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a b s t r a c t

In this work, we study distributed model predictive control (DMPC) of nonlinear systems subject to

communication disruptions – communication channel noise and data losses – between distributed con-

trollers. Specifically, we focus on a DMPC architecture in which one of the distributed controllers is

responsible for ensuring closed-loop stability while the rest of the distributed controllers communicate

and cooperate with the stabilizing controller to further improve the closed-loop performance. To handle

communication disruptions, feasibility problems are incorporated in the DMPC architecture to determine

if the data transmitted through the communication channel is reliable or not. Based on the results of the

feasibility problems, the transmitted information is accepted or rejected by the stabilizing MPC. In order

to ensure the stability of the closed-loop system under communication disruptions, each model predic-

tive controller utilizes a stability constraint which is based on a suitable Lyapunov-based controller. The

theoretical results are demonstrated through a nonlinear chemical process example.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The chemical process industry is a major sector of the US

and global economy. Hence, the development of optimal process

control and operation methodologies for chemical processes is a

research subject of considerable importance. Advanced process

control stands to benefit from the emergence of networked pro-

cess control and operations, with the purpose of augmentation

of traditional point-to-point local control systems with additional

cheap, safe and easy-to-install networked sensors and actua-

tors. Networked control systems (NCS) can substantially improve

the efficiency, flexibility, robustness and fault tolerance of an

industrial control system while reducing the installation, reconfig-

uration and maintenance expenses at the cost of coordination and

design/redesign of different control systems in the new architec-

ture [1–3]. Recent research efforts have led to important results on

the design of networked control systems (e.g., [4–7]), employing

a centralized control paradigm where all manipulated inputs are

evaluated by a single control system.
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Model predictive control (MPC) is a natural framework for deal-

ing with the design and coordination of distributed control systems

because it can account for the influence of other control systems

on the computation of the control action for a certain set of actua-

tors. MPC takes advantage of a process model to predict the future

evolution of the process at each sampling time according to the

current state along a given prediction horizon. These predictions

are incorporated in an optimization problem to obtain an optimal

input trajectory by minimizing a meaningful performance index. To

reduce the computational complexity of the optimization problem,

MPC obtains the optimal input solution over the family of piecewise

constant trajectories with fixed sampling time and finite prediction

horizon. Once the optimization problem is solved, only the first

manipulated input value is implemented, discarding the rest of the

trajectory and repeating the optimization in the next sampling step

(e.g., [8]). In a centralized MPC paradigm, all the manipulated inputs

of a given control system are coupled in a single optimization prob-

lem to obtain the optimal input trajectory. In the case of large num-

ber of state variables and manipulated inputs for a given control

system, the computational complexity of the centralized MPC may

increase significantly and consequently degrade closed-loop sys-

tem performance, especially in the case of employing a nonlinear

model in MPC. A computationally effective approach to overcome

the above mentioned drawbacks of centralized MPC is to employ

distributed MPC (DMPC) in which the optimal trajectory is obtained

through solving a number of distributed optimization problems

with lower dimensionality compared to the centralized design.
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In the context of DMPC designs, a number of significant efforts

have been recently made in the literature; please see [9–11] for

reviews of available results in this direction. Specifically, the sta-

bility of the closed-loop linear system by considering multiple

communications between distributed predictive controllers and

using system-wide control objective functions was guaranteed in

[12]. A distributed control method for weakly coupled nonlinear

systems subject to decoupled constraints was proposed in [13].

A DMPC scheme for linear systems coupled through the inputs,

based on a game theoretic approach, was proposed in [14]. A robust

DMPC formulation for decoupled linear systems was studied in

[15]. A DMPC architecture for decoupled nonlinear systems coupled

through cost functions was studied in [16]. A DMPC framework for a

class of nonlinear discrete-time systems subject to no exchange of

information between local controllers was proposed in [17]. Fur-

thermore, in [19], a quasi-decentralized control framework was

developed for multi-unit plants that achieves the desired closed-

loop objectives with minimal cross communication between the

controllers.

In our previous work [20] (see also [21]), we proposed a DMPC

architecture in which distributed MPCs are designed via Lyapunov-

based MPC (LMPC) to coordinate their control actions using

one-directional communication. Among the distributed LMPCs,

one LMPC is responsible for closed-loop stability while the rest

of the LMPCs communicate and cooperate with the stabilizing

LMPC to improve the closed-loop performance. In [20], the com-

munication between the distributed controllers was assumed

to be perfect which is reasonable in applications where wired

network communication links are utilized. Recently, wireless net-

works have received significant attention [22] and could play

an increasingly important role in distributed control systems.

In chemical process systems [3], there is an increasing trend

toward developing industrial DMPC designs where individual

MPCs operate through a shared wireless/wired communication

network. However, the design of network-based DMPC system

has to deal with the dynamics introduced by the communica-

tion network, which may include communication disruptions such

as communication channel noise, data losses, bandwidth limi-

tations, time-varying delays, and data quantization [23] which

directly affect the closed-loop stability of NCS architectures.

Thus, achieving closed-loop stability subject to communication

disruptions in the context of DMPC is a subject of increasing impor-

tance.

Motivated by the above, in the present work, we consider

DMPC of nonlinear systems subject to communication disruptions

between the distributed controllers. Specifically, we focus on the

design of DMPC architectures that take explicitly into account

communication channel noise and data losses between the dis-

tributed controllers. In the proposed DMPC architecture, one of

the distributed controllers is responsible for ensuring closed-loop

stability while the rest of the distributed controllers communicate

and cooperate with the stabilizing controller to further improve

the closed-loop performance. The communication between the dis-

tributed controllers is prone to communication noise and data

losses. We employ a specific channel model to consider a number

of realistic data transmission scenarios. In order to determine if the

data transmitted through the communication channel is reliable or

not, feasibility problems are incorporated in the DMPC architecture

and based on the result of these feasibility problems, the transmit-

ted information is accepted or rejected by the stabilizing MPC. In

order to ensure the stability of the closed-loop system under com-

munication disruptions, each model predictive controller utilizes

a stability constraint which is based on a suitable Lyapunov-based

controller. The proposed DMPC system possesses an explicit char-

acterization of the stability region of the closed-loop system and

guarantees that the closed-loop system is ultimately bounded in

an invariant set which contains the origin. The theoretical results

are illustrated using a nonlinear chemical process example.

2. Preliminaries

2.1. Notation

The operator |·| is used to denote the Euclidean norm of a vector.

A continuous function ˛ : [0, a) → [0,∞) is said to belong to classK

if it is strictly increasing and satisfies ˛(0) = 0. The symbol ˝r is used

to denote the set ˝r :={x∈Rnx : V(x)≤ r} where V is a scalar positive

definite, continuous differentiable function and V(0) = 0, and the

operator ‘\’ denotes set subtraction, that is, A \B :={x∈Rnx : x∈A,

x /∈B}. The symbol diag(v) denotes a square diagonal matrix whose

diagonal elements are the elements of vector v.

2.2. Problem formulation

We consider nonlinear process systems described by the follow-

ing state-space model:

x(t) = f (x(t))+
m∑

i=1

gi(x(t))ui(t)+ k(x(t))w(t) (1)

where x(t)∈Rnx denotes the vector of process state variables,

ui(t)∈Rmui , i = 1, . . . , m, are m sets of control (manipulated) inputs

and w(t)∈Rnw denotes the vector of disturbance variables which is

assumed to be bounded, that is, w(t)∈W where

W:={w ∈Rnw : |w| ≤ �w, �w > 0}.
The m sets of inputs are restricted to be in m nonempty convex

sets Ui ⊆ Rmui , i = 1, . . . , m which are defined as follows:

Ui:={ui ∈Rmui : |ui| ≤ umax
i }, i = 1, . . . , m

where umax
i

, i = 1, . . . , m, are the magnitudes of the input con-

straints. We will design m distributed controllers to compute the

m sets of control inputs, respectively.

We assume that f, gi, i = 1, . . ., m, and k are locally Lipschitz vec-

tor, matrix and matrix functions, respectively, and that the origin

is an equilibrium of the unforced nominal system (i.e., system of

Eq. (1) with ui(t) = 0, i = 1, . . . , m, w(t) = 0 for all t) which implies

that f(0) = 0. We also assume that the state x of the system is sam-

pled synchronously and the time instants at which we have state

measurement samplings are indicated by the time sequence {tk≥0}
with tk = t0 + k�, k = 0, 1, . . . where t0 is the initial time and � is the

sampling time.

2.3. Model of the communication channel

We consider data losses and noise in communication between

the m distributed controllers. For a given input r∈Rmu to the com-

munication channel, the output r̃ ∈Rmu is characterized as

r̃ = lr + n (2)

where l is a Bernoulli random variable with parameter ˛ and n∈Rmu

is a vector whose elements are white gaussian noise with zero mean

and the same variance �2. The random variable l is used to model

data losses in the communication channel. The white noise, n, is

used to model channel noise, quantization error or any other error

to the transmitted signal, and it is independent of the data losses

in a probabilistic sense. If the receiver determines that a success-

ful transmission is made, then l = 1, otherwise l = 0. Furthermore,

in order to obtain deterministic stability results, we assume that,

when a successful transmission is made, the noise, n, attached to the

input signal, r, is bounded by � (that is |n|≤ �) as shown in Fig. 1. Both
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Fig. 1. Bounded communication channel noise.

assumptions are meaningful from a practical standpoint; please see

the example in Section 5. We assume that the capacity of the com-

munication channel [28] is high enough so that we can transmit

data through it with a high rate.

Remark 1. Note that there are a variety of approaches to detect

whether data loss has happened at the receiver side of a commu-

nication channel. One common approach is to measure the power

of the received signal and compare it with a pre-configured sig-

nal transmission power level. If the power of the received signal is

much smaller than the pre-configured signal transmission power

level, then data loss is declared; and if the power of the received sig-

nal is close to the pre-configured signal transmission power level,

then transmission is assumed to be successful.

2.4. Lyapunov-based controller

We assume that there exists a Lyapunov-based controller h(x)

which renders the origin of the nominal closed-loop system asymp-

totically stable with u1 = h(x) and ui = 0 (i = 2, . . ., m), while satisfying

the input constraint on u1 for all the states x inside a given stability

region. We note that this assumption is essentially equivalent to

the assumption that the process is stabilizable or that the pair (A,B)

in the case of linear systems is stabilizable. Using converse Lya-

punov theorems [24–26], this assumption implies that there exist

functions ˛i( · ), i = 1, 2, 3, 4 of class K and a continuously differen-

tiable Lyapunov function V(x) for the nominal closed-loop system

which is continuous and bounded in Rnx , that satisfy the following

inequalities:

˛1(|x|) ≤ V(x) ≤ ˛2(|x|)
∂V(x)

∂x
(f (x)+ g1(x)h(x)) ≤ −˛3(|x|)∣∣∣∣∂V(x)

∂x

∣∣∣∣ ≤ ˛4(|x|)

h(x)∈U1

(3)

for all x∈D⊆Rnx where D is an open neighborhood of the origin.

We denote the region ˝� as the stability region of the closed-loop

system under the control inputs u1 = h(x) and ui = 0 (i = 2, . . ., m). By

continuity, the local Lipschitz property assumed for the functions

f(x), gi(x) where i = 1, . . ., m and k(x) and the fact that the manip-

ulated inputs ui belong to the convex sets Ui, it can be concluded

that there exists a positive constant M such that∣∣∣∣∣f (x(t))+
m∑

i=1

gi(x(t))ui(t)+ k(x(t))w(t)

∣∣∣∣∣ ≤ M (4)

for all x∈˝�, ui ∈Ui and w ∈W . In addition, by the continuous

differentiable property of the Lyapunov function V and the Lipschitz

property assumed for the functions f(x), gi(x) and k(x), there exist

positive constants Lx, Lui, and Lw such that∣∣∣∣∂V(x)

∂x
f (x)− ∂V(x′)

∂x
f (x′)

∣∣∣∣ ≤ Lx|x − x′|∣∣∣∣∂V(x)

∂x
gi(x)− ∂V(x′)

∂x
gi(x

′)

∣∣∣∣ ≤ Lui|x − x′|, i = 1, . . . , m∣∣∣∣∂V(x)

∂x
k(x)

∣∣∣∣ ≤ Lw

(5)

for all x, x′ ∈˝�, ui ∈Ui and w ∈W . These constants will be

employed in the proof of the stability of the closed-loop system

(Theorem 1 in Section 4).

Remark 2. Note that while there are currently no general meth-

ods for constructing Lyapunov functions for general nonlinear

systems, for broad classes of nonlinear systems arising in the con-

text of chemical process control applications, quadratic Lyapunov

functions are widely used and provide very good estimates of

closed-loop stability regions; please see example in Section 5.

3. DMPC with communication disruptions

In our previous work [20], a DMPC architecture with flawless

communication between controllers was introduced. In practice,

however, there is communication disruption including channel

noise and data loss between distributed controllers. The objec-

tive of this work is to propose a DMPC framework which deals

with communication disruptions while maintaining closed-loop

stability and improving closed-loop performance. In the sequel, we

design m LMPCs to calculate the m sets of control inputs, respec-

tively, and refer to the controller calculate ui (i = 1, . . ., m) as LMPC

i. In the proposed methodology, LMPC 1 is responsible for the sta-

bility of the closed-loop while the rest of LMPCs (i.e., LMPC 2 to

LMPC m) communicate and cooperate with LMPC 1 to improve

the closed-loop performance. The proposed DMPC design inherits

the closed-loop stability from the Lyapunov-based controller h(·). A

schematic diagram of the proposed DMPC design for systems sub-

ject to communication disruptions between distributed controllers

is depicted in Fig. 2.

We propose to use the following implementation strategy:

1. All LMPCs receive the sensor measurements x(tk) at sampling

time tk.

2. For i = 2, . . ., m

2.1. LMPC i evaluates the optimal input trajectory of ui based on

x(tk) and sends the first step input values of ui to its corre-

sponding actuators.

2.2. LMPC i sends the entire optimal input trajectory of ui to LMPC

1 through a communication channel.

3. LMPC 1 solves a feasibility problem for each input trajectory it

received to determine if the trajectory should be accepted or

rejected.

4. LMPC 1 evaluates the future input trajectory of u1 based on x(tk)

and the results of the feasibility problems for the trajectories it

received from LMPC i with i = 2,. . .,m.

5. LMPC 1 sends the first step input value of u1 to its corresponding

actuators.

In the sequel, we describe the design of LMPC j (j = 2,. . .,m) and

its corresponding feasibility problem and the design of LMPC 1.

Upon receiving the sensor measurement x(tk), LMPC j obtains

its optimal input trajectory by solving the following optimization
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Fig. 2. Distributed LMPC control architecture (F means solving a feasibility problem).

problem:

min
uj ∈ S(�)

∫ N�

0

[
x̃j(�)T Qcx̃j(�)+

m∑
i=1

uT
i (�)Rciui(�)

]
d� (6a)

˙̃x
j
(�) = f (x̃j(�))+

m∑
i=1

gi(x̃
j(�))ui(�) (6b)

u1(�) = h(x̃j(q�)),∀� ∈ [q�, (q+ 1)�) (6c)

ui(�) = 0,∀2 ≤ i ≤ m & i /= j (6d)

x̃j(0) = x(tk) (6e)

uj(�)∈Uj (6f)

∂V(x(tk))

∂x
gj(x(tk))uj(0) ≤ 0 (6g)

where S(�) is the family of piece-wise constant functions with sam-

pling period �, Qc and Rci (i = 1,. . .,m) are positive definite weight

matrices that define the cost, q = 0, ..., N−1, x(tk) is the state mea-

surement obtained at tk, x̃j is the predicted trajectory of the nominal

system for the input trajectory computed by the LMPC j, and N is the

prediction horizon. We note that in order to simplify the notation,

∂V(x(tk))/∂ x is used to denote ∂V(x(t))/∂x|t=tk
. In the prediction of

the future evolution of the system by LMPC j, it is assumed that

LMPC 1 applies the explicit Lyapunov-based controller h(·) while

the rest of the controllers apply zero. While this LMPC formu-

lation intends to improve the closed-loop performance, Eq. (6g)

ensures that the implemented control action contributes to further

decrease of the value of the derivative of the Lyapunov function.

Let u∗
j
(�|tk) denote the optimal solution of the optimization

problem of Eq. (6). LMPC j sends the first step value of u∗
j
(�|tk) to its

actuators and transmits the whole optimal trajectory through the

communication channel to LMPC 1. LMPC 1 receives a corrupted

version of u∗
j
(�|tk) which can be formulated as:

ũj(�|tk) = lu∗j (�|tk)+ n

If data losses occur during the transmission of the control input

trajectory from LMPC j to LMPC 1, LMPC 1 assumes that LMPC j

applies a zero input (i.e., uj = 0). Note that in this work, we do not

consider explicitly the step of determining whether data losses

occur or not in the transmission of input trajectories. Please see

Remark 1 on approaches of determining transmission data losses.

When a transmission of the input trajectory u∗
j
(�|tk) is success-

ful, LMPC 1 receives ũj(�|tk) which is a noise-corrupted version of

u∗
j
(�|tk). To determine the reliability of the received information,

LMPC 1 solves a feasibility problem. Based on the result of the

feasibility problem, LMPC 1 determines if the received informa-

tion should be accepted or rejected. The feasibility problem for the

information received from LMPC j is as follows:

find z ∈ S(�)

ũj(�|tk)− � ≤ z(�) ≤ ũj(�|tk)+ �
(7a)

z(�)∈Uj (7b)

∂V(x(tk))

∂x
gj(x(tk))z(0) > 0 (7c)

According to the bounded noise value and the received signal

from the communication channel, LMPC 1 considers all the pos-

sibilities of noise effect on the optimal trajectory of LMPC j (i.e.,

constraint of Eq. (7a)) and checks whether in these cases LMPC j

satisfies the constraint of Eq. (7c). Note that when the optimization

problem of Eq. (7) is not feasible, it is guaranteed that the original

signal u∗
j
(�|tk) after transmission through the channel still satisfies

the stability constraint of Eq. (6g). The feasibility of this problem is

used to test whether there exists any possible value of the noise that

could (due to corruption) end up making the implemented control

action cause an increase in the Lyapunov function derivative, i.e.,

that ( ∂ V(x(tk))/∂ x)gj(x(tk))uj(0) > 0. If the problem is infeasible, it is

guaranteed that the noise cannot make the control action destabi-

lizing, and hence, the control action is accepted. On the other hand,

if the problem is feasible, it opens up the possibility of the noise ren-

dering the control action destabilizing, and hence, it is discarded.

We also note that there is no requirement that � is sufficient small,

however, larger values of � increase the range of z(�) and influence

the feasibility of the problem of Eq. (7).

If the optimization problem of Eq. (7) is not feasible, then the

trajectory information received by LMPC 1 (i.e., ũj(�|tk)) is used in

the evaluation of LMPC 1; and if the optimization problem of Eq.

(7) is feasible, then ũj(�|tk) is discarded and a zero trajectory for uj

will be used in the evaluation of LMPC 1. If we define the trajectory

of uj that is used in the evaluation of LMPC 1 as ũ∗
j
(�|tk), then it is

defined as follows:

ũ∗j (�|tk) =
{

ũj(�|tk) if (7) is not feasible and there is no data loss

0 if (7) is feasible or there exists data loss
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where 0∈Rmuj . Note that when data loss in the communication

channel occurs, a zero trajectory of uj is also used in the evalu-

ation of LMPC 1. Note also that the above strategy on the use of

the corrupted communication information is just one of many pos-

sible options to handle communication disruptions in the DMPC

architecture.

Employing ũ∗
j

where j = 2,. . .,m, LMPC 1 obtains its optimal tra-

jectory according to the following optimization problem:

min
u1 ∈ S(�)

∫ N�

0

[
x̃1(�)T Qcx̃1(�)+

m∑
i=1

uT
i (�)Rciui(�)

]
d�

˙̃x
1
(�) = f (x̃1(�))+

m∑
i=1

gi(x̃
1(�))ui(�)

(8a)

u1(�)∈U1 (8b)

uj(�) = ũ∗j (�|tk), j = 2, . . . , m (8c)

x̃(0) = x(tk) (8d)

∂V(x(tk))

∂x
g1(x(tk))u1(0) ≤ ∂V(x(tk))

∂x
g1(x(tk))h(x(tk)) (8e)

In this formulation, LMPC 1 takes advantage of the knowledge

of m−1 feasibility problems (i.e., ũ∗
j
, j = 2,. . .,m) and the Lyapunov-

based controller h(·) to predict the future evolution of the system

x̃1. Let u∗
1
(�|tk) denote the optimal solution of the optimization

problem of Eq. (6).

Based on the solutions of the m LMPC optimization problems,

the manipulated inputs of the proposed DMPC design are defined

as follows:

ui(t) = u∗i (t − tk|tk),∀t ∈ [tk, tk+1) i = 1, . . . , m. (9)

Remark 3. It should be mentioned that the white gaussian noise

considered in this work is the accumulation of thermal effects and

quantization errors. We did not consider the effects of multi-path

transmission, terrain blocking, interference, etc. Further, in this

work, we assume that when packet loss happens, all of the informa-

tion we want to transmit is lost; however, without loss of generality,

we can extend this work to the case in which data loss happens

only in some packets of information following a similar methodol-

ogy like (7) to deal with this issue. The interested reader may refer

to [28,29] for more details on communication channel modeling.

4. DMPC stability

As it will be proved in Theorem 1 below, the proposed DMPC

framework takes advantage of the constraints of Eqs. (6g) and (8e)

to compute the optimal trajectories u1, . . ., um such that the Lya-

punov function value V(x(tk)) is a decreasing sequence with a lower

bound and achieves the closed-loop stability of the system.

Theorem 1. Consider the system of Eq. (1) in closed-loop under the

DMPC design of Eqs. (6)–(9) based on a controller u1 = h(x) that satis-

fies the conditions of Eq. (3). Let εw > 0, � > 0 and � > �s > 0 satisfy

the following constraint:

−˛3(˛−1
2

(�s))+
(

Lx +
m∑

i=1

Luiu
max
i

)
M�+ Lw�w ≤ −εw

�
. (10)

If x(t0)∈˝� and if �*≤� where

�* = max{V(x(t + �)) : V(x(t))≤�s}, then the state x(t) of the

closed-loop system is ultimately bounded in ˝�∗ .

Proof. The proof consists of two parts. We first prove that the

optimization problems of Eqs. (6) and (8) are feasible for all states

x∈˝� . Subsequently, we prove that, under the DMPC design of Eqs.

(6)–(9), the state of the system of Eq. (1) is ultimately bounded in

a region that contains the origin.

Part 1: First, we consider the feasibility of LMPC j (j = 2,. . .,m) and

then focus on the feasibility of LMPC 1. All input trajectories of uj(�)

such that uj(�) = 0,∀� ∈ [0, N�) satisfy all the constraints (includ-

ing the input constraint of Eq. (6f) and the constraint of Eq. (6g))

of LMPC j, thus the feasibility of LMPC j is obtained. The feasibil-

ity of LMPC 1 follows because all input trajectories u1(�) such that

u1(�) = h(x(tk)),∀� ∈ [0, �) and u1(�) = 0,∀� ∈ [�, N�) are feasi-

ble solutions to the optimization problem of LMPC 1 since all such

trajectories satisfy the input constraint of Eq. (8b) and the con-

straint of Eq. (8e); this is guaranteed by the assumed property of

the Lyapunov-based controller h(·).
Part 2: Considering the inequalities of Eq. (3), addition of

inequalities of Eqs. (6g) and (8e) for j = 2,. . .,m implies that if

x(tk)∈˝� , the following inequality holds:

∂V(x(tk))

∂x
(f (x(tk))+

m∑
i=1

gi(x(tk))u∗i (0|tk)) ≤ ∂V(x(tk))

∂x
(f (x(tk))

+ g1(x(tk))h(x(tk))) ≤ −˛3(|x(tk)|). (11)

The time derivative of the Lyapunov function along the actual

state trajectory x(t) of system of Eq. (1) in t ∈ [tk, tk+1) is given by:

V̇(x(t)) = ∂V(x)

∂x
(f (x(t))+

m∑
i=1

gi(x(t))u∗i (0|tk)+ k(x(t))w(t)). (12)

Adding and subtracting (∂V(x(tk))/∂x)(f (x(tk))+∑m
i=1

gi(x(tk))u∗
i
(0|tk)) to the right-hand-side of Eq. (12) and

taking Eq. (11) into account, we obtain the following inequality:

V̇(x(t)) ≤ −˛3(|x(tk)|)+ ∂V(x)

∂x
(f (x(t))+

m∑
i=1

gi(x(t))u∗i (0|tk)

+ k(x(t))w(t))− ∂V(x(tk))

∂x
(f (x(tk))+

m∑
i=1

gi(x(tk))u∗i (0|tk)). (13)

From Eq. (5) and the inequality of Eq. (13), the following inequality

is obtained for all x(tk)∈˝�\˝�s :

V̇(x(t)) ≤ −˛3(˛−1
2

(�s))+ Lw|w(t)|

+
(

Lx +
m∑

i=1

Luiu
∗
i (0|tk)

)
|x(t)− x(tk)|. (14)

Taking into account Eq. (4) and the continuity of x(t), the follow-

ing bound can be written for all t ∈ [tk, tk+1) , |x(t)− x(tk)| ≤ M�.

Using this expression, we obtain the following bound on the time

derivative of the Lyapunov function for t ∈ [tk, tk+1), for all initial

states x(tk)∈˝�\˝�s :

V̇(x(t)) ≤ −˛3(˛−1
2

(�s))+
(

Lx +
m∑

i=1

Luiu
max
i

)
M�+ Lw�w.

If the condition of Eq. (10) is satisfied, then there exists εw > 0

such that the following inequality holds for x(tk)∈˝�\˝�s :

V̇(x(t)) ≤ −εw

�
,∀t = [tk, tk+1) .

Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V(x(tk+1)) ≤ V(x(tk))− εw

V(x(t)) ≤ V(x(tk)),∀t ∈ [tk, tk+1)
(15)
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for all x(tk)∈˝�\˝�s . Using Eq. (15) recursively, it is proved that,

if x(t0)∈˝�\˝�s , the state converges to ˝�s in a finite number of

sampling times without leaving the stability region. Once the state

converges to ˝�s ⊆ ˝�∗ , it remains inside ˝�∗ for all times. This

statement holds because of the definition of �*. This proves that the

closed-loop system under the distributed LMPC design is ultimately

bounded in ˝�∗ .

Remark 4. The condition of Eq. (10) guarantees that if the state

of the closed-loop system at a sampling time tk is outside the level

set V(x(tk)) = �s but inside the level set V(x(tk)) = �, the derivative

of the Lyapunov function of the state of the closed-loop system is

negative under the proposed design.

Remark 5. For nonlinear systems under continuous control

implementation, a sufficient condition for invariance is that the

Lyapunov function is decreasing on the boundary of a set. For sys-

tems with continuous-time dynamics and sample-and-hold control

implementation, this condition is not sufficient because the deriva-

tive may become positive during the sampling period and the

system may leave the set before a new sample is obtained. Based

on Theorem 1, �* is the maximum value that the Lyapunov func-

tion can achieve in a time period of length � when x(tk)∈˝�s . ˝�∗

defines an invariant set for the state x(t) under sample-and-hold

implementation of the control action.

Remark 6. Note that the closed-loop stability is guaranteed by

the constraints of Eqs. (6g) and (8e). The use of the corrupted input

trajectory information of uj (i.e., ũj) where j = 2,. . .,m does not affect

the feasibility of the optimization problems of Eqs. (6) and (8) as

well as the stability of the closed-loop system; however, it does

affect the closed-loop system performance. This is the reason for

the introduction of the feasibility problem of Eq. (7) which is used to

decide whether the corrupted information can be used to improve

the closed-loop performance.

Remark 7. We have partitioned ˝� into two regions (˝�\˝�s

and ˝�s ). When x(tk)∈˝� , it follows that either x(tk)∈˝�\˝�s or

x(tk)∈˝�s . As we stated and proved in Theorem 1, according to

definition of �*, once the state converges to ˝�s ⊆ ˝�∗ , it remains

inside ˝�∗ for all times. If x(tk)∈˝�\˝�s and the condition in Eq.

(10) is satisfied, the state converges to ˝�s in a finite number of

sampling times without leaving the stability region. In both cases,

the state will be bounded in ˝�∗ .

Remark 8. In the present work, we deal with communication

disruptions and do not address issues arising due to faults in the

control actuators or in the control system (e.g., [18,27]). Also, we

assume that all the distributed controllers have access to the full

system state. In future work, we will address the scenario in which

each controller has access only to partial state information and

utilizes an observer to estimate the full system state subject to

bounded process noise (disturbance). It should be mentioned that

due to the effect of disturbances and model errors, the controllers

should be updated at every several sampling time with full sys-

tem state information in order to provide deterministic closed-loop

stability properties.

5. Application to a chemical process

The process considered in this study is a three vessel, reactor-

separator system consisting of two continuously stirred tank

reactors (CSTRs) and a flash tank separator shown in Fig. 3 [27].

A feed stream to the first CSTR F10 contains the reactant A which

is converted into the desired product B. The desired product B can

then further react into an undesired side-product C. The effluent

of the first CSTR along with additional fresh feed F20 makes up the

inlet to the second CSTR. The reactions A→B and B→C (referred to

T1 T2

T3

F10 F1 F2

F3

Fr Fp

F20

Q1 Q2

Q3

Fig. 3. Two CSTRs and a flash tank with recycle stream.

as 1 and 2, respectively) take place in the two CSTRs in series before

the effluent from CSTR 2 is fed to a flash tank. The overhead vapor

from the flash tank is condensed and recycled to the first CSTR, and

the bottom product stream is removed. A small portion of the over-

head is purged before being recycled to the first CSTR. All the three

vessels are assumed to have static holdup. The dynamic equations

describing the behavior of the system, obtained through material

and energy balances under standard modeling assumptions, are

given below:

dT1

dt
= F10

V1
(T10 − T1)+ Fr

V1
(T3 − T1)+ −	H1

�Cp
k1e−E1/RT1 CA1

+ −	H2

�Cp
k2e−E2/RT1 CA1 +

Q1

�CpV1
(16a)

dCA1

dt
= F10

V1
(CA10 − CA1)+ Fr

V1
(CAr − CA1)− k1e−E1/RT1 CA1

− k2e−E2/RT1 CA1 (16b)

dCB1

dt
= −F10

V1
CB1 +

Fr

V1
(CBr − CB1)+ k1e−E1/RT1 CA1 (16c)

dCC1

dt
= −F10

V1
CC1 +

Fr

V1
(CCr − CC1)+ k2e−E2/RT1 CA1 (16d)

dT2

dt
= F1

V2
(T1 − T2)+ (F20 +	F20)

V2
(T20 − T2)+ −	H1

�Cp
k1e−E1/RT2 CA2

+ −	H2

�Cp
k2e−E2/RT2 CA2 +

Q2

�CpV2
(16e)

dCA2

dt
= F1

V2
(CA1 − CA2)+ (F20 +	F20)

V2
(CA20 − CA2)

− k1e−E1/RT2 CA2 − k2e−E2/RT2 CA2 (16f)

dCB2

dt
= F1

V2
(CB1 − CB2)− (F20 +	F20)

V2
CB2 + k1e−E1/RT2 CA2 (16g)

dCC2

dt
= F1

V2
(CC1 − CC2)− (F20 +	F20)

V2
CC2 + k2e−E2/RT2 CA2 (16h)

dT3

dt
= F2

V3
(T2 − T3)− HvapFr

�CpV3
+ Q3

�CpV3
(16i)

dCA3

dt
= F2

V3
(CA2 − CA3)− Fr

V3
(CAr − CA3) (16j)

dCB3

dt
= F2

V3
(CB2 − CB3)− Fr

V3
(CBr − CB3) (16k)
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Table 1
Process variables.

CA1, CA2, CA3 Concentrations of A in vessels 1, 2, 3

CB1, CB2, CB3 Concentrations of B in vessels 1, 2, 3

CC1, CC2, CC3 Concentrations of C in vessels 1, 2, 3

CAr , CBr , CCr Concentrations of A, B, C in the recycle

T1, T2, T3 Temperatures in vessels 1, 2, 3

T10, T20 Feed stream temperatures to vessels 1, 2

F1, F2, F3 Effluent flow rates from vessels 1, 2, 3

F10, F20 Feed stream flow rates to vessels 1, 2

CA10, CA20 Concentrations of A in the feed stream to vessels 1, 2

Fr Recycle flow rate

V1, V2, V3 Volumes of vessels 1, 2, 3

u1, u2, u3, u4 Manipulated inputs

E1, E2 Activation energy for reactions 1, 2

k1, k2 Pre-exponential values for reactions 1, 2

	H1, 	H2 Heats of reaction for reactions 1, 2

Hvap Heat of vaporization

˛A , ˛B , ˛C , ˛D Relative volatilities of A, B, C, D

MWA , MWB , MWC Molecular weights of A, B, and C

Q1, Q2, Q3 Heat inputs into vessels 1, 2, 3

Cp , R, � Heat capacity, gas constant and solution density

Table 2
Parameter values.

T10 = 300, T20 = 300 K

F10 = 5, F20 = 5, Fr = 1.9 m3/h

CA10 = 4, CA20 = 3 kmol/m3

V1 = 1.0, V2 = 0.5, V3 = 1.0 m3

E1 = 5E4, E2 = 5.5E4 kJ/kmol

k1 = 3E6, k2 = 3E6 1/h

	H1 =−5E4, 	H2 =−5.3E4 kJ/kmol

Hvap = 5 kJ/mol

Cp = 0.231 kJ/kg K

R = 8.314 kJ/kmol K

� = 1000 kg/m3

˛A = 2, ˛B = 1, ˛C = 1.5, ˛D = 3 unitless

MWA = 50, MWB = 50, MWC = 50 kg/kmol

dCC3

dt
= F2

V3
(CC2 − CC3)− Fr

V3
(CCr − CC3) (16l)

Each of the tanks has an external heat input/removal actuator.

The model of the flash tank separator is derived under the assump-

tion that the relative volatility for each of the species remains

constant within the operating temperature range of the flash tank.

This assumption allows calculating the mass fractions in the over-

head based upon the mass fractions in the liquid portion of the

vessel. It has also been assumed that there is a negligible amount

of reaction taking place in the separator. The following algebraic

equations model the composition of the overhead stream relative

to the composition of the liquid holdup in the flash tank:

CAr =
˛ACA3

K
, CBr =

˛BCB3

K
, CCr =

˛CCC3

K
,

K = ˛ACA3
MWA

�
+ ˛BCB3

MWB

�
+ ˛CCC3

MWC

�
+ ˛DxD� (17)

where xD is the mass fraction of the solvent in the flash tank liquid

holdup and is found from a mass balance. The definitions for the

variables used in Eqs. (16) and (17) can be found in Table 1, with

the parameter values given in Table 2.

Fig. 4. Distributed LMPC control architecture for chemical process example (F

means solving a feasibility problem).

The system of Eqs. (16) and (17) is numerically simulated using

a standard Euler integration method. Process noise was added to

the right-hand side of each equation in the process of Eq. (16)

to simulate disturbances/model uncertainty and it is generated as

autocorrelated noise of the form wk = 
wk−1 + �k where k = 0, 1,

. . . is the discrete time step of 0.001 h, �k is generated by a nor-

mally distributed random variable with standard deviation �p, and


 is the autocorrelation factor and wk is bounded by �p, that is

|wk| ≤ �p. Table 3 contains the parameters used in generating the

process noise.

We assume that the state measurements which include the

temperatures and species concentrations in the three vessels are

available synchronously and continuously at time instants {tk≥0}
with tk = t0 + k�, k = 0, 1, . . . where t0 is the initial time and � is

the sampling time. For the simulations carried out in this section,

we pick the initial time to be t0 = 0 and the sampling time to be

� = 0.01 h = 36 s (Tables 4 and 5).

The first set of manipulated inputs is the heat injected

to or removed from the three vessels, that is u1 =
[ Q1 − Q1s Q2 − Q2s Q3 − Q3s ]

T
; the second set of manipu-

lated inputs is the deviated inlet flow rate to vessel 2, that is

u2 = 	F20 = F20− F20s. The open-loop system has one unstable and

two stable steady states. The control objective is to regulate the

system to the unstable steady-state xs corresponding to the oper-

ating point defined by Q1s, Q2s, Q3s and F20s. The steady-state values

for u1 and u2 are zero. Taking this control objective into account,

the process model belongs to the following class of nonlinear

systems: ẋ(t) = f (x(t))+ g1(x(t))u1(t)+ g2(x(t))u2(t)+w(t) where

xT = [ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ] =

[

T1 − T1s CA1 − CA1s CB1 − CB1s CC1 − CC1s T2 − T2s

CA2 − CA2s CB2 − CB2s CC2 − CC2s T3 − T3s CA3 − CA3s

CB3 − CB3s CC3 − CC3s

]

is the state, uT
1
=
[

u11 u12 u13

]
=
[

Q1 − Q1s Q2 − Q2s Q3 − Q3s

]
and u2 = 	F20 = F20− F20s are the manipulated inputs which are

deviation variables and are subject to the constraints |u1i| ≤104 kJ/h

(i = 1,2,3) and |u2| ≤5 m3/h, and w is a bounded noise.

We consider a quadratic Lyapunov function V(x) = xTPx with

P = diag([ 10 104 104 104 10 104 104 104 10 104 104 104 ])

and design the controller h(x) as three PI controllers with pro-

portional gains Kp1 = Kp2 = Kp3 = 8000 and integral time constants

�I1 = �I2 = �I3 = 10 based on the measurements of T1, T2 and T3,

respectively. The values of the weights in P have been chosen in

a way such that the Lyapunov-based controller h(x) satisfies the

input constraints, stabilizes the closed-loop system and provides

good closed-loop performance. Note that, in the absence of pro-

cess and measurement noise, this design of h(x) manipulating

Table 3
Disturbance parameters.

�p 
 �p �p 
 �p �p 
 �p

CA1 0.1 0.7 0.09 CA2 0.1 0.7 0.09 CA3 0.1 0.7 0.09

CB1 0.02 0.7 0.01 CB2 0.1 0.7 0.03 CB3 0.1 0.7 0.02

CC1 0.02 0.7 0.01 CC2 0.1 0.7 0.01 CC3 0.02 0.7 0.01

T1 10 0.7 1.17 T2 10 0.7 1.35 T3 10 0.7 1.35
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Fig. 5. State trajectories of the process under the proposed DMPC design.

Table 4
Steady-state values for Q1s , Q2s and Q3s .

Q1s 0 [kJ/h] Q2s 0 [kJ/h] Q3s 0 [kJ/h]

uT
1
= [ Q1 Q2 Q3 ] can stabilize the closed-loop system asymp-

totically without the help of u2. Based on h(x) and V(x), we design

LMPC 1 to determine u1 and LMPC 2 to determine u2 following

the forms given in Eqs. (6) and (8), respectively. In the design of

the LMPC controllers, the weighting matrices are chosen to be

Qc = diag([ 10 104 104 104 9 104 104 104 10 104 104 104 ]),

R1 = diag([( 5 5 5 ) · 10−4]) and R2 = 104. The predic-

tion horizon for the optimization problem is N = 5

with a time step of � = 0.01 h. The initial condition

which is utilized to carry out the simulations is x(0)T =
[362.14 3.1191 0.13 0.01 348.21 2.01 0.16 0.01

462.55 2.31 0.26 0.01].

We set the communication channel noise power (�2), the data

loss probability ˛ and the noise bound � to 0.01, 0.1 and 0.25,

respectively. Fig. 4 depicts the proposed control design for the

chemical process example which is composed of two LMPCs.

The state trajectory of the process under the proposed DMPC

design from the initial state are shown in Fig. 5. These figures

show that the proposed control design drive the temperatures and

the concentrations in the closed-loop system close to the desired

steady-state and achieves closed-loop stability.

To emphasize the importance of solving the feasibility problem

in LMPC 1 during obtaining its optimal input trajectory, we have

carried out a set of simulations to compare the proposed design

with our previous control scheme [20] in which LMPC 1 incor-

porates the received channel signal in its optimization problem

Table 6
Total performance cost (×107) along the closed-loop system trajectories.

sim. Prop. Prev. sim. Prop. Prev.

1 5.486 5.488 6 2.549 2.559

2 2.497 2.519 7 1.691 1.697

3 1.771 1.785 8 6.688 6.695

4 1.203 1.215 9 6.632 6.633

5 3.163 3.181 10 2.498 2.515

without any pre-processing. In other words, in this case LMPC 1

ignores the fact that whether communication channel noise and

data loss effects violate the feasibility constraints of LMPC 2 opti-

mization problem. We have carried out a number of simulations

to compare the proposed DMPC design with our previous DMPC

design with the same parameters and initial condition from a

performance index point of view. Table 6 shows the total cost com-

puted for 10 different closed-loop simulations under the proposed

DMPC design and our previous control scheme. To carry out this

comparison, we have computed the total cost of each simulation

with different operating conditions (different initial states and pro-

cess disturbances) based on the index of the following form:

J =
G∑

i=0

x(ti)
T Qcx(ti)+ u1(ti)

T Rc1u1(ti)+ u2(ti)
T Rc2u2(ti)

where t0 is the initial time of the simulations and tG = 1 h is the final

time of the simulations. As we can see in Table 6, the proposed

distributed LMPC design has a cost lower than the previous DMPC

design in all 10 simulations. This illustrates that in this example, the

proposed distributed LMPC design improves our previous design

from a closed-loop performance point of view.

Table 5
Steady-state values for xs .

CA1s 3.31 [kmol/m3] CA2s 2.75 [kmol/m3] CA3s 2.88 [kmol/m3]

CB1s 0.17 [kmol/m3] CB2s 0.45 [kmol/m3] CB3s 0.50 [kmol/m3]

CC1s 0.04 [kmol/m3] CC2s 0.11 [kmol/m3] CC3s 0.12 [kmol/m3]

T1s 369.53 [K] T2s 435.25 [K] T3s 435.25 [K]
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Table 7
Total performance cost (×107) along the closed-loop system trajectories for different

data loss probabilities and �2 = 0.01.

˛ Prop. Prev. ˛ Prop. Prev.

0.05 6.803 6.900 0.30 6.808 6.901

0.10 6.779 6.908 0.35 6.818 6.906

0.15 6.821 6.897 0.40 6.779 6.901

0.20 6.821 6.905 0.45 6.793 6.893

0.25 6.801 6.899 0.50 6.744 6.895

Table 8
Total performance cost (×107) along the closed-loop system trajectories for different

channel noise power values and ˛ = 0.1.

�2 Prop. Prev. �2 Prop. Prev.

0.005 6.787 6.907 0.030 6.802 6.899

0.010 6.762 6.894 0.035 6.809 6.894

0.015 6.820 6.895 0.040 6.769 6.939

0.020 6.744 6.898 0.045 6.835 6.909

0.025 6.841 6.893 0.050 6.756 6.892

Finally, we have carried out a set of simulations to evaluate the

performance of the proposed DMPC design over the one in [20]

from a closed-loop performance index point of view under different

communication channel noise powers and data loss probabilities.

Tables 7 and 8 show the total cost computed for 10 different

data loss probabilities and noise powers compared to our previous

DMPC design, respectively. As it can be seen from these tables, the

proposed DMPC design is superior from a closed-loop performance

point of view for different noise power and data loss probability

values. It should be mentioned that the number of feasible and

infeasible solutions of the optimization problem of Eq. (7) depends

on the bound on the communication channel noise; as this bound

increases, the number of feasible solutions increases. For the simu-

lation results corresponding to Fig. 5, LMPC 1 utilizes the received

signal about 8% of the total number of transmissions.

Remark 9. Note that the DMPC design in [20] can still guarantee

the closed-loop system stability in the presence of communica-

tion disruptions; however, the closed-loop performance may be

degraded. In this work, we propose a practical approach to deal with

communication disruptions to improve the closed-loop perfor-

mance while maintaining the stability properties of the closed-loop

system. In all simulations, the proposed DMPC design accounting

for disruptions yields reduced performance costs compared to the

previous DMPC design, even though this benefit cannot be proved

to hold in general.

6. Conclusions

In this work, we proposed a DMPC design for nonlinear systems

taking into account explicitly communication disruptions (i.e., data

losses and channel noise) between the distributed controllers. In

the proposed DMPC architecture, one of the distributed controllers

is responsible for ensuring closed-loop stability while the rest of the

distributed controllers communicate and cooperate with the stabi-

lizing controller to further improve the closed-loop performance.

To determine if the data transmitted through the communication

channel is reliable or not, feasibility problems were incorporated in

the DMPC design and based on the result of these feasibility prob-

lems, the transmitted information was accepted or rejected by the

stabilizing MPC. In order to ensure the stability of the closed-loop

system under communication disruptions, each distributed con-

troller utilized a stability constraint which is based on a suitable

Lyapunov-based controller. The proposed DMPC system possesses

an explicit characterization of the closed-loop system stability

region and guarantees that the closed-loop system is ultimately

bounded in an invariant set which contains the origin. The the-

oretical results were demonstrated through a nonlinear chemical

process example.
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