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ABSTRACT: Electrochemical reduction of carbon dioxide (CO2)
has received increasing attention with the recent rise in awareness
of climate change and the increase in electricity supply from clean
energy sources. However, because of the complexity of its reaction
mechanism and the largely unknown electron transfer pathways,
the development of a first-principles-based operational model of a
CO2 electrocatalytic reactor is still in its infancy. This work
proposes a methodology to develop a feed-forward neural network
(FNN) model to capture the input−output relationship of an
experimental electrochemical reactor from experimental data that
are obtained from easy-to-implement sensors. This FNN model is
computationally efficient and can be used in real-time to determine energy-optimal reactor operating conditions. To further account
for the uncertainty of the experimental data, the maximum likelihood estimation (MLE) method is adopted to construct a statistical
neural network, which is demonstrated to be able to address a usual overfitting problem that occurs in the standard FNN model. In
addition, by comparing the neural network with an empirical first-principles-based model, it is demonstrated that the neural network
model achieves improved prediction accuracy with respect to experimentally determined input−output operating conditions. Finally,
the insights obtained from the FNN model and the limitations identified of the empirical, first-principles model (EFP model) are
used to propose specific modifications to the EFP model to improve its prediction capability.

■ INTRODUCTION

The electrochemical transformation of carbon dioxide (CO2)
into carbon-based fuels and chemicals has received growing
interest in this century, because of its potential to reduce CO2
emissions and facilitate the production of energy from renewable
sources.1 The biggest challenge for research in this area is the
difficulty in determining and quantifying the products that result
from the reduction of CO2. Specifically, the CO2 reduction
pathways constitute a complex web of reactions that result in the
production of various alkanes, alkenes, and oxygenate species.2

In addition, recent small-scale experiments on this process show
varying levels of experimental uncertainty, because of the
minimum measurable limit of the sensors and other inevitable
experimental errors. This can introduce a level of uncertainty
into the data that can increase the probability of overfitting.
Although developing mathematical models, such as first-

principle models, is a classic and reliable way to describe and
predict a physical process, the uncertainty and complexity of
most engineering systems make it challenging to implement. To
overcome this problem, various data-driven models, as well as
artificial intelligence (AI) approaches, have been proposed
historically. Early on, in the 1960s, an epochal AI logic, the Fuzzy

logic, was proposed by Zadeh to approximate uncertain
features.3 From then on, techniques of machine learning for
real-time process operation were investigated in 1990s,4 such as
the expert system.5 In addition, the autoregressive model
provided statistical strategies to develop data-driven models
based on recorded observation. For example, the autoregressive-
moving-average model (ARMA) proposed by Peter Whittle
back in the early 1950s.6

With the development of open-source deep-learning libraries
and availability of large datasets from experimental electro-
chemical reactors (as well as other chemical reactor systems),
machine learning modeling of electrochemical reactors and
other reactor systems has become a growing field of interest
within chemical engineering. Specifically, various versions of
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artificial neural network (ANN) models have demonstrated
their ability to address regression and classification problems in
the context of chemical process modeling.7−12 An ANN has
many degrees of freedom, which gives it the ability to capture the
complex, nonlinear relationships between an electrochemical
reactor system input and output variables. In addition, it is a
customary approach to combine an ANN model with an
empirical, first-principles model (that is a model that is based on
chemical reaction engineering fundamentals, yet its parameters
are fitted to experimental data) to investigate complex reaction
mechanisms and reactor macroscopic input−output behav-
ior.13,14

Over the past few years, ANNs have been used to model
chemical engineering manufacturing processes in several
studies. For example, in ref 15 a recurrent neural network
(RNN) model was used to model a chemical reactor using the
data from a large-scale process simulator (Aspen Plus
Dynamics) and was used in a model predictive controller
(MPC) to stabilize the process at a steady state. In ref 16, a feed-
forward neural network (FNN) model was developed to
correlate the input and output variables of a SiO2 atomic layer
deposition (ALD) process to calculate optimal half-cycle times
to fully coverage, which is an important industrial parameter.
Moreover, in ref 17, a methodology was discussed wherein
neural networks were used for parameter estimation from
experimental data. These research investigations provide a
strong support for using neural network models as a reliable
approximation to analyze complex nonlinear relationships from
simulation/experimental data for electrochemical reactors.
Other works have applied deep learning methods to improve

operational aspects of industrial chemical processes. ANNs have
been used as process models to replace traditional models to
further optimize the control and operation of chemical and
industrial processes. In ref 18, a deep reinforcement learning
controller was used to control a hydraulic fracturing process to
improve the safety and optimization of system operation. In
addition, an operational model was constructed for this process
using a hybrid approach of a deep neural network and a first-
principles model.19 ANNs were further used to determine
optimum operating conditions for chemical and industrial
processes,20−25 which contributed to maximizing the feasibility
of novel processes from economic and safety perspectives.

Motivated by the above considerations, this work develops an
FNN model using steady-state, input−output experimental
electrochemical reactor data by solving a nonlinear regression
problem, accounting for data variability. This FNN model is
computationally efficient and can be used in real-time to
determine safe and energy-optimal electrochemical reactor
operating conditions. Specifically, the maximum likelihood
estimation (MLE) method was integrated with the FNN model
development algorithm to account for the uncertainty and
variability of the experimental data by determining their
confidence interval and weighing each point accordingly in the
FNN model training process. Therefore, the FNNmodel is able
to account for the data variability and provide the statistically
most likely trajectory of the experiment output over a broad set
of operating conditions. This probabilistic method decreases the
chance that the model will be overfit to specific training points
with large variation. The key novelty of this work is the
development of an operational model for a state-of-the-art
electrochemical reactor using a statistical machine learning
method. In addition, the insights obtained from the FNNmodel
are used to propose specific modifications to a classical,
empirical first-principles model (EFP model) of electrochemical
phenomena to improve its prediction capability, which can
contribute to the investigation of the unknown first-principle
chemical reactor equations.
The rest of this manuscript is organized as follows. In the

section entitled “Preliminaries”, the experimental reactor setup
and the kinetics of the electrochemical reactions are described.
In the next section, entitled “Development of Machine Learning
Model”, the formulation and the construction method of the
FNN model are discussed. In the section entitled “Maximum
Likelihood Estimation in ML Reactor Modeling”, the method-
ology of the maximum likelihood estimation is integrated with
the FNN modeling method. In the next section, entitled
“Machine Learning Model Results and Analysis”, the perform-
ance of the FNN models is evaluated, and the statistical FNN
model predictions and insights are used to improve an EFP
model for this reactor.

■ PRELIMINARIES

This section introduces the background of the experimental
electrochemical reactor employed in this work. Specifically, the
experimental setup and basic operating reactor mode are

Figure 1. A diagram showing (a) the electrochemical reactor and (b) the multiple and complex reaction and mass-transfer processes involved in the
transformation of CO2 to CO and further reduced products on the polycrystalline copper cylinder electrode.
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presented in this section. Then, an overview of the input−output
behavior for this process is used to further explain the data
structure used in the neural network model. The experimental
reactor and microscopic transport diagrams are shown in Figure
1.
Experimental Electrochemical Reactor. The reactor was

designed to study the effect of mass transport on electrochemical
CO2 reduction while keeping the electrochemical cell hermeti-
cally gastight for the online detection of gas products. This is
allowed by magnetic coupling where the driver magnet outside,
connected to the modulated speed rotator (MSR), transmits
torque to the follower magnet inside the reactor (Figure 1). The
reactor has two chambers separated by an ion-exchange
membrane to prevent the crossover of products. One chamber
contains the working electrode, which is the cathode in this case.
The other chamber contains the counter electrode (anode). The
CO2 gas is directly bubbled into both chambers, where the
electrodes are submerged in 0.2 M potassium bicarbonate buffer
electrolyte. The cathode is a rotating cylinder electrode (RCE)
made of polycrystalline copper. Copper is the only known single
transition metal that can reduce CO2 into hydrocarbons and
oxygenates with more than two carbons (C2+) at an appreciable
rate, and it plays a critical role as the catalyst in the overall
reaction scheme.26 As the RCE shaft continuously stirs the
electrolyte solution, hydrodynamics formed around the
electrode can be systematically controlled by setting a rotation
speed from the MSR. Finally, gas and liquid products are
analyzed by gas chromatograph (GC) and nuclear magnetic
resonance (NMR) spectroscopy, respectively, to determine the
product composition under well-controlled mass transport
characteristics. Further details on the reactor design and
experimental setup are newly reported.27

The product compositions quantified using gas chromatog-
raphy (GC) and nuclear magnetic resonance (NMR) are then
used to determine the production rate of each species and the
reaction selectivity, with respect to desired products. Poly-
crystalline copper produces various products as tabulated in
Table 1 at a quantifiable level. Here, the competing hydrogen
evolution reaction and the production of formate are excluded
from the table and from the selectivity calculation, since they do
not share the same reaction pathway as the products in Table 1.
That is, although carbonmonoxide and formate are two-electron
reduction products, carbon monoxide is the main reaction
intermediate toward further reduced products while formate
cannot be further reduced. Among the products sharing carbon
monoxide as a common intermediate, the desired products are

the oxygenate species (labeled in Table 1), since they are of high
value and are commonly used as liquid fuels and reagents.
Therefore, the selectivity for this experiment is defined as the
ratio of the rate of oxygenate production to the rate of
hydrocarbon production.
With respect to the reactor mode of operation, the CO2 gas

dissolves into the buffer solution, and is carried to the electrode
surface by convective mass transport caused by the rotating
electrode. Subsequently, the CO2 molecules are adsorbed onto
the electrode surface and reduced to oxygenate and hydrocarbon
products through consecutive proton-coupled electron injection
steps. Therefore, the surface reaction rate is determined by the
electron density on the Cu surface and the adsorption rate of
CO2 molecules to the Cu surface. The electron density is
dictated by the applied potential, and the adsorption rate of CO2
is the result of complex mass transport and electrode kinetics at
the electrode/electrolyte interface (Figure 1).

■ DEVELOPMENT OF MACHINE LEARNING MODEL
In this section, a neural network model is constructed to capture
the steady-state behavior of the reactor at varying applied
potentials and electrode rotation speeds using experimental
electrochemical reactor input−output data. The neural network
model formulation, training process, and the data collection
process are presented in the following subsections.

FNN Learning Algorithm. The general structure of an
FNN model is shown in Figure 2 and can be mathematically
represented by the following equations:
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where X = [x1, ···, xn]∈Rn and Y = [ŷ1, ···, ŷm]∈Rm are the input
and output vectors of the FNN model, respectively. The term
ωji

[k] (where i = 1, ···, p, j = 1, ···, p, and k = 1, ···, l) stands for the
weights connecting the ith input from the prior layer to the jth
neuron in the kth layer, where l is the number of layers. p
represents the number of neurons used in each layer. Therefore,
i = 1, ···, n for the first hidden layer, because there are n units in

Table 1. Electrochemical Reactions To Reduce CO2 to Various Products on Copper

index reaction classification

1 CO2 + 6H2O + 8e− → CH4 + 8OH− C1 hydrocarbon (HC)
2 2CO2 + 8H2O + 12e− → C2H4 + 12OH− C2+ hydrocarbon (HC)
3 CO2 + 5H2O + 6e− → CH3OH + 6OH− C1 oxygenate (OX)
4 2CO2 + 9H2O + 12e− → C2H5OH + 12OH− C2+ oxygenate (OX)
5 2CO2 + 5H2O + 8e− → CH3COO− + 7OH− C2+ oxygenate (OX)
6 2CO2 + 8H2O + 10e− → (CH2OH)2 + 10OH− C2+ oxygenate (OX)
7 2CO2 + 6H2O + 8e− → HOCH2CHO + 8OH− C2+ oxygenate (OX)
8 2CO2 + 7H2O + 10e− → CH3CHO + 10OH− C2+ oxygenate (OX)
9 3CO2 + 13H2O + 18e− → C3H7OH + 18OH− C2+ oxygenate (OX)
10 3CO2 + 11H2O + 16e− → C3H5OH + 16OH− C2+ oxygenate (OX)
11 3CO2 + 11H2O + 16e− → CH3COCH3 + 16OH− C2+ oxygenate (OX)
12 3CO2 + 11H2O + 16e− → C2H5CHO + 16OH− C2+ oxygenate (OX)
13 CO2 + H2O + 2e− → CO + 2OH− Intermediate
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the input layer. b[k] and σ[k](·) respectively denote the bias and
activation function used in the kth layer.
In this study, a centralized two-input−multioutput FNN

model is constructed to capture the nonlinear relationship
between the two input states in Table 2 (i.e., rotation speed and

applied potential) and the 14 outputs listed in Table 3.
Specifically, the input and output training data are scaled by the
maximum value of each respective state such that all the
normalized states fall in the range between 0 and 1. The input
layer is densely connected to 64 neurons in the hidden layer
using the Rectified Linear Unit (ReLu) activation function, as
defined in eq 2. The hidden layer is densely connected to the
output layer using the Softplus activation function, S(x) = log(1
+ ex). Both the ReLu and Softplus functions are used to restrict
the output predictions to be strictly non-negative and introduce
nonlinearity to the model.

z
z z

z
ReLu( )

for 0
0 for 0

=
>
≤

l
moo
noo (2)

Remark 1.A single hidden layer is used for this model because it is
the simplest structure to suf f iciently capture the data trends. In
addition, we apply a grid search for the number of neurons in the
FNN, with 64 neurons having the best prediction. Specif ically,
neural networks with fewer than 64 neurons underf it the data, while
networks with more neurons would overf it the data. In this work,
both the prediction accuracy (in terms of mean-squared-error) and
the output trajectories are considered to design the hyperparameters
of the FNN model. Classical hyperparameter tuning algorithms did
not perform ef fectively to capture reasonable trajectories, because of
the dif f iculty of developing an explicit formula to evaluate the
prediction trends. However, hyperparameter tuning algorithms, such
as Bayesian optimization and random forest methods, are powerful
tools to optimize the neural network structure.28 We recommend
that other users consider using those methods to develop their
machine learning models.

Data Generation and Dataset. As listed in Table 3, the
oxygenates considered are Outputs 3−12, and the hydrocarbons
are Outputs 1 and 2 (methane and ethylene). Therefore, the
selectivity defined in the previous section is calculated as follows:

y

y
selectivity : i i

i i

3
12

1
2=

∑

∑
=

= (3)

where yi refers to the production rate of species i, as defined in
Table 3. Data are collected for the range of potential and rotation
speed within which the reactor will operate. Specifically, the
potential is varied from −1.2 to −1.47 (V vs the standard
hydrogen electrode (SHE)), and the rotation speed is varied
from 100 rpm to 800 rpm. For the data collection process, the
potentiostat is set to be at a constant potential, and the electrode
is rotated at a constant angular speed. The reactor is allowed to
operate at steady state for 20 min prior to the data collection.
The reactor then operates continuously with gas product
samples taken every 20 min and liquid samples collected and
analyzed after experiments to determine the concentration of
the 13 relevant products, followed by the calculation of
selectivity from the results of each sample.
The sampling process is an 80min experiment that constitutes

one data point for each input and output states. The sampling is
repeated three to four times to ensure the data are consistent
over time and to obtain the statistical information for the
experimental results under the same operating conditions.
Specifically, this 80min experiment is repeated over 100 times to
generate the data library that covers the specified range of
operating conditions. Subsequently, the data are grouped into a
single data vector based on the similarity of the operating
conditions to compute the mean and standard deviations. As a
result, 21 data points with mean and standard deviation
information are each collected from two to five independent
experiments, depending on the availability of experimental data.

Design of the Experiment. The range of potentials is
limited by the overall resistance of the electrochemical cell
(between the working and the counter electrode). This issue is
resolved in the second generation of the cell reported in ref 27 by
removing the channel that connects the two chambers to
shorten the distance between the two electrodes and increase
the surface area of the ion-exchange membranes. However, in
this work, the first generation of the reactor is used which is not
able to apply potentials more negative than−1.47 V vs SHE. The

Figure 2. General structure of an FNN model, where subscript p is the
index of neurons in the kth hidden layer.

Table 2. Input States of the FNN Model

index input states units

1 applied potential V vs the standard hydrogen electrode (V vs SHE)
2 rotation speed rpm

Table 3. Output States of the FNN Model

index output states chemical formula

1 methane production rate CH4

2 ethylene production rate C2H4

3 methanol production rate CH3OH
4 ethanol production rate C2H5OH
5 acetate production rate CH3COO

−

6 ethylene glycol production rate (CH2OH)2
7 glycolaldehyde production rate HOCH2CHO
8 acetaldehyde production rate CH3CHO
9 n-propanol production rate C3H7OH
10 allyl alcohol production rate C3H5OH
11 acetone production rate CH3COCH3

12 propionaldehyde production rate C2H5CHO
13 carbon monoxide production rate CO
14 selectivity
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potential range is chosen to see appreciable rates of product
generation considering the detection limits of the sensors (GC
and NMR). The maximum rotation speed possible is 2000 rpm,
as provided by the vendor of the RCE (Pine Research
Instrumentation).
On the other hand, we have restricted the maximum electrode

rotation speed to 800 rpm, mainly because of the mechanical
instability of the custom-machined parts of the electrochemical
cell. In addition, the chosen range of rotation speed is
appropriate for studying mass transport effects from the
perspective of mass transport characteristics around the RCE.
As shown in ref 27, the filmmass-transfer coefficient decreases as
the electrode rotation speed increases with a 0.59 order
dependency. The further increase in the rotation of the
electrode beyond 800 rpm has a minimal effect on the mass-
transport properties of the cell. The lower-bound of the rotation
speed range is 100 rpm, below which the relationship between
the film mass-transfer coefficient and the rotation speed starts to
flatten out due to the convection created by the bubbling of CO2
in the bulk of the electrochemical cell.
Standard FNN Training. The mean-squared-error (MSE)

is used in the standard FNN training as the loss function that
minimizes the difference between the experimental data value
and the model predictive value. The MSE loss function is given
below:

d m
y yloss

1 1

i

d

j

m

i j i j
1 1

, ,

2
∑ ∑= − ̂
= = (4)

where d and m are the number of data points in the training
dataset and the number of output states. Specifically, from the
original 21 data points, 4 are reserved for testing and the
remaining 17 are used for training. Then, the 17 points are
randomly split into training and validation sets with 80% used
for training and 20% used for validation. The testing procedure
compares the mean-squared difference between the FNN
prediction and the testing data, using the loss function of eq 4
to evaluate the model performance. During this process, the
parameter vector W, which contains all the weights and bias of
the neural network, is optimized using eq 5 to minimize the loss
function.

V
S

W W dw

dw
η= −

+ ϵ (5)

where η is the learning rate, and ϵ is a small positive number to
prevent the denominator being zero. Vdw and Sdw respectively
introduce the momentum and root-mean-square factors of the
parameters gradient to facilitate the optimization process. In
practice, ϵ, Vdw, and Sdw can be set up by the machine learning
API (e.g., Keras) automatically by specifying the optimizer.
Tuning the value of ϵ will not have a significant impact on the
model performance. In addition, the user can tune the learning
rate (η) to improve the model performance. Usually, it is a small
positive real value in the range between 0.0 and 1.0.

■ MAXIMUM LIKELIHOOD ESTIMATION IN ML
REACTOR MODELING

Despite the standard FNN’s capability of correlating the input
and output variables of a complex nonlinear process, it treats all
the data points equally, which might lead to overfitting when the
data contains inconsistent levels of random error from the
experimental data. To address this issue, the MLE method,

originally developed by R. A. Fisher in the 1920s, is integrated in
the FNN model to optimize the parameter set that maximizes
the likelihood function of a probabilistic model.29 Specifically,
the likelihood function, ( )· , is used to correlate an unknown
parameter vector (θ) with a random variable set (z) based on its
probability-density function, f(z,θ). The maximum likelihood
method can search for an optimum parameter set θ* by
maximizing the “likelihood of the sample”, f z( , )i

n
1 θ∏ = , and it

has been proved that this method can provide a solution to this
optimization problem.30 The MLE method assumes that the
data are from a single population with the same standard
deviation. However, this section proposes a modification that
assumes each set of input parameters corresponds to a different
population. Thus, each data point with its collected standard
deviation is treated as an independent random variable.
To apply this method in our study, we first consider the

experimental dataset to be a pseudoprobabilistic sample
following the Gaussian distribution with an associated standard
deviation. Therefore, the FNN outputs ŷi,j must follow the same
distribution as the reference data yi,j, which means the joint
likelihood of the neural network output is of Gaussian
distribution, and can be expressed as follows:
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where σi is the standard deviation for each data point.
Subsequently, we find the optimum weight matrix W* by
maximizing the logarithm of the joint likelihood function:
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Since the first term of eq 7 is independent of W, the maximum
likelihood estimation of this model can be further simplified into
eq 8.
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The maximum likelihood estimation FNN model (MLE-
FNN) is constructed using the same architecture and dataset as
the standard FNN. However, the MLE-FNN model considers
the standard deviation of each data point in its training process.
Specifically, the sample standard deviation is calculated for each
data point. The coefficient of variance (v) of each data point
then is determined by the ratio of standard deviation and the
respective output mean. This normalizes the data variability to
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allow for unbiased comparison between quantities of different
magnitudes. The loss function, shown as eq 9, integrates eq 4
and eq 8. Thus, the weight matrix of theMLE-FNN is optimized
to maximize both the accuracy of the prediction and the
likelihood function during the training process.

d m v
y yloss

1 1 1

i

d

j

m

i j
i j i j

1 1 ,
2 , ,

2
∑ ∑= − ̂
= = (9)

Remark 2. In this study, error bars are constructed to represent
the region of one standard deviation of uncertainty with respect to the
mean, which is a∼70% conf idence interval for Gaussian distributed
variables. Any statistic model can be used to develop a MLE-FNN
model if it can provide reasonable statistical information on the
experimental observations.
Remark 3. As shown in refs 31 and 32, the simplif ied log-

likelihood function (eq 8) can be used directly as the loss function of
aMLE-FNNmodel, since it contains the sum of squared error (SSE)
in the loss function. We integrate it with eq 4 to demonstrate its
similarity to the mean-squared error (MSE) loss function.
Remark 4. Bayesian optimization is another acknowledged

method to develop a statistical machine learning model. Similar to
the MLE method, the Bayesian optimization also considers the
likelihood function model, which can account for data variance.
Instead of focusing on the likelihood function, the Bayesian method
implements optimization based on the posterior distribution of the
machine learning model, which is def ined by the Bayes’ rule.33

Therefore, the prior distribution of the parameter vector (p(θ)) and
the marginal likelihood of the observed data (p(D)) can be adopted
to develop the statistical model.

■ MACHINE LEARNING MODEL RESULTS AND
ANALYSIS

In this section, we first compare the prediction performance of
the standard FNN and MLE-FNN models. Subsequently, the
MLE-FNN model’s ability to capture the physical phenomenon
behind the experiment is demonstrated through a comparison
with a classical, EFP model. In addition, we propose an
algorithm to improve the empirical model performance using
the neural network model results and insights. Parameters used
to generate the EFP models are described in this section and
listed in Table 4.
FNN vs MLE-FNN.We first compare the performance of the

MLE-FNN against the standard FNN. To account for the
stochastic nature during the neural network training process, a
Python script is used to train 100 FNN models in parallel with
the structure discussed in the section entitled “Development of
Machine Learning Model” and with randomly partitioned
training and validation sets. The best FNN and MLE-FNN are
chosen to minimize the MSE for the training dataset. This
training method ensures that the selected models are trained
consistently, following the same criteria. The selected FNN and
MLE-FNNmodels then are evaluated with respect to the testing
dataset, using the MSE between the normalized FNN outputs
and the normalized testing set. The MSEs for the standard FNN
and MLE-FNN are 0.0751 and 0.0791, respectively, which
demonstrates a slight better performance of the standard FNN.
Figure 3 shows that bothmodels give accurate predictions across
themajority of the data points, but the overall MSE for theMLE-
FNN prediction increases, since it ignores the data points with
high variance. However, the MSE of the two methods are
sufficiently small, which implies that both models capture the
input−output relationship well.

To further compare the performance of the two models, the
predictions for CO production rate are compared to some
labeled outlier points, because of a slight drift in operating
conditions in Figure 4. As shown in the figure, the MLE-FNN
weighs the data points with critical experimental uncertainty less
while the standard FNNoverfits these points. This demonstrates
the ability of the MLE-FNN model to improve its prediction by
accounting for data variance. The goal of the MLE method is to
generate models with a higher statistical significance that are
suitable to be implemented with an experimental dataset. The
MLE-FNN model demonstrates that it can provide an accurate
approximation of the experimental data while outperforming the
standard FNN in its ability to mitigate the impact of
experimental uncertainty. Therefore, to simplify the discussion,
the MLE-FNN will be used in the remainder of this section to
provide comprehensive selectivity predictions for the electro-
chemical reactor, which is shown in Figure 5, and for comparison
with other models (i.e., henceforth, the FNN will only refer to
the MLE-FNN, and the standard FNN will not be included).
Remark 5. The outlier points are included in the dataset, since

they are valid but have higher variability. The predictive models are
developed based on the experimental observation, even if some points
are less likely to be reproduced. On the other hand, invalid data
points f rom a failed experiment should not be included in the
dataset.

EFP Model vs MLE-FNN. First-principles models (FP
models) are a fundamental approach to describing the operation
of an electrochemical reactor, according to the energy and mass
balances, as well as reaction kinetics. However, because of the
complex mass transfer and reaction mechanisms of this process,
it is challenging to obtain an accurate first-principles model. As a
substitute, machine learning modeling provides an alternative
approach to representing the physiochemical phenomena in the
reactor with a desired prediction accuracy. In this subsection, an

Table 4. Process Parameters for EFP Models with Units

parameter value units

EFP Model (Limiting Conditions)
k0 2.32 × 10−12 cm s−1

α 0.5
F 96485 C mol−1

R 8.314 J mol−1 K−1

T 298 K
E0′ −0.52 V
CCO2

3.40 × 10−5 mol cm−3

DCO2
1.91 × 10−5 cm2 s−1

dRCE 1.2 cm
νH2O 1.03 × 10−2 cm2 s−1

EFP Model
k0,5 2.02 × 10−28 mol cm−1 s−2

k0,6 7.47 × 10−32 mol cm−1 s−2

k0,7 2.61 × 10−13 mol1/2 cm s−1/2

α5 0.7
α6 0.85
α7 0.665

EFP Model (Updated)
k0,5 7.2 × 10−22 mol cm−1 s−2

k0,6 1.6 × 10−17 mol1/4 cm3/2 s5/4

k0,7 9.5 × 10−23 mol cm−1 s−2

α5 0.42
α6 0.53
α7 0.49
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EFPmodel of a rotating electrode reactor is developed following
the derivation in ref 34 to determine the rate of CO production
under limiting conditions. Specifically, this model assumes that
only a single, first-order reaction is occurring with no side
reactions, and the reaction occurs only on the electrode surface
following Butler−Volmer kinetics, which means it cannot
capture the comprehensive kinetics of this experiment. The
resulting equation is given as follows:

( )
r

k C

k m1 /

f

f
CO

CO

0

2=
*

+ (10)

whereCCO2
* is the bulk concentration of CO2, kf is the kinetic rate

constant, andm0 is the convective mass-transfer coefficient. The
rate constant kf changes based on the applied potential, and is
calculated as follows:
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É

Ö
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where k0 is the standard rate constant, α the symmetry factor, F
the Faraday constant, R the gas constant, T the temperature, E

the applied potential, and E0′ the standard reduction potential.
The mass-transfer coefficient m0 is determined based on the
rotation speed of the electrode, but this correlation will change
depending on the type of rotating electrode. For some simple
rotating electrode geometries such as a flat disk, a mass-transfer
coefficient is determined analytically, assuming a linear velocity
profile in the boundary layer. However, the electrode used in this
experiment has a cylindrical geometry, which is more
complicated, so the mass-transfer coefficient is determined
experimentally from the Sherwood number correlation as
follows:27

m Re Sc
D

d
0.2040 RCE

0.59 0.33 CO

RCE

2=
(12)

where ReRCE is the Reynolds number, Sc the Schmidt number,D
the diffusion coefficient, and dRCE the diameter of the RCE. The
diffusion coefficient is assumed to be the same for the reactant
and product species for simplicity. Since the Sherwood number
is determined experimentally, this model will be referenced as an
EFP model.

Figure 3. Comparison between the observed experimental outcome and the neural network predictions from (a) standard FNN and (b) MLE-FNN
models.

Figure 4.CO production rate predictions for various applied potentials, in units of V vs the standard hydrogen electrode (V vs SHE). The solid points
are labeled uncertain data as having a drift in potential. The open point is from the testing set. (a) TheCOprediction of standard FNNmodel overfitted
the labeled uncertain data points. (b) TheMLE-FNNmodel successfully learned the experimental uncertainty and provide prediction accordingly, but
this feature introduces extra error to the testing results.
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The comparison between this EFP model and the FNN
prediction is shown in Figure 6. As shown, the EFP model
trajectory is similar to the FNN prediction under the operating
conditions with less negative applied potentials and lower
rotation speeds, because the side reactions are limited under
these conditions. After switching to more-negative conditions,
the EFP model’s assumption becomes invalid. Therefore, these
two models present different predictions after passing threshold
conditions. This comparison demonstrates that the neural
network can correctly capture the input−output relations from
the experimental data.
EFP Model Improvement. EFP modeling is an efficient

way to determine out how several experimental variables affect
the experimental data without requiring complete knowledge of

the underlying physical phenomena needed for large-scale FP
models.35 Although the neural network has demonstrated its
ability to capture steady-state behavior of the electrochemical
reactor, an empirical model with an explicit form is essential to
improve the reactor phenomena understanding. However,
parameter tuning and selection for an empirical model are
challenging. Therefore, we propose an algorithm to use neural
network model results to improve the EFP model structure.
Specifically, we first develop an EFP model consisting of

several regression problems that predict the production rate of
seven different classes of species produced in the reactor. This
model is derived utilizing the same reaction kinetics and
transport phenomena considerations mentioned in the section
entitled “EFP Model vs. MLE-FNN”. As shown in eq 13, the
empirical regressions of interest are the production rate of C1
products (FNN Outputs 1 and 3 listed in Table 3), C2+
hydrocarbons (FNN Output 2), and C2+ oxygenates (FNN
Outputs 4, 5, 6, 7, 8, 9, 10, 11, and 12), denoted as rC1

, rC2+,HC
, and

rC2+,OX
, respectively.
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The notation CCO is the concentration of carbon monoxide, and
JHCO3

is the flux of bicarbonate, both of which are calculated at
the inner Helmholtz plane based on the bulk concentration,
rotation speed, and applied potential. In addition, ShRCE is the
Sherwood number of the rotating-cylinder electrode, which
relates directly to the rotation speed. The rate constants k0,i and
symmetry factors αi are obtained by linearizing the equations for
rC1
, rC2+,HC

, and rC2+,OX, with respect to the applied potential.
Furthermore, since these rate expressions each describe multiple
products from different reaction steps, the number of electrons zi

Figure 5. Selectivity of oxygenate species, with respect to rotation speed
and applied potential (in the unit of V vs the standard hydrogen
electrode (V vs SHE)), as predicted by the machine learning model.

Figure 6.CO production rates for the first EFP model (dashed) and theMLE-FNNmodel predictions (solid), compared with the training data points
over the range of (a) rotation speed and (b) applied potentials (given in units of V vs the standard hydrogen electrode (V vs SHE)). This EFP model
can capture the general trend of the reactor for low applied potential and rotation speed. However, for the more negative potential and higher rotation
speed, the initial assumption of the EFP model becomes invalid.
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is not a single value, and a modification is necessary for this case.
Specifically, the parameter αi is considered to be a fitting
parameter for the exponential relationship between the potential
and the rates. Thus, by fixing zi to 1, αi becomes an arbitrary
positive value that can be optimized in the regression problem.
Subsequently, the EFP model is compared with the FNN

model using the testing set as described in the section enetitled
“Data Generation and Dataset”. Table 5 shows that the FNN

model outperforms the EFP model with significantly lower
MSEs for all three rates, which implies that the accuracy of the
EFP model can be improved by minimizing the deviation
between FNN prediction and EFP model prediction. In other
words, the FNN prediction can be considered as additional

reference data to improve the EFP model performance for this
reactor. In addition, by comparing the prediction trends from
both models in Figure 7, the EFP model overestimates the effect
of applied potential for higher rotation speed. Thus, the
empirical model can be improved by modifying the existing
terms. The process is summarized by Algorithm 1.
Specifically, the regression parameters (θi) can be optimized

to minimize the difference between the two models using a user-
defined optimization algorithm in each iteration of the
procedure. In addition, new system parameters, Ci, can be
introduced to further develop the empirical model. For example,
terms that describe the influence of gas pressure and flow rate on
the electrochemical reaction can be included to further improve
the current empirical model. Therefore, by following this
procedure, the improvement of an empirical model can be
represented as an optimization problem, which can be
accomplished automatically by computers.
To demonstrate this procedure, we use the FNN to tune the

parameters for the proposed EFP model. The difference
between the EFP and FNN models is minimized in the range
of −1.47 V to −1.30 V, since this is the range for the data
collected to train the FNN model. The MSE between the EFP

Table 5. Testing DataMSEResults of the FNNModel and the
Empirical, First-Principles Model

rate index FNN EFP

rC2+,OX
0.0239 0.042

rC2+,HC
0.0098 0.042

rC1
0.003 0.021

Figure 7. Production rates of (a) rC1
, (b) rC2+,HC

, and (c) rC2+,OX
from the EFP model (dashed) and the MLE-FNN model (solid), compared with the

reference data points over the range of applied potentials (given in units of V vs the standard hydrogen electrode (V vs SHE)).
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model and FNN is calculated at intervals of 0.01 V. For the
model of eq 13, we apply a grid search to find the optimum
values for the parameters ki, αi, and the exponent of the flux term
JHCO3

. Specifically, we search the αi values from 0 to 1 with step

sizes of 0.01, and the JHCO3
exponents from −1 to 1 with step

sizes of 0.25. However, small changes in the αi and exponent of
JHCO3

can cause the ki to change by several orders of magnitude,
which caused problems when attempting to use nonlinear
optimization packages. Therefore, the grid search for ki must
cover a large range of magnitudes from 0 to 1. To decrease the
computational complexity, the grid search for ki is split into two
subsequent searches. Given that ki can be expressed in the form
of A × 10−B, we first search for the optimum order of magnitude
B, and then search for the optimum number A. Specifically, the
first search follows a geometric sequence from 10−25 to 10−10

with a geometric ratio of 10 (i.e., 10−25, 10−24, 10−23, ..., 10−10).
Then, given the optimum order of magnitude B, we search for
the optimal number from 1 to 10 with step size of 0.1 (i.e., 0.1 ×
10−B, 0.2 × 10−B, 0.3 × 10−B, ..., 10.0 × 10−B) for the order of
magnitude B and B + 1.
Following this procedure, the optimum parameters are

determined and listed in Table 4. Then, the new EFP model is
tested against the same reference data points, and itsMSE results
are compared with the original EFP model listed in Table 6. As a
result, the MSE for rC1

, rC2+,HC
, and rC2+,OX

against the reference
dataset decreases by 75%, 79%, and 32%, respectively. The new
empirical, first-principles equations are updated in eq 14 to
reflect the changes made from the procedure.Moreover, the new

EFP model predictions are also shown in Figure 8, which shows
that the overestimating problem is solved with new parameters.
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Remark 6.Minimizing the dif ference between the twomodels will
not result in exactly the same predictive model. During the
optimization process, the empirical model structure derived f rom
physical relations should remain unaltered. Furthermore, the
additional terms Ci that have not been included in the previous
empirical models should have physical meanings. In this way, the
empirical model is modif ied toward a lower MSE for its prediction,
while respecting the physics of the experiment.
Remark 7 The experimental data is used to calculate the original

EFP parameters. Specif ically, the original EFP model is determined
using traditional methods to extract kinetic parameters of αi and ki.
Since the reaction rate is proportional to the exponential of the
applied potential, the relationship is linearized by plotting the
natural logarithm of the reaction rate against the applied potential.
A linear regression is then used to f ind the slope and intercept of the
observed data. The value of αi is then extracted f rom the slope, and ki
is extracted f rom the intercept. Furthermore, by using the FNN
model to propose an updated EFP model, meaningful process
parameters can be extracted f rom the neural network regression,
which provides additional explicit values to evaluate the neural
network performance.

■ CONCLUSION
This work demonstrated the application of neural network
modeling to an electrochemical reactor to capture input−output
relationships of key operating variables, and developed amethod
to improve EFP models using neural network model results.

Table 6. Nonscaled MSE for the Updated and Original EFP
Models

rate index EFP (original) EFP (updated)

rC2+,OX
3.68 × 10−19 9.20 × 10−20

rC2+,HC
1.11 × 10−18 2.32 × 10−19

rC1
8.46 × 10−18 5.76 × 10−18
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Since the electrochemical reduction of carbon dioxide and the
overall chemical reaction pathways are not well-understood, the
kinetic and empirical, first-principles models cannot fully
capture the physiochemical phenomena of the reactor. To
address this issue, an FNN model was developed to model the
experimental reactor data over a broad range of operating
conditions. In addition, statistical FNN models were developed
by utilizing maximum likelihood estimation method to account
for the variability of experimental data, and their predictive
performance was demonstrated over a broad range of operating
conditions. Lastly, we developed an algorithm to improve the
EFP model by utilizing the neural network model results, which
decreased the MSE of the EFP model prediction for three
reaction rates, by 75%, 79%, and 32%, respectively.
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Figure 8. Production rates of (a) rC1
, (b) rC2+,HC

, and (c) rC2+,OX
from the updated EFPmodel (dashed) and theMLE-FNNmodel (solid), compared with

the reference data points over the range of applied potentials (given in units of V vs the standard hydrogen electrode (V vs SHE)).
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