simulations, it is assumed that the state mea-
surement of the process are available asynchronously at time in-
stants {tk≥0} with an upper bound Tm = 3∆ on the maximum
interval between two successive asynchronous state measure-
ments, where ∆ is the controller and sensor sampling time and is
chosen to be∆ = 0.02 h = 1.2min. Based on the Lyapunov-based
controller h(x), we design LMPC 1 and LMPC 2. The prediction hori-
zons of both LMPC 1 and LMPC 2 are chosen to be N = 6 and NR
is chosen to be 3 so that NR∆ ≥ Tm. The weight matrices for the
LMPC designs are chosen in a way that the distributed LMPC de-
sign proposed in Liu et al. (2009) and the design of Eqs. (6)–(7)
can both stabilize the closed-loop system with continuous state
measurements. Specifically, the weight matrices are chosen as fol-
lows: Qc = diag(103[2 2 0.0025 2 2 0.0025 2 2 0.0025]) and
Rc1 = diag([5× 10−12 5× 10−12 5× 10−12]) and Rc2 = 100.
To model the time sequence {tk≥0}, we use an upper bounded

random Poisson process. The Poisson process is defined by the
number of events per unit time W . The interval between two
successive concentration sampling times (events of the Poisson
process) is given by∆a = min{−lnχ/W , Tm}, whereχ is a random
variable with a uniform probability distribution between 0 and 1.
This generation ensures thatmaxk{tk+1−tk} ≤ Tm. In this example,
W is chosen to beW = 20. The generated time sequence {tk≥0} for
a simulation length of 1.0 h is shown in Fig. 4 and the average time
interval between two successive time instants is 0.046 h.

4 diag(v) denotes a matrix with its diagonal elements being the elements of
vector v and all the other elements being zeros.



60 J. Liu et al. / Automatica 46 (2010) 52–61
Fig. 7. Asynchronous time sequence {tk≥0} and corresponding delay sequence
{dk≥0} with Tm = 0.04 h and D = 0.12 h: (a) the x-axis indicates {tk≥0} and the
y-axis indicates the size of dk; (b) the upper axis indicates {tk≥0}, the lower axis
indicates tk−dk , each arrow points from tk−dk to corresponding tk and the dashed
arrows indicate the measurements which do not contain new information.

In this set of simulations, when the system operates in an open-
loop, all the control designs to be tested use their last evaluated
optimal input trajectories. The state and input trajectories of
the system in closed-loop under the distributed LMPC design of
Eqs. (6)–(7) and the one in Liu et al. (2009) are shown in Figs. 5
and 6. In Fig. 5, it can be seen that the distributed LMPC design of
Eqs. (6)–(7) provides a better performance and is able to stabilize
the process at the desired steady state in about 0.5 h; the design
proposed in Liu et al. (2009) fails to drive the state of the process
to the desired steady state because it does not account for the use
of asynchronous measurements.

5.3. Asynchronous measurements subject to delays

In this subsection, we compare the performance of the dis-
tributed LMPC design of Eqs. (25)–(26) with that of the design of
Eqs. (6)–(7) in the case where the delayed state measurements of
the process are available asynchronously at time instants {tk≥0}.
The same sampling time∆ andweightmatricesQc , Rc and Rc2 used
in Section 5.2 are used. The prediction horizons of both LMPC 1 and
LMPC 2 are chosen to beN = 8 in this set of simulations so that the
horizon covers the maximum possible open-loop operation inter-
val. Note that the same estimated current state is used to evaluate
both of the controllers. The same Poisson process is used to gen-
erate {tk≥0} with W = 30 and Tm = 0.04 h and another random
Fig. 9. Input trajectories under the distributed LMPC design of Eqs. (25)–(26) (solid
lines) and the distributed LMPC design of Eqs. (6)–(7) (dashed lines) in the presence
of asynchronous and delayed measurements.

process is used to generate the associated delay sequence {dk≥0}
with D = 0.12 h. Fig. 7 shows the time instants when new state
measurements are received, the associated delay sizes and the in-
stants when the receivedmeasurements do not contain new infor-
mation (which are discarded). The average time interval between
two successive sampling times is 0.035 h and the average time de-
lay is 0.057 h.
The state and input trajectories of the system in closed-loop

under the proposed distributed LMPC design of Eqs. (25)–(26) and
the distributed LMPC design of Eqs. (6)–(7) are shown in Figs. 8 and
9. In Fig. 8, we see that the proposed design of Eqs. (25)–(26) is able
to stabilize the process at the desired steady state in about 0.6 h,
but the control design of Eqs. (6)–(7) which does not account for
measurement delays fails to drive the state to the desired steady
state.

Remark 8. We have also done simulations to evaluate the com-
putational time of the LMPCs. The simulations have been carried
out using Matlab in a Pentium 3.20 GHz. The optimization prob-
lems have been solved using the built-in nonlinear programming
function fmincom of Matlab. For 50 evaluations, the mean time to
solve LMPC 2 of Eq. (6) and LMPC 1 of Eq. (7) are 5.52 s and 2.90
s, respectively, with the prediction horizon N = 6; the mean time
to solve LMPC 2 of Eq. (25) and LMPC 1 of Eq. (26) are 13.95 s and
6.83 s, respectively, with the prediction horizonN = 8. These com-
putational times can be reduced significantly by using a compiled
nonlinear programming solver implemented in C or other pro-
gramming languages.
Fig. 8. State trajectories under the distributed LMPC design of Eqs. (25)–(26) (solid lines) and the distributed LMPC design of Eqs. (6)–(7) (dashed lines) in the presence of
asynchronous and delayed measurements.
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