
Computers and Chemical Engineering 178 (2023) 108367

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Model predictive control of nonlinear processes using neural ordinary
differential equation models
Junwei Luo a, Fahim Abdullah a, Panagiotis D. Christofides a,b,∗

a Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
b Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095-1592, USA

A R T I C L E I N F O

Keywords:
Neural ordinary differential equations
Model predictive control
Subsampling
Noisy data
Chemical processes

A B S T R A C T

Neural Ordinary Differential Equation (NODE) is a recently proposed family of deep learning models that can
perform a continuous approximation of a linear/nonlinear dynamic system using time-series data by integrating
the neural network model with classical ordinary differential equation solvers. Modeling nonlinear dynamic
processes using data has historically been a critical challenge in the field of chemical engineering research.
With the development of computer science and neural network technology, recurrent neural networks (RNN)
have become a popular black-box approach to accomplish this task and have been utilized to design model
predictive control (MPC) systems. However, as a discrete-time approximation model, RNN requires strictly
uniform step sequence data to operate, which makes it less robust to an irregular sampling scenario, such
as missing data points during operation due to sensor failure or other types of random errors. This paper
aims to develop a NODE model and construct an MPC based on this novel continuous-time neural network
model. In this context, closed-loop stability is established and robustness to noise is addressed using a variety
of data analysis techniques. An example of a chemical process is utilized to evaluate the performance of
NODE-based MPC. Furthermore, the performance of the NODE-based MPC under Gaussian and non-Gaussian
noise is investigated, and the subsampling method is found to be effective in building models for MPC that
are suitable for handling the presence of non-Gaussian noise in the data.
1. Introduction

Model predictive control is an advanced optimization-based control
strategy that has been widely used in various industries and appli-
cations, ranging from chemical process control (Rohani et al., 1999;
Benattia et al., 2016) to autonomous vehicles (Raffo et al., 2009; Ji
et al., 2016; Brüdigam et al., 2021). The primary objective of a model
predictive controller (MPC) is to regulate the behavior of a dynamical
system by predicting its future behavior with a mathematical model
and optimizing control inputs accordingly (Morari and Lee, 1999).
Specifically, the MPC repeatedly solves an optimization problem at
each sampling instant, which takes into account a prediction of the
future behavior of the system over a finite time horizon, to generate a
control sequence that minimizes a chosen performance criterion over
the entire prediction horizon. Therefore, the prediction accuracy of
the process model used by the MPC is essential to the MPC’s perfor-
mance, and developing an accurate predictive model continues to be a
mathematical and scientific challenge.

First-principles models, developed based on a comprehensive under-
standing of the process mechanism, are the most robust and accurate

∗ Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA.
E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

predictive models that an MPC can use. However, developing such
models is usually a time-consuming task that requires physicochemical
information, which may not be available in most cases. To address this
challenge, data-driven modeling methods have been used in chemical
engineering to facilitate and generalize the modeling process while
reducing costs. An example of a data-driven application in classical pro-
cess control is the Fuzzy logic technique developed in the 1960s (Zadeh,
1965), which has been applied in various chemical engineering re-
search efforts (Yaacob et al., 2001; Osofisan and Obafaiye, 2007; Liao
et al., 2008). However, Fuzzy Logic Control (FLC) is usually imple-
mented as a model-free approach (Sarmasti Emami, 2019), which is
conceptually different from model-based approaches such as MPC. One
advanced recent technique that is conceptually similar to the FLC is
reinforcement learning (Nian et al., 2020). With the advent of the 21st

century, machine learning methods, which are a subset of data-driven
techniques, have been widely used and demonstrated great success
in both classification and regression problems. The classical machine
learning methods such as Gaussian process (GP) regression (Hewing
et al., 2019; Zhang et al., 2022) and support vector regression (Xi et al.,
2007; Çıtmacı et al., 2022) became popular choices to model physical
vailable online 1 August 2023
098-1354/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compchemeng.2023.108367
Received 7 May 2023; Received in revised form 20 July 2023; Accepted 25 July 20
23

https://www.elsevier.com/locate/cace
http://www.elsevier.com/locate/cace
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.compchemeng.2023.108367
https://doi.org/10.1016/j.compchemeng.2023.108367
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2023.108367&domain=pdf

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.

𝑥

𝑦

𝑥

w
i
R
s
r
𝑥
s
a
d
d
i

systems using data for process control purposes. With the development
of computer software and hardware, more advanced and computation-
ally intensive methods such as neural network (NN) modeling have
also become accessible in conventional engineering disciplines. Since
then, various NN techniques, including but not limited to feedforward
neural network (FNN) (Mohanty, 2009; Kittisupakorn et al., 2009; Yun
et al., 2022; Tom et al., 2022), recurrent neural network (RNN), and
convolution neural network (CNN) (Han et al., 2019) approaches have
led to significant innovations in process control research. In particular,
RNN models trained with time-series data have been demonstrated
to be an effective method to develop predictive models for nonlinear
systems to be used as the process model in MPC for chemical process
control (Wong et al., 2018; Xiao et al., 2021; Wu et al., 2021). In
addition to NN approaches, other nonlinear methods that have been
widely used in the process systems engineering literature to model
dynamical systems for process control include nonlinear autoregressive
methods (Billings, 2013) and sparse identification for nonlinear dynam-
ics (SINDy) (Abdullah et al., 2021, 2022a; Abdullah and Christofides,
2023).

Recently, a novel class of neural network models, the neural or-
dinary differential equation (NODE), was proposed and has attracted
significant attention due to their ability to learn continuous-time dy-
namical systems. As stated in Chen et al. (2018), due to its continuous
nature, the NODE model can incorporate time-series data having an ar-
bitrary time span between each data point, which gives it an important
advantage compared to the RNN, which is a discrete approximation
of the time sequence data that requires a consistent time step size in
the training set and provides prediction having the same time step
sizes. On the other hand, the performance of the SINDy method is
highly dependent on the candidate terms in the predefined bank of
basis functions. Similar to other NN methods, the NODE has a high
degree of freedom in its model structure and weight matrices, which
makes it more generalizable than SINDy. Therefore, this new modeling
method has been widely tested in various areas to identify and control
physical processes. For example, Lai et al. (2021) confirmed the feasi-
bility of using NODE in linear and nonlinear structural identification,
demonstrating their results on several numerical and experimental
systems. Bradley and Boukouvala (2021) proposed a framework using
the NODE model to extract parameters that describe the derivatives
of physical states from the data. Furthermore, in Chee et al. (2023), a
knowledge-based neural ordinary differential equation (KNODE) model
that can capture a dynamic process was developed and implemented by
designing a KNODE-based MPC for a quadrotor system. These advances
illustrate the potential of NODE-based modeling for physical systems
and motivate its use in the development of MPC for chemical processes.

Lastly, the application of all data-driven methods in a practical
industrial system faces several critical challenges, one being that data
collected from the system is usually corrupted by noise. Therefore, var-
ious researchers investigated methodologies to account for noisy data
in the NN context. One way to handle noisy data is by smoothing the
data with a noise filter in the data preprocessing step (Tran and Ward,
2017). But this method usually involves averaging the measurements
within a certain time window, which introduces an undesired delay
to the control system. In addition to smoothing the data, algorithms
can be used to reduce the effect of noise during the development of
the NN model. For example, Luo et al. (2022) used a weighted loss
function to train the NN model to account for experimental noisy data,
while Wu et al. (2021) demonstrated the Monte Carlo dropout and
co-teaching method as effective ways to handle noisy data in LSTM
models. However, Liu et al. (2019) stated the dropout method cannot
be used with the original NODE structure. Hence, they proposed a
modification on the NODE model, namely the Stochastic Differential
Equation (SDE), to allow the use of effective regularization methods
(e.g., dropout) while preserving most of the design of the NODE model.
Finally, Goyal and Benner (2022) proposed an NODE-based framework
2

to extract the ground-truth trajectory from noisy measurements. 𝑣
Motivated by the theoretical advantage of using the NODE model
in modeling continuous-time systems and the recent results supporting
its implementation in physical systems, this work aims to develop a
Lyapunov-based MPC (LMPC) based on a NODE model. The NODE
model is designed to capture complex nonlinear relationships in a
chemical process, so that this NODE-based LMPC can potentially be
implemented in an industrial chemical process. In terms of the specific
novelty of this work with respect to the neural network modeling liter-
ature, this study demonstrates that the NODE modeling approach can
be used as an additional option to capture the derivative information
of the state variables, which is required to enforce the contractive
stability constraint of the LMPC. Specifically, differently from RNN
modeling, NODE models allow capturing the state derivative with its
hidden state while the output is trained to fit the state trajectory.
Additionally, the continuous property of the NODE model enables the
use of the subsampling method to account for noisy data and deal with
measurement noise more effectively compared to RNN models, since
NODE can handle irregularly sampled data sets. The rest of this paper
is organized into the following sections: in Section 2, the mathematical
notation and background of this work will be introduced; the NODE
structure, training algorithm, and technical details will be discussed in
Section 3 and the LMPC design and stability analysis will be addressed
in Section 4. In Section 5, a simulation case study of a chemical
process is utilized to show the implementation of NODE modeling
and the development of NODE-based LMPC. The performance of the
NODE model and the NODE-based LMPC will be evaluated via open-
and closed-loop simulations, respectively. Finally, Section 5 further
demonstrates the application of NODE-based LMPC while considering
the effect of Gaussian and non-Gaussian types of sensor noise.

2. Preliminaries

2.1. Notation

The time-derivative of 𝑥 is represented by 𝑥̇, that is, 𝑥̇ ∶= 𝜕𝑥
𝜕𝑡 . 𝑦̂

denotes the prediction of 𝑦 using a mathematical model, and 𝑉 (𝑥) =
𝑉 (𝑥̂). 𝐯⊤ represents the transpose of 𝐯. ‘‘∖’’ stands for subtracting one set
from another, such that 𝐴∖𝐵 ∶= {𝑥 ∈ R𝑛

|𝑥 ∈ 𝐴, 𝑥 ∉ 𝐵}. A continuous
function 𝛼 ∶ [0, 𝑎) → [0,∞) belongs to class  if it is strictly increasing
and achieves a value of zero only when evaluated at zero.

2.2. Class of systems

The general class of continuous-time systems considered in this
research can be expressed by the following equations:

̇ = 𝐹 (𝑥, 𝑢) (1a)

= 𝑥 + 𝑣 (1b)

(𝑡0) = 𝑥0 (1c)

here 𝑥 ∈ R𝑛 and 𝑢 ∈ R𝑚 are the state vector and the manipulated
nput vector, respectively. An arbitrary nonlinear function, 𝐹 ∶ R𝑛+𝑚 →
𝑛, mapping the state and input vectors to the time-derivative of the

ystem, is assumed to be continuous and sufficiently smooth. 𝑣 ∈ R𝑛

epresents the sensor noise affecting the state measurement 𝑦. 𝑡0 and
0 are used to denote the initial time and the corresponding initial
tate, respectively. Without loss of generality, the values of 𝑡0 and 𝑥0
re taken to be zero. By assuming 𝐹 (0, 0) = 0 and that the system is in
eviation form, i.e., 𝑥𝑑 = 𝑥 − 𝑥𝑠; 𝑢𝑑 = 𝑢 − 𝑢𝑠 where subscripts 𝑑 and 𝑠
enote deviation variables and the steady-state values of the state and
nput vectors, respectively, the steady-state of the nominal system with
(𝑡) = 0 is located at the origin of the state space.

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.

b
s
L
i

𝑐

𝑉

c
t
O
a
t
c
o

𝑥

w
o
s
t
r

𝑥

w
f
o
o
c
𝑥
1
c
T
F

S
t
u
i
u
t
t
v
p
v
t
s
a

2.3. Defining Lyapunov-based stability region

To ensure that the nominal system of Eq. (1) can be used to
construct a feasible process control problem, we first define an open
region 𝐷 in the state space around a selected set-point, which is a
steady state of the system, such that the nominal system is closed-loop
stable in the sense that any instantaneous state belonging to 𝐷 can
e brought to the set-point under a certain controller. Specifically, the
tability criteria can be mathematically defined as the existence of a
yapunov function 𝑉 (𝑥) and a stabilizing controller 𝛷(𝑥) such that, ∀𝑥
n the region 𝐷, the following inequalities hold:

1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|

2 (2a)

̇ (𝑥) =
𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝜙(𝑥)) ≤ −𝑐3|𝑥|
2 (2b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4|𝑥| (2c)

where 𝑉 (𝑥) is a Lyapunov function, and 𝑐1, 𝑐2, 𝑐3, 𝑐4 are positive
onstants. In other words, Eq. (2) implies the existence of a controller
hat can ensure exponential stability of the state 𝑥 around the set-point.
ne candidate controller can be the universal Sontag controller (Lin
nd Sontag, 1991). Therefore, one can first find a region (𝐷) where
he time-derivative of the Lyapunov function (𝑉̇) is negative under the
ontroller 𝛷(𝑥). Subsequently, we pick a subset of 𝐷, namely 𝛺𝜌, to be
ur stability region, such that 𝛺𝜌 ∶= {𝑥 ∈ 𝐷 ∣ 𝑉 (𝑥) ≤ 𝜌} where 𝜌 > 0

and 𝛺𝜌 ⊂ 𝐷. The set of values of 𝑥 that gives 𝑉 (𝑥) equal to a positive
constant 𝜌 is the boundary of our stability region. Finally, the Lipschitz
property of 𝐹 (𝑥, 𝑢) combined with the bound on 𝑢 implies the existence
of positive constants 𝑀,𝐿𝑥, 𝐿′

𝑥 such that the following inequalities hold
for all 𝑥, 𝑥′ ∈ 𝐷, 𝑢 ∈ 𝑈 :

|𝐹 (𝑥, 𝑢)| ≤ 𝑀 (3a)

|𝐹 (𝑥, 𝑢) − 𝐹 (𝑥′, 𝑢)| ≤ 𝐿𝑥|𝑥 − 𝑥′| (3b)
|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝑢) −
𝜕𝑉 (𝑥′)
𝜕𝑥

𝐹 (𝑥′, 𝑢)
|

|

|

|

≤ 𝐿′
𝑥|𝑥 − 𝑥′| (3c)

2.4. Neural network approximation of time-series data

Most popular neural network structures, such as the RNN family
(e.g., vanilla RNN, Gated Recurrent Units (GRU), Long Short-Term
Memory (LSTM) Units), compute their output using various logistic
units (or neurons) to perform nonlinear transformations on the received
input and propagate the result as the input of the next neuron. The
result of the nonlinear transformations flowing from one neuron to
another is named the hidden state. In the case of using an RNN
model to capture time-series data, one of the common applications of
neural network modeling in process control, the hidden state is passed
chronologically until the desired final time step. Therefore, the RNN
prediction for a time sequence state can be summarized as the following
equation (Chen et al., 2018):

ℎ(𝑘 + 1) = ℎ(𝑘) + 𝑓 (ℎ(𝑘), 𝑥𝑟𝑛𝑛(𝑘)) (4)

where ℎ(𝑘), 𝑥𝑟𝑛𝑛(𝑘), and 𝑓 (⋅) stand for the hidden state of the RNN
model for the 𝑘th recurrent unit, the input for the 𝑘th recurrent unit,
which is usually the process measurements and control actions at time
step 𝑘, and the nonlinear transformation performed on all received
information in that unit. One may find that Eq. (4) is similar to the
numerical integration step of an explicit integration scheme. Therefore,
continuously adding recurrent units to an RNN model is equivalent to
using a smaller integration time step, where the nonlinear transfor-
mation within the RNN unit, 𝑓 (ℎ(𝑘), 𝑥𝑟𝑛𝑛(𝑘)), evaluates the right-hand
side of the ordinary differential equation (ODE). The Neural Ordinary
Differential Equation (NODE) is designed based on this observation
in Chen et al. (2018). The structure of NODE is designed such that by
fitting the output of the model to the data, the hidden state of the NODE
will fit to the time-derivative of the data. The technical details of NODE
will be discussed in Section 3, following the proposed workflow in Chen
et al. (2018).
3

2.5. Subsampling method

Subsampling is an effective statistical method that is used to reduce
the size of the original data set by creating a subset of the original
data (Hansen and Johnson, 2011). Subsampling is widely used to derive
inferences on a larger data set by using a representative subsample
at a lower computational cost. For example, subsampling was used to
downsample large biomedical data sets while preserving the distribu-
tion in Lötsch et al. (2021), and computational power requirements
for regression tasks were reduced through subsampling in Dai et al.
(2023). Two of the most important tools used in developing machine
learning models, train-test split and cross-validation, also belong to the
subsampling family. In this work, we use subsampling to account for
noisy data based on the assumption that some of the data points are
more affected by noise than others. Therefore, by randomly selecting
data points to create a subset that will be used to develop a prediction
model, the impact of measurement noise can be mitigated, leading to
the development of a better model. Subsampling has also been used
in the data-driven modeling literature to account for data noise and
has shown promising results (Huys and Paninski, 2009; Abdullah et al.,
2022b), inspiring the use of subsampling to handle noisy data in our
work.

3. Neural Ordinary Differential Equations (NODE)

3.1. NODE architecture

The NODE model in our work is developed to predict the state of a
dynamical system using the following equation:

̂(𝑡𝑘+𝑡𝑝) = ODESolver
(

𝑥(𝑡𝑘), 𝑡𝑘, 𝑡𝑘 + 𝑡𝑝, f(𝑥̂, 𝑢)
)

= 𝐹𝑛𝑛(𝑥0, 𝑢, 𝑡𝑘, 𝑡𝑘+𝑡𝑝, f) (5)

here 𝑥̂ ∈ R𝑛 is the NODE state vector and 𝑥(𝑡𝑘) represents the state
f the nominal system of Eq. (1) at time step 𝑡𝑘. 𝑡𝑝 stands for the time
pan from the initial state measurement at 𝑡𝑘. f is the NN model used
o capture the nonlinear dynamic relationship of the system, i.e., the
ight-hand side of the ODE representing the time-derivative,

̇̂ = f(𝑥̂, 𝑢) (6)

Since we are working on a regression task with numerical data, an FNN
model is used as the function f. For convenience, we refer to the NN
model f used in the NODE as the ‘‘core model’’ in the remainder of
this manuscript, while 𝐹𝑛𝑛 is used to denote the overall NODE model,

hose output is the state prediction itself following integration. The
undamental mathematical idea behind the NODE model is to find the
ptimum weight matrix 𝑊 ∗ of the FNN (core) model, such that the
utput of the FNN model can be used by the ODE solver to numerically
alculate the predicted state from an arbitrary initial state measurement
(𝑡𝑘). Based on the universal approximation theorem (Hornik et al.,
990; Hornik, 1991), the core model of a perfectly trained NODE model
an capture the right-hand side of the ODE of the desired system.
raining of the NODE model refers to the process of optimizing the
NN weights based on the data.

The architecture of the NODE model is demonstrated in Fig. 1.
pecifically, when using a trained NODE model to make a prediction,
he instantaneous state measurement needs to be provided and will be
sed as the initial value of the ODE solver. The sequence of control
nputs also needs to be provided to the NODE model, which will be
sed as the input of the FNN model to predict the ‘‘time-derivative of
he state’’. The ODE solver will recursively call the FNN model to find
he time-derivative and update the predicted state from the initial state
alue until the final time step of the prediction is reached. Finally, the
rediction computed by the NODE model can be returned as a single
alue or as a vector of the state predictions at the desired time steps. If
he prediction is returned as a time sequence, the intermediate time
teps in the returning sequence need to be pre-defined and used as
n argument of the prediction function. However, more intermediate

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.
Fig. 1. The architecture of the neural ordinary differential equation (NODE) model. The NODE model contains a nonlinear core function that maps the input to its hidden state,
such that the time-series state prediction can be found by integrating the hidden state using an ODE solver. The core function used in this work is a feedforward neural network
model whose structure is shown on the left. The blue circles in the FNN represent the input information represented in gray in the figure on the right-hand side.
𝐿

w
d
t
n
p

states in the output will result in higher computational costs. Lastly,
the output of the core model can be considered the hidden state of
the NODE model and has a very similar value to the state derivative.
However, although we defined and used the output of the core model
in the NODE model as the time-derivative of the states, it actually does
not have any physical meaning. Therefore, various types of regressive
models can be used as the core model, but in the case of regressing a
physical system, the FNN model is a popular candidate. In contrast, for
an image classification task, for example, using a convolutional neural
network (CNN) as the core model is the most common approach.

3.2. Back-propagation

In the last subsection, we introduced the architecture of the NODE
model and the unique characteristic of this model, which is the inte-
gration with an ODE solver within the neural network model. Since the
ODE solver is involved in the training of the NODE model and impacts
the backpropagation algorithm, the type of ODE solver (e.g., explicit
Euler, Runge–Kutta, etc.) becomes one of the hyperparameters to be
defined before training. This design differentiates the NODE from the
common approach of training an FNN model with state time-derivatives
and then computing the state prediction by using an explicit integration
method with the output of the FNN model. Specifically, for the second
approach, time-derivatives of the state need to be included in the train-
ing data set and used as the reference data for the model training. Thus,
the state time-derivatives have to be either measured (if measurable,
e.g., velocity) or numerically approximated from the raw data of state
measurements to develop the training data set. Additionally, in the
second approach, the ODE solver is detached from the FNN model, so
it is not involved in the model training.

The NODE model used in this study is an example of a supervised
learning technique, which optimizes the parameters of a model by
minimizing the difference between the model output and a reference
data set. Training a neural network model includes two major steps:
forward and backward propagation (Dongare et al., 2012; Cilimkovic,
2015; Ren et al., 2022). The forward propagation of the neural network
model is a straightforward process that propagates the input through all
the layers of the neural network model to compute the output (Zhang
et al., 2021). Subsequently, the model output will be compared with the
4

reference data set to calculate the loss of the model with respect to the
user-defined loss function. The mean squared error (MSE) is a popular
loss function for regression problems and is used in this study. Once
calculated, the loss will be propagated backward, from the output layer
to the input layer, to compute the derivative of the loss with respect to
each weight parameter of the model. Finally, the weight parameters
are optimized by the gradient descent method described by Eq. (7a)
below:

𝐖𝑘+1 = 𝐖𝑘 − 𝛼 𝜕𝐿𝑜𝑠𝑠
𝜕𝐖

(7a)

𝑜𝑠𝑠 = 1
2

𝑁𝑑
∑

𝑖=1
(𝑌𝑖 − 𝑌𝑖)⊤(𝑌𝑖 − 𝑌𝑖) (7b)

here 𝛼 is known as the learning rate, 𝑁𝑑 denotes the number of
ata points in the training set, and 𝐖 = {𝑤𝑖 ∣ 𝑖 = 1, 2,… , 𝑁} is
he weight matrix containing all 𝑁 weight parameters in the neural
etwork model. 𝜕𝐿𝑜𝑠𝑠

𝜕𝐖 is the loss gradient with respect to each weight
arameter, 𝑌𝑖 = [𝑦1,𝑖, 𝑦2,𝑖,… , 𝑦𝑛,𝑖] is the 𝑖th state measurement, and 𝑌

is the model prediction of 𝑌 . In an FNN model, neurons are densely
connected to each other, multiplying their respective weight values
during the propagation phases. Therefore, the loss gradient with respect
to the weight parameters can be easily computed by applying the chain
rule iteratively from the output layer to the input layer. However, in
NODE, the output given by the output layer of the FNN model is not
directly used in computing the model loss. Considering the MSE of
Eq. (7b) and the NODE definition of Eq. (5), the NODE prediction is
computed by the ODE solver, which means the chain rule cannot be
applied directly to propagate the gradient of loss.

3.2.1. Adjoint sensitivity method
Chen et al. (2018) proposed to use the adjoint sensitivity method

to propagate the gradient of loss through the ODE solver in the NODE
model. The adjoint sensitivity method, proposed in Pontryagin (1987),
is a popular method used in scientific research to efficiently compute
the gradient of a model loss with respect to model parameters (or
inputs). In Errico (1997), a detailed process to develop an adjoint
model is introduced and an example of its application in meteorology
demonstrated. Chen et al. (2018) provided the mathematical derivation
and proof of applying the adjoint method in the development of NODE.

In short, an adjoint state will be created to represent any derivative

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.

3

a
i
w
P

a
T
t
p
n
m
g
d
t

𝑐

𝜌

d

information that is useful to train the neural network model. By doing
so, the time-derivative of the adjoint state can be formulated based
on the chain rule. Finally, the loss gradients can be computed by
integrating the time-derivative of the adjoint states backward in time.
A detailed implementation of this training algorithm is demonstrated
in the following steps:

1. Define adjoint states: The first step in training the NODE model
is to define the adjoint states. One can start this step by first
identifying what gradient information is needed to train their
NN model. The first adjoint state is defined as the loss derivative
with respect to the NODE output, which can be represented
as 𝐚 = 𝜕𝐿𝑜𝑠𝑠

𝜕𝑌
. Since the loss function is usually selected to

be an explicit quantity (e.g., MSE, MAE), the gradient 𝜕𝐿𝑜𝑠𝑠
𝜕𝑌

can be computed analytically using the model prediction 𝑌 .
Subsequently, considering the case of using FNN as the core
model, the second adjoint state is defined to represent the loss
derivative with respect to the FNN weight parameters, that is,
𝐚𝐖 = 𝜕𝐿𝑜𝑠𝑠

𝜕𝐖 . In this study, the ODE function of the system is
assumed to not contain any explicit term in time. Therefore, time
is not an input of the core model, but it can be included following
a similar approach. Lastly, all adjoint states are augmented into
a column vector to perform the next step of the calculation.

2. Set up the time-derivative of the adjoint states: With an
augmented adjoint state vector, 𝐚aug = [𝐚 𝐚𝐖]⊤, following the
derivation in Chen et al. (2018), the time-derivative of the
adjoint state can be expressed in the following form:

𝜕
(

𝜕𝐿𝑜𝑠𝑠
𝜕𝑌

(𝑡)
)

𝜕𝑡
=

𝜕𝐚(𝑡)
𝜕𝑡

= −𝐚(𝑡) 𝜕f
𝜕𝑌

(8a)

𝜕
(

𝜕𝐿𝑜𝑠𝑠
𝜕𝐖 (𝑡)

)

𝜕𝑡
=

𝜕𝐚𝐖(𝑡)
𝜕𝑡

= −𝐚(𝑡) 𝜕f
𝜕𝐖

(8b)

Since 𝐖 is the weight vector that contains all the 𝑁 weight
parameters in the core model, Eq. (8b) is a vector of 𝑁 equa-
tions, which can be represented as 𝜕𝐚𝐖𝑖 (𝑡)

𝜕𝑡 = −𝐚(𝑡) 𝜕f
𝜕𝐖𝑖

, 𝑖 = 1,… , 𝑁
respectively.

3. Integrate backward in time: Based on the definition of the
adjoint states and their time-derivatives in the previous steps,
we can compute the numerical values of the adjoint states by
integrating Eq. (8) backward in time. Specifically, we denote
the initial time step by 𝑡0 and the final time step by 𝑡𝑓 . Based
on Eq. (7b), the adjoint state 𝐚(𝑡𝑓) will simply be the sum of the
model predictions at the final time step for each trajectory in the
training set, i.e., ∑ 𝑌 (𝑡𝑓). With the adjoint state 𝐚(𝑡𝑓) known, if
we assume 𝐚𝐖(𝑡𝑓) to be zero, the adjoint states at 𝑡0 can be found
by the following expression, where 𝑡′ is a notational substitute
for 𝑡:

𝐚(𝑡0) = 𝐚(𝑡𝑓) − ∫

𝑡0

𝑡𝑓
𝐚(𝑡′) 𝜕f

𝜕𝑌
d𝑡′ (9a)

𝐚𝐖(𝑡0) = 𝐚𝐖(𝑡𝑓) − ∫

𝑡0

𝑡𝑓
𝐚(𝑡′) 𝜕f

𝜕𝐖
d𝑡′ (9b)

which can be solved with an ODE solver by approximating the
partial derivative terms in Eq. (9) using the automatic differen-
tiation method. At the end, the gradient of the loss with respect
to weights at the initial time step, 𝐚𝐖(𝑡0), is used to update the
model based on Eq. (7a).

.2.2. Automatic differentiation
Automatic differentiation (AD) is an efficient and cheap method to

pproximate the gradient between two variables and is widely used
n the development of neural network models. The AD method is
ell-developed and supported in modern machine learning Application
rogramming Interfaces (APIs). For example, AD is provided as the
5

o

utograd function in PyTorch and the GradientTape function in
ensorFlow. Both machine learning APIs use a computational graph
o implement the AD method. A simplified demonstration of a com-
utational graph is a map that reflects all the connections in a neural
etwork model and has a database for the derivative of various com-
on math operations. For example, if a result (𝑐) in a computational

raph is computed by multiplying two inputs (𝑐 = 𝑎 × 𝑏), then the
erivative of the output with respect to either of the inputs is simply
he other input (𝜕𝑐𝜕𝑎 = 𝑏), and the derivative of the output with respect

to all of its inputs will be stored in the computational graph. When
performing the forward propagation of the neural network model, all
necessary gradients will be computed and stored. Therefore, during
backpropagation, the loss of the gradient with respect to any parameter
can be systematically computed based on the chain rule. In this work,
since we used PyTorch to develop our model, the derivative terms
in Eq. (9) are approximated using the autograd function.

4. Lyapunov-based model predictive control using NODE models

This section formulates the design of an LMPC designed using the
NODE model of Eq. (5) to predict the future state trajectory, and
then presents a closed-loop stability analysis of the nonlinear system
of Eq. (1) under the proposed NODE-based LMPC. Due to the sample-
and-hold implementation of the controller, the closed-loop states can
only be driven to a small neighborhood around the origin. We clarify,
for the subsequent propositions and proofs, that the core model of the
NODE model represents the time-derivative of the state, i.e., ̇̂𝑥, which
is also the right-hand side of the ODE model to be captured.

4.1. Lyapunov-based control using NODE models

We assume the existence of a stabilizing feedback controller 𝑢 =
𝛷𝑛𝑛(𝑥) ∈ 𝑈 that renders the origin of the core model of Eq. (6)
exponentially stable in an open neighborhood around the origin 𝜙̂𝑢 ∈
R𝑛 in the sense that there exist a continuously differentiable control
Lyapunov function 𝑉 (𝑥) and positive constants 𝑐1, 𝑐2, 𝑐3, 𝑐4 such that
the following inequalities hold for all 𝑥 ∈ 𝐷̂:

̂1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|

2 (10a)

̇̂𝑉 (𝑥) =
𝜕𝑉 (𝑥)
𝜕𝑥

f(𝑥,𝛷𝑛𝑛(𝑥)) ≤ −𝑐3|𝑥|
2 (10b)

|

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

|

≤ 𝑐4|𝑥| (10c)

We begin by characterizing the region 𝜙̂𝑢 where the constraints of
Eq. (10) are met under the controller 𝑢 = 𝛷𝑛𝑛(𝑥), followed by defining
the closed-loop stability region of the NODE model of Eq. (6) to be a
level set of the Lyapunov function inside 𝜙̂𝑢: 𝛺𝜌̂ ∶= {𝑥 ∈ 𝜙̂𝑢 ∣ 𝑉 (𝑥) ≤
̂} where 𝜌̂ > 0. The assumptions of Eq. (2) and Eq. (10) are the
stabilizability requirements of the nonlinear system of Eq. (1) and the
NODE model of Eq. (6), respectively.

As the data set for constructing the NODE model is generated via
open-loop simulations with 𝑥 ∈ 𝛺𝜌 and 𝑢 ∈ 𝑈 , we have 𝛺𝜌̂ ⊆ 𝛺𝜌.
Moreover, there exist positive constants 𝑀𝑛𝑛 and 𝐿𝑛𝑛 such that the
following inequalities hold for all 𝑥, 𝑥′ ∈ 𝛺𝜌̂ and 𝑢 ∈ 𝑈 :

|f(𝑥, 𝑢)| ≤ 𝑀𝑛𝑛 (11a)
|

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

f(𝑥, 𝑢) −
𝜕𝑉 (𝑥′)
𝜕𝑥

f(𝑥′, 𝑢)
|

|

|

|

|

≤ 𝐿𝑛𝑛|𝑥 − 𝑥′| (11b)

The following proposition is developed to demonstrate that the feed-
back controller 𝑢 = 𝛷𝑛𝑛(𝑥) can stabilize the nominal system of Eq. (1),
espite the model mismatch between Eq. (1) and the NODE model

f Eq. (6), if the modeling error is sufficiently small.

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.

a
r
i
e
o

w
|

I

|

w

T
𝑥

|

P
t
c
d
s
f
w

𝑉

Proposition 1 (c.f. proposition 2 in Wu et al. (2019)). Under the
ssumption that the origin of the closed-loop NODE system of Eq. (6) is
endered exponentially stable under the controller 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 ∀ 𝑥 ∈ 𝛺𝜌̂,
f there exists a positive real number 𝛾 < 𝑐3∕𝑐4 that constrains the modeling
rror |𝜈| = |𝐹 (𝑥, 𝑢) − f(𝑥, 𝑢)| ≤ 𝛾|𝑥|, ∀ 𝑢 ∈ 𝑈 and ∀ 𝑥 ∈ 𝛺𝜌̂, then the origin
f the nominal closed-loop system of Eq. (1) under 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 is also
exponentially stable ∀ 𝑥 ∈ 𝛺𝜌̂.

Proof. To prove that the origin of the nominal system of Eq. (1) may be
rendered exponentially stable ∀ 𝑥 ∈ 𝛺𝜌̂ under the controller designed
using the NODE model of Eq. (5), we prove that ̇̂𝑉 for the nominal
system of Eq. (1) is still rendered negative for all 𝑥 ∈ 𝛺𝜌̂ under the
controller 𝑢 = 𝛷𝑛𝑛(𝑥). The time-derivative of 𝑉 is computed based on
Eqs. (10b) and (10c), as follows:

̇̂𝑉 =
𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷𝑛𝑛(𝑥))

=
𝜕𝑉 (𝑥)
𝜕𝑥

(

f(𝑥,𝛷𝑛𝑛(𝑥)) + 𝐹 (𝑥,𝛷𝑛𝑛(𝑥)) − f(𝑥,𝛷𝑛𝑛(𝑥))
)

≤ −𝑐3|𝑥|
2 + 𝑐4|𝑥|

(

𝐹 (𝑥,𝛷𝑛𝑛(𝑥)) − f(𝑥,𝛷𝑛𝑛(𝑥))
)

≤ −𝑐3|𝑥|
2 + 𝑐4𝛾|𝑥|

2

(12)

By choosing the modeling error 𝛾 to satisfy 𝛾 < 𝑐3∕𝑐4, it can be ensured
that ̇̂𝑉 ≤ −𝑐3|𝑥|

2 ≤ 0 where 𝑐3 = −𝑐3 + 𝑐4𝛾 > 0. Consequently, the
closed-loop state of the nominal system of Eq. (1) converges to the
origin ∀ 𝑥0 ∈ 𝛺𝜌̂ under 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 . □

Remark 1. In this work, the terminology of ‘‘modeling error’’ is used
to describe the difference between Eq. (1) and Eq. (6) because the core
model of the trained NODE model is expected to capture the right-
hand-side of the ODE function of Eq. (1). However, the NODE model
is trained using the measured states, i.e., the solution of Eq. (1b), such
that the output of the core model of Eq. (6) is the hidden state of the
NODE model. Hence, the training loss of the NODE model refers to the
error in the state, while the modeling error refers to the error in the
time-derivative.

4.2. Sample-and-hold implementation of Lyapunov-based MPC

Since the Lyapunov-based MPC designed using the NODE model
of Eq. (5) is implemented in a sample-and-hold fashion, in the next
two propositions, the sample-and-hold properties of the Lyapunov-
based controller 𝑢 = 𝛷𝑛𝑛(𝑥) are derived. In particular, the following
proposition derives an upper bound for the error between the states
calculated by the nominal system of Eq. (1) and the states predicted by
the NODE model of Eq. (5).

Proposition 2. (c.f. proposition 3 in Wu et al. (2019)) For the nonlinear
system 𝑥̇ = 𝐹 (𝑥, 𝑢) of Eq. (1) and the NODE core model ̇̂𝑥 = f(𝑥̂, 𝑢) of Eq. (6)
with the same initial condition 𝑥0 = 𝑥̂0 ∈ 𝛺𝜌̂, there exist a function 𝑓𝑤(⋅) of
class  and a positive constant 𝜅 such that the following inequalities hold
∀ 𝑥, 𝑥̂ ∈ 𝛺𝜌̂:

|𝑥(𝑡) − 𝑥̂(𝑡)| ≤ 𝑓𝑤(𝑡) ∶=
𝜈𝑚
𝐿𝑥

(e𝐿𝑥𝑡 − 1) (13a)

𝑉 (𝑥) ≤ 𝑉 (𝑥̂) +
𝑐4
√

𝜌̂
√

𝑐1
|𝑥 − 𝑥̂| + 𝜅|𝑥 − 𝑥̂|2 (13b)

Proof. The error vector between the solutions of the nonlinear system
of Eq. (1) and the NODE model of Eq. (5) is defined as 𝑒(𝑡) = 𝑥(𝑡)− 𝑥̂(𝑡),

hose time-derivative can be calculated as follows:
𝑒̇(𝑡)| = |𝐹 (𝑥, 𝑢) − f(𝑥̂, 𝑢)|

≤ |𝐹 (𝑥, 𝑢) − 𝐹 (𝑥̂, 𝑢)| + |𝐹 (𝑥̂, 𝑢) − f(𝑥̂, 𝑢)|
(14)

n Eq. (14), the first term can be bounded using Eq. (3b) as follows:
6

𝐹 (𝑥, 𝑢) − 𝐹 (𝑥̂, 𝑢)| ≤ 𝐿𝑥|𝑥(𝑡) − 𝑥̂(𝑡)|, ∀ 𝑥, 𝑥̂ ∈ 𝛺𝜌̂, (15)
hile the second term |𝐹 (𝑥̂, 𝑢) − f(𝑥̂, 𝑢)| represents the modeling error,
which is bounded by |𝜈| ≤ 𝜈𝑚 ∀𝑥̂ ∈ 𝛺𝜌̂. As a result, based on Eq. (15)
and the bounded modeling error, 𝑒̇(𝑡) is bounded as follows:

|𝑒̇(𝑡)| ≤ 𝐿𝑥|𝑥(𝑡) − 𝑥̂(𝑡)| + 𝜈𝑚
≤ 𝐿𝑥|𝑒(𝑡)| + 𝜈𝑚

(16)

he norm of the error vector can be bounded as follows for all
(𝑡), 𝑥̂(𝑡) ∈ 𝛺𝜌̂ using the zero initial condition (i.e., 𝑒(0) = 0):

𝑒(𝑡)| = |𝑥(𝑡) − 𝑥̂(𝑡)| ≤
𝜈𝑚
𝐿𝑥

(e𝐿𝑥𝑡 − 1) (17)

Finally, to derive Eq. (13b) ∀𝑥, 𝑥̂ ∈ 𝛺𝜌̂, we derive the Taylor series
expansion of 𝑉 (𝑥) around 𝑥̂,

𝑉 (𝑥) ≤ 𝑉 (𝑥̂) +
𝜕𝑉 (𝑥̂)
𝜕𝑥

|𝑥 − 𝑥̂| + 𝜅|𝑥 − 𝑥̂|2 (18)

where 𝜅 is a positive real number. Using Eqs. (10a) and (10c), it follows
that

𝑉 (𝑥) ≤ 𝑉 (𝑥̂) +
𝑐4
√

𝜌̂
√

𝑐1
|𝑥 − 𝑥̂| + 𝜅|𝑥 − 𝑥̂|2, (19)

which completes the proof of Proposition 2. □

The final proposition below is developed to prove that the closed-
loop state of the actual nonlinear system of Eq. (1) remains bounded in
𝛺𝜌̂ for all times, and can be ultimately bounded in a small neighbor-
hood around the origin, denoted by 𝛺𝜌min

, under the sample-and-hold
implementation of the Lyapunov-based controller 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 .

Proposition 3. Consider the nonlinear system of Eq. (1) under the
controller 𝑢 = 𝛷𝑛𝑛(𝑥̂) ∈ 𝑈 that meets the conditions of Eq. (10) and
is designed to stabilize the NODE system of Eq. (6). The controller is
implemented in a sample-and-hold fashion, such that 𝑢(𝑡) = 𝛷𝑛𝑛(𝑥̂(𝑡𝑘)),
∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), where 𝑡𝑘+1 ∶= 𝑡𝑘 + 𝛥. Furthermore, let 𝜖𝑠, 𝜖𝑤 > 0, 𝛥 > 0
and 𝜌̂ > 𝜌min > 𝜌𝑠𝑝 > 𝜌𝑠 satisfy

−
𝑐3
𝑐2

𝜌𝑠 + 𝐿𝑛𝑛𝑀𝑛𝑛𝛥 ≤ −𝜖𝑠 (20a)

−
𝑐3
𝑐2

𝜌𝑠 + 𝐿′
𝑥𝑀𝛥 ≤ −𝜖𝑤 (20b)

and

𝜌𝑠𝑝 ∶= max{𝑉 (𝑥̂(𝑡 + 𝛥)) ∣ 𝑥̂(𝑡) ∈ 𝛺𝜌𝑠 , 𝑢 ∈ 𝑈} (21a)

𝜌min ≥ 𝜌𝑠𝑝 +
𝑐4
√

𝜌̂
√

𝑐1
𝑓𝑤(𝛥) + 𝜅(𝑓𝑤(𝛥))2 (21b)

Based on the above assumptions, for any 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 , the following
inequality holds:

𝑉 (𝑥(𝑡)) ≤ 𝑉
(

𝑥(𝑡𝑘)
)

,∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (22)

and the state 𝑥(𝑡) of the nonlinear system of Eq. (1) is bounded in the level
set 𝛺𝜌̂ for all times and ultimately trapped in the smaller level set 𝛺𝜌min

.

roof. Part 1: Assuming 𝑥(𝑡𝑘) = 𝑥̂(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 , it will be first shown
hat the value of the Lyapunov function 𝑉 (𝑥̂) is decreasing under the
ontroller 𝑢(𝑡) = 𝛷𝑛𝑛(𝑥(𝑡𝑘)) ∈ 𝑈 ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), where 𝑥(𝑡) and 𝑥̂(𝑡)
enote the solutions of the nonlinear system of Eq. (1) and the NODE
ystem of Eq. (5), respectively. The time-derivative of the Lyapunov
unction along the trajectory 𝑥̂(𝑡) of the NODE model of Eq. (5) can be
ritten ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) as

̇̂ (𝑥̂(𝑡)) =
𝜕𝑉 (𝑥̂(𝑡))

𝜕𝑥̂
f(𝑥̂(𝑡), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘)))

=
𝜕𝑉 (𝑥̂(𝑡𝑘))

𝜕𝑥̂
f(𝑥̂(𝑡𝑘), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘))) +

𝜕𝑉 (𝑥̂(𝑡))
𝜕𝑥̂

f(𝑥̂(𝑡), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘)))

−
𝜕𝑉 (𝑥̂(𝑡𝑘)) f(𝑥̂(𝑡), 𝛷 (𝑥̂(𝑡)))

(23)
𝜕𝑥̂ 𝑘 𝑛𝑛 𝑘

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.

𝑥

𝑉

T
a
o
𝑥

𝑉

A
𝛺
s
w
s
t
o
a
d
E
w
o
w
𝑢
n
r
h
t
𝛺
s

4

t
b
L
b
a
a

s

w
u
t
w
𝑆
𝛥
d
o
s
m
𝑢
t

where the first term can be bounded as follows using Eqs. (10a) and
(10b):

̇̂𝑉 (𝑥̂(𝑡)) ≤ −
𝑐3
𝑐2

𝜌𝑠 +
𝜕𝑉 (𝑥̂(𝑡))

𝜕𝑥̂
f(𝑥̂(𝑡), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘)))

−
𝜕𝑉 (𝑥̂(𝑡𝑘))

𝜕𝑥̂
f(𝑥̂(𝑡𝑘), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘)))

(24)

In Eq. (24), bounding the difference using the Lipschitz condition
of Eq. (11) with the fact that 𝑥̂ ∈ 𝛺𝜌̂, 𝑢 ∈ 𝑈 , ̇̂𝑉 (𝑥̂(𝑡)) can be
upper-bounded ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1):

̇̂𝑉 (𝑥̂(𝑡)) ≤ −
𝑐3
𝑐2

𝜌𝑠 + 𝐿𝑛𝑛|𝑥̂(𝑡) − 𝑥̂(𝑡𝑘)|

≤ −
𝑐3
𝑐2

𝜌𝑠 + 𝐿𝑛𝑛𝑀𝑛𝑛𝛥
(25)

Therefore, the satisfaction of the condition of Eq. (20a) ensures that the
following inequality holds ∀ 𝑥̂(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1):

̇̂𝑉 (𝑥̂(𝑡)) ≤ −𝜖𝑠 (26)

By integrating the aforementioned differential equation over the time
interval 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) with respect to time, it can be deduced that
𝑉 (𝑥̂(𝑡𝑘+1)) ≤ 𝑉 (𝑥̂(𝑡𝑘)) − 𝜖𝑠𝛥. So far, we have demonstrated that, for all
̂(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 , the closed-loop state of the NODE system of Eq. (5)
remains confined within the closed-loop stability region 𝛺𝜌̂ at all times
and progresses towards the origin under the controller 𝑢 = 𝛷𝑛𝑛(𝑥̂) ∈ 𝑈
when implemented in a sample-and-hold approach.

It should be noted that Eq. (26) may not hold when 𝑥(𝑡𝑘) = 𝑥̂(𝑡𝑘) ∈
𝛺𝜌𝑠 , meaning that the state may exit 𝛺𝜌𝑠 within a single sampling
period. Therefore, we establish another region 𝛺𝜌𝑠𝑝 based on Eq. (21a)
to ensure that the closed-loop state 𝑥̂(𝑡) of the NODE model does not
depart from 𝛺𝜌𝑠𝑝 over a single sampling period, i.e., during 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1),
∀𝑢 ∈ 𝑈 , ∀𝑥̂(𝑡𝑘) ∈ 𝛺𝜌𝑠 . If the state 𝑥̂(𝑡𝑘+1) exits 𝛺𝜌𝑠 , Eq. (26) is satisfied
again at 𝑡 = 𝑡𝑘+1, thereby reactivating the controller 𝑢 = 𝛷𝑛𝑛(𝑥(𝑡𝑘+1)) and
directing the state towards 𝛺𝜌𝑠 during the following sampling period.
Consequently, it is demonstrated that the state approaches 𝛺𝜌𝑠𝑝 for the
closed-loop NODE system of Eq. (5) for all 𝑥̂0 ∈ 𝛺𝜌̂. In Part 2, we
demonstrate that the closed-loop state of the actual nonlinear process
of Eq. (1) can also be confined within 𝛺𝜌̂ for all times and eventually
contained within a small neighborhood around the origin with the
sample-and-hold implementation of the controller 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 .

Part 2: We repeat the analysis carried out for the NODE system
of Eq. (5). First, we suppose 𝑥(𝑡𝑘) = 𝑥̂(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 and derive the
following expression for the time-derivative of 𝑉 (𝑥) for the nonlinear
system of Eq. (1):

̇̂𝑉 (𝑥(𝑡)) =
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝐹 (𝑥(𝑡), 𝛷𝑛𝑛(𝑥(𝑡𝑘)))

=
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝐹 (𝑥(𝑡𝑘), 𝛷𝑛𝑛(𝑥(𝑡𝑘))) +

𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝐹 (𝑥(𝑡), 𝛷𝑛𝑛(𝑥(𝑡𝑘)))

−
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝐹 (𝑥(𝑡𝑘), 𝛷𝑛𝑛(𝑥(𝑡𝑘)))

(27)

From Eq. (12), it can be inferred that 𝜕𝑉 (𝑥(𝑡𝑘))
𝜕𝑥 𝐹 (𝑥(𝑡𝑘), 𝛷𝑛𝑛(𝑥(𝑡𝑘))) ≤

−𝑐3|𝑥(𝑡𝑘)|
2 ∀ 𝑥 ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 . By utilizing Eq. (10a) and the definition

of Lipschitz continuity in Eq. (11), the following inequality can be
established ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) and ∀ 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 :

̇̂𝑉 (𝑥(𝑡)) ≤ −
𝑐3
𝑐2

𝜌𝑠 +
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝐹 (𝑥(𝑡), 𝛷𝑛𝑛(𝑥(𝑡𝑘)))

−
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝐹 (𝑥(𝑡𝑘), 𝛷𝑛𝑛(𝑥(𝑡𝑘)))

≤ −
𝑐3
𝑐2

𝜌𝑠 + 𝐿′
𝑥|𝑥(𝑡) − 𝑥(𝑡𝑘)|

≤ −
𝑐3 𝜌𝑠 + 𝐿′ 𝑀𝛥

(28)
7

𝑐2 𝑥 t
Thus, if the condition of Eq. (20b) is fulfilled, the inequality below is
valid ∀ 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 ,∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1):

̇̂ (𝑥(𝑡)) ≤ −𝜖𝑤 (29)

he above differential equation may be integrated in time between
ny two points within the following sampling period, i.e., [𝑡𝑘, 𝑡𝑘+1) to
btain the following inequalities for the Lyapunov function 𝑉 for all
(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 :

̂ (𝑥(𝑡𝑘+1)) ≤ 𝑉 (𝑥(𝑡𝑘)) − 𝜖𝑤𝛥 (30)

𝑉 (𝑥(𝑡)) ≤ 𝑉 (𝑥(𝑡𝑘)), ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (31)

s a result, the state of the closed-loop system of Eq. (1) stays within
𝜌̂ for all time. In addition, the controller 𝑢 = 𝛷𝑛𝑛(𝑥) can continue to

teer the state of the nonlinear system of Eq. (1) towards the origin
ithin each sampling period. Furthermore, if the initial state 𝑥(𝑡𝑘)

atisfies 𝑥(𝑡𝑘) ∈ 𝛺𝜌𝑠 , then it was already demonstrated in Part 1 that
he state of the NODE model of Eq. (5) is confined within 𝛺𝜌𝑠𝑝 for
ne sampling period. Given the bounded modeling error between the
ctual nonlinear system of Eq. (1) and the NODE model of Eq. (5)
escribed by Eq. (13a), there is a compact set 𝛺𝜌min

⊃ 𝛺𝜌𝑠𝑝 satisfying
q. (21b) such that the state of the nonlinear system of Eq. (1) remains
ithin 𝛺𝜌min

for one sampling period if the state of the NODE model
f Eq. (5) is constricted within 𝛺𝜌𝑠𝑝 . If the state 𝑥(𝑡) enters 𝛺𝜌min

∖𝛺𝜌𝑠 ,
e have already demonstrated that Eq. (31) holds, and thus, under
= 𝛷𝑛𝑛(𝑥), the state will be driven back towards the origin during the
ext sampling period, ultimately constricting the closed-loop system to
emain within 𝛺𝜌min

. Thus, the proof of Proposition 3 is completed,
aving shown that for any 𝑥0 = 𝑥̂0 ∈ 𝛺𝜌̂, the closed-loop state
rajectories of the nonlinear system described by Eq. (1) remain within
𝜌̂ and ultimately within 𝛺𝜌min

if the assumptions of Proposition 3 are
atisfied. □

.3. Lyapunov-based MPC formulation

Model predictive control is an advanced process control technique
hat computes the control action by solving an optimization problem
ased on a given predictive model and feedback measurement. A
yapunov-based MPC is a class of MPC with additional constraints
ased on the value of the Lyapunov function and its time-derivative
t the current state. The optimization problem of LMPC can be written
s follows:

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁ℎ

𝑡𝑘
𝐿(𝑥̂(𝑡), 𝑢(𝑡)) d𝑡 (32a)

.t. 𝑥̂(𝑡) = 𝐹𝑛𝑛(𝑥0, 𝑢, 𝑡𝑘, 𝑡𝑘+𝑁ℎ
) (32b)

𝑢(𝑡) ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁ℎ
) (32c)

𝑥̂(𝑡𝑘) = 𝑥(𝑡𝑘) (32d)
̇̂𝑉 (𝑥̂, 𝑢) ≤ −𝑘𝑉 (𝑥̂), if 𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠𝑝 (32e)

𝑉 (𝑥̂) ≤ 𝜌𝑠𝑝, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁ℎ
), if 𝑥(𝑡𝑘) ∈ 𝛺𝜌𝑠𝑝 (32f)

here 𝐿(⋅) is the cost function based on the state and control input val-
es, such that the objective of the optimization problem is to minimize
he integral of the cost function in the time span between 𝑡𝑘 and 𝑡𝑘+𝑁ℎ

,
here 𝑁ℎ is the prediction horizon, which is an integer multiple of 𝛥.
(𝛥) represents the set of piecewise constant functions with a period
, which the input 𝑢 is restricted to. 𝐹𝑛𝑛 represents the NODE model,
escribed by Eq. (5), that gives as its output the state prediction 𝑥̂(𝑡)
ver the prediction horizon by integrating the core model of Eq. (6)
tarting from the initial condition of Eq. (32d), which is the state
easurement at 𝑡𝑘. 𝑈 denotes the allowable range of the control action

, and 𝛺𝜌𝑠𝑝 ∶= {𝑥 ∈ 𝜙(𝑥) ∣ 𝑉 (𝑥) ≤ 𝜌𝑠𝑝, 𝜌𝑠𝑝 < 𝜌} is a subset of 𝛺𝜌
hat defines the process state region considered to be ‘‘close enough’’
o the set-point when deploying the LMPC for set-point tracking. The

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.

o

o

t
o
f

w
s
k
𝛺
w

condition stated in Eq. (32e) guarantees that, when the state 𝑥(𝑡𝑘) is
in the region 𝛺𝜌̂∖𝛺𝜌𝑠𝑝 , the controller will drive the state towards the
rigin. However, as soon as the state 𝑥(𝑡𝑘) enters the region 𝛺𝜌𝑠𝑝 , the

states predicted by the NODE model from Eq. (32b) will consistently
stay within 𝛺𝜌𝑠𝑝 throughout the entire prediction horizon. The goal
of the LMPC is to calculate the optimal sequence of control actions
𝑢 = 𝑢∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁ℎ

) and apply the first move of the sequence,
𝑢∗(𝑡𝑘), over the next sampling period. Once the process evolves for
one sampling period, the LMPC is resolved again at the next sampling
period.

Remark 2. As we demonstrate in the application section, quadratic
Lyapunov functions can be used to effectively design the Lyapunov-
based stability constraints for the LMPC. It is important to note that,
while the operating region is dependent on the choice of the Lyapunov
function, the use of a quadratic Lyapunov function does not necessarily
mean a small closed-loop stability (and operating) region; it really
depends on the properties of the specific application. Non-quadratic
Lyapunov functions could be considered for this task as well, but they
are harder to construct. The design of Lyapunov functions is an impor-
tant research area in nonlinear systems and control; various methods
have been proposed to design a Lyapunov function (e.g., Grosman and
Lewin, 2005; Giesl and Hafstein, 2015).

Remark 3. The motivation for using Lyapunov-based MPC is primarily
its closed-loop stability guarantee. Specifically, when the states are
initialized from a certain set of initial conditions, closed-loop stability
of the LMPC can be guaranteed due to the propositions presented previ-
ously and the theorems that will be presented in the next subsection. In
contrast, in MPC without Lyapunov-based contractive constraints, the
set of initial conditions starting from which closed-loop stabilization
of the original system can be achieved under MPC cannot be charac-
terized for nonlinear systems as it depends on the system structure,
constraints, horizon length, weight matrices and so on. Imposing a
Lyapunov constraint of the type we impose on the MPC via Eq. (32e)
(that the control action in the first move of the MPC reduces the value
of the Lyapunov function as much as or more than the reduction that
would be achieved by an explicit controller for which the stability
region is easier to characterize) allows us to characterize the stability
region under MPC because the MPC inherits the stability region of
the explicit controller when the specific Lyapunov-based constraint is
used (Mhaskar et al., 2005, 2006). The use of the specific Lyapunov
constraint of Eq. (32e) in the LMPC provides a way to get an explicit
characterization of the stability region which cannot be characterized in
any other way. This characterization is clearly dependent on the choice
of the Lyapunov function 𝑉 (𝑥) in terms of both its form and values of
parameters/matrices used and is, of course, conservative in general.
This is as far as stability can be guaranteed under MPC for general
nonlinear systems today. The present work uses as the process model
of the Lyapunov-based MPC a NODE model to calculate future state
evolution and state derivatives, but the rest of the MPC formulation is
unchanged. As such, the stability results of LMPC combined with the
advantages of using NODE models that have already been explained in
Section 3 are the motivation for using NODE-based LMPC in this work.

Remark 4. A further advantage of using NODE models in LMPC is its
ability to readily compute the time-derivative of the Lyapunov function,
which depends on the design of the function 𝑉 (𝑥). Considering the
design to be 𝑉 (𝑥) = 𝑥⊤𝑃𝑥 where 𝑃 is a user-defined positive definite
matrix, ̇̂𝑉 (𝑥) can be expressed as 2𝑥⊤𝑃 𝑥̇. The time-derivative of the
process states, 𝑥̇, can be easily found if an explicit ODE of the system
is known. In the case of an NODE model, the time-derivative of the
process states can be approximated by the hidden state, which is the
output of the core model. Therefore, numerical approximation of the
output derivative (𝑥̇) by methods such as finite-differences, which is
8

needed to develop an LMPC with RNN model, is not necessary. This
property will be useful when a numerical approximation method cannot
be applied, for example, a process has missing measurements that
result in a relatively big time step gap, making numerical calculations
of derivatives inaccurate. We also highlight that this advantage is
independent of the form of the Lyapunov function, i.e., even for a non-
quadratic Lyapunov function, the 𝑥̇ term remains in its time-derivative
and will need to be approximated.

4.4. Closed-loop stability analysis

The LMPC formulation presented in Eq. (32) is used to derive
the following theorem, which guarantees recursive feasibility of the
LMPC optimization problem and also closed-loop stability of the actual
nonlinear system of Eq. (1) under the sample-and-hold implementation
of the resulting optimal control actions.

Theorem 1. Assuming the controller 𝛷𝑛𝑛(𝑥) satisfies Eq. (10), the closed-
loop system of Eq. (1) under the LMPC of Eq. (32) is considered. Let
𝛥 > 0, 𝜖𝑠 > 0, and 𝜌̂ > 𝜌min > 𝜌𝑠𝑝 > 𝜌𝑠 be such that they satisfy Eqs. (21a)
and (21b). If the conditions of Propositions 2 and 3 are met, a feasible
solution for the optimization problem of Eq. (32) always exists for any
initial state 𝑥0 ∈ 𝛺𝜌̂. Moreover, it is guaranteed that the LMPC of Eq. (32)
maintains 𝑥(𝑡) ∈ 𝛺𝜌̂ for all 𝑡 ≥ 0, and that 𝑥(𝑡) of the closed-loop system
f Eq. (1) eventually converges to 𝛺𝜌min

.

Proof. We begin by establishing the recursive feasibility of the opti-
mization problem in Eq. (32) for all states 𝑥 ∈ 𝛺𝜌̂. In particular, if at
time 𝑡𝑘, 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠𝑝 , then the control action 𝑢(𝑡) = 𝛷𝑛𝑛(𝑥(𝑡𝑘)) ∈
𝑈 , 𝑡 = [𝑡𝑘, 𝑡𝑘+1) computed using the state measurement 𝑥(𝑡𝑘) satisfies
he input constraint of Eq. (32c) and the Lyapunov-based constraint
f Eq. (32e). Furthermore, if 𝑥(𝑡𝑘) ∈ 𝛺𝜌𝑠𝑝 , the control actions obtained
rom 𝛷𝑛𝑛(𝑥(𝑡𝑘+𝑖)), 𝑖 = 0, 1,… , 𝑁ℎ − 1 comply with the input constraint

of Eq. (32c) and the Lyapunov-based constraint of Eq. (32f) since
Proposition 3 shows that the states predicted by the NODE model
of Eq. (32b) remain inside 𝛺𝜌𝑠𝑝 under the controller 𝛷𝑛𝑛(𝑥). Hence, if
𝑥(𝑡) ∈ 𝛺𝜌̂ for all times, the LMPC optimization problem of Eq. (32) is
recursively feasible for all initial states 𝑥0 ∈ 𝛺𝜌̂.

We will show that ∀ 𝑥0 ∈ 𝛺𝜌̂, the state of the closed-loop system
of Eq. (1) under the LMPC scheme of Eq. (32) remains bounded in
𝛺𝜌̂ ∀ 𝑡 and ultimately converges to a small neighborhood around the
origin 𝛺𝜌min

as described by Eq. (21b).
Assume 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠𝑝 at time 𝑡𝑘. In this case, the constraint

of Eq. (32e) is activated, and the control action 𝑢 is computed to
decrease the value of 𝑉 (𝑥̂) based on the predicted states obtained
from the NODE model of Eq. (32b) over the next sampling period.
Furthermore, Eq. (31) shows that, if the constraint of Eq. (32e) is met,
then ̇̂𝑉 (𝑥) ≤ −𝜖𝑤 holds for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) when applying the control action
𝑢∗(𝑡𝑘) to the nonlinear system of Eq. (1). Consequently, the value of the
Lyapunov function calculated using the state of the actual nonlinear
system of Eq. (1), 𝑉 (𝑥), decreases within the following sampling period,
implying that the closed-loop state can be driven into 𝛺𝜌𝑠𝑝 within a
finite number of sampling periods.

Once the state enters 𝛺𝜌𝑠𝑝 , the constraint of Eq. (32f) is activated
to ensure that the predicted states of the NODE model of Eq. (32b)
remain in 𝛺𝜌𝑠𝑝 throughout the prediction horizon. While there may
exist a mismatch between the NODE model of Eq. (32b) and the
nonlinear system of Eq. (1), based on the results of Proposition 3, we
can guarantee that the state 𝑥(𝑡) of the nonlinear system of Eq. (1)
remains bounded in 𝛺𝜌min

∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) as characterized by Eq. (21b)
if the state predicted by the NODE model of Eq. (32b) stays in 𝛺𝜌𝑠𝑝 .

Thus, at the next sampling period 𝑡 = 𝑡𝑘+1, if the state 𝑥(𝑡𝑘+1) is still
ithin 𝛺𝜌𝑠𝑝 , then the constraint of Eq. (32f) ensures that the predicted

tate 𝑥̂ of the NODE model of Eq. (32b) remains in 𝛺𝜌𝑠𝑝 , thereby
eeping the state 𝑥 of the actual nonlinear system of Eq. (1) inside
𝜌min

. However, if the state exits 𝛺𝜌𝑠𝑝 such that 𝑥(𝑡𝑘+1) ∈ 𝛺𝜌min
∖𝛺𝜌𝑠𝑝 ,

e can retrace the proof for 𝑥(𝑡) ∈ 𝛺 ∖𝛺 to show that the state will
𝑘 𝜌̂ 𝜌𝑠𝑝

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.
Table 1
Parameters of the CSTR example.
𝑇0 = 300 K 𝑘0 = 8.46 × 106 m3∕kmol h
𝐶𝑝 = 0.231 kJ∕kg K 𝜌𝐿 = 1000 kg∕m3

𝐹 = 5 m3∕h 𝐸 = 5 × 104 kJ∕kmol
𝑅 = 8.314 kJ∕kmol K

once again be driven towards the origin since the constraint of Eq. (32e)
will be triggered. This concludes the proof of the states of the actual
nonlinear system of Eq. (1) being bounded under the sample-and-hold
implementation of the controller 𝑢 = 𝛷𝑛𝑛(𝑥) and being ultimately driven
to a small neighborhood around the origin 𝛺𝜌min

∀ 𝑥0 ∈ 𝛺𝜌̂. □

5. Application of NODE-based model predictive control in chemi-
cal process

In this section, a chemical process involving a continuous stirred
tank reactor (CSTR), which facilitates a reaction converting reactant A
to product B, is utilized to demonstrate the development and applica-
tion of NODE-based LMPC in a chemical process setting. Based on mass
and energy balances, the following ODEs are used to describe the CSTR
system:
d𝐶𝐴
d𝑡

= 𝐹
𝑉
(𝐶𝐴0 − 𝐶𝐴) − 𝑘0e

−𝐸
𝑅𝑇 𝐶2

𝐴 (33a)

d𝑇
d𝑡

= 𝐹
𝑉
(𝑇0 − 𝑇) + −𝛥𝐻

𝜌𝐿𝐶𝑝
𝑘0e

−𝐸
𝑅𝑇 𝐶2

𝐴 + 𝑄
𝜌𝐿𝐶𝑝𝑉

(33b)

where 𝐶𝐴0 is the concentration of reactant A in the feed flow, while 𝑇
and 𝐶𝐴 are the temperature and the concentration of A, respectively,
in the CSTR. 𝜌𝐿 and 𝐶𝑝 represent the density and heat capacity of
the liquid mixture in the CSTR, respectively, and are assumed to
be constant. 𝛥𝐻 denotes the enthalpy of the reaction. The constant
parameters are listed in Table 1.

The unstable steady state of the system at (𝐶𝐴𝑠 = 1.95 kmol∕m3, 𝑇𝑠 =
402 K) is selected as the set-point of this example, and the con-
trol objective of the LMPC is to maintain the state of the system
around this set-point. The manipulated control variables in this exam-
ple are the inlet concentration of reactant A and the heat duty of the
coolant jacket of the CSTR, with the steady state control actions set to
𝐶𝐴0𝑠 = 4 kmol∕m3, 𝑄𝑠 = 0 kJ∕h. The bounds of the manipulated control
variables are 𝐶𝐴0 ∈ 𝐶𝐴0𝑠 ± 3.5 kmol∕m3 and 𝑄 ∈ 𝑄𝑠 ± 5 × 105 kJ∕h.

5.1. Noise-free example

5.1.1. Data collection and preprocessing
Training data used to develop the NODE model is obtained by

performing open-loop simulations. Specifically, the first step of the data
collection is to define the open region 𝐷, which requires the design of
a Lyapunov function 𝑉 (𝑥). In our work, the control Lyapunov function
is designed to be 𝑉 (𝑥) = 𝑥⊤𝑃𝑥, where 𝑃 is the positive definite matrix

𝑃 =
[

1060 22
22 0.52

]

. Subsequently, a level set where 𝜌 = 375 is selected

to be the closed-loop stability region 𝛺𝑝, which is shown as the ellipse
in Fig. 2. Since the desired region of operation is 𝛺𝑝, this is also chosen
to be the sampling region for data collection.

After determining the sampling region 𝛺𝜌, numerous open-loop
state trajectories are obtained by integrating Eq. (33) from randomly
drawn initial states under random, constant control inputs using the
explicit Euler method over a time span of 0.045 h. A very small step size
(i.e., ℎ𝑐 ≪ 0.005 h) is used in the explicit Euler method to generate the
state trajectories, but since the process is assumed to have a sampling
period of 0.005 h, the generated state trajectories are then evenly
down-sampled to have a time interval of 0.005 h between data points.
As a result, the training data set is made up of various state trajectories
generated from a wide range of initial conditions and control inputs.
9

Each trajectory in the training data set contains 10 samples or data
points. Moreover, the data is generated in deviation form, 𝑥 = (𝐶𝐴 −
𝐶𝐴𝑠, 𝑇 − 𝑇𝑠) and 𝑢 = (𝐶𝐴0 − 𝐶𝐴0𝑠, 𝑄 − 𝑄𝑠), such that the steady state
is at the origin (i.e., 𝑥𝑠 = (0, 0), 𝑢𝑠 = (0, 0)). Following this method, a
training data set containing 1000 trajectories was collected and found
to be enough to train the NODE model in this example.

Similar to other neural network models, data needs to be scaled
prior to being used to train an NODE model. The scaling step is a part
of data preprocessing. The MaxAbs scaler, which scales the data set by
dividing each variable by the maximum absolute value of each variable
in the data set (without any subtraction), respectively, is adopted in
this work to maintain the steady-state of the scaled data set at the
origin. As a result, the training data is scaled to a range between −1
and 1. Besides scaling the data, the training data set is split into two
parts, such that 80% of the trajectories are used to train the model and
the rest are used to validate the model performance. Specifically, the
model weights are updated based on the loss with respect to 80% of all
trajectories and the remaining 20%, usually named the validation set,
is not included in the calculation of the loss for the weight update but
are used to compute the validation loss, which is an important metric
to ensure that the model does not overfit the training data. Lastly, there
are additional 100 trajectories that are reserved for testing the trained
model’s performance, which is usually called the test set, and these are
generated in the same manner as the training data.

The data preprocessing step, including scaling and splitting the data,
is handled using Scikit-learn, a popular Python-based machine learning
package. Conventionally, in most standard machine learning proce-
dures, the inputs of the neural network model and the reference/output
data are first augmented into two different tensors. After that, the
Scikit-learn scaler function is applied to fit and transform the input
and output tensors, respectively. However, this scaling strategy will
cause a mismatch between the model input and first time step of the
output trajectory. Specifically, the prediction of our NODE model is
designed to include the initial value of the state, which is provided
by the input tensor during the model training. Therefore, the initial
value of each trajectory in the output tensor corresponds to 𝑡0 and
should be identical to the states values in the input tensor. If the tensors
are scaled separately, scaling factors (e.g., mean, maximum absolute
value, etc.) will be different for the input and the output tensors. This is
because, using time-series data as an example, data in the output tensor
is evolved in time from the data in the input tensor, which is very likely
to yield different statistics for the two tensors. If the different means
are subtracted from the input and output tensors, the initial value of
each trajectory corresponding to 𝑡0 will be different for each tensor. To
avoid this mismatch, the same scaling factor should be applied to the
variables representing the same physical quantities. Lastly, to ensure
no information leakage occurs during the model building process, the
maximum absolute value used to scale the data should be based on only
the 80% of the training data set.

Remark 5. In practice, the knowledge of the operating region can be
obtained from the process design and operational purpose as well as
past experience of operating the process. For example, the operating
region of the process should be determined from the previous operation
experience if the objective is to update an existing control system or
from process design and simulation using reliable software used in
industry, such as Aspen Hysys or Aveva PRO/II, if the objective is to
develop and implement a control system to a new process. The training
data in those cases will be collected from the past operation or process
simulation, respectively.

5.1.2. NODE training
In this subsection, the details of the NODE model development

using PyTorch are provided. Specifically, the core model of the NODE
is chosen to be an FNN model to map neural network inputs to the

hidden state of the NODE model. The core model has two hidden

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.
Fig. 2. Open-loop state-space trajectories of the CSTR given by the first-principle model (black line) and the trained NODE model (blue dash). The purple ellipse denotes the
boundary of the pre-defined stability region, 𝛺𝜌, of the CSTR system. Star icons are the initial state pairs randomly drawn within the stability region.
𝐶
m
t
s
a
F
r
w

R
i
c
p
s
b
i
a
S
o
a
N

layers and each hidden layer contains 64 neurons activated by the
hyperbolic tangent (tanh) function. Dupont et al. (2019) suggested that
the NODE model should be differentiable everywhere, but activation
functions like ReLU, which are not, have been used in NODE-based
research (Dupont et al., 2019; Kidger et al., 2020). Nevertheless, to
avoid any potential failure caused by the lack of differentiability of the
activation function, tanh is used as the activation function in our core
model. The Adaptive Moment Estimation (ADAM) optimizer is used to
update the weight matrices in the core model. Mini-batches are used
for the gradient descent method with a batch size of 32 trajectories.
Lastly, an explicit Euler solver is used as the ODE solver in the NODE
model.

Hyperparameter tuning is a critical step in neural network de-
velopment and is done via a coarse, exploratory search followed by
manual fine-tuning in this work. Specifically, we observed that using
two hidden layers in the core model can significantly improve the
learning ability of the NODE model but having more than two hidden
layers did not provide any significant improvement despite the uptick
in computational resource usage. For the number of neurons to be used
in the hidden layers, we applied a two-dimensional grid search using
8, 16, 32, 64, and 128 neurons for each hidden layer and assessed the
model performance at each combination. It was found that using more
than 64 neurons did not significantly improve the model performance.
Therefore, we used 64 neurons in our hidden layer. The NODE model
is trained with 300 epochs, and the testing loss of the trained model is
3.1 × 10−4. Furthermore, the mean absolute errors were 0.015 kmol∕m3

and 0.8 K for the prediction of 𝐶𝐴 and 𝑇 , respectively.

Remark 6. The model obtained using the aforementioned hyperpa-
rameter tuning strategy may not be the most accurate possible model.
However, due to the low dimension of our system and the complexity
of the neural network structure, further fine-tuning of the hyperparam-
eter is not expected to significantly improve the model performance.
We note that finding the best possible model or the most effective
hyperparameter tuning strategy are not the major objectives of this
study.

Remark 7. Detailing the coding implementation of the NODE is not
the objective of this paper. However, since the NODE is a recently
proposed model, such that its training is not fully supported in the com-
monly used machine learning APIs such as PyTorch and TensorFlow,
we outline some key steps of our implementation. An official NODE
python package, torchdiffeq, is provided in Chen et al. (2018). In
our study, the intermediate steps of the data sequence are important
when evaluating the loss of the model. Therefore, the integral of the
adjoint state 𝐚(𝑡) is updated at each intermediate observation during
the backpropagation. We developed our code based on an open-source
10
GitHub project (Surtsukov, 2019). Modifications needed to be added to
the ODE solver and the backpropagation function to correctly handle
the control actions in the neural network input.

5.1.3. NODE-based LMPC performance
After training the NODE model, we conduct open-loop simulations

using the NODE model and benchmark it against the first-principles
(FP) equation to evaluate its prediction accuracy. Specifically, open-
loop simulations are conducted under fixed control inputs over two
sampling periods for both the NODE model and the FP model and
the state trajectories compared. The simulations start from randomly
selected initial conditions inside the stability region 𝛺𝜌. Subsequently,
a random, constant control input is applied to the process for two
sampling periods. Fig. 2 depicts the open-loop trajectories for both the
NODE model and the FP model of Eq. (33) under identical input signals
as described. The close agreement between the state trajectories pre-
dicted by both models throughout the two sampling periods supports
the fact that the NODE model prediction has been trained to a high
level of accuracy.

After ensuring the accuracy of the NODE model, closed-loop sim-
ulations under the LMPC of Eq. (32) using the NODE process model
are conducted. The objective function of the LMPC is defined to be
𝐿(𝑥, 𝑢) = 𝑥⊤𝑄̄𝑥 + 𝑢⊤𝑅𝑢, where 𝑄̄ and 𝑅 are the parameter matrices of
the state and input penalty terms in the objective function, respectively.
Fig. 3 illustrates the state and input profiles of the CSTR in closed-
loop under the NODE-based LMPC, where the process state is brought
from a randomly drawn initial state in deviation form 𝑥0 = (𝐶𝐴 −
𝐴𝑠 = 1.6 kmol∕m3, 𝑇 − 𝑇𝑠 = −64.5 K) to the steady-state set-point and
aintained within 𝛺𝜌𝑠𝑝 . Furthermore, the closed-loop performance of

he NODE-based LMPC and the FP-based LMPC are found to be very
imilar, indicating that the NODE-based LMPC can perform as well
s the FP-based LMPC due to the high accuracy of the NODE model.
inally, Fig. 4 shows closed-loop state-space trajectories from several
andom initial conditions in 𝛺𝜌 under the NODE-based LMPC, all of
hich are found to be successfully stabilized around the set-point.

emark 8. Although changing the type of ODE solver in the NODE
s not recommended, the parameters used in the ODE solver can be
hanged based on the model performance without any negative im-
act. For example, the integration time step in the explicit Euler
olver used in this study was tuned when developing the LMPC to
alance prediction accuracy with computational cost. Besides this,
n the PyTorch framework, additional mathematical operations, such
s a lambda layer, can be added to the core model after training.
pecifically, a lambda layer can be designed to ensure that the output
f the core model is equal to zero when the neural network inputs are
ll at the steady-state. By adding such a lambda layer after training, the
ODE model can be easily programmed to provide correct information

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.
Fig. 3. State and input profiles in deviation form for the CSTR under the LMPC using the first-principles process model (blue line) and the NODE process model (orange line).
Fig. 4. NODE-based LMPC performance in closed-loop simulation. The closed-loop simulation used the NODE-based LMPC to stabilize the CSTR from various initial conditions
represented by red stars. The closed-loop state trajectories under the LMPC are demonstrated in black dashed line and compared with the state trajectories under an LMPC based
on FP equation. The NODE-based LMPC successfully bring the state to the desired region 𝛺𝜌𝑠𝑝 and having a very similar performance comparing to the LMPC designed using FP
equation.
m
a
l
m
i
o

for some critical well-known process conditions without harming the
training process (i.e., including the lambda layer during the training
process may affect the gradient descent step of the neural network
model training). In this work, it is found that adding a lambda layer to
ensure zero output at the steady state did not have a significant effect
on the LMPC performance. Therefore, the simulations in this work are
carried out without involving any lambda layer.

Remark 9. While the operating region (closed-loop stability region)
is dependent on the form of the Lyapunov function, the choice of a
quadratic Lyapunov function is motivated by several factors. Firstly,
in a quadratic formulation, the sign definiteness of the Lyapunov
function 𝑉 = 𝑥⊤𝑃𝑥 follows directly from the sign definiteness of the
matrix 𝑃 , i.e., if 𝑃 is positive (semi-)definite, then 𝑉 is also positive
(semi-)definite. Secondly, it cannot be ascertained that the operating
region obtained using a quadratic Lyapunov function is small with
respect to the entire stability region, say 𝑋, as it depends heavily on
the system itself. Even in the case that the characterized region is
a small subset of 𝑋, this is not a drawback since there is no better
alternative for the general class of nonlinear systems considered to
explicitly characterize the closed-loop system stability region. Finally,
chemical processes do not generally exhibit any specific mathematical
structures that can be exploited to design a non-quadratic, application-
specific Lyapunov function. This is different from many electrical or
mechanical systems, where, for example, a total energy of the system
function is a natural candidate for the Lyapunov function. Based on
the specific mechanical system being studied, the energy function
can be obtained using involved physics and domain knowledge, and
will likely be the best candidate for the Lyapunov function. For a
11

simple pendulum, for example, the energy function is combination of w
a quadratic part and a trigonometric part (sum of kinetic and potential
energy), which is a natural Lyapunov function for the pendulum system
but is highly specific to this system and cannot generally be applied
to another system; certainly not to a chemical process model. In fact,
even the addition of friction in the pendulum requires the Lyapunov
function to be modified accordingly to retain negative definiteness of
its time-derivative. Hence, in our chemical process example, we use
a quadratic Lyapunov function that can be obtained for many (but
not necessarily all) process systems. This is especially important and
meaningful because we work from a data-based paradigm, assuming
zero a priori knowledge of the physics of the system. Once the quadratic
form of the Lyapunov function is selected, the next step is the design
of the 𝑃 matrix, which is carried out based on the stabilizing controller
𝛷𝑛𝑛(𝑥) (e.g., a Sontag Lyapunov-based controller or P-controller). We
first obtain closed-loop trajectories of the state under the stabilizing
controller from various initial conditions and record both the states
and applied inputs as functions of time, while the state is driven to
the origin. At every point along these recorded trajectories, we then
calculate the value of the time-derivative of the Lyapunov-function, 𝑉̇ ,
for many random 𝑃 matrices (alternately, possibly more rigorously, one

ay linearize the nonlinear system around the steady-state of interest
nd solve the corresponding Riccatti equation using the 𝐴 matrix from
inearization to find a valid 𝑃 matrix or an initial estimate of a valid 𝑃
atrix). A 𝑃 matrix that renders 𝑉̇ negative throughout the trajectories

s considered a valid 𝑃 matrix, and the 𝑃 matrix that maximizes the size
f the operating region is selected. Using this procedure, the 𝑃 matrix
as found in this work.

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.
Fig. 5. The workflow of using subsampling method with a subsampling factor 𝑝 = 0.3 to develop neural ordinary differential equation (NODE) models. By using the subsampling
method, different training data can be created in each attempt, which allows for training of a new model. 𝑁𝑝 in this figure is used to denotes the number of NODE models to
generate in the workflow.
d

5.2. Noisy data example: Gaussian noise

After showing the NODE-based LMPC is capable of controlling a
noise-free system, we further investigate if a NODE-based LMPC can be
used in the case of noisy data, which is more practical in an industrial
setting. For the first scenario, we assumed that the process noise follows
a Gaussian distribution. The process noise follows the distribution, 𝑣 ∼
 (0, 𝜎2), and is added to the clean data set reported in Section 5.1.1
to generate the noisy data set. Three noisy data sets corrupted by
increasing strength of process noise are generated for this study and
the details of the noise levels are listed in Table 2. Subsequently, each
noisy data set is used to train an NODE model having the same structure
as the one developed using the clean data set. Table 2 also includes the
testing loss of the NODE model under each noise level.

The testing loss for the model developed with noisy data is calcu-
lated using the reference data also corrupted by the same strength of
noise (e.g., if the NODE model is developed using the data set corrupted
by the weak level of noise, the testing data used to calculate its loss is
also corrupted by the weak level of noise), instead of comparing with
the clean data. This is because a clean data set is not available in a
practical system with measurement noise. Therefore, the models are
compared in the sense of how well they can fit the available data. As
a result, the NODE model trained with the weak noise has a slightly
higher loss than the one trained with clean data, and the loss increases
with increasing noise levels, which demonstrates the negative impact
of measurement noise on the model training.

To account for noisy measurements, the subsampling method, fol-
lowing the workflow shown in Fig. 5, is adopted in this study. We
introduce a tuning parameter for the subsampling method, named
subsampling factor 𝑝, which denotes the percentage of data points
randomly selected to be kept in the data set while dropping out the
rest of the data. Specifically, the number of trajectories in the training
set will remain the same, but some data points in each trajectory will
be dropped out randomly to match the desired 𝑝 value. Additionally,
since the data points to be dropped are randomly selected, redoing the
subsampling with the same 𝑝 value will result in a different training
data set each time, which leads to training a different NODE model each
12
Table 2
Training loss of NODE model using Gaussian noisy data.

Weak noise Medium noise Strong noise

𝜎𝐶𝐴
= 0.05 kmol∕m3 𝜎𝐶𝐴

= 0.15 kmol∕m3 𝜎𝐶𝐴
= 0.25 kmol∕m3

𝜎𝑇 = 5 K 𝜎𝑇 = 15 K 𝜎𝑇 = 25 K

𝑝 Mean Squared Error (MSE)
1 0.0076 0.0290 0.0365
0.8 0.0074 0.0320 0.0370
0.5 0.0069 0.0270 0.0370
0.3 0.0068 0.0300 0.0500

time. Three 𝑝 values (i.e., 30%, 50%, 80%) are used to subsample the
ata, and 5 NODE models are trained for each value of 𝑝. Finally, only

the lowest training loss among the 5 models is reported in Table 2, and
the corresponding model is used to develop an LMPC for the next step.
The training loss in Table 2 shows that using the subsampling method
does not have a significant impact on the NODE model performance.
Open-loop simulations are further conducted to evaluate the model
performance. Fig. 6 demonstrates the performance of the NODE models
for different values of 𝑝 by showing the predicted state trajectories,
which are overlapping with each other.

Finally, closed-loop simulations are conducted to evaluate the per-
formance of the NODE-based LMPC using different subsampling factors.
Specifically, during the closed-loop simulations, a non-zero initial state
is first randomly drawn from the stability region 𝛺𝜌∖𝛺𝜌𝑠𝑝 , following
which the respective LMPC is used to bring the process to the set
point, which is the origin of the state space. Specifically, the closed-
loop simulation is run for a duration of 0.3 h with a sampling time
of 0.01 h. Therefore, there are 30 state feedback measurements used
by the LMPC in the simulation, which are all corrupted by noise. To
ensure a fair comparison between each LMPC, the noise added to the
feedback measurements must be consistent. Thus, the sensor noise is
only sampled once from a Gaussian distribution and then saved in
order to be used in all the closed-loop simulations. Fig. 7 compares the
performance of the NODE-based LMPCs developed with four 𝑝 values

in the presence of weak noise (as defined in Table 2). It is observed that

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.

G

a
c
s
(
a
c
o
n

i
d

Fig. 6. Open-loop simulation results for (a) concentration of reactant A in the CSTR (𝐶𝐴 − 𝐶𝐴𝑠) and (b) temperature of the CSTR (𝑇 − 𝑇𝑠) using the NODE model trained with
aussian noisy data.
ll the LMPCs successfully stabilized the process from the various initial
onditions. However, the clean state may not remain in the designed
tability region 𝛺𝜌𝑠𝑝 under the effect of noise. Proposition 4 in Wu et al.
2019) derived how the region of ultimate boundary, 𝛺𝜌𝑚𝑖𝑛 , increases
s the disturbance bound and sampling period increase. Based on the
losed-loop simulations in Fig. 7, by using 𝛺𝜌𝑠𝑝 = 2, we found the region
f ultimate boundary expanded to 𝛺𝜌min

= 60 under weak Gaussian
oise.

Finally, the LMPC performance is quantified by calculating the
ntegral of the LMPC cost function (Eq. (32)) over the simulation
uration, i.e., ∫ 𝑡=0.3ℎ

𝑡=0 𝐿(𝑥(𝜏), 𝑢(𝜏)) d𝜏. The quantified loss shows that the
subsampling model with 𝑝 = 0.8 has better performance than the NODE
model without subsampling in all five closed-loop simulations. In four
out of five simulations, the NODE model with 𝑝 = 0.8 gave an LMPC cost
function value approximately 1% lower than the model without sub-
sampling, and in the fifth closed-loop simulation, the NODE model with
𝑝 = 0.8 reduced the LMPC cost function by 15% compared to the model
13

with 𝑝 = 1. The NODE models with 𝑝 = 0.5 and 𝑝 = 0.3 did not have a
lower LMPC cost function in all five simulations compared to the model
without subsampling, but the differences were within 3%. Therefore,
the improvement gains from using subsampling is minor in the case
of Gaussian noise and possibly even due to numerical/experimental
differences between runs.

5.3. Noisy data example: Non-Gaussian noise

Although the assumption of Gaussian noise is very useful in many
applications, non-Gaussian noise is another commonly observed noise
distribution in the chemical sector. In this section, we investigate
how the NODE model performs under non-Gaussian noise. First, non-
Gaussian noise is extracted from an industrial data provided by Aspen-
tech. Fig. 8 shows the non-Gaussian noise distribution for 𝐶𝐴 and 𝑇 ,
respectively. Next, to generate the non-Gaussian noisy reactor data set,
the noise value sampled from the above distribution is added to the
clean data set following a similar process as described in Section 5.2.

Different levels of noise are added to the clean data for a comprehensive

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.
Fig. 7. Closed-loop simulation results under weak Gaussian noise using LMPC based on NODE model developed with different subsampling factors. Red stars represent the initial
condition for of each closed-loop simulation and the black, blue, red, and orange dash line are the state trajectories controlled by LMPC based on the NODE model developed
with subsampling factor 𝑝 = 1, 0.8, 0.5 and 0.3 respectively.
t
a
o
5
m
a
c
t
s
i
p
n
w
2
b
s
T
m
f
w
w
o
r
s
p
w
a
f
l
L
F
f
w
i
p
r
3

6

Fig. 8. Non-Gaussian noise distribution for (a) concentration of reactant A in the CSTR
(𝐶𝐴) and (b) temperature (𝑇) of the CSTR. The non-Gaussian noise is scaled to sit
between -1.0 to 1.0 and is multiplied by the maximum noise parameter depending on
the strength of the noise before adding it to the clean data.

investigation. The level of noise, 𝐎, is defined by the maximum value
of noise that can be added to the clean data set. Specifically, taking
14

t

the weak non-Gaussian noise as an example, the maximum noise that
can be added to the clean data set is 0.05 kmol∕m3 and 5 K for 𝐶𝐴 and
𝑇 , respectively. To add non-Gaussian noise to a single data point in
the clean data set, a noise value from −1.0 to 1.0 is first randomly
sampled from the non-Gaussian distribution and then multiplied by
the maximum noise value of each variable before being added to the
respective clean data point.

Subsampling with the same range of 𝑝 values are used to reduce
he effect of non-Gaussian noise. The training loss for each value of 𝑝
nd noise level is summarized in Table 3. The maximum noise value
f temperature is fixed at 5 K because having a measurement noise of
degrees is practically very significant. A sensor that gives a bigger
easurement error can be considered to be a dysfunctional sensor

nd requires maintenance or replacement. On the other hand, the
oncentration sensor may have more perturbation in its measurement
han 0.05 kmol∕m3, so a noise level of 0.1 kmol∕m3 is included in the
tudy as the strong noise level. Based on the training loss values listed
n Table 3, the subsampling method successfully improves the model
erformance when the training data set is corrupted with non-Gaussian
oise. The best models to fit the noisy data are the models trained
ith subsampling factors of 𝑝 ≤ 0.5, which reduce the training loss by
8% and 26% for weak and strong non-Gaussian noise, respectively,
ut the loss for models with 𝑝 = 0.5 and 𝑝 = 0.3 are, in fact, very
imilar and both show improvement over models with larger 𝑝 values.
he open-loop simulations shown in Fig. 9 further demonstrates the
odel improvements by using the subsampling method. Specifically,

or weak non-Gaussian noise (Fig. 9(a)), the NODE models trained
ith subsampling method predict 𝐶𝐴 better compared to the model
ithout subsampling, but there is no significant difference in terms
f the temperature prediction, although this may be due to the small
oom for improvement for the case of the temperature prediction. For
tronger noise (Fig. 9(b)), using the subsampling method improves the
redictive performance of the model for both states. Please note that
e only change the strength of the 𝐶𝐴 noise, but since the temperature
nd concentration of the CSTR are coupled, increasing the noise level
or 𝐶𝐴 will also affect the model prediction of the temperature. Closed-
oop simulations similar to the Gaussian case are used to evaluate the
MPC performance under strong noise, and the results are shown in
ig. 10. All the NODE-based LMPCs successfully stabilized the process
rom the non-zero initial state by ultimately maintaining the states
ithin 𝛺𝜌min

= 10. By quantifying the loss over the simulation duration,
t is found that using a subsampling factor of 𝑝 = 0.3 gives better LMPC
erformance compared to the LMPC without subsampling. The largest
eduction in the LMPC cost function via subsampling was found to be
4% in closed-loop simulations.

. Conclusion

In this work, we developed a Lyapunov-based model predictive con-

rol system using a neural ordinary differential equation (NODE) model

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.

c
t
s
t
u
t
c
o
p
c
m

Fig. 9. Open-loop simulation results using NODE model training with (a) weak and (b) strong non-Gaussian noisy data.
Fig. 10. Closed-loop simulation results under strong Gaussian noise using LMPC based on NODE model developed with different subsampling factors. Red stars represent the initial
condition for of each closed-loop simulation and the black, blue, red, and orange dash line are the state trajectories controlled by LMPC based on the NODE model developed
with subsampling factor 𝑝 = 1, 0.8, 0.5 and 0.3 respectively.
onstructed from process data as the process model, and elucidated
he training process of an NODE model and its use in LMPC using a
imulated data set. The results demonstrated the ability of the NODE
o provide a continuous prediction for the nonlinear system and to be
sed as the process model in an LMPC. Specifically, the core model of
he NODE can capture the time-derivatives of the states, which can be
onsidered an additional method to compute the derivative information
ther than numerical approximation methods. The state derivatives
redicted by the NODE model were used in the LMPC to enforce the
onstraints and optimize the control objective. Moreover, the NODE
odel imposes fewer restrictions on the structure of the training data
15
than RNN models, which permits the use of the subsampling method
to account for noisy data. NODE models developed with different sub-
sampling factors were used to account for Gaussian and non-Gaussian
measurement noise. It was found that using subsampling could not
significantly reduce the training loss under Gaussian noise, but could
reduce the LMPC cost function in closed-loop simulations by up to 15%.
For non-Gaussian noise, using subsampling reduced the training loss by
up to 24% and 26% in the case of the weak and strong noises considered
in this work, respectively. As for the closed-loop simulations, using
subsampling improved the closed-loop performance of the LMPC under
non-Gaussian noise by up to 34% in terms of the LMPC cost function.

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.
Table 3
Training loss of NODE model using non-Gaussian noisy data.

Weak noise Strong noise

𝐎𝐶𝐴
= 0.05 kmol∕m3 ,𝐎𝑇 = 5 K 𝐎𝐶𝐴

= 0.10 kmol∕m3 ,𝐎𝑇 = 5 K

𝑝 Mean Squared Error (MSE)
1 0.0025 0.0031
0.8 0.0024 0.0026
0.5 0.0018 0.0024
0.3 0.0019 0.0023

CRediTauthorshipcontributionstatement

Junwei Luo:Conceptualization, Methodology, Software, Manuscript
writing. FahimAbdullah: Conceptualization, Methodology, Manuscript
writing.PanagiotisD.Christofides:Manuscript reviewingandediting.

Declarationofcompetinginterest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
theworkreported in thispaper.

Data availability

Data will be made available on request.

Acknowledgments

Financial support from the National Science Foundation and the
Department of Energy is gratefully acknowledged.

References

Abdullah, F., Alhajeri, M.S., Christofides, P.D., 2022a. Modeling and control of
nonlinear processes using sparse identification: Using dropout to handle noisy data.
Ind. Eng. Chem. Res. 61 (49), 17976–17992.

Abdullah, F., Christofides, P.D., 2023. Data-based modeling and control of nonlinear
process systems using sparse identification: An overview of recent results. Comput.
Chem. Eng. 174, 108247.

Abdullah, F., Wu, Z., Christofides, P.D., 2021. Sparse-identification-based model pre-
dictive control of nonlinear two-time-scale processes. Comput. Chem. Eng. 153,
107411.

Abdullah, F., Wu, Z., Christofides, P.D., 2022b. Handling noisy data in sparse
model identification using subsampling and co-teaching. Comput. Chem. Eng. 157,
107628.

Benattia, S.E., Tebbani, S., Dumur, D., 2016. A linearized robust model predictive
control applied to bioprocess. In: Proceedings of 55th Conference on Decision and
Control. Las Vegas, Nevada, pp. 4046–4052.

Billings, S.A., 2013. Nonlinear System Identification: NARMAX Methods in the Time,
Frequency, and Spatio-Temporal Domains. John Wiley & Sons.

Bradley, W., Boukouvala, F., 2021. Two-stage approach to parameter estimation of
differential equations using neural ODEs. Ind. Eng. Chem. Res. 60, 16330–16344.

Brüdigam, T., Olbrich, M., Wollherr, D., Leibold, M., 2021. Stochastic model predictive
control with a safety guarantee for automated driving. IEEE Trans. Intell. Veh.

Chee, K.Y., Hsieh, M.A., Matni, N., 2023. Learning-enhanced nonlinear model predictive
control using knowledge-based neural ordinary differential equations and deep
ensembles. In: The 5th Annual Learning for Dynamics and Control Conference.
Philadelphia, Pennsylvania, PMLR, pp. 1125–1137.

Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K., 2018. Neural ordinary
differential equations. Adv. Neural Inf. Process. Syst. 31.

Cilimkovic, M., 2015. Neural Networks and Back Propagation Algorithm, Vol. 15, No.
1. Institute of Technology Blanchardstown, Blanchardstown Road North Dublin.

Çıtmacı, B., Luo, J., Jang, J.B., Canuso, V., Richard, D., Ren, Y.M., Morales-Guio, C.G.,
Christofides, P.D., 2022. Machine learning-based ethylene concentration estimation,
real-time optimization and feedback control of an experimental electrochemical
reactor. Chem. Eng. Res. Des. 185, 87–107.

Dai, W., Song, Y., Wang, D., 2023. A subsampling method for regression problems
based on minimum energy criterion. Technometrics 65, 192–205.

Dongare, A., Kharde, R., Kachare, A.D., et al., 2012. Introduction to artificial neural
network. Int. J. Eng. Innov. Technol. (IJEIT) 2 (1), 189–194.
16
Dupont, E., Doucet, A., Teh, Y.W., 2019. Augmented neural ODEs. Adv. Neural Inf.
Process. Syst. 32.

Errico, R.M., 1997. What is an adjoint model? Bull. Am. Meteorol. Soc. 78 (11),
2577–2592.

Giesl, P., Hafstein, S., 2015. Review on computational methods for Lyapunov functions.
Discrete Contin. Dyn. Syst. Ser. B 20 (8), 2291–2331.

Goyal, P., Benner, P., 2022. Neural ODEs with irregular and noisy data. arXiv preprint
arXiv:2205.09479.

Grosman, B., Lewin, D.R., 2005. Automatic generation of Lyapunov functions using
genetic programming. IFAC Proc. Vol. 38 (1), 75–80.

Han, L., Yu, C., Xiao, K., Zhao, X., 2019. A new method of mixed gas identification
based on a convolutional neural network for time series classification. Sensors 19
(9), 1960.

Hansen, C.D., Johnson, C.R., 2011. Visualization Handbook. Elsevier, Burlington.
Hewing, L., Kabzan, J., Zeilinger, M.N., 2019. Cautious model predictive control using

Gaussian process regression. IEEE Trans. Control Syst. Technol. 28, 2736–2743.
Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks.

Neural Netw. 4 (2), 251–257.
Hornik, K., Stinchcombe, M., White, H., 1990. Universal approximation of an unknown

mapping and its derivatives using multilayer feedforward networks. Neural Netw.
3 (5), 551–560.

Huys, Q.J., Paninski, L., 2009. Smoothing of, and parameter estimation from, noisy
biophysical recordings. PLoS Comput. Biol. 5, e1000379.

Ji, J., Khajepour, A., Melek, W.W., Huang, Y., 2016. Path planning and tracking for
vehicle collision avoidance based on model predictive control with multiconstraints.
IEEE Trans. Veh. Technol. 66, 952–964.

Kidger, P., Morrill, J., Foster, J., Lyons, T., 2020. Neural controlled differential
equations for irregular time series. Adv. Neural Inf. Process. Syst. 33, 6696–6707.

Kittisupakorn, P., Thitiyasook, P., Hussain, M.A., Daosud, W., 2009. Neural network
based model predictive control for a steel pickling process. J. Process Control 19
(4), 579–590.

Lai, Z., Mylonas, C., Nagarajaiah, S., Chatzi, E., 2021. Structural identification with
physics-informed neural ordinary differential equations. J. Sound Vib. 508, 116196.

Liao, R., Chan, C.W., Hromek, J., Huang, G.H., He, L., 2008. Fuzzy logic control for a
petroleum separation process. Eng. Appl. Artif. Intell. 21, 835–845.

Lin, Y., Sontag, E.D., 1991. A universal formula for stabilization with bounded controls.
Systems Control Lett. 16 (6), 393–397.

Liu, X., Xiao, T., Si, S., Cao, Q., Kumar, S., Hsieh, C.-J., 2019. Neural SDE: Stabilizing
neural ODE networks with stochastic noise. arXiv preprint arXiv:1906.02355.

Lötsch, J., Malkusch, S., Ultsch, A., 2021. Optimal distribution-preserving down-
sampling of large biomedical data sets (opdisdownsampling). PLoS One 16,
e0255838.

Luo, J., Canuso, V., Jang, J.B., Wu, Z., Morales-Guio, C.G., Christofides, P.D., 2022.
Machine learning-based operational modeling of an electrochemical reactor: Han-
dling data variability and improving empirical models. Ind. Eng. Chem. Res. 61,
8399–8410.

Mhaskar, P., El-Farra, N.H., Christofides, P.D., 2005. Predictive control of switched
nonlinear systems with scheduled mode transitions. IEEE Trans. Automat. Control
50 (11), 1670–1680.

Mhaskar, P., El-Farra, N.H., Christofides, P.D., 2006. Stabilization of nonlinear systems
with state and control constraints using Lyapunov-based predictive control. Systems
Control Lett. 55, 650–659.

Mohanty, S., 2009. Artificial neural network based system identification and model
predictive control of a flotation column. J. Process Control 19, 991–999.

Morari, M., Lee, J.H., 1999. Model predictive control: past, present and future. Comput.
Chem. Eng. 23, 667–682.

Nian, R., Liu, J., Huang, B., 2020. A review on reinforcement learning: Introduction
and applications in industrial process control. Comput. Chem. Eng. 139, 106886.

Osofisan, P., Obafaiye, O., 2007. Fuzzy logic modeling of the fluidized catalytic cracking
unit of a petrochemical refinery. Pac. J. Sci. Technol. 8, 59–67.

Pontryagin, L.S., 1987. Mathematical Theory of Optimal Processes. CRC Press, New
York.

Raffo, G.V., Gomes, G.K., Normey-Rico, J.E., Kelber, C.R., Becker, L.B., 2009. A
predictive controller for autonomous vehicle path tracking. IEEE Trans. Intell.
Transp. Syst. 10, 92–102.

Ren, Y.M., Alhajeri, M.S., Luo, J., Chen, S., Abdullah, F., Wu, Z., Christofides, P.D.,
2022. A tutorial review of neural network modeling approaches for model
predictive control. Comput. Chem. Eng. 165, 107956.

Rohani, S., Haeri, M., Wood, H., 1999. Modeling and control of a continuous
crystallization process Part 2. model predictive control. Comput. Chem. Eng. 23
(3), 279–286.

Sarmasti Emami, M.R., 2019. Fuzzy logic applications in chemical processes. J. Math.
Comput. Sci 1, 339–348.

Surtsukov, M., 2019. Neural ODEs. GitHub Repository, GitHub, https://github.com/
msurtsukov/neural-ode.

Tom, M., Yun, S., Wang, H., Ou, F., Orkoulas, G., Christofides, P.D., 2022. Machine
learning-based run-to-run control of a spatial thermal atomic layer etching reactor.

Comput. Chem. Eng. 168, 108044.

http://refhub.elsevier.com/S0098-1354(23)00237-5/sb1
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb1
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb1
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb1
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb1
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb2
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb2
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb2
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb2
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb2
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb3
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb3
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb3
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb3
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb3
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb4
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb4
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb4
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb4
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb4
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb5
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb5
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb5
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb5
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb5
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb6
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb6
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb6
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb7
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb7
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb7
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb8
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb8
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb8
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb9
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb9
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb9
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb9
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb9
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb9
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb9
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb10
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb10
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb10
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb11
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb11
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb11
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb12
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb12
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb12
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb12
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb12
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb12
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb12
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb13
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb13
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb13
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb14
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb14
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb14
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb15
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb15
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb15
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb16
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb16
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb16
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb17
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb17
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb17
http://arxiv.org/abs/2205.09479
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb19
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb19
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb19
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb20
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb20
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb20
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb20
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb20
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb21
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb22
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb22
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb22
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb23
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb23
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb23
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb24
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb24
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb24
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb24
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb24
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb25
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb25
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb25
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb26
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb26
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb26
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb26
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb26
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb27
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb27
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb27
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb28
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb28
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb28
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb28
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb28
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb29
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb29
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb29
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb30
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb30
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb30
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb31
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb31
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb31
http://arxiv.org/abs/1906.02355
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb33
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb33
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb33
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb33
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb33
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb34
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb34
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb34
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb34
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb34
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb34
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb34
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb35
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb35
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb35
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb35
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb35
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb36
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb36
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb36
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb36
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb36
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb37
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb37
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb37
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb38
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb38
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb38
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb39
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb39
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb39
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb40
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb40
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb40
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb41
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb41
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb41
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb42
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb42
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb42
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb42
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb42
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb43
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb43
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb43
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb43
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb43
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb44
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb44
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb44
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb44
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb44
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb45
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb45
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb45
https://github.com/msurtsukov/neural-ode
https://github.com/msurtsukov/neural-ode
https://github.com/msurtsukov/neural-ode
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb47
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb47
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb47
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb47
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb47

Computers and Chemical Engineering 178 (2023) 108367J. Luo et al.
Tran, G., Ward, R., 2017. Exact recovery of chaotic systems from highly corrupted data.
Multiscale Model. Simul. 15 (3), 1108–1129.

Wong, W.C., Chee, E., Li, J., Wang, X., 2018. Recurrent neural network-based model
predictive control for continuous pharmaceutical manufacturing. Mathematics 6
(11), 242.

Wu, Z., Rincon, D., Luo, J., Christofides, P.D., 2021. Machine learning modeling and
predictive control of nonlinear processes using noisy data. AIChE J. 67 (4), e17164.

Wu, Z., Tran, A., Rincon, D., Christofides, P.D., 2019. Machine learning-based predictive
control of nonlinear processes. Part I: theory. AIChE J. 65 (11), e16729.

Xi, X.C., Poo, A.N., Chou, S.K., 2007. Support vector regression model predictive control
on a HVAC plant. Control Eng. Pract. 15, 897–908.

Xiao, T., Wu, Z., Christofides, P.D., Armaou, A., Ni, D., 2021. Recurrent neural-network-
based model predictive control of a plasma etch process. Ind. Eng. Chem. Res. 61
(1), 638–652.
17
Yaacob, S., Nagarajan, R., Kin, K.T.T., 2001. Application of predictive fuzzy logic
controller in temperature control of phenol-formaldehyde manufacturing: us-
ing MATLAB-SIMULINK methodology. In: Intelligent Systems in Design and
Manufacturing IV, Vol. 4565. pp. 101–109.

Yun, S., Tom, M., Luo, J., Orkoulas, G., Christofides, P.D., 2022. Microscopic and data-
driven modeling and operation of thermal atomic layer etching of aluminum oxide
thin films. Chem. Eng. Res. Des. 177, 96–107.

Zadeh, L.A., 1965. Fuzzy sets. Inf. Control 8, 338–353.
Zhang, T., Li, S., Zheng, Y., 2022. Implementable stability guaranteed Lyapunov-based

data-driven model predictive control with evolving Gaussian process. Ind. Eng.
Chem. Res. 61, 14681–14690.

Zhang, A., Lipton, Z.C., Li, M., Smola, A.J., 2021. Dive into deep learning. arXiv preprint
arXiv:2106.11342.

http://refhub.elsevier.com/S0098-1354(23)00237-5/sb48
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb48
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb48
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb49
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb49
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb49
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb49
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb49
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb50
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb50
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb50
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb51
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb51
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb51
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb52
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb52
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb52
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb53
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb53
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb53
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb53
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb53
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb54
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb54
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb54
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb54
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb54
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb54
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb54
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb55
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb55
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb55
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb55
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb55
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb56
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb57
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb57
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb57
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb57
http://refhub.elsevier.com/S0098-1354(23)00237-5/sb57
http://arxiv.org/abs/2106.11342

	Model predictive control of nonlinear processes using neural ordinary differential equation models
	Introduction
	Preliminaries
	Notation
	Class of systems
	Defining Lyapunov-based Stability Region
	Neural Network Approximation of Time-series Data
	Subsampling method

	Neural Ordinary Differential Equations (NODE)
	NODE Architecture
	Back-propagation
	Adjoint Sensitivity method
	Automatic Differentiation

	Lyapunov-based Model Predictive Control using NODE models
	Lyapunov-based control using NODE models
	Sample-and-hold implementation of Lyapunov-based MPC
	Lyapunov-based MPC formulation
	Closed-loop stability analysis

	Application of NODE-based Model Predictive Control in Chemical Process
	Noise-free Example
	Data Collection and Preprocessing
	NODE training
	NODE-based LMPC performance

	Noisy Data Example: Gaussian Noise
	Noisy Data Example: Non-Gaussian Noise

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

