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a b s t r a c t

The electrochemical reaction-based process, a new type of chemical process that can generate 

valuable products using renewable electricity, is a sustainable alternative to the traditional 

chemical manufacturing processes. One promising research area of electrochemical reaction 

processing is to reduce carbon dioxide (CO2) into carbon-based products, which can contribute 

to closing the carbon cycle if CO2 is directly captured from the atmosphere. In this work, we 

demonstrate a model predictive control (MPC) scheme that uses a neural network (NN) model 

as the process model to implement real-time multi-input-multi-output (MIMO) control in an 

electrochemical reactor for CO2 reduction. Specifically, a long short-term memory network 

(LSTM) model is developed using historical experimental data of the electrochemical reactor to 

capture the nonlinear input-output relationship as an alternative to the complex, first princi-

ples-based model. Furthermore, the Koopman operator method is used to linearize the LSTM 

model to reduce the nonlinear optimization step in the MPC to a well-understood and easy-to- 

solve quadratic programming (QP) problem. The performance of the LSTM model, Koopman- 

based optimization, and MPC using the linearization of the LSTM model are evaluated with 

various simulations as well as open-loop and closed-loop experiments. As the results, the 

proposed MPC scheme can drive the two output states, that are concentrations of the products 

(C2H4 and CO), to their desired setpoints by computing optimal input variables (surface po-

tential and electrode rotation speed) in real-time in closed-loop experiments. Furthermore, a 

transfer learning-based method is utilized to update the NN model to handle process variability.

© 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved. 

1. Introduction

In today’s chemical manufacturing industry, fossil fuels 
serve as the primary energy source for the chemical industry, 
leading to significant energy consumption and greenhouse 

gas emissions (Boulamanti et al., 2017). Alternatively, there 
has been increasing interest in electrochemical reactions, 
such as converting carbon dioxide (CO2) into carbon-based 
fuels and chemicals with electricity, as a means to mitigate 
CO2 emissions. This approach holds the potential for lever-
aging electricity generated from renewable resources as an 
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energy source for large-scale chemical manufacturing, fur-
thermore contributing to global-scale renewable energy sto-
rage and closing the anthropogenic carbon cycle (De Luna 
et al., 2019). Although electrochemical conversion of waste 
CO2 is very promising, several challenges hinder the wide-
spread adoption of electrochemical reactors on an industrial 
scale. Perhaps most importantly, the conversion of CO2 

through electrochemistry requires significant energy con-
sumption (Sullivan et al., 2021). Researchers have focused on 
improving energy efficiency in electrochemistry through the 
development of more efficient and selective catalysts 
through nanostructuring, doping of transition metals, utili-
zation of single-atom catalysts, etc. (Nitopi et al., 2019; Li 
et al., 2020; Kim et al., 2023; Cao et al., 2022) as well as the 
design of devices to reduce the overall cell potential and 
address parasitic carbonation problems (Xie et al., 2022; 
Zhang et al., 2022b; Ramdin et al., 2023). On the other hand, 
discussions on process scale-up have been limited so far 
(Richard et al., 2023). We have identified another critical 
challenge in scaling up electrolyzers to be the absence of 
advanced process control schemes for electrochemical re-
actors due to the complex and nonlinear nature of electro-
chemical processes. Since the realization of an economically 
viable electrochemical process will require optimization in 
process integration and cascade reactor train (Ramdin et al., 
2021; Ozden et al., 2021; Fan et al., 2023), the development of 
a control scheme to regulate individual electrochemical re-
actor units is necessary.

To address this issue, Çıtmacı et al. (2022a) proposed a 
feedback control scheme using proportional-integral (PI) 
controllers utilizing a support vector regression-based (SVR) 
hybrid model as a state estimator. This approach enabled 
real-time state estimation for a PI controller and, subse-
quently, implementation of single-input-single-output (SISO) 
control in a gastight rotating cylinder electrode (RCE) cell. 
Building on this work, Çıtmacı et al. (2023) introduced a re-
current neural network (RNN) model as an improved state 
estimator, surpassing the performance of the SVR model. 
This RNN model captured relationships between process 
variables and gas product concentration and allowed for the 
implementation of multi-input-multi-output (MIMO) control 
using PI control techniques for the same RCE reactor. 
Alongside the classical control strategies, model predictive 
control (MPC) methods have emerged as vital components in 
industrial process control design (Qin and Badgwell, 2003; 
Lee, 2011). MPC offers the advantage of computing optimal 
control actions by anticipating future output states, making 
it a powerful tool for multivariable control while considering 
process constraints and nonlinearities, for example, (Holkar 
and Waghmare, 2010).

Although the specific application of MPC in electro-
chemical reactors is limited, MPC has been widely used in 
various research areas, including chemical reactors, battery 
management, and self-driving cars. For instance, Richalet 
(1993) provided a comprehensive discussion on im-
plementing MPC for a crude oil distillation unit in the pet-
roleum industry. Furthermore, Chavan et al. (2018) explored 
MPC design for a multivariable distillation column, demon-
strating superior performance compared to PI-based control 
through MATLAB simulations using the Wood and Berry 
Model. MPC has also been applied to develop a battery 
management system, which is similar to the application of 
an electrochemical reactor in the sense that both tasks in-
volve manipulating electrochemical reactions, even though 

the battery management system focuses on storing and re-
leasing electricity instead of generating products using 
electrical potential. For example, Pozzi et al. (2020) proposed 
a nonlinear MPC design based on the electrochemical models 
capturing the internal phenomena of the battery to solve the 
charge unbalancing problem in lithium-ion cells connected 
in series. These applications have demonstrated the ability of 
MPC to control systems with electrochemical reactions. 
Considering the advantages of MPC over classic control 
strategies (e.g., PI control) with respect to explicitly handling 
actuator and state constraints, multivariable interactions 
and nonlinearities, it is potentially practical and valuable to 
leverage the application of MPC to control electrochemical 
reactors.

Implementing MPC in electrochemical reactors poses two 
major challenges that need to be overcome: model accuracy 
and computational expense. The accuracy of the model 
prediction is crucial for the performance of MPC. Ideally, a 
first-principles-based model that accurately captures the 
underlying phenomena in the electrocatalytic system would 
be optimal. However, such models are often unavailable for 
practical cases. To this end, in our research, we focus on a 
data-driven approach to model the process system. Data- 
driven modeling offers a systematic approach that can be 
applied to any process system if sufficient data quantity and 
quality are ensured. One of the significant examples of data- 
driven modeling is machine learning (ML), which is a class of 
techniques that can be generally applied to various systems 
without the need for formulating specific physical patterns 
discovered in experiments (Dobbelaere et al., 2021). Classical 
ML methods, including SVR, linear regression, Gaussian 
process regression, and decision trees, have been widely 
utilized for modeling tasks (Xi et al., 2007; Singh et al., 2017; 
Bhadriraju et al., 2019; Hewing et al., 2019; Zhang et al., 
2022a). Additionally, deep learning methods, employing 
neural network (NN) structures, have demonstrated superior 
performance in capturing nonlinear and complex systems 
compared to classical ML methods. As a result, NN modeling 
has drawn significant attention and has been applied in re-
cent research works (Núñez et al., 2019; Shin et al., 2020). 
Considering the nonlinearity and complexity of the electro-
chemical reactor and to facilitate the modeling process, a NN 
method is utilized to model the system, which has been 
demonstrated to be an effective technique for this specific 
reactor in Çıtmacı et al. (2023).

While the use of nonlinear data-driven models in MPC has 
shown promising performance in various research studies, 
implementing MPC with a nonlinear model generally in-
volves solving a non-convex optimization problem. This 
complexity often results in high computational costs and 
unstable gradient concerns. Xie and Ren (2020) demonstrated 
in their work that using RNN models in MPC can be highly 
accurate yet intractable to solve in real-time, motivating the 
exploration of linearization approaches to improve the 
computational efficiency of MPC. Several techniques have 
been proposed for linearizing nonlinear models, such as 
Taylor series, piecewise linearization, etc. (Schei, 1997; Lin 
et al., 2013; Ławryńczuk, 2014). Specifically, the Koopman 
operator method is developed to be a data-driven approach 
that can be applied to any nonlinear model (Korda and Mezić, 
2018; Proctor et al., 2018; Arbabi et al., 2018). Xie and Ren 
(2020) showed the Koopman operator method is a type of 
linearization approach that can have better performance 
than the classical Taylor series method, particularly when 
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linearizing over a larger domain. Furthermore, the applica-
tion of MPC using a linearized model has been studied in- 
depth in the chemical engineering domain (e.g., Mendis et al., 
2019; Yang and Wan, 2022). These results have highlighted 
the potential of employing MPC with on-line linearized 
models in practical control applications. By leveraging effi-
cient linearization techniques, NN-based MPC can poten-
tially be applied to control the electrochemical reactor 
effectively.

Motivated by the above considerations, this study aims to 
develop an advanced process control scheme using MPC with 
suitable process models for an electrochemical CO2 reduc-
tion reactor. Specifically, a neural network model is initially 
constructed using reactor data to capture the nonlinear 
complex input-output relation of the reactor, followed by on- 
line linearization of the NN model using the Koopman op-
erator method to reduce the computational cost of MPC. The 
control design is applied experimentally to the electro-
chemical reactor. The paper is organized into the following 
sections: Section 2 introduces the background information of 
this study, including the mathematical notation used in this 
paper, the overall design of the process, and the equipment 
setup. Section 3 elaborates on the technical details for the 
design and development of a NN model. Section 4 discusses 
the Koopman operator method and the procedure of using it 
to linearize the NN model in real-time. Finally, Section 5 re-
ports the results of this study including simulation, open- 
and closed-loop experiments.

2. Preliminaries

2.1. Notation

For a matrix M, the notation M−1 is used to represent the 
inverse of the matrix M and M† denotes the pseudoinverse of 
matrix M. x x, ˆ , and u are the controlled outputs of the process 
control system (i.e., the productivity of the reactor for the 
targeting species), the prediction of the process output given 
by the process model (i.e., the NN model), and the inputs 
(control actions) calculated by the process control system 
(i.e., applied potential, rotation speed, and current), respec-
tively.

2.2. Process overview

The overall objective of our process is to electrochemically 
reduce CO2 into valuable chemical products and fuels. A 
copper electrode is used in this process because it is the only 
known single-element catalyst that can reduce CO2 into C2+ 

hydrocarbons and alcohol products, which are energy-dense 
and valuable, with a considerable production rate (Popović 
et al., 2020). However, the process of electrochemical CO2 

reduction on copper is intricate, which results in the pro-
duction of 17 different chemicals through a series of complex 
reaction pathways (Nitopi et al., 2019). Among multiple fac-
tors contributing to the complex reaction mechanisms, mass 
transport and reaction kinetics play critical roles. Specifi-
cally, the transport phenomena in the diffusion boundary 
layer are directly related to the residence time of the reactant 
CO2 and intermediates near the catalyst surface as well as 
the adsorption on and desorption from the catalyst, which 
determine the selectivity of final products. On the other 
hand, the reaction kinetics on the catalyst surface is related 
to the number of electrons transferred across the surface, 

which can be manipulated by the applied potential. There-
fore, we aim to control the selectivity of electrochemical CO2 

reduction by controlling the aforementioned two input fac-
tors, potential and electrode rotation speed. Applying real- 
time control to any process requires on-line measurements 
of the process outputs. In this work, the productivity of four 
gas-phase products (i.e., hydrogen (H2), carbon monoxide 
(CO), methane (CH4), and ethylene (C2H4)) can be monitored 
in real-time using a gas chromatograph (GC). The overall 
reaction formulas producing these four products are sum-
marized as follows:

+ + +O2CO 8H 12e C H 12OH2 2 2 4 (1a) 

+ + +CO H O 2e CO 2OH2 2 (1b) 

+ + +CO 6H O 8e CH 8OH2 2 4 (1c) 

+ +2H O 2e H 2OH2 2 (1d) 

Finally, the production rates of CO and C2H4 are chosen to be 
the control outputs to be regulated by the process control 
system. These two outputs are influenced differently by the 
input variables; specifically, the production rate of CO is 
highly correlated to the rotation speed, and the production 
rate of C2H4 is strongly influenced by the applied potential 
(Çıtmacı et al., 2023). On the platinum anode, the water oxi-
dation reaction to produce oxygen occurs and counter-bal-
ances the charge from the half-cell reactions on the working 
electrode.

2.3. Electrochemical reactor setup

The gastight RCE cell was designed to examine how mass 
transport and reaction kinetics affect the electrochemical 
reduction of CO2 while ensuring a gastight environment for 
the real-time detection of gas products (Jang et al., 2022). As 
shown in Fig. 1, the experimental reactor consists of two 
reaction chambers separated by an anion-exchange mem-
brane preventing the crossover of products. The cathode is 
the working electrode in the cylindrical geometry carrying 
out the CO2 reduction reaction while the Pt foil anode works 
as the counter electrode. Before each experiment, poly-
crystalline Cu RCE was mechanically and electrochemically 
polished following the procedure described in Jang et al. 
(2022) followed by roughening of the surface via electro-
chemical redox cycling in the presence of chloride ions 
(Roberts et al., 2015). The preparation for this catalyst is the 
same as in our previous work (Çıtmacı et al., 2023). Both the 
working and the counter electrodes are immersed in 0.2 M 
potassium bicarbonate electrolyte solutions. During the ex-
periment, the CO2 gas is directly bubbled into the electrolyte 
in both chambers with a fixed volumetric flow rate of 20 mL/ 
min. Subsequently, the dissolved CO2 molecules are trans-
ported to the reacting surface on the cathode to be reduced to 
various products. The potentiostat manipulates the potential 
applied to the working electrode against a reference Ag/AgCl 
electrode and records the electrical current passed between 
the working and the counter electrode. The control of the 
mass transport properties in the reactor is made possible by 
magnetically coupling the shaft where the RCE is mounted to 
another magnet connected to the modulated speed rotator 
(MSR) outside the reactor.
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2.4. Model predictive control

MPC is an advanced control strategy used in various in-
dustrial processes. It involves utilizing a dynamic mathe-
matical model of the system to predict its future state or 
output behavior and optimize control actions by iteratively 
solving an optimization problem over a defined time horizon. 
Specifically, MPC determines the optimal control actions to 
minimize a specified cost function while satisfying system 
constraints. The design of the MPC in this work can be 
mathematically defined as the following optimization 
problem:

J = +
L x t u t tmin ( ˆ ( ), ( ))d

u S t

t

( ) k

k Nh

(2a) 

=x t F x t u ts.t. ˆ ( ) ( ( ), ( ))nn (2b) 

= +L x t u t x t x Q x t x u t u R u t u( ˆ ( ), ( )) ( ˆ ( ) ) ( ˆ ( ) ) ( ( ) ) ( ( ) )r r r r

(2c) 

+[ )u t U t t t( ) , ,k k Nh (2d) 

=x t x tˆ ( ) ( )k k (2e) 

u t u t u( ) ( )k k c1 (2f) 

where x ∈ ℝn and u m are the output states and control 
actions (calculated by the model predictive control system), 
respectively. The set U represents the control action space 
that defines the upper and lower bounds of the m control 
actions applied to the reactor. The absolute difference be-
tween the control actions to be applied in the next control 
period from the instance time u(tk) and control action applied 
in the current control period u(tk−1) is bounded by the vector 
uc containing absolute boundaries for m control actions (in 
this particular case, m = 2 as we have two manipulated inputs 
and dimension of u(tk) is 2). Furthermore, xr and ur are the 
reference values for the output states and control actions. Q 

and R represent the weight parameters (both are positive 
definite matrices) of the penalty terms for the output states 
and control actions, respectively, in the quadratic cost 
function L(x, u). Therefore, by minimizing the cost function L 
with an appropriate manipulated input trajectory, the re-
actor can be driven to the desired set-point given by xr by 
applying the first calculated control action u(tk) at each 
sampling time, and then repeating this process in the next 
sampling time. Finally, Fnn is the NN model, Nh is the pre-
diction horizon, and the set S(Δ) comprises of piecewise 
constant functions having a period of Δ.

In this work, the outputs of the process to be regulated by 
the model predictive control system, x, are the production 
rates of CO, C2H4, and H2. Specifically, we are aiming to get 
the productivity of CO and C2H4 to a certain set-point while 
minimizing the productivity of the side product hydrogen 
from the competing hydrogen evolution reaction.

3. Neural network modeling

To account for the complexity of the electrochemical reac-
tion mechanism and fill in the lack of a first-principles 
model, a neural network (NN) model is developed to capture 
the dynamic response of the output states under various 
input conditions. Subsequently, the trained NN model is 
utilized as the process model of the MPC to estimate the 
output states over a certain time horizon known as the pre-
diction horizon Nh. This section describes the design and 
development of the NN model for this purpose.

3.1. Data collection

The data set used to develop the NN model is similar to the 
one reported in Çıtmacı et al. (2023), and three types of ex-
periments (i.e., open-loop steady input, step changes, and 
closed-loop experiments) are performed to collect the data. 
Specifically, constant inputs (applied potential and catalyst 
rotation speed) are applied to generate some portion of the 
training set data, which provides information about the ex-
pectation of the steady state output values under certain 
input conditions in addition to the dynamic trends while 
reaching respective steady states. In the second type of ex-
periment, step-change inputs of random amplitudes are 
applied, but the input actions remain in a predefined range 
throughout the experiment. Finally, the closed-loop experi-
mental results from Çıtmacı et al. (2023) are included in the 
data set. Although the controller type used in Çıtmacı et al. 
(2023) is different from the one in this work, the underlying 
physico-chemical phenomena are the same. Thus, including 
those results can help the model to capture the dynamic 
behavior of the system more efficiently.

GC is used to monitor the outlet concentrations of the gas 
products in real-time during data collection. Specifically, the 
GC takes a gas sample injection and quantifies the produc-
tion rates of the four gas-phase products every 1300 s during 
the experiment. Analyzing the injected gas sample takes 
15 min, and the GC needs to cool down for 400 s before taking 
the next injection. Therefore, only four data points can be 
collected from a one-hour duration of the experiment. As a 
result, there are a total of about 200 GC measurements col-
lected at the end of data generation experiments for the 
training, which is not enough to train a neural network 
model. To address this problem, a 3rd-order polynomial re-
gression based on three consecutive GC measurements is 

Fig. 1 – The experimental setup of the gastight rotating 
cylinder electrode (RCE) cell.

724 Chemical Engineering Research and Design 197 (2023) 721–737  



applied to determine a probable output data trajectory be-
tween every GC measurement using the inputs measured 
every second. More details about this data enhancement 
process are reported in Çıtmacı et al. (2023).

3.2. Long short-term memory networks

Among many ML methods that can be used to capture non-
linear processes, the RNN family has been proven to be an 
effective modeling strategy for time-series forecasting tasks. 
Recently, RNN models have become popular in the research 
area of process modeling and control and have been applied 
in many academic and industrial works (Han et al., 2015; Wu 
et al., 2019). The long short-term memory network (LSTM) is 
one of the well-developed NN models that belongs to the 
RNN family. It shares the major design of architecture with 
other types of RNN models that have information flowing in 
two directions to capture the time-dependent relationship 
within the training data (Ren et al., 2022). Furthermore, the 
LSTM model has its special “gates design” to store the his-
torical information and determine how to use it to predict 
the output (Hochreiter and Schmidhuber, 1997).

The architecture of the LSTM model used in this work is 
shown in Fig. 2. The model is developed to predict the output 
state at the next consecutive sampling time using p historical 
state predictions and control actions. Therefore, there are 
only three outputs given by the model, which represent 
production rates of CO, C2H4, and H2 (in ppm) at the p + 1 time 
step. Specifically, the LSTM layer maps the time-sequence 
input containing the historical state prediction and control 
actions to 180 hidden states. Subsequently, a dropout layer 
with a 30% dropout rate of the hidden states is inserted to 
prevent overfitting, and the remaining hidden states are 
densely connected to the output nodes. 

Remark 1. The number of hidden states and percentage rate of 
dropout are included in the hyperparameters of the LSTM model. 
Therefore, their value can be found following the general 
hyperparameter tuning process. Specifically, in this work, we 
performed a random search to locate those values. More precise 
methods to perform the hyperparameter tuning include cross- 
validation and grid search. More details about hyperparameter 
tuning can be found in Feurer and Hutter (2019).

Remark 2. In the area of machine learning, preventing the 
model from overfitting the data is an important task. 
Overfitting refers to the situation where the NN model can 
perform well with the training data set but fails to maintain 
good performance for data outside the training set. Several 
factors contribute to this problem, and a critical one is when 
the NN model has too many weight parameters, which can 
result in allowing the model to memorize the training data 
instead of extracting underlying trends from it. One method 
to reduce overfitting is the regularization (Girosi et al., 1995), 
with the dropout method used in this work being one 
example of a regularization method (Wan et al., 2013; 
Srivastava et al., 2014).

3.3. Model training

Based on prior knowledge of the experimental reactor, the 
input sequence of the LSTM model is designed to contain one 
hour (3600 s) of historical information. However, if the data is 
formatted on a per-second basis, each sequence in the data 
set will contain 3600 elements, which results in un-
necessarily high computational costs in both time and space 
consumption. Therefore, the time step of the data sequence 
is designed to be on a per-hundred seconds basis to reduce 
the length of the input sequence to 36 elements. The time 
space in the input sequence is preserved in the output se-
quence, and since the output sequence only contains 1 time 
step, the overall function of the LSTM model is to use the 
one-hour historical information up to the instant to predict 
the output states at 100 s later in the future (i.e., the output 
sequence has a shape of (1,3), where 3 is the number of 
output species).

This sliding window algorithm was employed to create a 
training dataset from a collection of 35 experiments. 
Specifically, a window of one hour was used as the input for 
the training data, and the output of the LSTM was de-
termined to be the production rates of the target species at 
100 s after the final time step of the input sequence. The 
window was systematically slid by a stride of 100 s, and the 
first 1000 (seconds of) measurements in each experiment 
were skipped to enhance the reliability of the training data. 
Therefore, the input of the LSTM model has a shape of (36, 6), 

Fig. 2 – The architecture of the LSTM model used in this work that processes the input sequence with a LSTM layer and 
yields the prediction for the output states at the next time step (i.e., 100 s later from the instantaneous point in time).
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where 6 denotes the input features (i.e., surface potential, 
rotation speed, current, and previous states of production 
rates for C2H4, CO, and H2) measured at the respective time 
step. The sliding window algorithm is applied to 18 experi-
mental data sets to generate the data sequence to develop 
the LSTM model. When developing an NN model for time- 
series forecasting problems, it is crucial to ensure that the 
validation data retains a certain level of independence from 
the training data to avoid potential information leakage. To 
address this concern, we randomly allocated results from 5 
out of the total 18 experiments as the testing set, while the 
remaining experiments were assigned to the training set. 
This training set is further divided into two parts before the 
model training for ratio validation purposes, using the train- 
test ratio of 70:30. Finally, the Scikit-learn Minmax Scaler was 
utilized to normalize the data.

In this study, the LSTM model was trained using the 
TensorFlow API. The model was optimized with the NADAM 
optimizer. As the data did not provide dense coverage of the 
overall operating conditions, it was crucial to maintain gen-
eralization and prevent overfitting. Therefore, we applied L2 
regularization to the LSTM layer with a factor of 0.07 and 
performed 30% recurrent dropout within the LSTM cells. The 
mean squared error was selected to be the cost function to 
evaluate the model performance. The LSTM model under-
went training for 45 epochs with a batch size of 32. 
Additionally, a callback function was utilized to capture the 
best-performing weights based on minimization of the vali-
dation loss throughout the training process. As a result, the 
training and validation loss of the trained LSTM model were 
found to be 0.0028 and 0.00456, respectively.

Remark 3. The length of the input sequence (i.e., 3600 s) was 
found based on the combination of experimental observations 
and hyperparameter tuning. Specifically, from the experiment, 
we found that the dead time of the process can vary up to 
2000 s, which meant, to capture the delay of the reactor, the 
length of the input sequence should be at least 2000 s. Starting 
from there, we tuned the length of the input sequence and 
found that, with the length of 3600 s, the LSTM model can 
capture well the dynamics of the process. Notably, increasing 
the length of the input sequence will result in higher 
computational cost, and since the length of the input 
sequence can be considered as a part of the hyperparameter 
tuning, the cross-validation method was used in this step.

3.4. Model performance

The trained model demonstrates significantly low training 
and validation losses, indicating its successful training. To 
further assess the model’s performance, a comparison is 
made between the model’s predictions, based on input data 
recorded from a validation experiment, and the corre-
sponding output state measurements. Fig. 3 is an example of 
such a comparison, with solid curves representing the pre-
dictions made by the LSTM model and dashed curves re-
presenting the measured trends during the experiment. The 
close alignment between the curves depicted in Fig. 3 high-
lights the model’s adequate prediction capabilities.

Once the model demonstrated its proficiency in predicting 
the dynamic behavior of the output state, we proceeded to 
evaluate its ability to accurately capture the reactor’s steady 
state performance. The electrochemical reactor is an 

inherently stable process in the operating region of interest, 
meaning that regardless of the initial output state condi-
tions, the application of the same constant control actions 
throughout a period of time should lead to the convergence 
of the outlet species concentrations to the same steady state 
every time. The prediction results of the LSTM model for an 
open-loop experiment are shown in Fig. 4. It can be observed 
that, regardless of the starting point of the trend, the pre-
dictions consistently converge to the same steady state for 
all three output states under a fixed control action. However, 
due to the stochastic nature of the electrochemical reaction 
and other experimental uncertainties, there exists a variance 
in the steady state. Therefore, the steady state given by the 
LSTM is ideally the average of the steady state values ob-
tained if the experiment is repeated with the same fixed 
control inputs.

4. Koopman operator-based linearization of 
RNN model

The motivation behind the exploration of a method to line-
arize the neural network model for utilization in MPC arises 
from the fact that NN-based MPC involves solving a con-
strained optimization problem with a highly nonlinear NN 
model. Consequently, this optimization problem becomes a 
challenging nonlinear optimization task, which remains a 
topic of considerable mathematical exploration without a 
definitive approach for effective resolution. As a result, sol-
ving the nonlinear optimization problem within a reasonable 
time frame (certainly, within the process sampling time for 
real-time control purposes) might not be possible, which 
renders this type of nonlinear MPC application impractical 
for many industrial processes. On the other hand, the de-
velopment of an MPC framework with a linearized system is 
a well-established approach. By approximating the NN 
model with a linear system on-line and at each sampling 
time, an MPC can be formulated as a quadratic programming 
problem, which lends itself to efficient solution techniques. 
This implies that if we can effectively approximate the NN 
model with a linear system, the NN model-based MPC can be 
solved quickly and efficiently, and applied to real-world ap-
plications. This section presents the systematic process uti-
lized in this project, drawing inspiration from the work of Xie 
and Ren (2020), to linearize the RNN-based process model 
and integrate it into an MPC.

4.1. Koopman operator theory

Xie and Ren (2020) presented a method to linearize an RNN 
model based on the principles of the Koopman operator 
theory. The Koopman operator theory, initially proposed by 
Bernard Koopman in the 20th century (Koopman, 1931; 
Koopman and Neumann, 1932), plays an important role in 
analyzing, modeling, and controlling nonlinear processes. 
The core concept of the Koopman operator theory involves 
mapping inputs of a nonlinear function into a higher-di-
mensional feature space, thereby obtaining a linear approx-
imation of the nonlinear system (Koopman, 1931). In other 
words, the Koopman operator can linearize an arbitrary fi-
nite-dimensional nonlinear system at the cost of expanding 
its dimensionality up to infinity. Notably, this concept is also 
similar to the idea of feature engineering, in the machine 
learning terminology, which serves as a fundamental aspect 
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in various ML models such as support vector machines (SVM) 
(Cortes and Vapnik, 1995).

The Koopman operator can be defined mathematically 
with the following equations:

=+x xf( )k k1 (3a) 

K = = +g x g x g xf( ) ( ( )) ( )k k k 1 (3b) 

where Eq. (3a) is the discrete representation of a nonlinear 
dynamical system, and the function f captures the output 
state evolution of the system from an arbitrary time step k. 
Eq. (3b) is the definition of the Koopman operator K , where g 
( ⋅ ) are a set of scalar functions named the observables. From 
Eq. (3b), it can be easily proven that K is a linear operator, 
which allows finding the eigen decomposition of K and 

rewriting the evolution of the nonlinear system as a linear 
combination based on the eigen decomposition of K as 
follows:

K = = …x x j( ) ( ), 1, 2, ,j j j (4a) 

K =
=

g x x v( ) ( )k
j

j j k j
1 (4b) 

where λj, ϕj, vj are known as the eigenvalues, the eigenfunc-
tions, and the mode of the Koopman operator K .

The discussion about Koopman operator theory so far has 
been centered around an autonomous system with time- 
varying inputs. However, to allow using this method in a 
dynamic control system requires extending the Koopman 
theory to be able to handle a non-autonomous system 
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Fig. 3 – LSTM predictions of C2H4, CO, and H2 concentrations compared to the reference data in the testing set. Inputs 
(surface potential and electrode rotation speed) used for the prediction are shown at the bottom.
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including time-varying control inputs. In Proctor et al. (2018), 
a generative Koopman with inputs and control (KIC) method 
was proposed to generalize the application of Koopman op-
erator theory to non-autonomous systems. Specifically, the 
KIC method defined a new representation of the Koopman 
operator as follows:

=+x x uf( , )k k k1 (5a) 

K = =+ + +g x u g x u u g x uf( , ) ( ( , ), ) ( , )k k k k k k k1 1 1 (5b) 

where uk is the input applied at the kth time step, and Eq. (5a)
is the discrete representation of any nonlinear system ac-
cepting external inputs. There are other works proposing 
different formulations for Koopman operator with inputs 
(e.g., Korda and Mezić, 2018), and the core ideas shared 
around those methods involve augmenting the states x and 
the inputs u into the same matrix and use it to form the 
observables instead of just the states, which all allow line-
arizing the nonlinear system using the method applied to an 
autonomous system. 

Remark 4. The method of constructing the observables g is an 
essential research area of Koopman operator theory, and there 
are significant efforts on this subject, such as using a nonlinear 
function to augment the state measurements (Rowley et al., 
2009; Williams et al., 2015; Brunton et al., 2016; Proctor et al., 
2018). In this work, we define the observables to be the output 
states of the system, such that g(x) = x.

Remark 5. The Koopman operator can also be applied to a 
dynamic system with continuous representation. However, 
the focus of our mathematical analysis and investigation in 
this work is centered on the discrete representation, as the 
LSTM model can be considered as a discrete approximation 
of the underlying nonlinear dynamic system. Therefore, 
applying the Koopman operator to a discrete nonlinear 
dynamic system fits better to the application of the 
Koopman operator to the LSTM model.

4.2. Dynamic mode decomposition

Although the Koopman operator method suggests linearizing 
a nonlinear system into an infinite-dimensional linear 
system, it is practical to work with a finite dimension that is 

high enough to achieve the desired accuracy. Considering 
this, the Dynamic Mode Decomposition (DMD) method, first 
proposed in Schmid (2010), is an effective method to provide 
a finite-dimensional approximation of the Koopman op-
erator. Specifically, the DMD method is a data-driven method 
that requires obtaining measurements to start with. We de-
fine Ok = g(xk) to be the observation of a nonlinear system and 

=+ +O Ok k 1 to be the observation one time-step after Ok. By 
performing experiments or simulations with the nonlinear 
system, time-sequence data can be collected for the ob-
servations and yield:

= … = …+ + + +[ ]O O O O O OO O, , , , [ , , , ]n n0 1 0 1s s (6) 

where ns is the total number of samples. Notably, the nota-
tion O1 is not necessarily the next time step of O0. Subse-
quently, the DMD of the nonlinear system based on the 
measurements can be found as the eigen decomposition of 
the linear mapping matrix A that forms the equation,

=+O AO (7) 

The analytical solution of Eq. (7) yields the matrix A as 
A = O+O†. Finally, the eigenvalues and eigenvectors of A are 
the approximation of the eigenvalues and the mode of the 
Koopman operator, respectively.

For a nonlinear system with inputs, the Dynamic Mode 
Decomposition with control (DMDc) method was proposed in 
Proctor et al. (2016), which includes the measurements of the 
control actions = …[ ]u u uO , , ,u n0 1 s to compute the linear 

mapping matrix = +G O O
Ou

†

defined for the DMDc method. 

Similarly, the singular value decomposition of G can provide 
a finite approximation of KIC. Eventually, an arbitrary non- 
autonomous nonlinear system defined as Eq. (5a) can be 
linearized with the DMDc method into the following system:

=G AB[ ] (8a) 

= ++x x uA Bk k k1 (8b) 

= +y x uC Dk k k (8c) 

Furthermore, the process of computing the matrix G involves 
solving a linear least-squares problem, which can be solved 
more effectively in practice with the regression method rather 
than finding the analytical solution (Korda and Mezić, 2018). 
Therefore, the extended dynamic mode decomposition 

Fig. 4 – Open-loop simulation using the trained LSTM model with consistent fixed inputs from various initial states. The 
predicted trends for different initial states are represented in different colors.
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(EDMD) method proposed in Williams et al. (2015) introduced a 
regression procedure to approximate the Koopman operator.

4.3. Linearization of LSTM model and performance 
evaluation

The Koopman operator theory and EDMD method are uti-
lized to linearize the LSTM model because they are data- 
driven and independent of the form of the nonlinear model 
(Arbabi and Mezic, 2017; Xie and Ren, 2020). The first 
step of implementing these methods is to collect time se-
quence trajectories of the LSTM model. Following the pro-
cedure of Proctor et al. (2018); Xie and Ren (2020), at 
the kth time step, we first define the vectors =y

… = …+ + + + +[ ] [ ]x x x x x x xˆ , ˆ , , ˆ , ˆ ˆ , ˆ , , ˆk k k N k k k N1 2 1 1t t , and =u

…+ +[ ]u u u, , ,k k k N1 1t , where Nt is the distance between the 
farthest time step contained in the linearization samples and 
the kth time step. Notably, the historical information that is 
used by the LSTM model to make predictions up to the kth time 
step is available at the time tk. Thus, the prediction +x̂k 1 can be 
computed using the LSTM model. Furthermore, by adding the 
new prediction and the next control action uk+1 while re-
moving the first element of the LSTM input, the vector y can be 
obtained by iteratively running the LSTM model.

In this work, we applied a constraint on how much the 
input actions can be changed from one sampling time to the 
next, which is mathematically defined by the following 
equations:

=u v r c[ , , ]k k k k (9a) 

=c C v r( , )k k k (9b) 

= + +u v v r r[ , ]d k k k k1 1 (9c) 

=u u v r[ , ]d c b b (9d) 

where vi, ri, and ci are the surface potential, rotation speed, 
and the current value given by the reactor at the ith sampling 
time. The surface potential and rotation speed are the con-
trol actions that can be manipulated during the experiment, 
and the current varies as a consequence of these control 
actions. vb and rb are positive numbers referring to the 
maximum absolute step changes allowed per time step for 
the potential and rotation speed and are equal to 0.01 V and 
30 RPM, respectively.

The data to linearize the LSTM model is generated with 
respect to the constraints of Eq. (9). Specifically, we first 
determined the number (Ns) and the length (Nt) of the time- 
sequence data. Then, we randomly generate Nt control ac-
tions starting from the same initial control action u0 that 
obey the constraints of Eq. (9) and run the LSTM model to 
generate one time sequence of “measurements” of y. This 
process is repeated Ns times to obtain Ns sequences. Tu 
(2013) pointed out that, due to the reduction of the problem 
into a linear regression formulation, the data set used to 
perform the DMD-based method does not need to retain the 
sequential order of the data points (i.e., the rows of the data 
matrices can be shuffled such that, for example, the last 
row of the target vector +y x, ˆk Nt can instead be moved to be 
the first row, as long as the last rows of x̂ and +u x, ˆk N 1t and 

+uk N 1t are also moved to be their first rows, respectively). 
Therefore, the data matrices y, x, and u with a shape of (Ns 

× Nt) can be reshaped into three vectors containing (Ns × Nt) 
elements (also note ns = Ns × Nt), as long as the triplets of 
xi, ui, and yi remain the same. With this data structure, the 
linear least-square regression problem to find G can be 
easily solved by using the Scikit-learn linear regression 
function without fitting the intercept. The pseudocode to 
implement the linearization of LSTM in our work is re-
presented in algorithm 1. 

Algorithm 1. Procedure of linearizing the LSTM model. 
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The prediction given by the linearized model was com-
pared with the original LSTM prediction. Specifically, the 
initial inputs to activate the LSTM model are randomly 
cropped from existing experimental results and provided to 
algorithm 1 to generate a linearized model. Subsequently, 
the linearized model was utilized to make predictions over a 
time span based on a sequence of control actions randomly 
picked within the step change constraint and compared to 
the prediction given by the original LSTM model using the 
same control sequence. The comparison is shown in Fig. 5, 
where the prediction given by the original LSTM model over a 
time span of 800 s is represented in the blue solid curve, 
while the prediction given by the linearized model is denoted 
in the red dashed curve. The predictions given by the two 
models are close to each other, which supports that the lin-
earized model can approximate the LSTM model adequately. 

Remark 6. The most significant advantage of the proposed 
NN modeling plus on-line linearization method is taking 
advantage of the high degree of freedom given by the NN 
model to facilitate the modeling process. Specifically, we did 
initially attempt to develop a linear model for the 
electrochemical reactor, but we found such a model to be 
ineffective due to the complexity and nonlinearity of the 
process. In particular, since the electrochemical reactor is a 
highly nonlinear process, to represent it as a single linear 
model yields a model with a very high error that is not 
sufficiently accurate for control purposes. Although this 
issue can be mitigated to an extent by separating the 
operational region into multiple sub-regions that can each 
be described by a local linear system, how to determine the 

sub-regions (e.g., how many sub-regions are needed, and 
how to determine the boundaries of each sub-region) is a 
difficult task. In contrast, building a neural network model 
and then linearizing it on-line to reduce the computational 
burden of the MPC calculations proved to be a viable and 
effective approach since the neural network model can 
achieve a much lower error due to its ability to capture 
nonlinear behavior, and the Koopman linearization is aimed 
at achieving the lowest possible error in a pre-defined 
segment of the operating region (over ns data points only).

Remark 7. Notably, for this work, the current flowing at a fixed 
applied potential depends on the electrolyte solution 
resistance due to the Ohmic loss. The solution resistance 
between the working and the reference electrode is 
determined from the electrochemical impedance 
spectroscopy (EIS) and is around 6.5  ±  0.3 Ω in the RCE cell 
setup when using 0.2 M potassium bicarbonate electrolyte. 
Although the value is practically constant, there are slight 
variances from experiment to experiment and during the 
experiment, while it is measured only before and after the 
experiments (Çıtmacı et al., 2023). Therefore, the measured 
current value will not be the same with the same control 
action, and thus, provide additional information for our LSTM 
model to learn the electrochemical reactor system better. The 
current value is measured and recorded during the 
experiment, and those measurements are used to train the 
LSTM model. However, when collecting samples for the 
Koopman-based linearization of the LSTM model, the value 
of the current needs to be approximated with the correlation 
between ck and the control actions denoted as transformation 

Fig. 5 – Comparison between the linearized model prediction (dashed curve) and the original LSTM model prediction (solid 
curve) over a sampling period.
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C in Eq. (9b). In simulations, this value was approximated 
using the average resistance obtained from various 
experiments. For the closed-loop experiments, the resistance 
value was measured right before starting the experiment and 
used to anticipate the current value in the prediction horizon.

5. Closed-loop experiments

The details of implementing the linearized NN-based MPC for 
the electrochemical reactor are presented in this section. As a 
quick recap, referring to Eq. (2), the main objective of the MPC 
in this work is to drive the productivity of C2H4 and CO to their 
specific set-points while suppressing the productivity of H2. 
The set-points for C2H4 and CO are selected to be 147 ppm and 
478 ppm, respectively, such that xr = [147, 478, 0]. Furthermore, 
by replacing the LSTM model used in Eq. (2d) with the line-
arized model, the overall optimization problem within the 
MPC becomes a quadratic programming problem, which is 
convex and can be solved efficiently. In the closed-loop ex-
periment, the MPC is operated in a sample-and-hold manner, 
which means it will give the optimum control action over a 
certain control period (i.e., 100 s in this work), and the control 
action will be held fixed during the control period. The overall 
workflow of the MPC is demonstrated in Fig. 6. Specifically, the 
LSTM model worked as the state estimator throughout the 
experiment. When entering a new sampling time, algorithm 1 
was used to compute the linearization of the LSTM model for 
the specific time-instant, which was then used to find the MPC 
control action by solving a quadratic programming (QP) pro-
blem. The Gurobi optimizer was used to solve the optimiza-
tion problem in this work. 

Remark 8. We note that the LSTM model used to provide the 
output state information in the MPC is a nonlinear process 
model, which causes the MPC to be a nonlinear, non-convex 
optimization problem. However, when the LSTM model is 
linearized, the MPC will only have linear constraints which, 
along with the quadratic objective function used, makes the 
MPC optimization problem become a quadratic program (QP) 
that can be solved very efficiently with readily available 
solvers such as Gurobi.

5.1. Implementation of the MPC in the experimental setup

The LSTM model (without linearization) worked as the state 
estimator in the closed-loop experiments by predicting the 
instantaneous reactor productivity. When the processing of a 
new GC measurement is finished, the LSTM model has to 

reinitialize its prediction, which means that it uses the state 
measurements in the input of LSTM instead of the state 
prediction given by the LSTM in the previous iteration. This 
reinitialization is expected to prevent the accumulation of 
prediction errors. Specifically, the output states are esti-
mated through 3rd-order polynomials based on the 3 con-
secutive GC measurements up to the newest measurement 
and used as the input of the LSTM model to predict the 
output state at 100 s after the newest GC injection made. 
Note that the GC measurement has a delay of 15 min because 
it takes 15 min to separate and analyze the sample taken 
from the injection. Therefore, through the reinitialization, 
the LSTM predicted the output state 15 min ago again, and 
needs to run iteratively using the reinitialized prediction to 
correct all the predictions for the previous 15 min. 
Furthermore, since this 3rd-order polynomial approximation 
can only be activated once every 21 min, it cannot be used as 
the process model or state estimator that requires to be able 
to give prediction every 100 s. But once the 3rd-order poly-
nomial approximation is activated, it can estimate the 
output states for the last 1 hr effectively and accurately.

The Laboratory Virtual Instrument Engineering 
Workbench (LabVIEW) software was utilized to digitalize the 
electrochemical reactor in this work. LabVIEW is a graphical 
programming language that allows a user to develop a user 
interface to monitor the system and develop control systems 
to implement the control actions in the working equipment. 
Although LabVIEW also allows users to develop simple pro-
grams (e.g., PI controller), it is technically challenging to 
implement the aforementioned workflow that involves using 
the NN model, linearization, and optimization in LabVIEW. 
Therefore, a data pipeline was developed to allow informa-
tion to flow between a Python script operating the workflow 
and the LabVIEW controlling the operating equipment.

The options for pipeline design include reading the data 
from a real-time updated csv file or data transfer through a 
database. Since opening a real-time updated csv file to read 
data might disturb the process of writing data, this option is 
not optimal. On the other hand, sending data from LabVIEW 
to a database is an easy task that is already combined into 
our automation scheme using the Clean Energy Smart 
Manufacturing Innovation Institute’s (CESMII) Smart 
Manufacturing Innovation Platform (SMIP) as discussed in 
Çıtmacı et al. (2022b). Specifically, the SMIP can work as a 
database to store and organize our data at defined endpoints 
for each piece of equipment, and the use of start and end 
dates for query and mutation of SMIP’s data transfer pro-
tocol, GraphQL, makes it a perfect candidate for data transfer 
application. In short, this data flow is designed to use Lab-
VIEW as the edge device performing process control and 

Fig. 6 – The overall workflow of the MPC in this work. The LSTM model is used as a state estimator when the MPC is not 
activated. Once entering a new sampling time, the MPC is activated and computes the control action for the reactor with the 
linearization of the LSTM model.
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monitor tasks, SMIP as a cloud database for data manage-
ment, and a high-performance computer running Python 
interpreters as a back-end server. The data transfer protocol 
is shown in Fig. 7.

When performing an experiment, constant physical 
properties, such as solution resistance, open circuit poten-
tial, etc., are measured before the electrolysis and sent to the 
SMIP at the beginning of the experiment. Process data col-
lected through LabVIEW, such as applied potential, surface 
potential, rotation speed, and current, are mutated to the 
SMIP every 2 s. The reactor was put to run in open-loop for 
the first 7000 s of the experiment because, at the beginning 
state of the experiment, the rector does not reach the equi-
librium giving higher variance in its productivity. Thus, data 
collected at this stage is expected to have a different dis-
tribution from the rest of the experiment and is excluded 
from the LSTM training. Control actions applied to the re-
actor at this stage are fixed to be − 1.22 V for potential and 
300 RPM for rotation speed.

After letting the reactor run in open-loop for the first 
6298 s, the MPC will be activated, and the Python script 
queries the last one hour of process data every 100 s to form 
the initial input for the LSTM model. Subsequently, the LSTM 
was linearized to compute the first control action, while the 
original LSTM model estimations along with input values are 
mutated to SMIP. LabVIEW script also queries those values 
from the SMIP to feed the new input values to the potentio-
stat and modulated speed rotator to implement the new 
applied potential and rotation speed. From then on, the ex-
periment was run in closed-loop.

5.2. Closed-loop experiments

The result of the closed-loop experiment is summarized in 
Fig. 8, where the dots are the GC measurements collected in 
the experiment and the dashed curves are the approximated 
output states with probable experimental trajectory method 
employing 3rd-order polynomials. The productivity evolution 
of C2H4 and CO2 is shown in the top figure, and their set- 
points, which are 147 and 478 ppm, respectively, are denoted 
with the dotted straight lines. A reference control action ur 

= [ − 1.28 V, 600 RPM], stated in Eq. (2c), was used in the MPC 
objective function to achieve better control performance. The 
reference control action ur was found using the trained LSTM 

model. As discussed above, the LSTM model is stable, such 
that it can be used to find the theoretical control actions that 
can give the targeted steady state. The weight matrix was 
chosen to be Q = diag(0.01, 0.01, 1 × 10−6) and R = diag 
(1 × 104, 1.0/1200). The weight parameters were tuned based 
on the simulation and experiment results.

The design of the weight matrices considered scaling their 
importance on the cost function. For example, when de-
signing the matrix Q, the first two parameters are the weight 
of C2H4 and CO, respectively, which are equally important in 
our control scheme. The value 0.01 in the Q matrix was used 
to prevent the cost value from becoming too big. On the other 
hand, the cost for the H2 is much less than the other two 
weights because driving the outputs to the set-point is the 
first priority for the control system. Reducing the pro-
ductivity of the side product H2 can maximize the energy 
efficiency of our reactor. However, it is physically impossible 
to eliminate the H2 production, which means if the weight 
parameter for the H2 is too high, the MPC will allow the two 
target states to be away from the set-point as the trade-off to 
reach the optimum defined by the MPC objective function. 
Drawn from the understanding of the reactor, we considered 
the reactor operated energy efficiently if the productivity of 
H2 was kept below 4000 ppm. Since the states are squared in 
the objective function, using 1 × 10−6 will give a cost equal to 
16 if the productivity of H2 is at 4000 ppm, which will dom-
inate the MPC with the outputs approaching the set-points, 
and thus, the productivity of H2 was not included in the ob-
jective function. The weight matrix R was calculated to bal-
ance the speed of the convergence of the states to the steady 
state and the magnitude of the control actions.

The prediction horizon of the MPC (Nh) is 8 times steps 
(i.e., 800 s in the future), and the length of the time sequence, 
Nt, collected for linearization is designed to be equal to Nh + 2. 
The number of linearization samples, Ns, is taken to be 30. 
Theoretically, linear regression can be more accurate with 
increasing amounts of data. On the other hand, increasing Nt 

and Ns also requires more time to collect the sample which 
makes the linearization more computationally expensive. 
Notably, the sampling step can be processed in parallel, 
which means the computational time is independent of the 
size of Ns if there are sufficient amounts of parallel pro-
cessors. However, since the processing of the time sequence 
is iterative, the computation time for linearization is 

Fig. 7 – Data flow between the experimental setup and local Python script through SMIP for MPC calculations. 
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bounded by the size of Nt. In this work, the maximum al-
lowable step changes in u reduce the required number of 
sequences in our linearization sample. In our implementa-
tion, 30 sequences collected with the Monte Carlo method 
turned out to be sufficient for the linearization task. With 
this choice, the MPC successfully drives the outputs to the 
set-point while maintaining the H2 production rate below 
4000 ppm.

5.3. Model retrain using transfer learning

The MPC design in this work created a feedback loop by using 
real-time measurements to re-initiate the LSTM model with 

measurement feedback and improve closed-loop system ro-
bustness. However, a correction algorithm that uses the 
feedback information to improve the LSTM model was not 
implemented, which means the control scheme demon-
strated in this work is based on the assumption that the 
LSTM model can capture the real process accurately, and 
that the process behavior does not change significantly. 
However, in real-world applications, the system is very likely 
to perform differently from the model prediction due to the 
variance of the application. The reported control scheme in 
this work should be able to handle this slight variance, as 
long as the variance is not significant enough to have the 
steady state shifting on a very different condition. However, 

Fig. 8 – Output responses and control actions in the closed-loop experiment controlled by the MPC using the linearization of 
the LSTM model.

733 Chemical Engineering Research and Design 197 (2023) 721–737  



sometimes the process may have very different behavior 
than the data collected to develop the neural network model. 
This problem is usually called the data (process) shift pro-
blem (for example, due to catalyst activity variation as a new 
catalyst is introduced every certain number of experiments), 
and more actions need to be taken to account for the data 
shift problem in model update.

To this end, we introduced a model retrain procedure 
based on the transfer learning concept, which has been ap-
plied to various engineering research works (Xiao et al., 2023; 
Munoz et al., 2023), to update the process model efficiently 
when the data shift problem is detected. To imitate this data 
shift problem in our reactor, we changed the polycrystalline 
Cu RCE to a new one and followed the same procedure to 
synthesize nanopores, but the resulting performance was 
different. Specifically, the new catalyst was more active and 
had a higher selectivity towards the production of C2H4. 
Various experiments were conducted with the new catalyst, 
which gave the result that with the control action at − 1.28 V 
and 600 RPM, the output for C2H4 increased to about 200 ppm 
but remained unchanged for CO.

Subsequently, the LSTM model was retrained off-line 
based on the data collected from the new experiments. Of 
course, the new data set is smaller in size compared to the 
original data set. Therefore, if we just train a new model after 
including the new data into the original data set, the newly 
trained LSTM is very likely to count heavily on the old data 
set and represent less of the performance of the new cata-
lyst. To account for this, we used the idea of transfer 
learning, which is a scheme to fine-tune a pre-trained model 
to make it fit better to a new data set. Since the underlying 
physico-chemical phenomena do not change with the cata-
lyst change, the available LSTM is a good pre-trained model 
that captures the critical dynamic relations from the pre-
vious training.

Specifically, the training of all layers in the pre-trained 
LSTM model except the output layer was frozen with the as-
sumption that the ground truth physical relationship is cap-
tured in the LSTM layer. This assumption was made based on 
the fact that the same reactor is used, and only the catalyst is 
different with respect to its morphology. If more significant 
changes are considered (like different reactor configurations), 
then one may have to consider retraining additional weight 
parameters. Subsequently, the model is trained with only the 
new experimental results, which consist of results from three 
closed-loop experiments ranging from 8 to 10 h using the new 
catalyst and the original LSTM model. The model is trained 
with 10 epochs because it is common in transfer learning to 
train the model with a small number of epochs to prevent it 
from overfitting the new data, especially when the size of the 
new data set is small. While the computational time to train 
the original LSTM model was about 5 h using Google Collab 
(i.e., using both GPU and CPU), the update of the existing LSTM 
network model required only around 15 min. Eventually, the 
retrained model preserved a stable behavior and predicted the 
new ur to be − 1.26 V and 650 RPM. This result matches our 
expectation for the new catalyst since the C2H4 productivity is 
more correlated to the applied potential while CO productivity 
is more correlated to the rotation speed. Based on the experi-
ment observation, the new ur should decrease the potential to 
reduce the productivity of C2H4 to better approach the set- 
point. However, reducing the potential will also reduce the   

productivity of CO even if it is more correlated to rotation 
speed. The rotation speed then needs to be increased slightly 
to compensate for the loss in CO productivity. Thus, we con-
cluded that the transfer learning-based retrain process cali-
brates the LSTM model in the correct direction and moved on 
to using it to perform closed-loop MPC experiments of con-
trolling the reactor with the new catalyst. The result of the 
closed-loop experiment is shown in Fig. 9 which demonstrates 
that the MPC with the retrained model can stabilize the reactor 
outputs to the desired set-points. 

Remark 9. In addition to the retraining method that corrects 
the model off-line, on-line correction may be implemented to 
improve the MPC performance using real-time 
measurements. For example, the extended Kalman filter 
method can be a good candidate to be considered for this 
task. To implement this method, the Kalman correction 
factor should be added to the LSTM model for real-time 
estimation. Furthermore, since the Koopman method can be 
applied to any nonlinear model, the overall workflow of the 
model linearization and MPC implementation does not need 
to be changed to include the Kalman filter correction. 
Developing this correction step for an MPC of an 
electrochemical reactor is one of our future objectives.

Remark 10. The computational cost of solving the original MPC 
optimization problem in each sampling time (which is 100 s in 
our experimental implementation) depends on the choice of 
optimization solver and its setup. Specifically, in our work, we 
used the COIN-or IPOPT optimizer (Wächter, 2009) to solve the 
nonlinear optimization problem and use 300 iterations as the 
maximum number of iterations. With this setup, it took at 
most 300 s to solve the LSTM-based MPC optimization problem 
for this application, which significantly exceeds the sampling 
time of 100 s. On the other hand, the QP for the MPC resulting 
from the on-line linearization procedure can always be solved 
in a few seconds with the Gurobi optimizer. In this work, we 
did not find it necessary to implement a parallel computing 
scheme in the MPC calculations, as the overall MPC runtime 
without parallel computing was around 10 s.

Remark 11. The retraining correction requires collecting new 
data from the process, which may introduce a certain delay to 
update the MPC. Consider the case where the data shift 
problem is just detected, and the collected data is not enough 
to retrain the process model, the MPC should be deactivated 
and switched to a backup controller (e.g., classical proportional 
integral controller) to ensure that the process operates safely.

Remark 12. We claim three main advantages of using the 
MPC approach compared to a traditional steady-state control 
approach (where the inputs are just set to steady-state 
values corresponding to the desired set-points from the 
beginning of the experiment; steady-state input values are 
predicted by the original LSTM model). The first advantage is 
that the use of MPC enables minimizing the production rate 
of H2 during operation. Secondly, the overall transient 
approach to the set-points can be optimized via MPC. 
Finally, the use of measurement-feedback control achieves 
robustness against disturbances and reactor variability. The 
robustness of the MPC to reactor variability can be observed 
in Fig. 9, where the LSTM model suggests operating the 
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reactor with a steady-state surface potential of − 1.26 V, but 
the MPC actually dictates the steady-state surface potential 
to be − 1.25 V, which is about 10% of the allowable range, to 
drive the process outputs to the desired set-points.

6. Conclusion

A procedure to apply neural network model-based MPC to 
perform real-time multivariable control for an experimental 
electrochemical reactor was presented; the approach in-
volves on-line linearization of the neural network model and 
is applicable to broad classes of chemical processes. 
Specifically, in this study, an LSTM neural network model 
was used to capture the nonlinear dynamic input-output 
relationship to control an electrochemical reactor that con-
verts CO2 to valuable chemical products. The Koopman op-
erator method was found to be able to linearize the LSTM 
model efficiently (in terms of computational effort) and ef-
fectively (in terms of model performance). Based on that 
method, a systematic approach was developed to linearize a 
neural network model using the Scikit-learn linear regres-
sion function, which is efficient and easy to implement. 
Open-loop simulations were performed to evaluate the per-
formance of the original LSTM and linearized LSTM models, 
and the MPC developed based on the linearization of the 
LSTM model was applied to control the experimental 

electrochemical reactor. As the closed-loop results demon-
strated, the MPC calculates the optimal control actions with 
reasonable computation cost and successfully drives the 
process outputs to desired set-point values. Furthermore, a 
transfer-learning scheme was introduced to account for the 
data shift problem (owing to catalyst activity variability every 
time a new catalyst is introduced) by updating the LSTM 
model using new process measurement data. The transfer- 
learning method was demonstrated to be able to update the 
original LSTM model with a limited amount of new data and 
computational resources. Finally, the updated LSTM model 
and the resulting MPC were demonstrated to resolve the data 
shift problem by driving the process outputs to the desired 
set-points in a closed-loop experiment under the new ex-
perimental (catalyst) conditions.
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