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ABSTRACT
This paper considers the detection problem of intermittent sensor faults in stochastic linear time-varying
systems with both parameter uncertainty and limited resolution. By introducing the soft measurement
model, a state estimator is designed whose upper bound of estimation error covariance is obtained and
minimised at each time step. Based on it, the residual is generated and its relationship with the fault is
analysed quantitatively. Then the evaluation function and corresponding detection threshold is given.
Our proposed method is recursive and therefore suitable for real-time online applications. At last, two
simulation studies are carried out to illustrate the validity of our proposed method.
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1. Introduction

With the rapid development of advanced control and computer
technologies, the modern engineering systems have become
more automated and complicated. Meanwhile, the increased
complexity and automation tend to make the systems more
vulnerable. Any faults may have the potential to cause a host
of safety, environmental and economic problems, which could
even turn into disasters. Therefore, the fault detection tech-
nology has received extensive attention from both academia
and industry over the past decades (Brás, Rosa, Silvestre,
& Oliveira, 2015; Floquet, Barbot, Perruquetti, & Djemai, 2004;
Franze & Famularo, 2012; Hajshirmohamadi, Davoodi, Meskin,
& Sheikholeslam, 2016; Hwang, Kim, Kim, & Seah, 2010; Jing
& Hua, 2008; Ríos, Punta, & Fridman, 2017; Zhang, Zhao, Li,
& Liu, 2010).

Among existing studies, tremendous research efforts have
been made to fault detection for linear time-varying (LTV)
systems. There are mainly two methods that shed insightful
lights among the available literature: state estimation-based
methods (Ben Hmida, Khémiri, Ragot, & Gossa, 2010; Li
& Zhou, 2009; Shen, Ding, & Wang, 2013) and parity space-
based methods (Wan, Dong, & Ye, 2013; Zhong, Ding, Han,
& Ding, 2010; Zhong, Song, & Ding, 2015). However, they
do not consider the multiplicative parameter uncertainty and
sensor resolution. Meanwhile, there is always some mismatch
between mathematical model and real system. The model
uncertainty is inevitable due to the existence of parameter per-
turbation, external disturbance, and so on.As a result, the robust
fault detection has attracted persistent research interest. Gen-
erally speaking, two types of uncertainty are often considered:
polytopic uncertainty (Blesa, Puig, & Saludes, 2012; Casavola,
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Famularo, & Franzè, 2005, 2008; Gao, Chen, &Wang, 2008; He,
Wang, Ji, & Zhou, 2011; Wei & Verhaegen, 2010; Zhang, Liu,
&Wang, 2011) and norm-bounded uncertainty (Ahmadizadeh,
Zarei, & Karimi, 2014; He & Liu, 2011; Pourbabaee, Meskin,
& Khorasani, 2016; Zhang et al., 2015; Zhuang, Li, & Li, 2016).

As a special kind of fault, the intermittent fault (IF) has
received increasing interest recently. Different from permanent
fault, the IF is referred to the fault which lasts for a limited
period of time and then disappears without any external cor-
rective action, and such a fault is often recurrent (Correcher,
García, Morant, Quiles, & Rodríguez, 2012). In practical engi-
neering systems, the IF is a major and common potential safety
hazard, seriously threatening the life and property security
(Bakhshi, Kunche, & Pecht, 2014; Söderholm, 2007). Hence,
it is of vital importance to study the intermittent fault detec-
tion (IFD). In recent years, some initial IFD methods have
been developed including quantitative methods (Blough, Sul-
livan, & Masson, 1992; Cai, Liu, & Xie, 2017; Cui, Dong, Bo,
& Juszczyk, 2011; Yan, He, & Zhou, 2016; Yaramasu, Cao, Liu,
& Wu, 2015) and qualitative methods (Contant, Lafortune,
&Teneketzis, 2004; Correcher,Garcia,Morant,Quiles&Blasco-
Gimenez, 2003; Ismaeel & Bhatnagar, 1997; Singh, Subra-
mania, Holland, & Davis, 2012; Steadman, Berghout, Olsen,
& Sorensen, 2008; Syed, Perinpanayagam, Samie, & Jennions,
2016; Zhang, Lei, & Chang, 2017; Zhou, Huang, Naixue, Qin
& Huang, 2015).

Summarising the above discussion, it can be concluded that
although the IFD has stirred some initial research interest, the
corresponding robust IFD problem for stochastic LTV systems
with parameter uncertainty and limited resolution has yet not
been adequately addressed. It is due probably to difficulties
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in simultaneously processing noise, parameter uncertainty and
resolution. Moreover, the stochastic characteristic of them adds
substantial challenge to IFD method design, especially when
both the occurrence and disappearance of the fault needs to be
detected.

It is worth mentioning that the resolution is an important
parameter of sensors, thus being a non-negligible factor for any
fault detection issues. However, so far, to the best of our knowl-
edge, this factor has rarely been considered in the fault detection
community. Besides, most previous work usually assumes that
themodel uncertainty has a specific structure. The structure and
corresponding parameters are also required to be knownbefore-
hand, which sometimes may not be impossible. Moreover, most
available results in the literature are within the framework of
norm index. In the view of these facts, we are motivated to
propose a new IFD method. The main contributions of the
paper can be highlighted as follows: (1) a residual generator is
constructed which takes both parameter uncertainty and limited
resolution into consideration ; (2) the quantitative relationship
between the residual and fault is given ; and (3) our proposed
IFD method is recursive thus can be used for real-time online
applications .

The rest of this paper is organised as follows. In Section 2,
the IFD problem for stochastic LTV systems with parameter
uncertainty and limited resolution is formulated with some
assumptions. In Section 3, the IFDmethod is designed based on
our proposed state estimator. Simulation results are presented in
Section 4, and some concluding remarks are given in Section 5.

Notations. Except where otherwise stated, the notations used
throughout this paper are fairly standard. Rn and R

n×m repre-
sent the n-dimensional Euclidean space and the set of all n × m
real matrices, respectively. 0n×m ∈ R

n×m is the null matrix (0 at
all entries), and In×n is the identity matrix with n rows and n
columns (1 at the (i, i)th entry and 0 elsewhere). The scalar x(i)

denotes the ith entry of the vector x ∈ R
n. The notationS(m, n)

stands for the set {m,m + 1, . . . , n},(m ∈ Z, n ∈ Z,m ≤ n).
ES{A} represents the mathematical expectation of a stochastic
variable A over the set S. Given a matrix A ∈ R

n×m, row{A, i}
denotes the vector [ai1 ai2 · · · aim]T. Given a set V =
{n1, n2, . . . , nm},(n1 ≤ n2 ≤ · · · ≤ nm), coli∈V {Ai} denotes the
block-column matrix [AT

n1 AT
n2 · · · AT

nm]
T. The notations

prow(A), μA and �A stand for coli∈S(1,n){row{A, i}}, E{A}
and E{prow(A)prow(A)T}, respectively. Scalars are in italic, and
matrices are in bold. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations.

2. Problem formulation and preliminaries

Consider a class of stochastic LTV systems described by the
following state-space model:

x (k + 1) = (Ac (k) + Aδ (k)) x (k)

+ (Bc (k) + Bδ (k))u (k) + w (k) , (1)

y (k) = (Cc (k) + Cδ (k)) x (k) + v (k) + �
(
y (k)

) + f (k) ,
(2)

y(k)(i)

s(i)
∈ Z, i ∈ S (

1, ny
)
, k ∈ N. (3)

where x(k) ∈ R
nx is the system state, u(k) ∈ R

nu is the con-
trol input, and y(k) ∈ R

ny is the measurement output. w(k) ∈
R
nx is the process noise, and v(k) ∈ R

ny is the measure-
ment noise. s(i) is the resolution of sensor i, �(y(k)) is the
resolution-induced uncertainty, and f(k) ∈ R

ny is the sen-
sor fault. Ac(k) ∈ R

nx×nx , Bc(k) ∈ R
nx×nu , Cc(k) ∈ R

ny×nx

are known deterministic parameters. Aδ(k) ∈ R
nx×nx , Bδ(k) ∈

R
nx×nu , Cδ(k) ∈ R

ny×nx are corresponding unknown stochas-
tic parameter uncertainty. The above system is called fault-free
system if ∀k ∈ N, f(k) ≡ 0ny×1. Otherwise, it is called faulty
system.

The IF is in the following form:

f (k) =
∞∑
j=1

fj
(
�

(
k − ko,j

) − �
(
k − kd,j

))
, (4)

where �(·) is the unit step function. fj is the jth fault profile,
and ko,j, kd,j are corresponding occurrence and disappearance
time. The summation is used to describe the IF which occurs
and disappears recurrently.

The following assumptions are made throughout this paper.

Assumption 2.1: The initial state x(0) has the mean x̄0, covari-
ance P0, and second moment �0. The noise w(k),v(k) are zero-
mean white processes with covariances�w(k) and�v(k). The fault
profile fj(i) ismuch larger than the resolution s(i), i.e. fj(i) + 2s(i) ≈
fj(i). Besides, the initial state, noise, and parameter uncertainty are
mutually independent of each other.

Assumption 2.2: The stochastic parameter uncertainty Aδ(k),
Bδ(k), Cδ(k) are zero-mean white processes with

E
{
prow (Aδ (k)) prow(Aδ (k))T

} = �Aδ(k),
E

{
prow (Bδ (k)) prow(Bδ (k))T

} = �Bδ(k),
E

{
prow (Cδ (k)) prow(Cδ (k))T

} = �Cδ(k).
(5)

In this paper, our main aim is to design an effective strat-
egy to detect the occurrence and disappearance IF. It is worth
mentioning that our proposed method fully considers both
model uncertainty and resolution, thus can achieve a favourable
detection performance. Our method can also be applied for the
permanent fault detection, as the permanent fault is a special
case of IF.

3. Main results

In this section, the aforementioned IFD problem will be inves-
tigated. Before proceeding further, the following soft measure-
ment model and its property are firstly given.

Let Y(k) = (Cc(k) + Cδ(k))x(k) + v(k) + f(k), we have

y(k)(i) ⇒ Y(k)(i) ∈ S
(
y(k)(i)

)
, (6)
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where the set S(y(k)(i)) is decided by the following rule:

S
(
y(k)(i)

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
y(k)(i), y(k)(i) + s(i)

)
, y(k)(i) > 0,

(−s(i), s(i)
)
, y(k)(i) = 0,(

y(k)(i) − s(i), y(k)(i)
]
,

(
y(k)(i) − s(i), y(k)(i)

]
.

(7)

Then we can get the soft measurement model

Y (k) = (Cc (k) + Cδ (k)) x (k) + v (k) + � (Y (k)) + f (k) ,
(8)

where the soft measurement output is decided by

Y(k)(i) = E
S
(
y(k)(i)

) {
Y(k)(i)

}
. (9)

In this paper, the system is measured by the sensor with non-
zero resolution. We can only know which set the perfect mea-
surementY(k) belongs to, but we can get the soft measurement
output Y(k) according to the information of real measurement
output y(k) and system model. Below is the basic property of
our proposed soft measurement model.

Theorem 3.1: Consider system (1)–(3), the resolution-induced
uncertainty �(Y(k)) of the soft measurement model (8) satisfies

E

{
�(Y (k))(i)

}
= 0, (10)

E

{∥∥∥�(Y (k))(i)
∥∥∥
2

}
≤ E

{∥∥∥�
(
y (k)

)(i)
∥∥∥
2

}
, (11)

E

{∥∥∥�(Y (k))(i)
∥∥∥
2

}
= E

{∥∥∥�
(
y (k)

)(i)
∥∥∥
2

}
⇔ Y(k)(i) = y(k)(i).

(12)

Proof: The proof of the theorem is straightforward, thus omit-
ted here. �

Let x̂(k) be the state estimate, and x̃(k) = x(k) − x̂(k) be
the state estimation error. The corresponding state estimation
error covariance is Px(k) = E{x̃(k)x̃(k)T}. Our proposed state
estimator is as follows:

x̂ (k) = Ac (k − 1) x̂ (k − 1) + Bc (k − 1) u (k − 1)

+ Kx (k)
(
Y (k) − Cc (k)Ac (k − 1) x̂ (k − 1)

−Cc (k)Bc (k − 1)u (k − 1)) , (13)

where Kx(k) is the state estimation gain which can be designed
according to the following theorem.

Theorem 3.2: Consider the fault-free system (1)–(3) with state
estimator (13) and positive scalar αl, l ∈ S(1, 5), the upper bound

of the state estimation error covariance is

Px (k) = Kx (k)Q (k)Kx(k)T − Kx (k)Cc (k)H (k)

− H (k)Cc(k)TKx(k)T + H (k) . (14)

It is minimised if and only if

Kx (k) = H (k)Cc(k)TQ(k)−1, (15)

and the corresponding minimum upper bound is

Px (k) = (
Inx×nx − Kx (k)Cc (k)

)
H (k) , (16)

where

H (k) = (1 + α1)Ac (k − 1)Px (k − 1)Ac(k − 1)T

+ (1 + α2) �Aδ(k−1)x(k−1)

+ (1 + α3) �Bδ(k−1)u(k−1) + (1 + α4) �w(k−1), (17)

Q (k) = Cc (k)H (k)Cc(k)T + (1 + α2) �Cδ(k)Ac(k−1)x(k−1)

+ (1 + α2) �Cδ(k)Aδ(k−1)x(k−1)

+ E

{
Cδ (k)

(
Ac (k − 1) x̄ (k − 1)u(k − 1)TBc

× (k − 1)T
)
Cδ(k)T

}

+ E

{
Cδ(k) (Bc (k − 1) u (k − 1)

×x̄(k − 1)TAc(k − 1)T
)
Cδ(k)T

}

+(1+ α3)�Cδ(k)Bc(k−1)u(k−1)+ (1+ α3)�Cδ(k)Bδ(k−1)u(k−1)

+ (1 + α4) �Cδ(k)w(k−1) + (1 + α5)�v(k)

+
5∑

l=1

(
αl

−1tr
(
��(Y(k))

)
Iny×ny

) + tr
(
��(Y(k))

)
Iny×ny .

(18)

The above state estimator is employed to generate the resid-
ual as follows:

r (k) = Y (k) − Cc (k) x̂ (k) . (19)

Next, we will fully analyse the influence of the fault on the
residual.

Theorem 3.3: The residual (19) of the faulty system (1)–(3) is
related to the fault by

r (k) ≈ ro (k) + (
Iny×ny + Cc (k) S (k)

)
f (k) + Cc (k) s (k) ,

(20)
where ro(k) is the residual of the corresponding fault-free system,
and S(k), s(k) have the following recursive forms:

S (k) = (Ac (k − 1) − Kx (k)Cc (k)Ac (k − 1)) S (k − 1)

− Kx (k) , (21)
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s (k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (Kx (k) + S (k)) f (k) + (Ac (k − 1)
−Kx (k)Cc (k)Ac (k − 1)) s (k − 1) , k = ko,j,
(Ac (k − 1) − Kx (k)Cc (k)Ac (k − 1))
(S (k − 1) f (k − 1) + s (k − 1)) , k = kd,j,
(Ac (k − 1) − Kx (k)Cc (k)Ac (k − 1)) s (k − 1) ,

k ∈ S (
kd,j + 1, ko,j+1 − 1

)
,

0nx×1, otherwise.
(22)

Proof: According to (1), (8), and (13), we can get the dynamic
of the state estimation error as follows:

x̃ (k) = (Ac (k − 1) − Kx (k)Cc (k)Ac (k − 1)) x̃ (k − 1)

+ (Aδ (k − 1) − Kx (k) (Cc (k)Aδ (k − 1)

+Cδ (k)Ac (k − 1) + Cδ (k)Aδ (k − 1))) x (k − 1)

+ (Bδ (k − 1) − Kx (k) (Cc (k)Bδ (k − 1)

+Cδ (k)Bc (k − 1) + Cδ (k)Bδ (k − 1))) u (k − 1)

+ (
Inx×nx − Kx (k) (Cc (k) + Cδ (k))

)
w (k − 1)

− Kx (k) v (k) − Kx (k) � (Y (k)) − Kx (k) f (k)

= L (k) x̃ (k − 1) + N (k) x (k − 1) + M (k) u (k − 1)

+ U (k)w (k − 1) − Kx (k) v (k) − Kx (k)� (Y (k))

− Kx (k) f (k) , (23)

where

L (k) = (Ac (k − 1) − Kx (k)Cc (k)Ac (k − 1)) ,

N (k) = (Aδ (k − 1) − Kx (k) (Cc (k)Aδ (k − 1)

+Cδ (k)Ac (k − 1) + Cδ (k)Aδ (k − 1))) ,

M (k) = (Bδ (k − 1) − Kx (k) (Cc (k)Bδ (k − 1)

+Cδ (k)Bc (k − 1) + Cδ (k)Bδ (k − 1))) ,

U (k) = (
Inx×nx − Kx (k) (Cc (k) + Cδ (k))

)
. (24)

Furthermore, we can obtain the dynamic of the residual

r (k) = Cc (k) x̃ (k) + Cδ (k) x (k) + v (k) + � (Y (k)) + f (k) .
(25)

Let us define a variable ϕ(k) as follows:

ϕ (k) = x̃ (k) − S (k) f (k) − s (k) . (26)

By resorting to (21)–(23), and (26), it can be obtained that

ϕ (k + 1) ≈ L (k + 1)ϕ (k) + N (k + 1) x (k)

+ M (k + 1)u (k) + U (k + 1)w (k)

− Kx (k + 1) v (k + 1)

− Kx (k + 1)�o (Y (k + 1)) , (27)

where �o(Y(k + 1)) denotes the resolution-induced uncer-
tainty of the fault-free system. Similarly, we can get the dynamic

of the state estimation error and residual for the corresponding
fault-free system:

x̃o (k + 1) = L (k + 1) x̃o (k) + N (k + 1) x (k)

+ M (k + 1)u (k) + U (k + 1)w (k)

− Kx (k + 1) v (k + 1)

− Kx (k + 1) �o (Y (k + 1)) , (28)

ro (k) = Cc (k) x̃o (k) + Cδ (k) x (k) + v (k) + �o (Y (k)) .
(29)

It then follows immediately from (25) to (29) that

r (k) ≈ ro (k) + (
Iny×ny + Cc (k) S (k)

)
f (k) + Cc (k) s (k) ,

(30)
which completes the proof. �

It can be seen that the residual is influenced by the fault addi-
tively and not cumulatively, thus can be utilised for IF detection.
The following corollary gives the condition of fault detectability.

Corollary 3.1: Consider the faulty system (1)–(3) with residual
(19), then the fault is detectable if the following condition holds:

(
Iny×ny + Cc (k) S (k)

)
f (k) + Cc (k) s (k) �= 0ny×1,

k ∈ [
ko,j, kd,j − 1

]
, (31)

where ro(k) is the residual of the fault-free system, and S(k), s(k)
are defined in (21) and (22).

In this paper, the detection statistic is in the following square
form:

TD (k) = r(k)Tr (k) . (32)

The basic property of above statistic is presented in the following
theorem.

Theorem 3.4: Consider the fault-free system (1)–(3) with resid-
ual (19) and positive scalar αl, l ∈ S(1, 5), the expectation of the
detection statistic (32) satisfies

E {TD (k)} ≤ Jth (k) , (33)

where Px(k) is defined in (16), and Jth(k) is as follows:

Jth (k) = (1 + α1 + α2 + α3) tr (Cc (k) Px (k)Cc (k))

+ (
1 + α1

−1 + α4
)
tr

(
�Cδ(k)x(k)

)
+ (

1 + α2
−1 + α5

)
tr

(
�v(k)

)
+ (

1 + α3
−1 + α4

−1 + α5
−1) tr (��(Y(k))

)
. (34)
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Figure 1. The schematic diagram of our proposed IFD method.

Proof: By resorting to the property of matrix inequality and
trace, we have

E {TD (k)} = tr
(
E

{
r(k)Tr (k)

})

= tr
(
E

{
(Cc (k) x̃ (k) + Cδ (k) x (k) + v (k) + � (Y (k)))T

× (Cc (k) x̃ (k) + Cδ (k) x (k) + v (k) + � (Y (k)))})
≤ (1 + α1 + α2 + α3) tr (Cc (k) Px (k)Cc (k))

+ (
1 + α1

−1 + α4
)
tr

(
�Cδ(k)x(k)

)
+ (

1 + α2
−1 + α5

)
tr

(
�v(k)

)
+ (

1 + α3
−1 + α4

−1 + α5
−1) tr (��(Y(k))

)
. (35)

The proof of the theorem is thus completed. �

It is obvious that the fault detection threshold Jth(k) is
less than 4tr(Cc(k)Px(k)Cc(k)) + 3tr(�Cδ(k)x(k)) + 3tr(�v(k))
+ 4tr(��(Y(k))).

By setting the detection threshold JD(k) as follows:

JD (k) = Jth (k) , (36)

we can then make fault detection by the following logic:

TD (k) > JD (k) ⇒ with fault ⇒ fault alarm,

TD (k) ≤ JD (k) ⇒ no fault ⇒ fault release.
(37)

According to the above analysis, our proposed IFD method
can now be summarised in Figure 1.

4. Simulation example

4.1 Example A

To illustrate the validity of the proposed IFD method, we con-
sider a stochastic LTV system with following parameters:

Ac (k) =
[

0.97 0.4 + 0.01 cos (0.13k)
0.13 + 0.02 sin (0.13k) −0.76

]
,

Bc (k) =
[
0.15 + 0.03 cos (0.12k)
0.18 + 0.04 sin (0.15k)

]
,

Cc (k) =
[
0.75 + 0.03 sin (0.13k) 0.64

0.83 0.71 + 0.02 cos (0.14k)

]
.

In our simulation, the initial state, process noise, and mea-
surement noise are mutually independent zero-mean white

processes with covariances �x(0) = Inx×nx × 10−6, �w(k) =
1.3Inx×nx × 10−4, and �v(k) = 1.5Inx×nx × 10−4, respectively.
The resolution is s(k) = [0.001 0.001]T. The uncertain param-
eter matrices are mutually independent zero-mean white pro-
cesses with covariances:

�Aδ(k) =

⎡
⎢⎢⎣
1.6 + 0.2 cos (0.12k)

1.2
1.3

1.5 + 0.4 sin (0.16k)

⎤
⎥⎥⎦

× 10−3,

�Bδ(k) =
[
1.3

1.4 + 0.3 sin (0.21k)

]
× 10−2,

�Cδ(k) =

⎡
⎢⎢⎣
1.2 + 0.5 cos (0.13k)

1.4 + 0.6 sin (0.2k)

1.8 + 0.4 sin (0.15k)
1.6

⎤
⎥⎥⎦ × 10−5.

In order to demonstrate the effectiveness of our proposed
method, three different fault cases are all taken into consider-
ation.

Case 1: The fault occurs only in sensor 1 as follows:

f (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0.2 0]T, k ∈ [201, 240] ,
[0.28 0]T, k ∈ [501, 540] ,
[0.16 0]T, k ∈ [801, 860] ,
[0 0]T, otherwise.

Case 2: The fault occurs only in sensor 2 as follows:

f (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0 0.16]T, k ∈ [201, 240] ,
[0 0.25]T, k ∈ [501, 540] ,
[0 0.2]T, k ∈ [801, 860] ,
[0 0]T, otherwise.

Case 3: The fault occurs both in sensor 1 and 2 as follows:

f (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0.26 0.13]T, k ∈ [201, 240] ,
[0.12 0.3]T, k ∈ [501, 540] ,
[0.32 0.2]T, k ∈ [801, 860] ,
[0 0]T, otherwise.

Simulation results are shown in Figures 2–5. Figure 2 presents
the mean square resolution-induced uncertainty of the sensors.
We can observe that themean square resolution-induced uncer-
tainty of soft measurement model is less than that of the real
measurement model. The IFD results are shown in Figures 3–5.
It can be seen that our method (OM) has a better performance
than the present method (PM), which is due to the efforts we
have made in handling both stochastic uncertainty and limited
sensor resolution.
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Figure 2. Mean square resolution-induced uncertainty. (a) Sensor 1 (b) Sensor 2.

Figure 3. Case 1: The IF and detection result.
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Figure 4. Case 2: The IF and detection result.
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Figure 5. Case 3: The IF and detection result.
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Figure 6. CSTR: The IF and detection result.

4.2 Example B

Consider a non-isothermal continuous stirred tank reactor
(CSTR) where an irreversible exothermic reaction takes place.
In the reactor, the reactant A is converted to the product B
via the chemical reaction A → B. The CSTR has a heating
jacket which supplies or removes the heat from the reactor. The
identified parameters for the linear model of the CSTR are as
follows:

Ac (k) =
[
0.9655 −0.0005
1.43 1.0181

]
,

Bc (k) =
[
5.24 × 10−3 −8.09 × 10−9

−1.16 × 10−2 4.57 × 10−6

]
, and

Cc (k) =
[
1 0
0 1

]
.

In our simulation, the initial state, process noise, and mea-
surement noise are mutually independent zero-mean white
processes with covariances �x(0) = 1.2Inx×nx × 10−6, �w(k) =

Inx×nx × 10−4, and �v(k) = Inx×nx × 10−4, respectively. The
resolution is s(k) = [0.001 0.001]T. The uncertain parameter
matrices are mutually independent zero-mean white processes
with covariances �Cδ(k) = 0(nynx)×(nynx),

�Aδ(k) =

⎡
⎢⎢⎣
1.2

1.5 + 0.2 sin (0.1k)
1.3 + 0.1 cos (0.2k)

1.4

⎤
⎥⎥⎦

× 10−6,

�Bδ(k) =

⎡
⎢⎢⎣
1.1 + 0.2 cos (0.1k)

1.6
1.4 + 0.1 cos (0.1k)

1.5

⎤
⎥⎥⎦

× 10−6.
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The fault of the CSTR is as follows:

f (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0.19 0.28]T, k ∈ [101, 125] ,
[0.27 0.16]T, k ∈ [246, 275] ,
[0.38 0.24]T, k ∈ [406, 430] ,
[0 0]T, otherwise.

It can be seen from Figure 6 that our proposed method has a
favourable performance.

5. Conclusion

In this paper, the IFDproblemhas been investigated for stochas-
tic LTV systems with parameter uncertainty and limited res-
olution. We have designed a state estimator at the criterion of
minimummean square error to ensure that the upper bound of
the estimation error covariance is minimised at each time step.
Based on it, we have constructed a recursive residual generator
which does not depend on any structural information of uncer-
tainty. Furthermore, we have also made quantitative analysis of
the influence of the fault on it in details. Subsequently, we have
evaluated the residual and set corresponding detection thresh-
old. It is worth mentioning that our proposed IFDmethod fully
considers parameter uncertainty and limited resolution thus
can achieve favourable detection performance. Finally, we have
demonstrated the effectiveness and applicability of our method
through two simulation examples.
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