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Summary

In this paper, the event-triggered filtering and intermittent fault detection prob-
lems are investigated for a class of time-varying systems with stochastic param-
eter uncertainty and sensor saturation. Due to the existence of event-triggered
mechanism, the measured signal could be transmitted only when it satisfies
the triggering condition. An event-triggered filter is developed, which takes the
event-triggered mechanism, parameter uncertainty, and sensor saturation into
full consideration but does not depend on any specific uncertainty structure.
By utilizing the inductive and stochastic analysis technique, the filter gain is
designed to ensure that the upper bound of the estimation error covariance is
minimized at each time step. Based on the proposed filter, a residual is gen-
erated and the corresponding evaluation function and detection threshold are
given to achieve fault detection. At last, two simulation studies are carried out
to demonstrate the effectiveness and applicability of the proposed method.
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1 INTRODUCTION

With the increasing complexity and higher safety demand of modern engineering systems, the filtering and fault detection
problems have attracted tremendous attention from both the academia and the industry.1-4 The basic idea of filtering is
to estimate the system state based on the information of sensor measurement and system model. The basic idea of fault
detection is to construct a residual based on the system model and then evaluate it to determine whether there is a fault
in the system. The model uncertainty and time delay5,6 are inevitable in practice, considerable research efforts have been
devoted to studying robust filtering and fault detection problems.7-14

Meanwhile, the event-triggered mechanism has received enhanced research interest due to the rapid development of
network and communication technology in recent years. For the conventional periodic mechanism, the signal will be
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transmitted at each sampling time. However, for the event-triggered mechanism, the signal will be transmitted only when
the triggering condition is satisfied. It has the advantage of reduced signal transmission, which could thus save energy and
extend service life. This has aroused much research attention on event-triggered filtering and fault detection recently.15-23

On the other hand, the sensor saturation phenomenon is very common in real-world situations due to physical and
technological limitations. Therefore, some research efforts have been devoted to filtering and fault detection problems
with sensor saturation.24-30 In the available literature, the saturation is usually treated as sector-bounded nonlinearity.
However, the sensor saturation sometimes may occur in a stochastic way due to environmental changes, sensor failures,
and so on.31-33 As a result, it is of vital importance to investigate the filtering and fault detection problems with stochastic
sensor saturation.

Summarizing the aforementioned discussion, it can be concluded that, although the filtering and fault detection
problems have attracted much research interest, the common event-triggered filtering and intermittent fault detection
problems for time-varying systems with stochastic uncertainty and sensor saturation have not been investigated. It may
be due to difficulties in dealing with parameter uncertainty and imperfect measurement simultaneously. Besides, most
available methods usually require to assume that the parameter uncertainty has a specific form of matrix structure and
both the structure and structural parameters of it are also required to be known beforehand. Unfortunately, it sometimes
may be impossible to obtain these information and there still lacks of a different method based on statistical information
rather than structural information.

Motivated by these considerations, this work aims to develop a novel event-triggered filtering and fault detection
method to solve the aforementioned problems. The main contributions of this paper can be summarized as follows.
(1) A comprehensive model is established, which covers event-triggered transmission, stochastic parameter uncertainty, and
sensor saturation. (2) A novel event-triggered filter is proposed, whose upper bound estimation error covariance is obtained
and minimized. (3) A recursive online fault detection strategy is presented. The rest of this paper is organized as follows.
In Section 2, the event-triggered filtering and fault detection problems are formulated with some assumptions. In Section
3, the event-triggered filtering method is proposed and applied to the fault detection. Simulation results are provided and
discussed in Section 4. In the end, some concluding remarks are given in Section 5.

Notation. Except where otherwise stated, the notations of this paper are fairly standard. Rn and Rn×m denote
the n dimensional Euclidean space and the set of all n × m real matrices, respectively. In×n is the iden-
tity matrix with n rows and n columns (1 at the (i, i)th entry and 0 elsewhere).  (m,n) represents the set
{m,m + 1, … ,n} , (m ∈ Z,n ∈ Z,m ≤ n). Given a matrix X =

[
xi𝑗
]

∈ Rn×m, row {X, i} denotes the vector[
xi1 xi2 · · · xim

]T. Given a set  = {n1,n2, … ,nm} , (n1 ≤ n2 ≤ · · · ≤ nm), coli∈ {Xi} and diagi∈ {Ai} represent[
Xn1

T Xn2
T · · · Xnm

T] T and diag
{

An1 ,An2 , … ,Anm

}
, respectively.E{X} is the expectation of a stochastic variable

X. prow (X),𝝁X, and𝚺X denote coli∈(1,n) {row {X, i}},E {X}, andE
{

prow (X) prow(X)T}, respectively. If the dimensions
of matrices are not explicitly stated, they are assumed to be compatible for algebraic operations.

2 PROBLEM FORMULATION

Consider a class of stochastic time-varying systems described by the following state-space equations:

x(k + 1) = (Ac (k) + A𝛿 (k)) x (k) + (Bc (k) + B𝛿 (k))u (k) + w (k), (1)

y (k) =
(
Iny×ny − 𝚲 (k)

)
(Cc (k) + C𝛿 (k)) x (k) + 𝚲 (k) g ((Cc(k) + C𝛿 (k)) x(k)) + f (k) + v (k), (2)

where x(k) ∈ Rnx is the system state, u(k) ∈ Rnu is the control input, and y(k) ∈ R
ny is the measurement output. w(k) ∈

Rnx is the process noise, and v(k) ∈ R
ny is the measurement noise. Ac(k) ∈ Rnx×nx , Bc(k) ∈ Rnx×nu , and Cc(k) ∈ R

ny×nx

are known deterministic parameters, and A𝛿(k) ∈ Rnx×nx , B𝛿(k) ∈ Rnx×nu , and C𝛿(k) ∈ R
ny×nx are unknown stochastic

parameter uncertainties. 𝚲(k) ∈ R
ny×ny is the saturation coefficient, and g(·) ∶ R

ny → R
ny is the saturation function.

f(k) ∈ R
ny is the sensor fault. The aforementioned system is called nominal system if the fault is identically equal to zero.

Otherwise, it is called faulty system.
The saturation coefficient 𝚲(k) ∈ R

ny×ny is a diagonal matrix whose ith entry 𝜆i(k), i ∈ 
(
1,ny

)
is the Bernoulli white

process taking the value 1 or 0 with {
Prob {𝜆i(k) = 1} = 𝜆c,i(k),
Prob {𝜆i(k) = 0} = 1 − 𝜆c,i(k).

(3)
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Denoting 𝚲c(k) = diagi∈(1,ny)
{
𝜆c,i(k)

}
, then it follows immediately that E {𝚲(k)} = 𝚲c(k) and 𝚺𝚲(k) = 𝚲c(k)⊗ Iny×ny ,

where ⊗ is the Kronecker product. The saturation coefficient describes the phenomenon of stochastic sensor saturation.
Given a vector q = coli∈(1,ny) {qi}, the saturation function g(·) ∶ R

ny → R
ny is defined as

g(q) =
[

g1(q1) g2(q2) · · · gny (qny )
]T
, (4)

with gi(qi) = sgn(qi)min (si, ‖qi‖2), where sgn(·) ∶ R1 → R1 is the signum function and s = coli∈(1,ny) {si} is the
saturation level.

In this paper, the send-on-delta transmission strategy is considered. The current ith measurement yi(k) will be
transmitted as long as it satisfies the following triggering condition:

‖𝑦i(k) − 𝑦i (k − l)‖2 > 𝛿i, (5)

where 𝑦i (k − l) is the previously transmitted ith measurement and 𝜹 = coli∈(1,ny) {𝛿i} is the triggering threshold.
Let kt,1, kt,2, … denote the triggering sequence, then the available measurement signal can be written as yt(k) =
coli∈(1,ny){𝑦t,i(k)}, whose ith entry satisfies 𝑦t,i(k) = 𝑦i(kt,l), k ∈ (kt,l, kt,l+1 − 1).

The matrices are independent of each other if and only if their entries are independent of each other. The following
assumptions are made throughout this paper, which give the statistical information of uncertainties.

Assumption 1. The initial state x(0) has the mean 𝝁x (0), covariance 𝚺(x(0)−𝝁x (0)), and second moment 𝚺x (0). The
process noise w(k) and measurement noise v(k) are zero-mean white processes with covariances 𝚺w(k) and 𝚺v(k).

Assumption 2. The parameter uncertainties A𝛿(k), B𝛿(k), C𝛿(k) are zero-mean white processes with

E
{

prow (A𝛿(k)) prow (A𝛿(k))T} = 𝚺A𝛿 (k),

E
{

prow (B𝛿(k)) prow (B𝛿(k))T} = 𝚺B𝛿 (k),

E
{

prow (C𝛿(k)) prow (C𝛿(k))T} = 𝚺C𝛿 (k).

(6)

Besides, the initial state, process noise, measurement noise, and parameter uncertainties are mutually independent
of each other.

The main purpose of this paper is to develop a filter to estimate the system state and utilize it to detect the fault in
the time-varying system. It is worth mentioning that our proposed method takes event-triggered transmission, parameter
uncertainty, and sensor saturation into full consideration, thus can achieve favorable performance.

3 MAIN RESULTS

Before proceeding further, we firstly introduce a lemma that will be utilized in the subsequent analysis.

Lemma 1. (See the work of Hu et al34)
Given any two matrices X ∈ Rn×m and Y ∈ Rn×m and positive scalar 𝛼, the following inequality holds:

XYT + YXT
≤ 𝛼XXT + 𝛼−1YYT. (7)

The recursive structure of our proposed filter is as follows:

x̂ (k|k − 1) = Ac (k − 1) x̂ (k − 1) + Bc (k − 1)u (k − 1) , (8)

r (k|k − 1) = yt(k) − 𝚲c(k)g (Cc(k) x̂ (k|k − 1)) −
(
Iny×ny − 𝚲c(k)

)
Cc(k) x̂ (k|k − 1) , (9)

x̂(k) = x̂ (k|k − 1) + K(k)r (k |k − 1) , (10)

where x̂ (k|k − 1) is the predicted state estimate, r (k|k − 1) is the innovation, x̂(k) is the state estimate, and K(k) is the
filter gain to be designed. It is worth mentioning that the dimensions of the fault, output, and innovation are all the same.
Let x̃ (k|k − 1) = x(k) − x̂ (k|k − 1) be the predicted estimation error, and x̃(k) = x(k) − x̂ (k) be the estimation error.
Then, the corresponding predicted estimation error covariance𝚺x̃(k|k−1) = E{x̃ (k|k − 1) x̃(k|k − 1)T} and estimation error
covariance 𝚺x̃(k) = E{x̃(k)x̃(k)T} can be recursively calculated by the following theorem.
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Theorem 1. Consider the nominal system (1)-(2) with filter (8)-(10), the predicted estimation error covariance is

𝚺x̃(k|k−1) = Ac (k − 1)𝚺x̃(k−1)Ac(k − 1)T + 𝚺A𝛿 (k−1)x(k−1) + 𝚺B𝛿 (k−1)u(k−1) + 𝚺w(k−1), (11)

and the estimation error covariance is

𝚺x̃(k) =
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
𝚺x̃(k|k−1) ×

(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T

+ K(k)
(
𝚺(yt(k)−y(k)) + 𝚺C𝛿 (k)x(k) + 𝚺v(k)

)
K(k)T + K(k)𝚲c(k)𝚺(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))𝚲c(k)TK(k)T

+ K(k)𝚺𝚲(k)(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))K(k)T

−
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
𝝁x̃(k|k−1)(yt(k)−y(k))T K(k)T

− K(k)𝝁(yt(k)−y(k))x̃(k|k−1)T
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T

−
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
× 𝝁x̃(k|k−1)(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))T𝚲c(k)TK(k)T − K(k)𝚲c(k)𝝁(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))x̃(k|k−1)T

×
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T −
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
× 𝝁x̃(k|k−1)(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))T𝚲c(k)TK(k)T

− K(k)𝚲c(k)𝝁(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))x̃(k|k−1)T

×
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T + K(k)𝝁(yt(k)−y(k))(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))T𝚲c(k)TK(k)T

+ K(k)𝚲c(k)𝝁(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))(yt(k)−y(k))T K(k)T

+ K(k)𝝁(yt(k)−y(k))(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k) +C𝛿 (k))x(k))T𝚲c(k)TK(k)T

+ K(k)𝚲c(k)𝝁(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))(yt(k)−y(k))T K(k)T

+ K(k)𝝁(yt(k)−y(k))(C𝛿 (k)x(k))T K(k)T + K(k)𝝁(C𝛿(k)x(k))(yt(k)−y(k))T K(k)T

+ K(k)𝝁(yt(k)−y(k))v(k)T K(k)T + K(k)𝝁v(k)(yt(k)−y(k))T K(k)T

+ K(k)𝚲c(k)𝝁(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))T𝚲c(k)TK(k)T

+ K(k)𝚲c(k)𝝁(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))T𝚲c(k)TK(k)T

+ K(k)𝚲c(k)𝝁(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))(C𝛿 (k)x(k))T K(k)T

+ K(k)𝝁(C𝛿 (k)x(k))(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))T𝚲c(k)TK(k)T.

(12)

Proof. From (1) and (8), we have

x̃ (k|k − 1) = Ac (k − 1) x̃ (k − 1) + w (k − 1) + A𝛿 (k − 1) x (k − 1) + B𝛿 (k − 1)u (k − 1) . (13)

It then follows immediately from (13) that

𝚺x̃(k|k−1) = Ac (k − 1)𝚺x̃(k−1)Ac(k − 1)T + 𝚺A𝛿 (k−1)x(k−1) + 𝚺B𝛿 (k−1)u(k−1) + 𝚺w(k−1). (14)

Now, we will continue to prove (12). By resorting to (1), (10), and (13), it can be obtained that

x̃(k) = x̃ (k|k − 1) − K(k) (yt(k) − 𝚲c(k)g (Cc(k)x̂ (k|k − 1)) −
(
Iny×ny − 𝚲c(k)

)
Cc(k)x̂ (k|k − 1)

)
. (15)
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Adding the following zero term

K(k)y(k) − K(k)y(k) + K(k)
(
Iny×ny − 𝚲c(k)

)
Cc(k)x(k) − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)x(k) (16)

to the right-hand side of (15), it can be further derived that

x̃(k) = x̃ (k|k − 1) − K(k) (yt(k) − y(k)) − K(k)𝚲(k) g ((Cc(k) + C𝛿(k)) x(k))

− K(k)
(
Iny×ny − 𝚲(k)

)
(Cc(k) + C𝛿(k)) x(k) + K(k)𝚲c(k) g (Cc(k)x̂ (k|k − 1))

+ K(k)
(
Iny×ny − 𝚲c(k)

)
Cc(k)x̂ (k|k − 1) + K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)x(k)

− K(k)
(
Iny×ny − 𝚲c(k)

)
Cc(k)x(k) − K(k)v(k)

=
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
x̃ (k|k − 1) − K(k) (yt(k) − y(k)) − K(k)v(k)

− K(k)𝚲c(k)
(
Cc(k)x(k) − g (Cc(k)x̂ (k|k − 1))

)
− K(k)𝚲(k)

(
g ((Cc(k) + C𝛿(k)) x(k))

− (Cc(k) + C𝛿(k)) x(k)) − K(k)C𝛿(k)x(k).

(17)

Then, (12) can be directly got from (17). The proof is thus completed.

Next, we will give the upper bound matrices of the predicted estimation error covariance and estimation error
covariance in the following theorem.

Theorem 2. Consider the nominal system (1)-(2) with filter (8)-(10), positive scalars 𝛼l, l ∈  (1, 11), and initial
condition �̄�x̃(0) = 𝚺(x(0)−𝝁x(0)), the upper bound of the predicted estimation error covariance is

�̄�x̃(k|k−1) = Ac (k − 1) �̄�x̃(k−1)Ac(k − 1)T + 𝚺A𝛿 (k−1)x(k−1) + 𝚺B𝛿 (k−1)u(k−1) + 𝚺w(k−1), (18)

and the upper bound of the estimation error covariance is

�̄�x̃(k) = K(k)S(k)K(k)T +

(
1 +

5∑
i=3

𝛼i

)
�̄�x̃(k|k−1) −

(
1 +

5∑
i=3

𝛼i

)
K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)�̄�x̃(k|k−1)

−

(
1 +

5∑
i=3

𝛼i

)
�̄�x̃(k|k−1)Cc(k)T(Iny×ny − 𝚲c(k)

)TK(k)T,

(19)

where
S(k) =

(
1 + 𝛼10 + 𝛼4

−1 + 𝛼6
−1)𝚲c(k)�̄�(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))𝚲c(k)T

+
(
1 + 𝛼5

−1 + 𝛼7
−1 + 𝛼10

−1 + 𝛼11
−1)𝝁𝚲(k)�̄�(g((Cc (k)+C𝛿 (k))x(k))−(Cc (k)+C𝛿 (k))x(k))𝚲(k)

T

+

(
1 +

5∑
i=3

𝛼i

)(
Iny×ny − 𝚲c(k)

)
Cc(k)�̄�x̃(k|k−1)

((
Iny×ny − 𝚲c(k)

)
Cc(k)

)T

+

(
1 + 𝛼3

−1 +
9∑

i=6
𝛼i

)
�̄�(yt(k)−y(k)) +

(
1 + 𝛼11 + 𝛼8

−1)𝚺C𝛿 (k)x(k) +
(
1 + 𝛼9

−1)𝚺v(k),

(20)

�̄�(yt(k)−y(k)) = ‖𝜹‖2
2 Iny×ny , (21)

�̄�g((Cc(k)+C𝛿 (k))x(k)) = ‖s‖2
2 Iny×ny , (22)

�̄�(Cc(k)x(k)−g(Cc(k)x̂(k|k−1))) = (1 + 𝛼1) ‖s‖2
2 Iny×ny +

(
1 + 𝛼1

−1)𝚺Cc(k)x(k), (23)

�̄�(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k)) = (1 + 𝛼2) �̄�g((Cc(k)+C𝛿 (k))x(k)) +
(
1 + 𝛼2

−1)𝚺(Cc(k)+C𝛿 (k))x(k). (24)

Proof. The theorem can be proved by mathematical induction. Based on the initial condition, we have �̄�x̃(0) ≥

𝚺(x(0)−𝝁x(0)). Then, assume that the theorem holds for the integers from 1 to k − 1, it can be obtained from
Theorem 1 that

𝚺x̃(k|k−1) ≤ Ac (k − 1) �̄�x̃(k−1)Ac(k − 1)T + 𝚺A𝛿 (k−1)x(k−1) + 𝚺B𝛿 (k−1)u(k−1) + 𝚺w(k−1), (25)
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which completes the proof of (18). Before proving (19), we will firstly give some preliminary results that will be utilized
in the subsequent proof. According to (1)-(2), (8)-(10), and Lemma 1, we have

𝚺(yt(k)−y(k)) ≤ ‖𝜹‖2
2 Iny×ny = �̄�(yt(k)−y(k)), (26)

𝚺g((Cc(k)+C𝛿 (k))x(k)) ≤ ‖s‖2
2 Iny×ny = �̄�g((Cc(k)+C𝛿 (k))x(k)), (27)

𝚺(Cc(k)x(k)−g(Cc(k)x̂(k|k−1))) ≤ (1 + 𝛼1) ‖s‖2
2 Iny×ny +

(
1 + 𝛼1

−1)𝚺Cc(k)x(k) = �̄�(Cc(k)x(k)−g(Cc(k)x̂(k|k−1))), (28)

𝚺(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k)) ≤ (1 + 𝛼2) ‖s‖2
2 Iny×ny

+
(
1 + 𝛼2

−1)𝚺(Cc(k)+C𝛿 (k))x(k) = �̄�(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k)),
(29)

𝚺𝚲(k)(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k)) ≤ 𝝁𝚲(k)�̄�(g((Cc (k)+C𝛿 (k))x(k))−(Cc (k)+C𝛿 (k))x(k))𝚲(k)
T , (30)

−
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
𝝁x̃(k|k−1)(yt(k)−y(k))T K(k)T

− K(k)𝝁(yt(k)−y(k))x̃(k|k−1)T
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T

≤ 𝛼3
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
�̄�x̃(k|k−1)

×
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T + 𝛼3
−1K(k)�̄�(yt(k)−y(k))K(k)T,

(31)

−
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
× 𝝁x̃(k|k−1)(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))T𝚲c(k)TK(k)T

− K(k)𝚲c(k)𝝁(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))x̃(k|k−1)T ×
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T

≤ 𝛼4
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
�̄�x̃(k|k−1) ×

(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T

+ 𝛼4
−1K(k)𝚲c(k)�̄�(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))𝚲c(k)TK(k)T,

(32)

−
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
× 𝝁x̃(k|k−1)(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))T𝚲c(k)TK(k)T

− K(k)𝚲c(k)𝝁(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))x̃(k|k−1)T ×
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T

≤ 𝛼5
(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
P̄ (k|k − 1) ×

(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)T

+ 𝛼5
−1K(k)𝝁𝚲(k)�̄�(g((Cc (k)+C𝛿 (k))x(k))−(Cc (k)+C𝛿 (k))x(k))𝚲(k)

T K(k)T,

(33)

K(k)𝝁(yt(k)−y(k))(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))T𝚲c(k)TK(k)T

+ K(k)𝚲c(k)𝝁(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))(yt(k)−y(k))T K(k)T

≤ 𝛼6K(k)�̄�(yt(k)−y(k))K(k)T + 𝛼6
−1K(k)𝚲c(k)�̄�(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))𝚲c(k)TK(k)T,

(34)

K(k)𝝁(yt(k)−y(k))(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))T𝚲c(k)TK(k)T

+ K(k)𝚲c(k)𝝁(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))(yt(k)−y(k))T K(k)T

≤ 𝛼7K(k)�̄�(yt(k)−y(k))K(k)T + 𝛼7
−1K(k)𝝁𝚲(k)�̄�(g((Cc (k)+C𝛿 (k))x(k))−(Cc (k)+C𝛿 (k))x(k))𝚲(k)

T K(k)T,

(35)

K(k)𝝁(yt(k)−y(k))(C𝛿 (k)x(k))T K(k)T + K(k)𝝁(C𝛿 (k)x(k))(yt(k)−y(k))T K(k)T

≤ 𝛼8K(k)�̄�(yt(k)−y(k))K(k)T + 𝛼8
−1K(k)𝚺C𝛿 (k)x(k)K(k)T,

(36)

K(k)𝝁(yt(k)−y(k))v(k)T K(k)T + K(k)𝝁v(k)(yt(k)−y(k))T K(k)T

≤ 𝛼9K(k)�̄�(yt(k)−y(k))K(k)T + 𝛼9
−1K(k)𝚺v(k)K(k)T,

(37)

K(k)𝚲c(k)𝝁(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))T𝚲c(k)TK(k)T

+ K(k)𝚲c(k)𝝁(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))T𝚲c(k)TK(k)T

≤ 𝛼10K(k)𝚲c(k)�̄�(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))𝚲c(k)TK(k)T

+ 𝛼10
−1K(k)𝝁𝚲(k)�̄�(g((Cc (k)+C𝛿 (k))x(k))−(Cc (k)+C𝛿 (k))x(k))𝚲(k)

T K(k)T,

(38)

K(k)𝚲c(k)𝝁(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))(C𝛿(k)x(k))T K(k)T

+ K(k)𝝁(C𝛿 (k)x(k))(g((Cc(k)+C𝛿 (k))x(k))−(Cc(k)+C𝛿 (k))x(k))T𝚲c(k)TK(k)T

≤ 𝛼11K(k)𝚺C𝛿(k)x(k)K(k)T + 𝛼11
−1K(k)𝝁𝚲(k)�̄�(g((Cc (k)+C𝛿 (k))x(k))−(Cc (k)+C𝛿 (k))x(k))𝚲(k)

T K(k)T.

(39)
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Now, we are in a position to show that 𝚺x̃(k) ≤ �̄�x̃(k). It follows from (26)-(39) and Theorem 1 that

𝚺x̃(k) ≤ K(k)

((
1 + 𝛼3

−1 +
9∑

i=6
𝛼i

)
�̄�(yt(k)−y(k))

+
(
1 + 𝛼10 + 𝛼4

−1 + 𝛼6
−1)𝚲c(k)�̄�(Cc(k)x(k)−g(Cc(k)x̂(k|k−1)))𝚲c(k)T

+
(
1 + 𝛼5

−1 + 𝛼7
−1 + 𝛼10

−1 + 𝛼11
−1)𝝁𝚲(k)�̄�(g((Cc (k)+C𝛿 (k))x(k))−(Cc (k)+C𝛿 (k))x(k))𝚲(k)

T

+

(
1 +

5∑
i=3

𝛼i

)(
Iny×ny − 𝚲c(k)

)
Cc(k)�̄�x̃(k|k−1)

((
Iny×ny − 𝚲c(k)

)
Cc(k)

)T

+
(
1 + 𝛼11 + 𝛼8

−1)𝚺C𝛿 (k)x(k) +
(
1 + 𝛼9

−1)𝚺v(k)

)
K(k)T

−

(
1 +

5∑
i=3

𝛼i

)
K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)�̄�x̃(k|k−1)

−

(
1 +

5∑
i=3

𝛼i

)
�̄�x̃(k|k−1)

((
Iny×ny − 𝚲c(k)

)
Cc(k)

)TK(k)T +

(
1 +

5∑
i=3

𝛼i

)
�̄�x̃(k|k−1).

(40)

The proof of this theorem is thus completed.

It can be easily seen that the upper bound of the estimation error covariance is less than K(k)S(k)K(k)T+1.3�̄�x̃(k|k−1)

−1.3K(k)
(
Iny×ny − 𝚲c(k)

)
Cc(k)�̄�x̃(k|k−1) −1.3�̄�x̃(k|k−1)Cc(k)T(Iny×ny − 𝚲c(k)

)TK(k)T. Due to the existence of both stochastic
parameter uncertainty and sensor saturation, the estimation error covariance is too complex to be minimized. Now, we
are in a position to give the important theorem showing how to design the recursive filter gain to minimize the upper
bound of the estimation error covariance.

Theorem 3. Consider the nominal system (1)-(2) with filter (8)-(10), positive scalars 𝛼l, l ∈  (1, 11), and initial
condition �̄�x̃(0) = 𝚺(x(0)−𝝁x(0)), the upper bound of the estimation error covariance is minimized if and only if

K(k) =

(
1 +

5∑
i=3

𝛼i

)
�̄�x̃(k|k−1)Cc(k)T(Iny×ny − 𝚲c(k)

)TS(k)−1. (41)

The corresponding minimum upper bound of the predicted estimation error covariance is

�̄�x̃(k|k−1) = Ac (k − 1) �̄�x̃(k−1)Ac(k − 1)T + 𝚺A𝛿 (k−1)x(k−1) + 𝚺B𝛿 (k−1)u(k−1) + 𝚺w(k−1), (42)

and the corresponding minimum upper bound of the estimation error covariance is

�̄�x̃(k) =

(
1 +

5∑
i=3

𝛼i

)(
Inx×nx − K(k)

(
Iny×ny − 𝚲c(k)

)
Cc(k)

)
�̄�x̃(k|k−1), (43)

where S(k) is defined in (20).

Proof. It can be directly derived from the results in Theorem 2, thus omitted here.

Based on the proposed filter, we can generate the recursive residual as follows:

r(k) = yt(k) − 𝚲c(k) g (Cc(k)x̂(k)) −
(
Iny×ny − 𝚲c(k)

)
Cc(k)x̂(k). (44)

The detection statistic has the following square form:

TD(k) =
k∑

n=k−nw+1
‖r(n)‖2

2 , (45)

where nw is the sliding window length. The basic property of the residual is given in the following theorem.

Theorem 4. Consider the nominal system (1)-(2) with residual (44) and positive scalars 𝛼l, l ∈  (1, 11), 𝛽m,m ∈
 (1, 13), the expectation of the detection statistic (45) satisfies

𝜇‖r(k)‖2
2
≤ Jth(k), (46)



ZHANG ET AL. 4673

where �̄�(yt(k)−y(k)), �̄�g((Cc(k)+C𝛿 (k))x(k)), and �̄�x̃(k) are defined in (21), (24), and (43), respectively. Jth(k) is as follows:

Jth(k) = tr

((
1 +

5∑
m=1

𝛽m

)
𝝁(

Iny×ny−𝚲(k)
)

Cc(k)�̄�x̃(k)Cc(k)T
(

Iny×ny−𝚲(k)
)T +

(
1 + 𝛽1

−1 +
8∑

m=6
𝛽m

)
𝚺(Iny×ny−𝚲(k)

)
C𝛿(k)x(k)

+
(
1 + 𝛽2

−1 + 𝛽6
−1 + 𝛽9 + 𝛽10

)
𝝁𝚲(k)�̄�g((Cc (k)+C𝛿 (k))x(k))𝚲(k)

T

+
(
1 + 𝛽3

−1 + 𝛽7
−1 + 𝛽9

−1 + 𝛽11 + 𝛽12
)
𝚲c(k)�̄�g((Cc(k)+C𝛿 (k))x(k))𝚲c(k)T

+
(
1 + 𝛽4

−1 + 𝛽8
−1 + 𝛽10

−1 + 𝛽11
−1 + 𝛽13

)
�̄�(yt(k)−y(k))

+
(
1 + 𝛽5

−1 + 𝛽12
−1 + 𝛽13

−1)𝚺v(k)

)
.

(47)

Proof. Adding the zero term y(k) − y(k) to the right hand of (44), we have

r(k) =
(
Iny×ny − 𝚲(k)

)
Cc(k)x̃(k) +

(
Iny×ny − 𝚲(k)

)
C𝛿(k)x(k)

+ 𝚲(k)g ((Cc(k) + C𝛿(k)) x(k)) + v(k) − 𝚲c(k) g (Cc(k)x̂(k)) + (yt(k) − y(k)) .
(48)

It then follows immediately from (48), Lemmas 1, and Theorem 3 that

E
{

r(k)Tr(k)
}
= E

{
tr
(
r(k)r(k)T)}

= tr
(
𝚺(Iny×ny−𝚲(k)

)
Cc(k)x̃(k)

+ 𝚺(Iny×ny−𝚲(k)
)

C𝛿 (k)x(k)
+ 𝚺𝚲(k)g((Cc(k)+C𝛿 (k))x(k))

+ 𝚺𝚲c(k)g(Cc(k)x̂(k)) + 𝚺(yt(k)−y(k)) + 𝚺v(k) + 𝝁(
Iny×ny−𝚲(k)

)
Cc(k)x̃(k)x(k)TC𝛿 (k)T

(
Iny×ny−𝚲(k)

)T

+ 𝝁(
Iny×ny−𝚲(k)

)
C𝛿 (k)x(k)x̃(k)TCc(k)T

(
Iny×ny−𝚲(k)

)T + 𝝁(Iny×ny−𝚲(k)
)

Cc(k)x̃(k)g((Cc(k)+C𝛿 (k))x(k))T𝚲(k)T

+ 𝝁(Iny×ny−𝚲(k)
)

Cc(k)x̃(k)v(k)T
+ 𝝁

𝚲(k)g((Cc(k)+C𝛿 (k))x(k))x̃(k)TCc(k)T
(

Iny×ny−𝚲(k)
)T + 𝝁

v(k)x̃(k)TCc(k)T
(

Iny×ny−𝚲(k)
)T

− 𝝁(Iny×ny−𝚲(k)
)

Cc(k)x̃(k)g(Cc(k)x̂(k))T𝚲c(k)T
+ 𝝁(Iny×ny−𝚲(k)

)
Cc(k)x̃(k)(yt(k)−y(k))T

− 𝝁
𝚲c(k)g(Cc(k)x̂(k))x̃(k)TCc(k)T

(
Iny×ny−𝚲(k)

)T + 𝝁
(yt(k)−y(k))x̃(k)TCc(k)T

(
Iny×ny−𝚲(k)

)T

+ 𝝁(Iny×ny−𝚲(k)
)

C𝛿 (k)x(k)g((Cc(k)+C𝛿 (k))x(k))T𝚲(k)T + 𝝁
𝚲(k)g((Cc(k)+C𝛿 (k))x(k))x(k)TC𝛿 (k)T

(
Iny×ny−𝚲(k)

)T

(49)

− 𝝁(Iny×ny−𝚲(k)
)

C𝛿 (k)x(k)g(Cc(k)x̂(k))T𝚲c(k)T
+ 𝝁(Iny×ny−𝚲(k)

)
C𝛿 (k)x(k)(yt(k)−y(k))T

− 𝝁
𝚲c(k)g(Cc(k)x̂(k))x(k)TC𝛿 (k)T

(
Iny×ny−𝚲(k)

)T + 𝝁
(yt(k)−y(k))x(k)TC𝛿 (k)T

(
Iny×ny−𝚲(k)

)T

− 𝝁𝚲(k)g((Cc(k)+C𝛿 (k))x(k))g(Cc(k)x̂(k))T𝚲c(k)T
− 𝝁𝚲c(k)g(Cc(k)x̂(k))g((Cc(k)+C𝛿 (k))x(k))T𝚲(k)T

+ 𝝁𝚲(k)g((Cc(k)+C𝛿 (k))x(k))(yt(k)−y(k))T + 𝝁(yt(k)−y(k))g((Cc(k)+C𝛿 (k))x(k))T𝚲(k)T

− 𝝁𝚲c(k)g(Cc(k)x̂(k))v(k)T − 𝝁v(k)g(Cc(k)x̂(k))T𝚲c(k)T
+ 𝝁v(k)(yt(k)−y(k))T

−𝝁𝚲c(k)g(Cc(k)x̂(k))(yt(k)−y(k))T − 𝝁(yt(k)−y(k))g(Cc(k)x̂(k))T𝚲c(k)T
+ 𝝁(yt(k)−y(k))v(k)T

)

≤ tr

((
1 +

5∑
m=1

𝛽m

)
𝝁(

Iny×ny−𝚲(k)
)

Cc(k)�̄�x̃(k)Cc(k)T
(

Iny×ny−𝚲(k)
)T +

(
1 + 𝛽1

−1 +
8∑

m=6
𝛽m

)
𝚺(Iny×ny−𝚲(k)

)
C𝛿 (k)x(k)

+
(
1 + 𝛽2

−1 + 𝛽6
−1 + 𝛽9 + 𝛽10

)
𝝁𝚲(k)�̄�g((Cc (k)+C𝛿 (k))x(k))𝚲(k)

T

+
(
1 + 𝛽3

−1 + 𝛽7
−1 + 𝛽9

−1 + 𝛽11 + 𝛽12
)
𝚲c(k)�̄�g((Cc(k)+C𝛿 (k))x(k))𝚲c(k)T

+
(
1 + 𝛽4

−1 + 𝛽8
−1 + 𝛽10

−1 + 𝛽11
−1 + 𝛽13

)
�̄�(yt(k)−y(k)) +

(
1 + 𝛽5

−1 + 𝛽12
−1 + 𝛽13

−1)𝚺v(k)

)
,

which completes the proof of this theorem.
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It is obvious that the upper bound of the expectation of the detection statistic is less than

4tr
(
𝚺v(k)

)
+2.3tr

(
𝚺(Iny×ny−𝚲(k)

)
C𝛿 (k)x(k)

)
+ 4.2tr

(
𝚲c(k)�̄�g((Cc(k)+C𝛿 (k))x(k))𝚲c(k)T

)
+ 5.1tr

(
tr
(
�̄�(yt(k)−y(k))

)
+1.5tr

(
𝝁(

Iny×ny−𝚲(k)
)

Cc(k)�̄�x̃(k)Cc(k)T
(

Iny×ny−𝚲(k)
)T

)
+3.2tr

(
𝝁𝚲(k)�̄�g((Cc (k)+C𝛿 (k))x(k))𝚲(k)

T

)
.

The detection threshold is set as

JD(k) =
k∑

n=k−nw+1
Jth(n), (50)

then we can detect the fault according to the following detection logic:{
TD(k) > JD(k) ⇒ with fault,
TD(k) ≤ JD(k) ⇒ no fault.

(51)

4 SIMULATION EXAMPLES

4.1 Example A
In this section, a numerical example is given to illustrate the validity of the proposed method. The parameters of the
stochastic time-varying system are as follows:

Ac(k) =
[

0.83 + 0.02 sin (0.15k) 0.42
0.18 −0.76 + 0.01 cos (0.12k)

]
,

Bc(k) =
[

0.14 + 0.01 sin (0.12k)
0.16 + 0.01 cos (0.15k)

]
,

Cc(k) =
[

0.86 0.63 + 0.02 cos (0.15k)
0.75 + 0.01 sin (0.12k) 0.87

]
.

In our simulation, the initial state, process noise, and measurement noise are mutually independent zero-mean Gaussian
white processes with covariances𝚺x(0) = 1.2I2× 2 × 10−6,𝚺w(k) = 1.3I2× 2 × 10−6, and𝚺v(k) = 1.5I2× 2 × 10−6, respectively.
The triggering threshold is

[
0.026 0.028

]T, and the sliding window length is nw = 5. The saturation level is
[

0.1 0.1
]T,

and the saturation coefficient is a Bernoulli white process with expectation diag (0.1, 0.2). The parameter uncertainties
are mutually independent zero-mean white processes with covariances

𝚺A𝛿 (k) =
⎡⎢⎢⎢⎣

1.3 + 0.1 sin (0.15k)
1.1

1.4 + 0.1 cos (0.12k)
1.5

⎤⎥⎥⎥⎦ × 10−6,

𝚺B𝛿 (k) =
[

1.4 + 0.1 cos (0.12k)
1.2 + 0.1 sin (0.15k)

]
× 10−6,

𝚺C𝛿 (k) =
⎡⎢⎢⎢⎣

1.2
1.4 + 0.1 sin (0.12k)

1.5 + 0.2 cos (0.15k)
1.1

⎤⎥⎥⎥⎦ × 10−6.

Various fault cases are all taken into consideration to fully demonstrate the effectiveness of our proposed method.

Case 1. The fault is positive

f(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
0.52 0.47

]T
, k ∈ [66, 95] ,[

0.48 0.53
]T
, k ∈ [171, 210] ,[

0.49 0.54
]T
, k ∈ [286, 335] ,[

0 0
]T
, otherwise.
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FIGURE 1 Example A: Triggering sequence [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Example A: System state and its estimate [Colour figure can be viewed at wileyonlinelibrary.com]

Case 2. The fault is negative

f(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
−0.48 −0.51

]T
, k ∈ [66, 95] ,[

−0.46 −0.54
]T
, k ∈ [171, 210] ,[

−0.52 −0.47
]T
, k ∈ [286, 335] ,[

0 0
]T
, otherwise.

Simulation results are shown in Figures 1-5. For the fault-free case, Figure 1 depicts the triggering sequence, presenting
that the transmission times are greatly reduced in comparison with periodic mechanism, which indicates the advantage
of the event-triggered mechanism. The systems state and its estimate are presented in Figure 2. Besides, the mean square
estimation error of system state is given in Figure 3 to show the effectiveness of our proposed robust filter more objectively.
It can be seen that our proposed method can estimate the state very well. For the faulty case, Figures 4-5 show the fault
detection results from which we can observe that our proposed method has a favorable detection performance for all cases.
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FIGURE 3 Example A: Mean square estimation error of system state [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Example A: Fault detection result of case 1 [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Example B

x (k + 1) =
⎡⎢⎢⎣
−RaT−La

La
−Cv(k)T

La
Cm(k)T

Mi
−FcT−Mi

Mi

⎤⎥⎥⎦ x(k) +

[
T
La

0

]
u(k) + w(k),

y(k) = (I2×2 − 𝚲(k))
[

1
1

]
x(k) + 𝚲(k) g

([
1

1

]
x(k)

)
+ f(k) + v(k),

where the system state is the armature current and angular velocity. The control input is the armature voltage. The
measurement output is the armature current and angular velocity.

In our simulation, the deterministic parameters are Ra = 1.2, La = 0.05, Mi = 0.1352, T = 0.01, and Fc = 0.3. The
stochastic parameters Cv(k) and Cm(k) are mutually independent white processes with means 0.6 and 0.6 and covariances
0.18 and 0.12. The initial state is zero and the control input is 0.01. The process and measurement noise are mutually
independent zero-mean white processes with covariances 𝚺w(k) = 2.5I2× 2 × 10−3 and 𝚺v(k) = 2.5I2× 2 × 10−3. The
triggering threshold is

[
0.1 0.2

]T, and the sliding window length is nw = 5. The saturation level is
[

0.008 0.006
]T,

and the saturation coefficient is a Bernoulli white process with expectation diag (0.1, 0.1). We consider the following
fault cases.
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FIGURE 5 Example A: Fault detection result of case 2 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Example B: Triggering sequence [Colour figure can be viewed at wileyonlinelibrary.com]

Case 3. The fault is positive

f(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
0.46 0.51

]T
, k ∈ [66, 95] ,[

0.52 0.48
]T
, k ∈ [171, 210] ,[

0.56 0.43
]T
, k ∈ [286, 335] ,[

0 0
]T
, otherwise.

Case 4. The fault is negative

f(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
−0.52 −0.48

]T
, k ∈ [66, 95] ,[

−0.49 −0.51
]T
, k ∈ [171, 210] ,[

−0.53 −0.43
]T
, k ∈ [286, 335] ,[

0 0
]T
, otherwise.
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FIGURE 7 Example B: System state and its estimate [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Example B: Mean square estimation error of system state [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Example B: Fault detection result of case 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 Example B: Fault detection result of case 2 [Colour figure can be viewed at wileyonlinelibrary.com]

Simulation results are shown in Figures 6-10. It can be seen that our proposed method still has a favorable performance
for direct current motor system.

5 CONCLUSION

This work has addressed the event-triggered filtering and fault detection problems of stochastic uncertain systems subject
to sensor saturation and event-triggered transmission, which is of wide practical use. An event-triggered filter was firstly
proposed at the criterion of minimum upper bound of the estimation error covariance. Then, based on it, we developed an
effective fault detection strategy to detect the fault. Finally, we exploited two simulation examples to illustrate the validity
and effectiveness of our developed method.
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