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Proteins play a key role as therapeutics in a number of diseases and protein crystallization is a central

activity in the pharmaceutical industry. Protein crystals, usually produced through a batch crystal-

lization process, are desired to be of high quality, of desired shape, and within a narrow size and shape

distribution range. Motivated by the above considerations, the present work focuses on the modeling

and control of protein crystal shape. The model protein used for this work is the tetragonal hen egg

white lysozyme. The growth of an individual lysozyme crystal is modeled via kinetic Monte Carlo (kMC)

simulations comprising adsorption, desorption, and migration events on the (110) and (101) faces,

which are assumed to be independent. The expressions for the rate equations for each event type are

similar to those of Durbin and Feher (1991). Extensive testing of the system parameters indicates

crossover behavior between the growth rates of the two faces [i.e., (110) and (101)], a fact that has also

been observed experimentally. A nonlinear algebraic equation that relates the steady-state growth rate

ratios between the (110) and (101) faces, the temperature and concentration, is derived from the

kMC simulation data. This nonlinear equation is then utilized by a model predictive controller which

regulates the protein crystal to desired shapes subject to manipulated input constraints. The proposed

method is shown to successfully regulate protein crystal shape, ranging from equidimensional to more

elongated type of structures, in the presence of arbitrary variations of the protein concentration.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Protein crystallization is a central activity in the production of
pharmaceuticals. It is used to perform such processes as separat-
ing drug from solvent mixtures and to ensure that drug crystal
products conform to size and morphology specifications. Protein
structure can be found via nuclear magnetic resonance and X-ray
crystallography (Rosenberger et al., 1996; Vekilov and Chernov,
2003; Wiencek, 1999). However, nuclear magnetic resonance can
only be used for proteins of small molar mass (less than 30,000).
For cases with large molar mass, X-ray crystallography (Vekilov
and Chernov, 2003) can be used as long as protein crystals are of
ll rights reserved.

: þ1 310 206 4107.

).
desired shape and high quality. In the present work, the model
protein investigated is the tetragonal form of hen egg white
lysozyme. This naturally occurring enzyme with antibacterial
activity is a widely used model for the study of protein crystal-
lization and is composed of 129 amino acids with a molecular
weight of 14,388.

It is believed that protein crystallization proceeds in three
stages: nucleation, crystal growth, and cessation of growth
(Kierzek and Zielenkiewicz, 2001). The present work focuses on
the second stage of protein crystallization, i.e., crystal growth,
which will be modeled via kinetic Monte Carlo (kMC) simulations.
Several attempts aimed at modeling protein nucleation (Galkin
and Vekilov, 1999; Pusey and Nadarajah, 2002) and growth
(Durbin and Feher, 1986; Forsythe et al., 1999; Kurihara et al.,
1996) have also been made. These efforts make it possible to
manipulate the size distribution and morphology of the protein
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crystal, which is a very critical variable for pharmaceutical
products. The tetragonal form of lysozyme experiments indicate
that at low supersaturation growth depends on a lattice defect
mechanism, whereas at high supersaturation growth proceeds via
two-dimensional nucleation (Durbin and Carlson, 1992; Durbin
and Feher, 1986; Vekilov et al., 1993). The present work focuses
on crystals that already have been seeded via two-dimensional
nucleation since a large supersaturation is normally required in a
batch crystallization process (Asherie, 2004; Vekilov and Chernov,
2003) to achieve reasonable growth rates (Forsythe et al., 1999). It
is noted that two-dimensional nucleation proceeds at super-
saturation \1:6 (Vekilov et al., 1993). Since crystal growth is a
non-equilibrium process, kMC simulation methods are used to
model the growth. Kinetic Monte Carlo algorithms, which form
the basis for applying the Monte Carlo method to simulate
dynamic processes (Bortz et al., 1975; Dai et al., 2005, 2008;
Gillespie, 1976, 1977, 1978, 1992, 2001, 2007; Rathinam et al.,
2003; Reese et al., 2001; Snyder et al., 2005), are based on a
dynamic interpretation of the Master equation (Fichthorn and
Weinberg, 1991; Müller-Krumbhaar and Binder, 1973). As is a
common practice in simulations of crystal growth, the solid-on-
solid model (Durbin and Feher, 1991) is used in this work to
interpret the growth of protein crystals from supersaturated
solutions. In the solid-on-solid approximation, particles are
deposited on the growing crystal lattice without voids or over-
hangs, resulting in a highly compacted crystal.

The kMC methodology (Christofides et al., 2008) proposed in
the present work uses rate equations originally developed by
Durbin and Feher (1991). Durbin and Feher (1991) found that
different crystal faces produce different growth rates depending
on the conditions of each independent face of the crystal. Their
results show a crossover type of behavior between the growth
rates of the (110) and (101) faces, a fact that is consistent with
experimental findings (Durbin and Feher, 1986).

The simulations comprise three microscopic events, namely
molecular attachment, detachment, and migration events on the
(110) and (101) faces. All attachment events made in this work
are implemented using monomer units. Assuming that all surface
sites are available for attachment, the attachment rate is con-
sidered independent for each lattice site. Detachment and migra-
tion events, however, are dependent on their local environment.
The local environment of a given lattice site is specified based
on the number of nearest neighbors surrounding that site. The
nearest neighbors of a lattice site are on the (N,S,E,W) directions
which are of the same height or higher compared to the current
lattice site. Another nearest neighbor is located directly below
each surface particle, however no surface particle is without a
nearest neighbor below itself due to the solid-on-solid model.
Thus we will consider the nearest neighbor below each particle in
the pre-exponential factor of both the desorption and the migra-
tion rate equations presented in the next section. That being said,
the number of nearest neighbors we explicitly consider will only
be on the (N,S,E,W) directions ranging from zero to four giving
a total of five classes. These classes will be used to lessen the
computational cost when calculating the rates for the three
microscopic events, described in the following section. Owing to
the dependence of detachment rate on the surface configuration,
kMC simulation is needed to compute the net crystal steady-state
growth rate as a function of temperature and protein concentra-
tion in the continuous phase.

In the next section, the methodology of the kMC simulation is
provided followed by the Model Predictive Control methodology.
The simulation results for crystal growth of the tetragonal form of
hen egg white lysozyme under open-loop and closed-loop condi-
tions are then presented and discussed followed by conclusions
and directions for future research.
2. Methodology

As already emphasized, the solid-on-solid model, which is a
simple way to look at the crystallization process, is used to model
the growth of lysozyme. As noted by Ke et al. (1998), the system
size does not largely affect crystal growth. They report that no
finite-size effects were found on systems of sizes 30�30, 60�60,
and 120�120 sites. In the present work, a periodic square lattice
of length and width of N¼50 sites is used. The height at a given
location within the lattice is defined as the number of particles in
the growth direction. Each simulation comprises 4 million events,
or approximately 1600 events per lattice site on average. At the
beginning of each simulation, the lattice is initialized to a flat
surface. To ensure that the initial configuration does not have
a noticeable impact on the results, the first 50,000 events are
discarded in order to allow the surface to roughen. Each event of
our kMC simulation is chosen randomly based on the rates of the
three microscopic phenomena, described below.
2.1. Surface kinetics

The following description of the surface kinetics for the
present model follows closely that of Ke et al. (1998) which is
based on the work by Durbin and Feher (1991). As emphasized
earlier, since each surface site is available for attachment, the
attachment rate is independent of each lattice site and defined as

ra ¼ K þ ðDmÞ ¼ K þ0 exp
Dm
kBT

� �
, ð1Þ

where K þ0 is the attachment coefficient, kB is the Boltzmann
constant, T is the temperature in Kelvin, and Dm¼ kBT lnðc=sÞ,
where c is the concentration and s is the protein solubility and
this term is the crystallization driving force. It is noted that rapc.
Since the total number of lattice sites is N2, the total rate of
adsorption, Wa, is defined as

Wa ¼N2ra: ð2Þ

As already commented, the desorption rate of a surface
particle depends on the local environment. Thus, the desorption
rate of a lattice site with i nearest neighbors is given by

K�ðEbÞ ¼ K�0 exp �
Eb

kBT

� �
¼ K�0 exp �i

Epb

kBT

� �
, ð3Þ

where K�0 is the desorption coefficient, i is the number of bonds,
Epb is the average binding energy per bond, and Eb ¼ iEpb is the
total binding energy. The bond-dependent desorption rate, rdðiÞ, is
thus defined as

rdðiÞ ¼ K�ðEbÞ ¼ K�0 exp �i
Epb

kBT

� �
: ð4Þ

It can be seen that with less nearest neighbors, the desorption
rate becomes higher. The total rate of desorption is computed by

Wd ¼
X4

i ¼ 0

Wdi
with Wdi

¼MirdðiÞ, ð5Þ

where Wdi
is the total rate of desorption for each class and Mi is

the number of lattice sites with i nearest neighbors. Similar to the
desorption rate, Ke et al. (1998) defined the migration rate the
following way:

rmðiÞ ¼ K�0 exp �i
Epb

kBT
þ

Epb

2kBT

� �
: ð6Þ

The extra term added in Eq. (6) will cause migration events to
be favored versus desorption events. The total migration rate is
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computed as

Wm ¼
X4

i ¼ 0

Wmi
with Wmi

¼MirmðiÞ: ð7Þ

The total rate, W tot, is computed by summing over all rates of the
three microscopic events, i.e., W tot ¼WaþWdþWm.

As was pointed out by Durbin and Feher (1991) and Ke et al.
(1998), K þ0 and K�0 are not independent. At equilibrium, Dm¼ 0
and also the attachment and detachment rates are equal, i.e.,

K þ ðm¼ 0Þ ¼ K�ðfÞ, ð8Þ

where f is the binding energy per molecule of a fully occupied
lattice. Thus, thermodynamic equilibrium provides the following
connection between the adsorption, K þ0 , and desorption, K�0 ,
coefficients:

K þ0 ¼ K�0 exp �
f

kBT

� �
ð9Þ

or by rearranging

K�0 ¼ K þ0 exp
f

kBT

� �
: ð10Þ

Plugging this result back into the original equations yields the
following expressions for the desorption and migration rates:

rdðiÞ ¼ K þ0 exp
f

kBT
�i

Epb

kBT

� �
, ð11Þ

rmðiÞ ¼ K þ0 exp
f

kBT
�i

Epb

kBT
þ

Epb

2kBT

� �
: ð12Þ

The binding energies cannot be accessed by experiments (Durbin
and Feher, 1991; Feher and Kam, 1985). Previous simulation
work assigned a range of values to Epb and f, until satisfactory
agreement between the calculated and the experimental growth
rates was achieved (Durbin and Feher, 1991). The same approach
is also followed in the present work. For this work we use
K þ0 ¼ 0:4704 s�1 following from similar numbers of Durbin and
Feher (1991) and Grimbergen et al. (1999). Additionally, we
use c¼7.8 mg/ml, Epb=kB ¼ 218:99 K and f=kB ¼ 734:78 K for the
(110) face, and Epb=kB ¼ 259:34 K and f=kB ¼ 564:77 K for the
(101) face. It is noted that Epb=kBT and f=kBT are required in
Eqs. (11) and (12) and these quantities must be divided by the
temperature in Kelvin. Finally, it is important to emphasize that
the computation of the growth rate for each face requires the use
of kMC simulations owing to the dependence of the detachment rate
on the surface micro-configuration and it cannot be computed by
simply subtracting the attachment and detachment rates.

2.2. Event execution

In order to execute an event, a uniform random number,
z1A ½0,1Þ, is generated. If z1rWa=W tot, then an adsorption event
is executed. If Wa=W totoz1r ðWaþWdÞ=W tot, then a desorption
event is executed. Lastly, if z14 ðWaþWdÞ=W tot, then a migration
event is executed. For the case of adsorption, a lattice site is chosen
at random for the adsorption event to take place. For desorption and
migration, the specific class needs to be determined. In the case of a
desorption event, the kth class is determined to be an integer from
[0,4] such that

Waþ
Pk�1

i ¼ 0 Wdi

W tot
oz1r

Waþ
Pk

i ¼ 0 Wdi

W tot
: ð13Þ

Once the class is determined, a second random number, z2, is
generated to select a random lattice site within class k to execute
the desorption event. Migration events work in an analogous
way to desorption events with a minor modification to Eq. (13) as
follows:

WaþWdþ
Pk�1

i ¼ 0 Wmi

W tot
oz1r

WaþWdþ
Pk

i ¼ 0 Wmi

W tot
: ð14Þ

In Durbin and Feher’s work (1991), it was found that only half
the lattice sites were available for adsorption on the (101) face,
whereas every lattice site is available on the (110) face. This is
due to the fact that only half the molecules on the (101) face
have dangling bonds (i.e., the points of attachment for incom-
ing molecules), whereas every molecule on the (110) face has
dangling bonds (Durbin and Feher, 1991). In the present work,
this behavior is modeled by accepting 50% of adsorption events on
the (101) face, compared to 100% on the (110) face. In the case of
desorption, the event is always accepted for both faces. Similar to
desorption events, migration events are always accepted as long
as there exists at least one available migration site. For this work,
an available migration site is a nearest neighboring site which is
lower in height than the current lattice site where the migration
event is taking place. Similar to Gilmer and Bennema (1972), each
available migration site is given equal probability to accept the
displaced particle.

After each event is executed, a time increment, Dt, is com-
puted based on the total rate of the microscopic events as follows:

Dt¼�lnðzÞ=W tot, ð15Þ

where z is a uniform random number, zA ½0,1Þ. Events will
continue to take place until the conclusion of the simulation.
3. Linking growth rate ratio with concentration and
temperature

The data generated from the kMC simulations was used to
construct a nonlinear algebraic equation (visualized by a 3-D
plot). This equation was utilized in the model predictive control
(MPC) formulation to relate the crystal growth rate ratio to the
temperature and protein concentration in the continuous phase.
The shape of the crystal is determined by the two independent
faces and their relative growth rates. Therefore, it is possible to
control the evolution of crystal shapes by controlling the ratio
between the growth rates of the two faces. The growth rate ratio
curve (discussed in Section 4) and the measurement of current
temperature as well as of the concentration are assumed to be
available to the controller.

3.1. Modeling steady-state growth rate ratio dependence on

temperature and solution concentration

The three variables (i.e., temperature, growth rate ratio, and
protein concentration) used for the model construction are
obtained from the open-loop simulations using the kMC model
in Section 2. The protein solution concentration (temperature) is
fixed during each open-loop simulation to observe the depen-
dence of the crystal growth rate ratio on temperature (protein
solution concentration).

A nonlinear algebraic equation relating the relative growth rate
ratio versus protein concentration and temperature is derived to
quantify the evolution of the crystal growth accounting for the effect
of protein concentration variations and temperature changes in
supersaturated protein solutions. The concentration variation results
from the mixing problem of the batch process as well as the
technical difficulty in the measurement of protein concentration.
Therefore, a Gaussian noise with the following mean and covariance
is added to the concentration measurements, c(t), in simulations:

/cðtÞS¼ cn, /cðtÞcðt0ÞS¼ s2c2
n, ð16Þ



0 0.5 1 1.5 2 2.5 3
Δμ/kBT

0.01

0.1

1

<g
ro

w
th

 ra
te

> 
(μ

m
/m

in
)

Fig. 2. The expected growth rate versus the degree of supersaturation at

c¼7.8 mg/ml. The (’) represents the (110) face with Epb=kB ¼ 218:99 K and

f=kB ¼ 734:78 K. The (m) represents the (101) face with Epb=kB ¼ 259:34 K and

f=kB ¼ 564:77 K. The error bars represent two standard deviations of the growth

rate. The (&) and (n) represent the (110) and (101) faces respectively, obtained

from Durbin and Feher (1986).
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where cn is the nominal concentration of the system and s2 shows
how far a set of measured concentrations deviates from its nominal
value. In order to suppress the uncertainty in the protein concentra-
tion, the kMC simulations are repeated to compute expected values
[i.e., averages denoted as / �S see, e.g., Eq. (16)]. Also, it is important
to note that the concentration variation results in a change of the
attachment rate [cf. Eq. (1)].

Different operating conditions strongly affect the crystalliza-
tion process and, consequently, the behavior of the growth rate
ratio profile. Fig. 1 shows the ratio data collected from an open-
loop simulation. In this work, the temperature, T, is chosen as
the manipulated input and the pH and NaCl concentration are
maintained fixed at 4.6 and 5:0%, respectively. The protein
concentration as well as the temperature dependence of the
growth rate ratio is obtained by generating a 3-D plot for a
variety of protein concentrations ranging from 7.2 to 8.4 mg/ml,
and temperatures ranging from 4 to 25 1C. It should be noted that
25 1C is the maximum temperature at which tetragonal crystals
can be obtained (Berthou and Jolles, 1974). There is a maximum
in the growth rate ratio located at � 15 1C. Thus the ratio tends to
decrease as the temperature increases or decreases from 15 1C
and the protein concentration decreases. Fig. 1 is the 3-D surface
plot of r¼ f ðT ,CÞ, where f is a nonlinear function of the growth
rate ratio, to better illustrate the effects of changing temperatures
and protein concentrations. To this end, in Fig. 1, the data was
interpolated to fit a regularly spaced grid.

It can be clearly seen that the growth rate ratio is a strong
function of the temperature and protein concentration, and
this dependence is the basis for using temperature, T, to control
protein crystal shape.
4. Model predictive control of crystal shape

As emphasized previously, in the kMC simulations molecular
attachment, detachment, and migration events are considered.
Depending on the relative attachment energy of the crystal faces
and assuming that the independent crystal faces that appear
during the crystal growth are the (110) and (101) faces, kMC
simulations reproduce the experimentally observed crossover
behavior in the crystal growth rates between the two faces
[cf. Fig. 2]. In this section, a model predictive controller is
designed based on the 3-D plot (i.e., the non-linear growth rate
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Fig. 1. Surface plot of the growth rate ratio data for tetragonal lysozyme at pH

4.6 and 5% NaCl. The data from the open-loop kMC simulation are plotted to

demonstrate the effect of temperature and concentration variations on this ratio.

Protein concentration and temperature range from 7.2 to 8.4 mg/ml and from 4 to

25 1C, respectively.
ratio equation), Fig. 1, to suppress the concentration variation and
achieve the desired set-point values by manipulating the tempera-
ture. A desired set-point value of the growth rate ratio is included in
the cost function in the MPC formulation. Regarding the choice of
MPC for the controller design, it is noted that classical control
schemes like proportional (P) control cannot be employed to
explicitly account for input/state constraints, optimality considera-
tions, and the nature of the attachment, detachment, and migration
processes. Also, dynamic open-loop optimization may be used but it
does not provide robustness against model inaccuracies and fluc-
tuation in the protein concentration.

4.1. Model predictive control formulation

To this end, consider the control problem of the growth rate
ratio by using an MPC design. The expected value of the growth
rate ratio, /GratioS, is chosen as the control objective, where Gratio

is defined as a ratio G110=G101. Here G110 and G101 signifies the
growth rate on the (110) and (101) faces, respectively. The
temperature is used as the manipulated input. The pH and NaCl
concentration are fixed during all closed-loop simulations. The
proposed modeling and control methods do not depend on the
specific number of the manipulated variables and can be easily
extended to the case of multiple inputs. To account for a number
of practical considerations, several constraints are added to
the control problem. First, there is a constraint on the range of
variation of the temperature such that 4rTr25 1C. This con-
straint ensures validity for the kMC model by imposing a range
that will not damage the protein crystal. Another constraint is
imposed on the rate of change of the temperature to account for
actuator limitations. The control action at time t is obtained by
solving a finite-horizon optimal control problem. The cost func-
tion in the optimal control problem includes a penalty on the
deviation of /GratioS from its set-point value which is determined
based on the desired crystal shape. Since the protein crystal-
lization process is a batch process, a desired minimum thickness
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(i.e., minimum amount of growth on each face of the crystal) may
be required to ensure that the crystal has the properties necessary
for its desired application at the end of the crystallization process.
The thickness may be obtained by adjusting the time that growth
takes place since the growth rates can be estimated. However, in
this work to simplify the development and focus on crystal shape
control, imposing a minimal crystal size of the two surfaces is
disregarded in the MPC formulation. The optimal temperature
profile is calculated by solving a finite-dimensional optimization
problem in a receding horizon fashion. The MPC problem is
formulated as follows:

minimize
T1 ,...,Ti ,...,Tp

Xp

i ¼ 1

Fi,

subject to Fi ¼ ð/GratioS�GsetÞ
2,

Gratio ¼ f ðT ,CÞ,

TminrTirTmax,

Tiþ1�Ti

D

����
����rRT ,

i¼ 1,2, . . . ,p, ð17Þ

where t is the current time, Fi is the cost function expressing
the deviation of /GratioS from its set-point ratio, Gset, D is the
sampling time, p is the number of prediction steps, pD is the
specified prediction horizon, ti, i¼ 1,2, . . . ,p, is the time of the
ith prediction step, ti ¼ tþ iD, respectively, Ti,i¼ 1,2, . . . ,p, is the
temperature at the ith step, Ti ¼ Tðtþ iDÞ, respectively, Tmin and
Tmax are the lower and upper bounds on the temperature,
respectively, and RT is the limit on the rate of change of the
temperature. The optimal set of control actions ðT1,T2, . . . ,TpÞ, is
obtained from the solution of the multi-variable optimization
problem of Eq. (17), and only the first value of the manipulated
input trajectory, T1, is applied to the protein crystallization
process from time t until the next sampling time, when a new
measurement of protein concentration in the continuous phase
is received from the kMC simulation and the MPC problem of
Eq. (17) is re-solved for the computation of the next optimal input
trajectory. The physical properties of the system (i.e., protein
solubility and so on) were obtained from experimental data
for the lysozyme protein solution (Cacioppo et al., 1991). In
a previous work, empirical expressions were obtained for the
growth rates by fitting algebraic expressions to the available
experimental data (Shi et al., 2005). In the present work, the
growth rates are computed following the kMC methodology from
Section 2. Furthermore, the stochastic nature of the system and
the model uncertainty will be accounted for in the protein
concentration variations; see, e.g., Shi et al. (2006) and Chiu and
Christofides (2000), for results on model predictive control and
robust-control of crystallization systems, respectively.
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Fig. 3. The expected growth rate versus temperature of c¼7.8 mg/ml. The (’)

represents the (110) face with Epb=kB ¼ 218:99 K and f=kB ¼ 734:78 K. The (m)

represents the (101) face with Epb=kB ¼ 259:34 K and f=kB ¼ 564:77 K. The error

bars represent 2 standard deviations of the growth rate.
5. Results

5.1. Open-loop simulations

For a given set of the simulation conditions composed of
temperature, pH, salt and protein solution concentrations, the
method described in the Section 2 results in averaged lysozyme
face growth rates at various values of supersaturations.

In Fig. 2, crystal growth is modeled at supersaturation 0:9t
lnðc=sÞt2:8, where c (mg/ml) is the solution protein concentra-
tion and s (mg/ml) is the solubility. The growth rates produced
are the average growth rate for each set of conditions over 10
independent kMC runs and are compared against data from
Durbin and Feher (1986). For Fig. 2, c¼7.8 mg/ml. The solubility
is determined by Eq. (18) using a third order polynomial of
solubility in terms of temperature T (1C) at pH¼ 4:6 and 5%(w/
v) NaCl (Cacioppo et al., 1991; Cacioppo and Pusey, 1991).

sðTÞ ¼ 3:506� 10�4T3
�9:046� 10�3T2

þ1:303� 10�1Tþ7:209� 10�2: ð18Þ

The above equation allows for accurate modeling of the solubility
in terms of temperature at the selected pH and salt concentration
with an error of 5.4% (Cacioppo and Pusey, 1991). As is evident in
Fig. 2, crossover behavior between the (110) and (101) faces does,
indeed, occur. Specifically, the crossover value of the growth rate
from Fig. 2 is � 0:06 mm=min and Durbin and Feher (1986) show
� 0:1 mm=min. The same growth rates are shown in terms of
temperature in Fig. 3. This figure directly shows the relationship
between the growth rates and the temperature. As shown in
Fig. 3, as temperature increases, the growth rates on both faces
decrease. The growth rate for the (110) face decreases at a higher
rate than the growth rate for the (101) face. These results follow
previous experimental work for pH and salt concentration near
our given values (Nadarajah et al., 1995, 1997).

Furthermore, the kMC simulations were tested over a varying
range of protein concentrations in the liquid solution. Concentra-
tions were taken at finite values of 6.8, 7.8, 8.8, and 9.8 mg/ml. As
anticipated, higher protein concentrations and lower tempera-
tures yield higher growth rates. However, as temperature rises,
the difference between the growth rate of the constant concen-
tration curves becomes smaller. Each of the points in Figs. 4 and 5
is taken from averaging over 10 kMC simulations to compute
accurate expected values, where the error bars represent two
standard deviations. Since the rates for desorption and migration
change after the execution of each microscopic event, the steady-
state growth rate must be computed by averaging over the
individual growth rates obtained from several kMC processes.
Fig. 5 displays the four finite values of concentration at T ¼ 14 1C
located in the rectangular box from Fig. 4. There are minimal
fluctuations in Fig. 5, that allow one to deduce reliable estimates
for the growth rate.
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Fig. 6. Profiles of growth rate ratio under closed-loop operation. The growth

rate ratio set-point values are (J), /GratioS¼ 1:19 and (’), /GratioS¼ 0:67,

respectively.
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5.2. Closed-loop simulations

In this section, the proposed model predictive controller of
Eq. (17) is applied to the kMC model described in Section 2. These
closed-loop simulations will be performed to test the ability of
the model predictive controller to drive the growth rate ratio to
desired set-point values in the presence of significant variation/
disturbance in the operating conditions. At each sampling time
(1 s), the optimal temperature, obtained by solving the optimiza-
tion problem of Eq. (17), is applied to the closed-loop system until
the next sampling time. The optimization problem is solved via a
local constrained minimization algorithm using the nonlinear
algebraic model described previously to predict the dependence
of the crystal growth rate ratio on temperature and protein
concentration.

The desired values (set-points) in the closed-loop simulations
are /GratioS¼ 1:19 and /GratioS¼ 0:67. The protein concentration
randomly varies following the Gaussian distribution of Eq. (16)
and the pH and NaCl concentration are fixed at 4.6 and 5.0%,
respectively, and the initial temperature is 15 1C. The nominal
concentration is 7.8 mg/ml with s¼ 2:5% (s� cn ¼ 0:195 mg=ml).
We would like to note that no material balance was included for
the solute concentration since the focus of this work is on
modeling and control of the crystal shape. The maximum rate of
change of the temperature is 2 1C/min, and the minimum and
maximum temperature allowed by the controller is 4 1C and
25 1C, respectively. Since the MPC formulation uses the steady-
state growth rates, the number of prediction steps is set to be
p¼1. The time interval between two sampling times is 1 s. The
prediction horizon of each step is fixed at pD¼ 1 s. The concen-
tration varies every 0.333 s. The computational time that is used
to solve the optimization problem with the current available
computing power is negligible with respect to the sampling time
interval. The closed-loop simulation duration is 3000 s.

In the closed-loop simulations associated with controlling the
growth rate ratio to the desired set-point values, the control
objective is to separately regulate the expected ratio to the
desired values, /GratioS¼ 1:19 and /GratioS¼ 0:67 respectively.
Thus, the cost function of this problem contains penalty on
the deviation of the expected growth rate ratio from the set-
point value.

The results of the closed-loop simulations are shown in
Figs. 6–9. From Fig. 6, for the low set-point ratio /GratioS¼ 0:67,
it can be seen that soon after the initial rise, the growth rate ratio
decreases constantly, then fluctuates for the rest of time towards
the end of the simulation. Although disturbance results in the
fluctuation of the concentration, the MPC can successfully drive
the growth rate ratio to the desired set-point. Also, as is shown in
Figs. 8 and 9, the use of expected values (ie., averages obtained
form 100 independent simulations for the same set of conditions)
in the control formulation, suppresses fluctuations. Again, the
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error bars displayed are 2 standard deviations in Figs. 8 and 9. The
shape of the protein crystal can be estimated from Fig. 6 and it is
slightly elongated along the (101) direction for the lower set-
point ratio while it is more equidimensional to slightly elongated
along the (110) direction for the higher set-point ratio. In
Figs. 7 and 9, temperature profiles are displayed to show how
the optimal input changes over time. The temperature reaches
steady-state with minor fluctuation once the growth rate ratio
settles onto the desired ratio. The expected growth over 3000 s for
the set-point ratio /GratioS¼ 1:19 on the (110) and (101) faces
were approximately 45.69 and 38.22 mm=min, respectively giving
a ratio of 1.195. In contrast, the expected growth for the set-point
ratio /GratioS¼ 0:67 on the (110) and (101) faces were approxi-
mately 2.07 and 2:42 mm=min, respectively giving a ratio of 0.855.
The reason this ratio is much further away from the set-point
value is due to the starting temperature at 15 1C compared to the
steady state value of approximately 25 1C causing the growth rate
at the beginning of the run to be much higher than at the end. If
we remove the first 300 s from the growth, the expected growth
for the set-point ratio /GratioS¼ 0:67 on the (110) and (101) faces
were approximately 1.07 and 1:58 mm=min, respectively giving a
ratio of 0.677, which is in good accord with the set-point. This
shows the importance of the starting temperature in the batch
process to control the crystal shape. The larger error bars are due
to the higher sensitivity of the crystal growth rate ratio in the
presence of solute concentration disturbance at higher tempera-
tures. (We note that the magnitude of the solute concentration
disturbance is independent of the nominal solute concentration
value and thus the disturbance has a more pronounced effect at
low solute concentrations resulting in larger error bars given the
gaussian nature of the disturbance.)
6. Conclusions and future work

The present work is associated with application of modeling,
simulation, and control of a batch protein crystallization process
in order to produce a single lysozyme protein crystal. Based on
the assumption that the two independent crystal faces are the
(110) and (101) faces, dependence of the growth rates of the
two faces on temperature and protein solution concentration,
obtained from kMC open-loop simulations, was observed. The
shape of the resulting lysozyme crystals was controlled through
temperature manipulation. This was achieved via a nonlinear
steady-state model generated from open-loop kMC simulations.
The non-linear model captures the protein solution concentration
and temperature dependence of the growth rate ratio, thereby
describing the key elements of the protein crystallization process.
An MPC strategy, which uses the steady-state model, was then
designed to drive the growth rate ratio to the desired value while
satisfying constraints on the magnitude and rate of change of
temperature, which is chosen as the manipulated input in
accordance with standard batch crystallization practice. Simula-
tion results showed that the proposed controller was able to
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control the crystal shapes by appropriately manipulating the
desired ratio ranging from 0.67 to 1.19. The present methodology
shows that both equidimensional and elongated crystals can be
produced, as shown in Figs. 6 and 7. Furthermore, the proposed
kMC methodology offers a number of advantages compared to
previous work. In previous simulations, such as Ke et al. (1998), a
lattice site was chosen at random, and then the rates were
calculated for that lattice site only. In contrast, in the present
methodology, the entire lattice is considered. To avoid the
recalculation of the total rates for the entire lattice in a site by
site manner after each event, we update the five classes and then
use them to easily calculate the total rates. This allows our
method to remain computationally efficient.

In addition to monomer growth, aggregates of two or more
molecules can be considered during adsorption events onto a
crystal surface. Ke et al. (1998) did this, but only for one face of
the crystal lattice, and were able to observe growth rates closer to
experimental results (e.g., growth rates increase more at moder-
ate supersaturation levels and decrease at very high supersatura-
tion levels). In order to select either a monomer or an aggregate in
every attachment event, another random number is generated
and this consideration can produce more realistic growth rates.

In the present work, lysozyme growth was studied on flat
crystal face surfaces for which 50 thousand Mote Carlo events
were executed to allow for the surface to roughen. The influence
of initial seed shape on the crystal evolution has been considered
by Zhang and Doherty (2004). In the future, asymmetrical seeds
for initiation of the simulation will be employed in order to better
achieve a variety of crystal shapes.

Finally, it is noted that the present work considered the
growth of a single lysozyme crystal only. A future work will look
to model an entire crystal population while controlling the crystal
shape in a batch crystallizer. Also, a population balance model
(PBM) can be adopted to better describe the variation of the
crystal shape and size distribution for multiple crystals under the
consideration of concentration disturbances and this problem will
be considered in a future work.
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