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a b s t r a c t

We focus on the modeling and control of protein crystal aggregates in a large-scale batch crystallizer
used to produce tetragonal hen-egg-white (HEW) lysozyme crystals. We initially present a kinetic Monte
Carlo (kMC) simulation for the modeling of the crystal nucleation, growth, and shear-induced
aggregation in an effort to control the evolution of the crystal shape distribution. Through experimental
data, the crystal growth rate is calibrated and an empirical expression for the nucleation rate is also
developed. Then, the method of moments is applied to a comprehensive population balance model to
derive a reduced-order moment model that describes the dynamic evolution of the three leading
moments of the crystal volume distribution. Along with mass and energy balances for the continuous
phase, the moment model is used to design a model predictive control (MPC) strategy which drives the
crystal shape distribution to a desired set-point value through the manipulation of the crystallizer jacket
temperature. Compared to conventional operating strategies used in industry, it is demonstrated that the
proposed MPC strategy is able to produce crystal aggregates with a desired shape distribution and a low
polydispersity effectively dealing with the undesired effects of biased nucleation, depletion in the solute
concentration, and changes in the average crystal shape due to the aggregation process.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The biopharmaceutical market is one of the fastest growing
areas in the $1 trillion pharmaceutical industry. Within biophar-
maceutical production, protein crystallization plays a crucial role.
For example, more than 100 therapeutic proteins have been licen-
sed and more proteins are currently under research or develop-
ment. However, of the 100 therapeutic proteins with production
licenses, only a few are being sold in a crystalline form in the
market due to significant technological challenges in their produc-
tion. The main technological challenge in producing protein

crystals lies in the complexity of protein crystallization and the
presence of nonlinearities in many factors involved in the system.
Researchers recently have developed models for protein nuclea-
tion (Galkin and Vekilov, 1999; Pusey and Nadarajah, 2002) and
crystal growth (Durbin and Feher, 1986; Feher and Kam, 1985;
Forsythe et al., 1999; Kurihara et al., 1996), and consequently
significant advances have been made in the field of modeling of
crystallization processes describing the shape and size distribu-
tions of the produced protein crystals. To this end, kinetic Monte
Carlo simulation methods, which have been widely used to
simulate molecular dynamic processes (Bortz et al., 1975; Dai
et al., 2005, 2008; Gillespie, 1976, 2007; Rathinam et al., 2003;
Reese et al., 2001; Snyder et al., 2005; Gilmer and Bennema, 1972),
have been successfully applied to compute the net crystal steady-
state growth rate accounting for the dependence of migration and
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detachment rates on the local surface configuration. To implement
the kMC methodology over the entire lattice, we extended the
methodology of Christofides et al. (2008) to rate equations which
were first developed by Durbin and Feher (1991). Additionally, the
reader may refer to our previous works for the details of the
methodology for single crystal growth (Nayhouse et al., 2013), for
a batch of crystals nucleated throughout the run (Kwon et al.,
2013), and for a comparative study of an MPC strategy with other
conventional operating policies taken into consideration mass and
energy balances for the continuous phase (Kwon et al., in press).

In spite of all these advances, mass production of protein
crystals has not been achieved yet due to a lack of knowledge on
scale-up of protein crystallization to large scale. Although there
has been a number of computational and theoretical studies of
understanding the shape control of crystals in a variety of small-
scale crystallization systems (Liu et al., 2010a; Liang et al., 2013;
Wang et al., 2008), no significant advancement has been made
associated with the shape control of crystal aggregates in a
large-scale batch crystallization system. The crystal aggregation
is caused by shear-induced forces from a stirring process which is
necessary for a large-scale batch crystallizer in order to maintain
the particulate phase in suspension (i.e., to avoid crystal sedimen-
tation) (Schmidt et al., 2005).

One of the main purposes of protein crystallization is to
identify the structure of, for example, a therapeutic protein via
nuclear magnetic resonance or X-ray crystallography depending
on the molecular weight of a specific macromolecular protein
(Rosenberger et al., 1996; Vekilov and Chernov, 2003; Wiencek,
1999). This requires preparation of a well-defined protein crystal
with a desired morphology, because a low polydispersity is also
necessary for a good separation by filtration. In protein crystals,
proteins are naturally folded in their most stable form, and are
very compact so that only minimal storage space is required. In
this regard, a fine protein crystal with a desired shape can be used
as a carrier for the delivery of biopharmaceuticals where it has
many advantages such as enhanced stability, adjustable solubility,
and controllable release.

Therefore, the first aim of the present work focuses on the
modeling of aggregation of protein crystals alongside crystal
nucleation and growth to investigate the influence of stirring on
the size and morphology of crystal aggregates. First of all, we
assume that the continuous phase is dilute enough to make only
binary aggregation possible. Furthermore, the corresponding tur-
bulent shear rate within the crystallizer is characterized by the
average velocity gradient of the flow field. An appropriate aggre-
gation kernel is used to compute the rate at which a binary
aggregation occurs, and this rate strongly depends on the crystal
sizes and the crystallizer operating parameters (Kusters et al.,
1997; Saffman and Turner, 1954). The aggregation for lysozyme
crystals with a diameter approximately in the range of 1–50 μm is
mainly induced by shear forces according to the Kolmogorov
microscale analysis (Kusters et al., 1997). Lastly, an aggregate will
be formed as two crystals completely merge along with their
internal coordinates resulting in a decrease in the total number of
crystals and an increase in the average crystal size. For the purpose
of simulation, it is assumed that the shapes of bigger crystals are
maintained for the aggregate after the aggregation process. Exten-
sive simulation studies are carried out to evaluate the influence of
aggregation on the shape and size distributions of the crystals at
the end of the batch run.

The second aim of the current work focuses on the simulation
and control of protein crystal aggregation along with its crystal-
lization. We initially present a population balance model for the
process which accounts for simultaneous nucleation, crystal
growth, and shear-induced aggregation. The high-dimensionality
of population balance model, however, leads to a complicated

controller design, which cannot be readily implemented in prac-
tice (Chiu and Christofides, 1999). To circumvent these problems,
the method of moments is used to derive the moment model that
describes the dynamic evolution of the three leading moments of
crystal volume distribution in a crystallizer (Kalani and
Christofides, 2002). The moment model is closed according to
the fact that crystal volume can be properly approximated by a
lognormal distribution. Along with a nonlinear algebraic equation
that describes the dependence of crystal growth rates on tem-
perature and protein solute concentration, and the energy and
mass balance models that describe the changes of the temperature
in the crystallizer and the solute concentration in the continuous
phase, the moment model is employed to design a model
predictive controller (MPC). The proposed model predictive con-
trol scheme is used to regulate the average shape of crystal
aggregates to a desired set-point value with a low polydispersity.

Another contribution of this work is to examine the perfor-
mance of a model predictive controller (MPC) in comparison with
constant supersaturation control (CSC) and constant temperature
control (CTC).

2. Crystallization process description and modeling

2.1. Crystal nucleation

In our previous work (Kwon et al., in press), we assume that
HEW lysozyme nucleus is a cube with infinitesimal size (i.e., V¼0)
(Nanev and Tsekova, 2000; Suzuki et al., 1994). The supersatura-
tion s is defined as s¼ lnðc=sÞ, where c (mg/mL) is the protein
solute concentration and s (mg/mL) is the solubility. The protein
solubility depends on temperature (1C) and is expressed through
the following third-order polynomial at pH 4.5 and 4% (w/v) NaCl
(Cacioppo et al., 1991; Cacioppo and Pusey, 1991):

sðTÞ ¼ 2:88� 10�4T3�1:65� 10�3T2þ4:62� 10�2Tþ6:01� 10�1:

ð1Þ

The nucleation rate, BðT ; cÞ, at pH 4.5 and 4% (w/v) NaCl is taken
from (Galkin and Vekilov, 2001):

BðT ; cÞ ¼
0:041sþ0:063 for sZ3:11
8:0� 10�8 expð4:725sÞ for so3:11

(
ð2Þ

with units ðcm�3s�1Þ.

2.2. Crystal growth

Wemodel the 3-D crystal growth with two representative faces
(i.e., (110) and (101) directions) via kMC simulations. The inter-
ested readers may refer to our earlier work (Nayhouse et al., 2013;
Kwon et al., 2013, in press) for further details regarding the kMC
methodology. The following rate expressions adopted from Durbin
and Feher (1991) and Ke et al. (1998) are used to simulate the
kinetics of crystal surface.

Attachment rate:

ra ¼ K þ
0 exp

Δμ
kBT

; ð3Þ

where K þ
0 is the attachment coefficient, kB is the Boltzmann

constant, T is the temperature (K), and Δμ¼ kBTs.
Detachment rate:

rdðiÞ ¼ K þ
0 exp

ϕ
kBT

� i
Epb
kBT

� �
; ð4Þ

J. Sang-Il Kwon et al. / Chemical Engineering Science 104 (2013) 484–497 485



Migration rate:

rmðiÞ ¼ K þ
0 exp

ϕ
kBT

� i
Epb
kBT

þ Epb
2kBT

� �
; ð5Þ

where Epb is the average binding energy per bond, ϕ is the total
binding energy per molecule of a fully occupied lattice, and i is the
number of nearest neighbors.

2.3. Crystal aggregation

2.3.1. General considerations
Aggregation processes result in a decrease in the total number

of particles and an increase in the average particle size. The shear
force induced by agitation, which is required in the scale-up of a
particulate process, plays a key role in the aggregation maintaining
the particulate phase in suspension. Aggregation has an important
influence on the quality of particulate products, especially for
dense particles such as protein crystals, and should be taken into
consideration in the modeling of large-scale crystallization pro-
cesses. This work is a comprehensive attempt to model the batch
particulate process including nucleation, crystal growth, and
aggregation in a stirred batch process, so that the design of the
batch crystallizer and the subsequent scale-up process can be
carried out in a more quantitative way. In this context, it is
necessary to find key kinetic expressions for aggregation that
enables us to quantify the major factors including aggregation
efficiency and frequency.

The aggregation process can be divided into two steps. First,
particles must be transported into a very small neighborhood of
one another, accounted as collision frequency and collision effi-
ciency. A simple idea is that an aggregate will be formed if an
aggregate is sufficiently stable that it can overcome the repulsive
forces such as hydrodynamic drag and the viscous fluid layer
between those particles undergoing aggregation. More specifically,
there are several aggregation types. Brownian motion induced
aggregations are the prevailing mechanism for submicrometer
particles. Particles whose sizes are in the range of 1–50 μm are
mostly under the influence of shear forces, and this mechanism
dominates in particulate processes. Although it is not of parti-
cular interest in this work, crystals with a size greater than 50 μm
are controlled by differential sedimentation or inertia (Cheng
et al., 2009).

2.3.2. Maximum local energy dissipation rate εmax

In the works by Smejkal et al. (2013) and Hollander et al.
(2003), it is shown that crystallization experiments at higher
stirrer speeds show a reduced formation of crystal aggregates
which is favorable in the subsequent separation process by
filtration. Although higher stirrer speeds are preferred in order
to achieve more crystals with uniform size and shape, it is
apparent that there is a physical limitation on the stirrer speed
that is achievable by a motor. Therefore, it is important to identify
a maximum local energy dissipation rate ðεmaxÞ, which measures
the hydromechanical stress resulted from agitation and is related
to the highest impeller speed for the batch crystallizer. This energy
is usually converted into heat, but leads to a negligible tempera-
ture change. For a given input power level, P, we can calculate the
corresponding mass related mean power input, ε, for a batch
crystallizer as follows (Smejkal et al., 2013):

ε ¼ P
ρVbatch

¼ωMtorque

ρVbatch
¼ 2πnMtorque

ρVbatch
ð6Þ

where ρ is the density of the continuous phase in the stirred tank
and Vbatch is the volume of the batch crystallizer. Additionally, the
mean power input, ε, by stirring in a tank was determined by
measuring the torque, Mtorque, at the agitator shaft at a specific

stirrer speed, n. The ratio of the maximum local energy dissipation,
εmax, which depends on the geometrical parameters of reactor and
stirrer type, and the mass related impeller power, ε, was deter-
mined by the following equation (Henzler, 2000):

εmax

ε
� a

ðd=DÞ2ðh=dÞ2=3z0:6ð sin θÞ1:15z2=3I ðH=DÞ�2=3
ð7Þ

The details about geometry of the batch crystallizer and the stirrer
type are taken from Smejkal et al. (2013): unbaffled vessel (a¼16);
diameter of the impeller (d¼0.06 m); inner tank diameter
(D¼0.12 m); height of the impeller blade (h¼0.04 m); tank filling
height (H¼0.12 m); number of impeller blades (z¼3); blade
inclination to the horizontal ðθ¼ 401Þ; and number of impellers
(zI¼1). Under this specification, it is computed that εmax=ε ¼ 72.

2.3.3. Shear rate Gshear

In particular, when the optimum mean power input is
ε ¼ 30 mW=kg, the corresponding maximum energy dissipation
ðεmax ¼ 2:16 W=kgÞ is determined by Eq. (7). Different stirrer
speeds ranging from 50 to 300 rpm are considered. This range of
stirrer speed is taken from the experimental work by Smejkal et al.
(2013) where the aggregation of crystals is studied and the crystal
growth condition in the work is similar to that of our simulation.
The turbulent shear rate within the stirred tank, Gshear, was
characterized by the average velocity gradient of the flow field
as is shown in the following expression by Camp and Stein (1943):

Gshear ¼
ε
ν

� �0:5
ð8Þ

where the kinematic viscosity is ν¼ 2:3� 10�6 cm2=s, the initial
solute concentration is c¼47 mg/mL, and the shear rate computed
by Eq. (8) is Gshear ¼ 970=s.

2.3.4. Kolmogorov microscale η
The Kolmogorov microscale, η, has been used to indicate

the length scale of the smallest eddies in turbulent solid–liquid
systems and it is related to the local energy dissipation rate, ε, and
kinematic viscosity, ν, as follows (Kusters et al., 1997):

η¼ ν3

ε

� �1=4

ð9Þ

In this study, the corresponding Kolmogorov microscale amounts
to 48.7 μm when the optimum mean power input and the
corresponding maximum energy dissipation are ε ¼ 30 mW=kg
and εmax ¼ 2:16 W=kg, respectively.

2.3.5. Collision frequency βij
For particles and aggregates smaller than the Kolmogorov

microscale, collisions induced by the shear force dominates those
caused by viscous forces (Kusters et al., 1997). The aggregation
kernel, βðVi;VjÞ, represents the rate at which particles of the
volumes Vi and Vj aggregate induced by the shear force and is as
follows:

βij ¼ βðVi;VjÞ ¼ψGshearðV1=3
i þV1=3

j Þ3 ð10Þ

where ψ is a constant that depends on the type of flow. For
example, ψ is 4/3 for the laminar flow, and (Saffman and Turner,
1954) derived ψ¼1.29 for the turbulent flow. Additionally, Ilievski
and Livk (2006) state that this expression for collision frequency is
available up to particles with a diameter of 5–10 times the
Kolmogorov microscale.

2.3.6. Mass fractal dimension df
Assume for the moment that the aggregate is a solid particle

without any empty inner space and its density is identical to that
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of the protein crystals. For the purpose of simulation focusing on
the shape evolution of crystals, we assume that there are only
binary collisions and the shape of a crystal aggregate after collision
follows that of the bigger crystal when the binary aggregation
occurs. Then, the mass Mðh110;h101Þ, which is a function of a set of
2 internal coordinates into (110) and (101) directions, of the
aggregate enclosed within a small neighborhood from a suitably
chosen center is given by

Mðh110;h101Þ ¼
4
3
ρh2110h101 ð11Þ

where the characteristic crystal lengths are simply h110 and h101 as
they are presented in Fig. 2. In general, if we were to account for
the fact that the region enclosed within the sphere of radius R is
not completely filled with particles but contains empty spaces,
then the actual mass will be less than that given by Eq. (11). In
fact, it turns out that in many cases, one can write

MðRÞpkaR
df ð12Þ

where df is the mass fractal dimension and it is usually less than
3 due to the porosity in aggregates, ka is the shape factor (e.g., it is
4
3ρπ for a sphere), and R is the characteristic length. The interested
readers may refer to Jiang and Logan (1991) for further analysis on
the mass and fractal dimension. In aggregation, the total volume
and shape are maintained identical, but the total number of
crystals is reduced by one after each aggregation event. Suppose
that there are two crystals where the volume of crystal 1 is greater
than that of crystal 2, and we denote the dimension of each crystal
for (110) and (101) faces as ðh110;1;h101;1Þ and ðh110;2;h101;2Þ,
respectively. Therefore, we note that the volume of each crystal
can be expressed in terms of crystal shape factor, α1 ¼ h110;1=h101;1
and α2 ¼ h110;2=h101;2, as follows:

V1 ¼ h2
110;1h101;1 ¼

h3
110;1

α1
; V2 ¼ h2110;2h101;2 ¼

h3110;2
α2

As mentioned previously, the crystal shape after the aggregation,
αagg , remains identical to that of the bigger crystal (i.e., αagg ¼ α1

since V14V2). Then, the final crystal height in both faces after
aggregation can be computed by the following balance equation
based on the equation of total volumes before and after the
aggregation:

h2110;1h101;1þh2110;2h101;2 ¼
h3110;agg
αagg

where h110;agg and h101;agg are the crystal height of the new
aggregate for (110) and (101) faces, respectively. Therefore, we
can eventually compute h110;agg and h101;agg in the following way:

h110;agg ¼ α1=3
agg ðh2

110;1h101;1þh2110;2h101;2Þ1=3

and

h101;agg ¼
h2110;1h101;1þh2

110;2h101;2

α2
agg

 !1=3

The physical properties and other operating parameters of the
particulate process are presented in Table 1.

2.3.7. Collision efficiency αij

In a stirred crystallizer, the aggregates of crystals are compact
because they are subject to strong shear flow, and thus the
collision efficiency corresponding to the impermeable aggregate
is modeled by Vanni and Baldi (2002). The collision efficiency αij,
which is defined as the ratio of the number of collisions to the
number of collisions that result in aggregation (i.e., the actual
aggregation rate to the theoretical aggregation rate), is then
computed by the following equation (Wang et al., 2005):

αij ¼ 0:43Fl�0:18 where 10oFlo105 ð13Þ
where Fl is the flow number computed by Balakin et al. (2012) as
follows:

Fl¼
6πμðV1=3

i þV1=3
j Þ3Gshear

8AH

Fl can be understood as the ratio between the repulsive shear force
and the attractive van der Waals force. The coefficient 0.43 in
Eq. (13) was obtained by Wang et al. (2005). The Hamaker constant
AH indicates the extent of Van der Waals interaction, and the value
is approximately between 10�20 and 10�19 J for solid–liquid
systems. In this study, the value of 10�19 J is chosen for AH.
Therefore, by Eqs. (10) and (13), we can conclude that increasing
the shear rate increases the relative velocity (i.e., the average
velocity gradient) among the particles, and hence the collision
frequency is enhanced. However, the efficiency of collisions
decreases to zero with further increase in the shear rate. This is
because higher shear rates result in stronger hydrodynamic forces
acting against the formation of aggregates and thus aggregates are
not formed since they do not have sufficient time for the formation
of the bond for aggregates. Since the aggregation rate is determined
by the product of the collision frequency and the efficiency, shear
rate has two conflicting effects on the aggregation. We can compute
the Kolmogorov time scale, ðν=εÞ0:5, which indicates how much
time is needed for the collision to be successful. With the system
parameters described in Table 1, it is calculated that the Kolmo-
gorov time scale is 10�4 s. This time scale can be considered to be
sufficiently small so that crystal aggregation occurs successfully
with the current mean power input, ε ¼ 30 mW=kg.

2.3.8. Total collision rate Nij

Let Nij be the total number of collisions occurring per unit time
per unit volume between the two classes where each class
represents a set of particles with volume Vi and Vj. The shape of
lysozyme protein crystals is assumed to be a rectangular prism,
and aggregations are treated as binary hard sphere collisions. The
number of aggregations occurring during sampling time Δ can be
written in terms of aggregation kernel βðVi;VjÞ, batch reactor
volume Vbatch, collision efficiency αij, and concentrations of parti-
cles of volume Vi and Vj as follows:

Nij ¼ αijβðVi;VjÞmimjVΔ; 1r i; jrCtotal ð14Þ
wheremi is the number concentration (i.e., the number of particles
of class i per unit volume). The number Ctotal denotes the total
number of classes. In the case of a discrete volume, the rate of
formation of particles of size k from the collision of particles of
volume i and j is 1

2∑iþ j ¼ kNij, where the notation iþ j¼ k indicates
that the summation is over all the different combinations of
collisions for which

ViþVj ¼ Vk

A factor of 1/2 is introduced because each collision is counted
twice in the summation.

In order to execute an aggregation event between two lysozyme
crystals in the simulation, first the binary collision probability must be

Table 1
Process parameters for aggregation.

ψ A constant depending on the type of flow 1.29
Gshear Shear rate 970 1/s
ε Effective mean power input 0.03 m2/s3

εmax Maximum local energy dissipation rate 2.16 m2/s3

ν Kinematic viscosity 2.3�10�6 m2/s
μ Dynamic viscosity 0.0024 kg/m s
AH Hamaker constant 10�19 J
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calculated according to Eq. (14). For the purposes of the batch
crystallization simulation, aggregation events are considered every
0.5 s. By doing this we can take Eq. (14), multiply by 0.5 s and the
reactor volume to get the total number of collisions during this time
period between the two classes. We use this as a probability of
whether an aggregation event happens between the crystal classes
i and j. Then, a random number from [0, 1) is generated, and the
aggregation event is executed when the random number is less than
the calculated probability. This process has been done over all the
crystal classes, and continues throughout the entire batch crystal-
lization simulation.

2.4. Mass and energy balances for the continuous phase

2.4.1. Mass balance
The mass balance in the present work is modeled by assuming

that the geometry of lysozyme crystal is a rectangular prism as
shown in Fig. 1, and the shape of lysozyme crystal is approximated
by a ratio of crystal heights into (110) and (101) directions. The
amount of the protein solute removed from the continuous phase
due to the crystallization can be computed through the following
form:

ΔcðtÞ ¼ �ΔVcðtÞρcNcðtÞ
Vbatch

; ð15Þ

where Vbatch is the volume of the continuous phase (assuming that
the change in Vbatch is negligible), ΔVcðtÞ is the total volume changes
of the entire crystal population, Nc(t) is the number of crystals in
batch at time t, ρc is the crystal density, and ΔcðtÞ is the change of
the protein solute concentration in the continuous phase. For the
derivation of Eq. (15), the reader may refer to Kwon et al. (in press).

2.4.2. Energy balance
Similarly, the energy balance of the batch crystallization

process is shown below:

dT
dt

¼ �ρcΔHc

ρCp

1
V
ΔVcðtÞ

� �
� UjAj

ρCpV
ðT�TjÞ ð16Þ

where T is the crystallizer temperature and Tj is the temperature of
the jacket. For the derivation of Eq. (16), the reader may refer to
Kwon et al. (in press). The crystallizer parameter values are given
in Table 2.

3. Population balance modeling

3.1. Population balance model (PBM) of crystal volume distributions

In this section, we present a population balance model (PBM)
for the lysozyme crystallization process accounting for simulta-
neous nucleation, crystal growth, and aggregation. The evolution
of the crystal volume distribution in the batch crystallizer can be
obtained from the following partial integro-differential equation:

∂nðV ; tÞ
∂t

þdV
dt

∂nðV ; tÞ
∂V

¼ δðV�V0ÞBðT ; cÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Birth by nucleation

þ1
2

Z V

0
αeffβðV�V ;V ÞnðV�V ÞnðV Þ dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Birth by aggregation

�nðVÞ
Z 1

0
αeffβðV ;V ÞnðV Þ dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Death by aggregation

ð17Þ

where V and V�V denote the crystal volumes, t is the time, nðV ; tÞ
denotes the lysozyme crystal distribution with volume V, αeff is a
constant aggregation efficiency, βðV�V ;V Þ is the aggregation rate
between the crystals with volumes V and V�V , δðVÞ is the
standard Dirac function, and BðT ; cÞ is the nucleation rate. As is
obtained from Kwon et al. (in press), dV=dt, which will be denoted
as Gvolume from now on, can be computed by simply measuring the
amount of solute concentration drop:

Gvolume ¼
dV
dt

� � 1
Δt

VbatchΔcðtÞ
ρcNcðtÞ

� �
; ð18Þ

where the right hand side is readily available from Eq. (15).
Then, we can write Eq. (17) along with the boundary condition,

which is derived in Appendix A, as follows:

∂nðV ; tÞ
∂t

þGvolume
∂nðV ; tÞ

∂V
¼ 1
2

Z V

0
αaggβðV�V ;V ÞnðV�V ÞnðV Þ dV

�nðVÞ
Z 1

0
αeffβðV ;V ÞnðV Þ dV ð19Þ

nð0; tÞ ¼ BðT ; cÞ
Gvolume

3.2. Lognormal volume distribution and moment model

Due to the complexity of the population balance model, it is not
directly applicable for numerical computation of the size distribu-
tion in real-time, as well as for the design of model predictive
controllers that can be readily implemented in practice. In order to
circumvent these problems, the method of moments is applied to
Eq. (17) for the construction of a low-order ordinary differential
equation (ODE) model that accurately reproduces the dominant
dynamics of the particulate process. More specifically, the con-
structed low-order ODEs are used to describe the evolution of
the three leading moments of the crystal volume distribution in
the turbulent shear regime in a 5 L batch crystallizer. Then, under

Fig. 1. The geometry model for lysozyme crystal used in the present work.

Table 2
Parameters for the batch crystallizer.

ρc Crystal density 1400 mg/cm3

ΔHc Enthalpy of crystallization �44.5 kJ/kg
ρ Continuous phase solution density 1047 mg/cm3

Cp Specific heat capacity 4.13 kJ/K kg
V Crystallizer volume 5 L
Aj Surface area of crystallizer wall 0.25 m2

Uj Heat transfer coefficient of crystallizer wall 1800 kJ=m2 h K
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the assumption that the changes in the collision efficiency are
negligible, we construct a framework for the moment models that
describes aggregation mechanisms over the entire batch. These
moment models provide acceptable simplification of the popula-
tion balance equation by modeling the key behavior of the crystal
growth, nucleation, and aggregation in the continuous phase. First
of all, it is shown in Fig. 3 that the lysozyme crystal volume
distribution obtained from kMC simulations can be appropriately
characterized by the following lognormal function:

nðV ; tÞ ¼ 1
3
ffiffiffiffiffiffi
2π

p
ln s

exp �
ln2 V

Vg

� �
18 ln2 s

0
BB@

1
CCA1
V

ð20Þ

where Vg ¼M2
1=ðM3=2

0 M1=2
2 Þ is the average crystal volume and s is

the standard deviation of the crystal volume distribution which is
expressed as ln2s ¼ 1

9lnðM0M2=M
2
1Þ. Then, we apply the method of

moments to Eq. (17) to compute the approximate models that
describe the evolution of the three leading moments of the
volume distribution. For this purpose, we defined the jth moment
model of the crystal volume distribution as follows:

Mj ¼
Z 1

o
VjnðV ; tÞ dV ð21Þ

Furthermore, the moment models of the system can be closed
according to the assumption above that the volume distribution
follows that of lognormal, and thus an arbitrary moment, Mk, is
computed as follows:

Mk ¼M0V
k
g exp

9
2
k2 ln2 s

� �

For further details of the derivation of moment models, the
reader may refer to Appendix B. The equations given below
describe the three leading moment models for j¼0, 1, 2.

Zeroth moment:

dM0

dt
¼ BðT ; cÞ�αeff ðM0M1þ3M1=3M2=3Þ ð22Þ

where αeff is the collision efficiency described in Eq. (13) and
BðT ; cÞ is justified by the boundary condition in Eq. (19).

First moment:

dM1

dt
¼ GvolumeM0 ð23Þ

Second moment:

dM2

dt
¼ 2GvolumeM1þ2αeff ðM1M2þ3M4=3M5=3Þ ð24Þ

In a nutshell, by putting all these together we can complete the
moment models as follows:

Gvolume � � 1
Δt

VbatchΔcðtÞ
ρcM0

� �
dM0

dt
¼ BðT ; cÞ�αeff ðM0M1þ3M1=3M2=3Þ

dM1

dt
¼ GvolumeM0

dM2

dt
¼ 2GvolumeM1þ2αeff ðM1M2þ3M4=3M5=3Þ

dT
dt

¼ �ρcΔHc

ρCp

1
V

∑
Nc ðtÞ

i ¼ 1
ΔVc;i

 !
� UcAc

ρCpV
ðT�Tj;iÞ

ΔcðtÞ ¼ �ρc

V
∑
Nc ðtÞ

i ¼ 1
ΔVc;i

Mk ¼M0V
k
g exp

9
2
k2 ln2 s

� �
for k¼ 1

3
;
2
3
;
4
3
;
5
3

� �

Vg ¼ M2
1

M3=2
0 M1=2

2

ln2 s ¼ 1
9
ln

M0M2

M2
1

 !
ð25Þ

Although an aggregation kernel with a constant collision efficiency
was considered to deal with the closure issue of the moment
models, the model can be further improved by using a noncon-
stant collision efficiency.

3.3. Relation between crystal volume and shape distributions

In the moment model, we can accurately estimate M0, which
represents the number of crystals in the system, and it is highly
coupled with other moments as is shown in Eqs. (23) and (24).
Due to the nonlinearity in this problem, we should carefully
connect M0 to the shape distribution, α¼ h110=h101. In the model
predictive controller (see Eq. (29)), the average height of the (110)
face, 〈h110ðtÞ〉, at time t is estimated at every sampling time
through the following equation:

〈h110ðtÞ〉¼
〈h110ðt�ΔÞ〉M0ðt�ΔÞ

M0ðtÞ
þG110ðt�ΔÞΔ ð26Þ

where G110ðtÞ is the growth rate for (110) face, and in the same
manner the average height of the crystal face 101, 〈h101ðtÞ〉, can be
computed as follows:

〈h101ðtÞ〉¼
〈h101ðt�ΔÞ〉M0ðt�ΔÞ

M0ðtÞ
þG101ðt�ΔÞΔ ð27Þ

where G101ðtÞ is the growth rate for (101) face. By the above
equations we can approximate the average crystal shape in the
following way:

〈α〉� 〈h110ðtÞ〉
〈h101ðtÞ〉

ð28Þ

4. Open-loop simulation results

Executing multiple kMC simulations with an infinite number
of lattice sites can be considered to be similar to solve Eq. (17)
directly (Fichthorn and Weinberg, 1991; Müller-Krumbhaar and
Binder, 1973). In this work, we assume that the number of lattice
sites used in the kMC simulation is sufficiently high, because no
size effects are observed in the systems with more lattice sites (Ke
et al., 1998).

In Fig. 2, crystal growth at pH 4.5 and 4% (w/v) NaCl has been
properly modeled through a procedure described in the previous
work (Nayhouse et al., 2013; Kwon et al. 2013, in press), and plotted
against the experimental results at 3.5% and 5.0% NaCl from Durbin
and Feher (1986). In particular, ðϕ=kB; Epb=kBÞ110 ¼ ð1077:26K;
227:10KÞ and ðϕ=kB; Epb=kBÞ101 ¼ ð800:66K ;241:65KÞ are used to
calibrate the simulation results with experimental data for (110) and
(101) faces, respectively. Additionally, K þ

o ¼ 0:211 s�1. Then, a set of
3-D plots (cf. Fig. 4) are made from the open-loop simulation results
along the set of parameters used in the kMC simulation. The plots
represent the algebraic equations linking the temperature and solute
concentration dependencies of the steady-state crystal growth rates
for (110) and (101) faces and crystal growth rate ratio.

One of the major contributions of this paper is focused on the
development of the aggregation process along with nucleation and
crystal growth in the kMC simulation. In addition to the growth
conditions including temperature, protein solute concentrations,
pH, and salt (Aldabaibeh et al., 2009; Weber et al., 2008; Müller
et al., 2011; Müller and Ulrich, 2011), as is shown in the previous
sections, there are many factors that affect the aggregation rate as
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is described by Eqs. (6)–(14). Additionally, the evolution of aggre-
gation along with the nucleation and crystal growth is estimated
by using the moment models described in Eq. (25). To verify the
accuracy of the moment models, an open-loop simulation is run.
Then, the evolution of the number of crystals (M0), the average
crystal shape, and the temperature and solute concentration in the
kMC simulation and the moment model are plotted together in Fig. 3.
The solute concentration remains almost constant at 47 mg/mL. As is

seen in Eq. (13), the collision efficiency decreases as the crystal sizes
increase, because crystals are less likely to adhere to one another due
to a short contact time which is undesirable for the aggregation to
occur (i.e., a large crystal is more influenced by shear flow).

In this work, however, a constant aggregation efficiency is used
to deal with the closure issue in the moment models, and it results
in a minor mismatch in M0 between the moment models and kMC
simulations as is shown in Fig. 3. This happens because the
constant aggregation efficiency is not able to capture the size-
dependent nature of the aggregation. Regardless of the discre-
pancy in M0 between the moment models and kMC simulations,
the procedure proposed in Eqs. (26)–(28) successfully estimates
the average crystal shape distribution based on the growth rates
for (110) and (101) faces and the number of crystals in the
crystallizer.

Eventually, the development of the moment models guides us
in the next section to design a new controller in order to provide
optimality as well as robustness in regulating the batch process.

5. Model predictive control of size and shape of crystal
aggregates

In the batch crystallization simulation, the role of aggregation
events becomes significant in a scaled-up crystallizer as crystal
size and the number of crystals increase. Then, the moment model
is considered in the controller design in order to predict the
system dynamics with a set of low-order ordinary differential
equations. The rate of the nucleation and the crystal growth is
determined by a set of the crystallizer temperature and solute
concentration. However, the shear rate, which is determined by
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Fig. 2. Growth rates vs. the degree of supersaturation at c¼45 mg/mL and 4% NaCl.
The solid and dashed lines show the growth rates for the kMC model on the (110)
and (101) faces, respectively. Experimental data from Durbin and Feher (1986)
is also shown at pH¼4.6 where the ð■Þ and (□) represent the 101 and 110 faces
with 5% NaCl and the ð�Þ=ð○Þ represent the 101 and 110 faces with 3.5% NaCl,
respectively.
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Fig. 3. .Profiles of the open-loop evolution of number of crystals, temperature, protein solute concentration, and crystal shape for tetragonal lysozyme protein crystals at pH 4.5.
(a) Number of crystals (M0). (b) Temperature and concentration. (c) Crystal shape (α).
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the stirrer speed (i.e., the only controllable variable in the
aggregation rate), is fixed throughout the entire batch run.

In addition to the non-linear models described in Fig. 4(a)–(c),
and mass and energy balances introduced in Eqs. (15) and (16),
moment models, which account for the number of crystals (M0),
and the average volume (M1) in the crystallizer, play a key role in
estimating the evolution of the crystal volume and shape distribu-
tions (Eqs. (26)–(28)). Then, a model predictive controller is
designed using only the manipulation of the jacket temperature
to produce the crystals with a desired shape and size. Conven-
tional operating strategies may be used, however, there are some
issues. For example, due to a lower limit on the temperature, the
supersaturation level cannot be maintained to a set-point value
when the depletion in the solute concentration is significant.

5.1. Model predictive control formulation

In this work, we consider the control of crystal aggregates
along with the moment models and the balance equations by
using a model predictive control (MPC) design. Minimizing the
deviation of the average crystal shape, 〈α〉, from a set-point value is
chosen as the control objective. The jacket temperature is chosen
as a manipulated input, and only the measurements of the solute
concentration and the crystallizer temperature are required,
assuming other factors remain constant.

The mass and energy balance equations (Eqs. (15) and (16)) and
the moment model (Eq. (25)) are considered along with other
practical constraints in the control formulation. First, a constraint
on the crystallizer temperature is imposed, 4 1CrTjr25 1C. Next,
RT ¼ 2:0 1C=min is a constraint which will control the maximum

rate of change for the jacket temperature. The cost function
penalizes the deviation of the average crystal shape, 〈α〉, from a
set-point value. The proposed MPC formulation is as follows:

minimize
Tj;1 ;…;Tj;i ;…;Tj;p

∑
p

i ¼ 1
F〈α〉;i

subject to F〈α〉;i ¼ ð〈α〉�αsetÞ2
Gi ¼ f rðT ;C; tiÞ GjðtiÞ ¼ f jðT ;C; tiÞ

4 1CrTjr25 1C
Tj;iþ1�Tj;i

Δ

����
����r2:0 1C=min

dT
dt

¼ �ρcΔHc

ρCp

1
V

∑
NcðtÞ

i ¼ 1
ΔVc;i

 !
� UcAc
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V
∑
NcðtÞ

i ¼ 1
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dM0

dt
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Fig. 4. Profiles for (a) the growth rate ratio between the (110) and (101) faces, and the growth rates for the (b) (110) and (c) (101) faces, respectively, over a protein
concentration range from 30 to 50 mg/mL and a temperature range of 4–25 1C. Each point on the three plots is generated by running the kMC simulation under open-loop
conditions at pH 4.5. (a) Growth rate ratio. (b) Growth rate of the (110) face. (c) Growth rate of the (101) face.
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i¼ 1;2;…; p and jAf110;101g ð29Þ

where Δ is the sampling time, t is the current time, ti, i¼ 1;2;…; p,
is the time of the ith prediction step, ti ¼ tþ iΔ, tf is the total
simulation time, F 〈α〉;i is the cost function penalizing the deviation
of the average crystal shape, 〈α〉, from a desired crystal shape, αset,
p is the number of prediction steps, pΔ is the prediction horizon,
and Tj;i is the jacket temperature at the ith step, and Tj;i ¼ Tjðtþ iΔÞ.
The set of optimal manipulated input values along the prediction

horizon ðTj;1; Tj;2;…; Tj;pÞ is obtained by solving the problem of Eq.
(29). The controller is implemented in a receding horizon scheme
where the first value of the optimal input trajectory, Tj;1, is applied
to the process until the next sampling time. Then, a new protein
concentration measurement is obtained from the kMC simulation,
and the MPC problem of Eq. (29) is re-solved by rolling the horizon
one step forward.

6. Closed-loop simulations of the batch crystallization process

The proposed model predictive controller solves a constrained
minimization problem over a prediction horizon, and computes
the optimal jacket temperature, which is then applied to the
closed-loop system at each sampling time (Δ¼1 s). Additionally,
the uncertainty in the crystallizer is reflected through the random
fluctuation in the solute concentration with the Gaussian distribu-
tion presented in the following equation:

〈CðtÞ〉¼ Cn; 〈CðtÞCðt′Þ〉¼ s2nC
2
n; ð30Þ

where Cn is the nominal concentration and snCn shows the
standard deviation of the concentration measurements. For all
closed-loop simulations, the nominal concentration is 47 mg/mL,
and the deviation, sn, is set to be 1% at pH 4.5 and 4.0% NaCl. The
volume of the crystallizer is 5.0 L. Since the MPC makes use of the
steady-state growth rates (cf. Fig. 4(b) and (c)), the number of
prediction steps is set to be p¼1. For the purpose of simulation,
the solute concentration fluctuates every 1 s with the nominal
value Cn(t) at time t. The closed-loop simulation duration is
tf¼20,000 s.

In the closed-loop simulations two desired crystal morpholo-
gies, 〈α〉¼ 1:11 and 〈α〉¼ 0:85, are chosen where these two shapes
represent the protein crystal with equidimensional and more
elongated length into the (101) direction.

To verify the performance of the proposed MPC, it is compared
to those of two other conventional control strategies, CTC and CSC.
For further details regarding how CTC and CSC operate, the readers
may refer to Kwon et al. (in press). Specifically in Fig. 6, for
〈α〉¼ 0:85, the optimal temperature is � 24:2 1C, and the nuclea-
tion of over 30% of the total crystals occurs within the first 5% of
the entire batch run due to the high initial supersaturation level
maintained until the system reaches its optimal temperature. We
note that the MPC in this case results in a broader crystal shape
distribution from a desired set-point value owing to the biased
nucleation in the beginning. In spite of this, the simulation under
MPC shows a similar crystal shape distribution compared to that of
CTC at To ¼ 24:2 1C where the optimal temperature is maintained
for the crystallizer over the entire batch.
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Fig. 5. Profiles of protein solute concentration, crystallizer temperature, and
supersaturation vs. time under closed-loop MPC operation during the batch run.
The growth rate ratio set-point value is set at 〈α〉¼ 0:85, and the data shown has
different initial temperature values and supersaturation levels provided in the
legend of each plot. For MPC, the starting temperature is 13 1C. (a) Protein solute
concentration vs time. (b) Crystallizer temperature vs time. (c) Supersaturation
vs time.
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The final crystal shape distribution for the MPC in Figs. 7 and 8
can be very narrow and even closer to the desired values when the
initial temperature is much closer to the optimal temperature,
for example, from To ¼ 13 1C to To ¼ 24:2 1C. Furthermore, the
controller performance can be further improved by adjusting RT
so that the system is able to change its temperature faster. For
further analysis on this, the readers may refer to Liu et al. (2010b).

For the closed-loop simulations at the lower set-point value,
〈α〉¼ 0:85, the simulation results are shown in Figs. 5, 7, and 8
for the evolution of the crystallizer temperature, the protein
solute concentration, the supersaturation, and the average crystal
shape along the batch. Additionally, a snapshot of crystal shape
distribution at four different times (5000, 10,000, 15,000, 20,000 s)
is presented in Fig. 13. Initially, a simulation under MPC at
c¼47 mg/mL and To ¼ 13 1C is run. For the initial temperature of
the simulations under CTC, two extremes of the temperature
profile computed by the simulation under MPC are chosen as
follows: To ¼ 13 1C and To ¼ 24:2 1C. Similarly, two values for the
initial supersaturation of the simulations under CSC are chosen as
follows: s¼2.27 and s¼3.40.

For the lower desired crystal growth rate ratio, 〈α〉¼ 0:85, it is
recommended to start the crystallizer with a higher initial tem-
perature allowing the system to achieve the optimal temperature
earlier in the batch run which will result in a uniform crystal
nucleation along the batch run, and the crystals grow under an
optimal growth condition from the beginning (Kwon et al., 2013).
It is observed in Fig. 5(a) that the simulations under the CSC at
s¼3.4 and the CTC at To ¼ 13 1C demonstrate the significant
depletion in the solute concentration where they both are at high
supersaturation levels, and hence high nucleation and growth
rates are expected. In contrast, in the proposed MPC, CTC at the

high temperature, To ¼ 24:2 1C, and the CSC at the low super-
saturation, s¼2.27, no significant solute concentration drop is
observed as a result of the low nucleation and growth rates. For
example, in Figs. 5, 7, and 8, the solute concentration, the super-
saturation, the temperature, and the average of the shape dis-
tribution with time under CTC at To ¼ 13 1C are very similar to
those of CSC at s¼3.40. Therefore, we note that CTC and CSC
policies show similar controller performances when their super-
saturation levels are nearly identical over the most part of the
batch run. We also note that the proposed MPC with a relatively
high initial temperature can outperform other conventional
polices, and the performance of the MPC can be by far improved
by adjusting the constraint on the rate of change for the jacket
temperature.

In Fig. 5(b), the jacket temperature is simply increased to the
optimal value by the proposed MPC due to the fact that the solute
concentration has minimal depletion. The optimal temperature for
the crystal growth of a low growth rate ratio is usually high where
the system is especially sensitive to the small changes in the solute
concentration and the temperature as it is shown in Fig. 4. The
interested reader may refer to our recent work (Kwon et al., 2013)
for further analysis on the sensitivity of the controller design in
relation to the initial temperature of the crystallizer.

In Table 3, a comparison is shown under different control
strategies for the average crystal size along the (110) direction,
〈h110〉, and r10, r50, r90, which are the 10%, 50%, and 90% population
fractions, respectively. For instance, r10 for MPC is 3.13 μm, which
means that 10% of crystals are smaller than 3.13 μm at the end of
the batch run. The span, which is defined as ðr90�r10Þ=r50,
indicates the extent of crystal size distribution. In Table 3 and
Figs. 7 and 8, it is demonstrated that the MPC is able to achieve
a low polydispersity (a low span value) and a desired crystal shape
distribution by appropriately dealing with the undesired effects
such as the biased nucleation, disturbances, and the mismatch of
moment models. The controller performance can be further
improved if we choose an initial temperature sufficiently close to
the optimal temperature and use an actuator with higher limita-
tion on the jacket temperature change.

For 〈α〉¼ 1:11, a high supersaturation level is favored for a crystal
growth with equidimensional shape. As a result, the high nucleation
and growth rates result in the significant drop in the solute
concentration level. In Fig. 9, it shows that the supersaturation level
constantly fluctuates which is attributed to the jacket temperature
computed by the proposed MPC. Reflecting the heuristic that the
system progresses from metastable to labile regime, the initial rise-
and-fall in the supersaturation level can be understood as follows:
Initially, the formation of small crystals occurs, and they grow
spontaneously. Once a sufficient amount of nucleation occurs, the
supersaturation level decreases to a minimum value and it eventually
decreases the nucleation rate as well. In the end, the system proceeds
to a regime where crystal growth dominates the crystal nucleation.
The rise-and-fall in supersaturation, which resulted from the optimal
temperature computed by the proposed MPC, extends to the end as
the solute concentration steadily decreases from 47 to 40 mg/mL as it
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Fig. 7. Profiles of the average of crystal shape distribution with time under CTC and
CSC. Additionally MPC is shown using 〈α〉¼ 0:85.
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Fig. 8. Profiles of the average of crystal shape distribution with time under CTC
and CSC.

Table 3
The simulation results for the crystal size in (110) direction under MPC for
〈α〉¼ 0:85, as well as CTC and CSC. Units for the 〈h110〉, r10, r50, and r90 are
given in μm.

Control strategy 〈h110〉 r10 r50 r90 Span

MPC 26.04 3.13 23.72 48.71 1.91
CTC: T¼13 1C 41.27 0.52 3.43 20.94 5.96
CTC: T¼24.2 1C 20.11 0.70 18.04 39.20 2.13
CSC: s¼2.27 46.06 8.02 41.82 78.73 1.69
CSC: s¼3.40 45.33 0.60 2.89 19.25 6.44
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is shown in Fig. 9(a)–(c). More specifically, desired crystal nucleation
and growth rates, which depend on the supersaturation level, can be
regulated by manipulating the temperature and thereby solubility.
It is also demonstrated in Fig. 9(b) that the optimal temperature
trajectory computed by the proposed MPC does not remain at a
constant value as the proposed MPC responds promptly to the solute
concentration drop and disturbances in order to avoid the formation
of small crystal fines at the end of the batch process. In Fig. 6, since
the system reaches the optimal temperature fast, the profile of
nucleated crystals with time is uniform throughout the batch run.
However, due to the insensitivity of the system to the changes in the
supersaturation level at the high supersaturation region, the

simulation results under other strategies are close to that under
MPC, as it is seen in Figs. 10 and 11.

In Table 4, 〈α〉¼ 1:11 shows a high polydispersity because of
the significant drop in the concentration, but a narrow crystal
shape distribution is obtained by a nearly uniform crystal nuclea-
tion rate under MPC. The CTC at T¼14 1C and CSC s¼3.4 result in
similar shape distributions to that of MPC, but they show high
standard deviation in Figs. 10 and 11, and their spans are also high
as it is shown in Table 4, which implies that they are not robust
when the depletion in the solute concentration is significant.

In Fig. 12, the more equidimensional crystal shape, 〈α〉¼ 1:11,
can be achieved over a broad supersaturation range, and thus both
the proposed MPC and other conventional strategies show good
performances in regulating the crystal shape to a desired mor-
phology. However, the conventional control strategies do not
guarantee a low polydispersity all the time, because it depends
on the growth conditions as it is shown in Table 4. In Fig. 13, it is
apparent that the proposed MPC steadily drives the crystal shape
distribution to a desired value, and eventually a narrow shape
distribution is obtained at the end of the batch run.
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Fig. 9. Profiles of protein solute concentration, crystallizer temperature, and
supersaturation vs. time under closed-loop MPC operation during the batch run.
The growth rate ratio set-point value is set at 〈α〉¼ 1:11, and the data shown has
different initial temperature values and supersaturation levels provided in the
legend of each plot. For MPC, the starting temperature is 13 1C. (a) Protein solute
concentration vs time. (b) Crystallizer temperature vs time. (c) Supersaturation
vs time.
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Fig. 10. Profiles of the average of crystal shape distribution with time under CTC
and CSC. Additionally MPC is shown using 〈α〉¼ 1:11.

Table 4
The simulation results for the crystal size in the (110) direction under MPC for
〈α〉¼ 1:11 as well as CTC and CSC. Units for 〈h110〉, r10, r50, and r90 are given in μm.

Control strategy 〈h110〉 r10 r50 r90 Span

MPC 31.30 0.49 5.24 14.5 2.67
CTC: T¼7.05 1C 73.61 0.45 1.97 3.84 1.72
CTC: T¼14 1C 23.10 0.74 4.30 17.35 3.87
CSC: s¼3.4 33.98 0.93 4.84 20.88 4.12
CSC: s¼3.9 88.17 0.41 1.45 3.55 2.16
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and CSC.
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In conclusion, MPC can successfully achieve the desired crystal
shape distribution and is robust with respect to a biased nuclea-
tion and a significant drop in the solute concentration has been
demonstrated, however, whether a low polydispersity can be
achieved is determined by the desired set-point value. For
〈α〉¼ 0:85, crystals with both desired morphology and a low
polydispersity can be achieved at a sufficiently high temperature
in the crystallizer, where it is typically close to an optimal
temperature, because it takes less amount of time for the system
to reach its optimal state causing the uniform nucleation to
occur throughout the batch. For 〈α〉¼ 1:11, however, crystals
with a narrow shape distribution and a high polydispersity can
be obtained regardless of the initial temperature, because the
crystallizer instantly responds to the depletion in the solute
concentration, as is shown in Fig. 9. More details regarding
robust-control of crystallization systems and model predictive
control can be found from Shi et al. (2006), Shi et al. (2005),
Chiu and Christofides (2000), and El-Farra et al. (2001).

On a final note, all the batch crystallization simulations exe-
cuted in this work were done in parallel using Message Passing
Interface (MPI) on the Hoffman2 cluster at UCLA. The Hoffman2
cluster is a shared resource which composed of 1032 nodes with a
total of 9772 cores. The memory on each node, as well as the CPU
speed, varies over the cluster. By using MPI we are able to divide
the computational cost and memory requirements over multiple
cores. The most computationally expensive part of these simula-
tions is the crystal growth step. Since the crystal growth step is
executed independently for each crystal between controller calls,
concentration fluctuations, and aggregation events, this step is
easily parallelizable. It is also noted that the nucleation process
does not affect the crystal growth stage since when a new crystal
is born it directly enters the crystal growth process. Fig. 14 shows

the amount of time necessary to run one batch crystallization
simulation depending on the number of cores used. It can also be
noticed that since the CPU speed varies, the error bars are quite
large for the cases with less CPUs. Through extensive testing we
found that using 20 cores was an appropriate tradeoff between
time spent sending and receiving messages between cores while
still reducing the time spent in the crystal growth process, as well
as making sure the scheduler on the Hoffman2 cluster would
accept our jobs in a reasonable amount of time. On average the
kMC simulations were finished in 0.254 h, spending 46% of the
time in the crystal growth process for 20 cores. Due to the fact that
all processors do not have the same speed, the process also spent
34% of time waiting for all cores to align in simulation time
before controller calls, concentration fluctuations, and aggregation
events. When looking at the single core case, 97% of time was
spent in the crystal growth process. It is noted that when using
more cores, additional overhead is added when trying to balance
the number of lysozyme crystals assigned to each core.

7. Conclusions

Initially, the present work focused on the modeling of protein
crystal aggregation along with crystal nucleation, and growth
in a batch crystallization process via a kinetic Monte Carlo (kMC)
simulation. More specifically, the kMC simulation modeled crystal
growth via adsorption, desorption, and migration mechanisms
on the (110) and (101) faces, and the nucleation rate from the
experimental results by Galkin and Vekilov (2001) was used in this
work. Then, the aggregation of protein crystals in the batch simula-
tion was modeled through an aggregation kernel accounting for
collision efficiency. Having considered the sizes of lysozyme crystals
in this study, the aggregation was mainly induced by shear forces.
Moreover, binary aggregation was assumed and thus an aggregate
was formed as two crystals completely merge along with their
internal coordinates. Furthermore, we supposed the crystal shape
of the aggregate followed that of the bigger crystal. Additionally, the
high-dimensionality in the PBM could lead to a complicated con-
troller design, which could not be immediately implemented in
practice. In this end, moment models were derived to describe the
dynamic evolution of the three leading moment of crystal volume
distribution. Finally, the moment model was used along with a
nonlinear algebraic equation and energy and mass balances in order
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to design a novel model predictive controller (MPC). Under MPC, the
crystal shapes of crystal aggregates were regulated through the
manipulation of the jacket temperature measuring the protein solute
concentration and the crystallizer temperature which is a common
practice in batch crystallization.

Then, the simulation results of the proposed MPC were com-
pared with those of other strategies, CTC and CSC, where these
strategies are not robust to a significant concentration drop and
the uncertainties in the model. However, the proposed MPC is able
to drive the crystal shape distribution to a desired set-point value
properly dealing with the biased nucleation and a critical solute
concentration drop. Moreover, the production of crystals with a
low polydispersity can be achieved depending on the desired
crystal shape. For example, for 〈α〉¼ 1:11, crystals with a narrow
shape distribution are obtained as the MPC promptly counteracts
the depletion in the solute concentration. The ability to deal with
the undesired effects is reflected as a fluctuation in the optimal
crystallizer temperature computed by the proposed MPC as it is
shown in Fig. 9, and it leads to an unsteady growth condition
which will produce crystals with a relatively high polydispersity.

For 〈α〉¼ 0:85, however, crystals with a desired shape distribution
and a narrow size distribution can be achieved at a high initial
temperature which is close to the optimal temperature, because
the unwanted biased nucleation can be properly avoided. Addi-
tionally, allowing for a faster jacket temperature (manipulated
input) change can be another choice reducing the amount of time
needed to obtain crystals with desired properties, because the
state of system reaches its optimal value faster.
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Appendix A. Derivation of the boundary condition for PBM

As is pointed out by Miller (1993), Eq. (17) can be rewritten
by replacing the nucleation term with an appropriate boundary
condition. Integrating Eq. (17) over V from 0� to 0þ gives

Gvolume

Z 0þ

0�

∂nðV ; tÞ
∂V

dV ¼ BðT ; cÞ;

sinceZ 0þ

0�
BðT ; cÞδðVÞ dV ¼ BðT ; cÞ;

andZ 0þ

0�

∂nðV ; tÞ
∂t

dV ¼ 0:

Additionally, when the average crystal volume is very small
(i.e., VC0), the aggregation rarely occurs and thus it is assumed

that the aggregation terms are negligible:

1
2

Z 0þ

0�

Z V

0
βðV�V ;V ÞnðV�V ÞnðV Þ dV dV

¼
Z 0þ

0�
nðVÞ

Z 1

0
βðV ;V ÞnðV Þ dV dV ¼ 0

and

nðV ; tÞ ¼ 0 at V ¼ 0� ; nðV ; tÞ ¼ nð0; tÞ at V ¼ 0þ ;

assuming all nuclei form with size V¼0. Then, Eq. (17) can be
reduced to the following:

Gvolumenð0; tÞ ¼ BðT ; cÞ at V ¼ 0:

Appendix B. Derivation of the first moment model

We multiply the jth power of the crystal volume Vj on both
sides of Eq. (19), and integrate them from V¼0 to V ¼1, to
obtain

Suppose that nðV ; tÞ is finite at V¼0 and nðV ; tÞ-0 as V-1. This
implies that there are a finite number of nucleated crystals with
infinitesimal volume but there are no crystals with infinite size at
time t. Since the total crystal volume is independent of the
aggregation rate and depends only on the nucleation rate, the
right hand side in the equation above, which is denoted as
“aggregation”, simply does not contribute to the first moment
equation that describes the evolution of M1 with time. As an
example, the derivation of the first moment model is presented
in more detail.

First moment: Making the substitution V�V ¼ y and thus
dV¼dy on the right hand side of the equation above, and using
that M1 ¼

R1
o VnðV ; tÞ dV , we obtain

dM1

dt
�GvolumeM0

¼ 1
2
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