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ABSTRACT: In this paper, we focus on a batch protein crystallization process used to produce tetragonal hen egg white
lysozyme crystals and present a comparative study of the performance of a model predictive control (MPC) strategy formulated
to account for crystal shape and size distribution with conventional operating strategies used in industry, namely, constant
temperature control (CTC) and constant supersaturation control (CSC). Initially, a comprehensive, batch crystallizer model is
presented involving a kinetic Monte Carlo (kMC) simulation model which describes the nucleation and crystal growth via
adsorption, desorption, and migration mechanisms on the (110) and (101) faces and mass and energy balances for the
continuous phase, which are developed to estimate the depletion in the protein solute concentration and the variation in the
crystallizer temperature. Existing experimental data are used to calibrate the crystal growth rate and to develop an empirical
expression for the nucleation rate. Simulation results demonstrate that the proposed MPC, adjusting the crystallizer jacket
temperature, is able to drive the crystal shape to a desired set-point value with a low polydispersity for crystal size compared to
CTC and CSC operating policies, respectively. The proposed MPC determines the optimal operating conditions needed to
obtain protein crystals of a desired shape and size distribution as it helps avoid the small crystal fines at the end of the batch run.

■ INTRODUCTION

Protein crystallization plays a crucial role in the $1 trillion
pharmaceutical industry and has been a major contributor to
both scientific advancement and economic growth. More than
100 therapeutic proteins have been licensed and a number of
additional therapeutic proteins are currently under testing. For
example, therapeutic proteins such as albumin which regulates
the colloidal osmotic pressure of blood and globulin which
boosts the immune system in our body against infectious diseases
are the main proteins of human cells. Additionally, the
therapeutic protein structure can be investigated via nuclear
magnetic resonance for proteins of small molar mass (less than
30 000). Alternatively, X-ray crystallography is suggested for the
study of the structure of proteins with molecular weight over 30
000.1−3 To use these methods, protein crystals, which are usually
produced through a batch crystallization process, need to be of
desired morphology with a low polydispersity. Here, we use
tetragonal hen egg white (HEW) lysozyme which is a widely used
model protein and relatively easily crystallizable with a molecular
weight of 14 388.
In the past few years, researchers have attempted to model

protein nucleation4,5 and crystal growth,6−8 and significant
advances have been made in the field of control of crystallization
processes introducing new techniques such as the direct
nucleation control and statistical control chart based switch-
ing.9,10 Their efforts make it possible to control the shape and size
distributions of the protein crystals, however, no significant
advance has been made associated with crystal growth initiated
by nucleation in the consideration of mass and energy balances.
To this end, we include mass and energy balances in order to
estimate better the depletion in the protein solute concentration
and the drop in the crystallizer temperature due to the heat of

fusion by crystallization. Similar to our previous works,11,12 we
assume the solid-on-solid lattice model13 which will cause the
crystal to be very compact by avoiding voids and overhangs while
depositing particles onto the crystal lattice, and only monomer
units are considered in the attachment events. It is also assumed
that the monomer is not aggregated with water, and it is a pure
lysozyme molecule.14 The attachment rate is independent of the
local surface microconfiguration, whereas detachment and
migration events are highly dependent on it. To account for
the dependence of detachment and migration rates on the
surface configuration, kinetic Monte Carlo (kMC) simulations
are needed to compute the net crystal steady-state growth rate.
Kinetic Monte Carlo simulation methods represent a dynamic
interpretation of the Master equation15,16 and have been widely
used to simulate dynamic molecular processes.17−28 To
implement our kMC methodology in the consideration of the
entire lattice sites and account for mass and energy balances for
the continuous phase, we extend the methodology of reference
29 to the rate equations originally developed by Durbin and
Feher.13 The reader may also refer to our previous works for the
details of the methodology for single crystal growth11 and for a
set of crystals nucleated at different times,12 respectively.
Our main contribution is a quantitative comparison of the

performance of a novel model predictive control (MPC) strategy
to that of two other conventional operating polices: constant
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temperature control (CTC) and constant supersaturation
control (CSC). The CTC policy attempts to maximize the size
of protein crystals by driving the crystallizer conditions from the
labile zone to the metastable zone while the CSC policy attempts
to maximize the size of protein crystals by maintaining the
crystallizer conditions in the metastable zone. Under CTC, the
depletion in the solute concentration throughout the entire batch
process immediately leads to the drop in the supersaturation level
since temperature is constant, and thus less nucleation and lower
growth rates are observed. Under CSC, in order to maintain a
constant supersaturation level, the depletion in the solute
concentration results in the decline in the temperature. Since
there is a lower limit on the temperature, if the solute
concentration drops too much, a method of simply lowering
temperature cannot maintain the supersaturation level to a
desired value (i.e., the controller is not robust). This problem
steers us to design a new model predictive controller in order to
provide optimality as well as robustness and constraint handling
in the batch crystallization process.30,31

In the next section, we will summarize the rate equations used
for our kMC simulation method to describe the surface kinetics
of crystallization. Next, we will present derivation of mass and
energy balances, and anMPC is designed to achieve the objective
of driving the expected growth rate ratio and crystal size to
desired set-point values. After that we will show a comparison of
the MPC with the conventional operating strategies of constant
temperature control (CTC) and constant supersaturation
control (CSC), to evaluate the performance of the MPC.
Finally, we will finish with a short conclusion and a few ideas for
future research.

■ MODELING AND SIMULATION

As said previously, we will use kMC simulations in order to
model protein crystal growth. We assume the solid-on-solid
lattice model which will cause the growing protein crystal to be
very compact by avoiding voids and overhangs. For this work we
will focus on square lattice models of length and width N = 30
sites with periodic boundary conditions. Previous work32

demonstrates that no finite size effects were found among
systems of sizes N = 30, N = 60, and N = 120 sites. The rate
equations for adsorption, desorption, and migration mecha-
nisms, which are similar to those of Durbin and Feher,13 are
introduced in the following subsection. Then, by generating
random numbers, each event of our kMC simulation is chosen
and executed based on the normalized rates of the three
microscopic phenomena. For further details including derivation
of the rate equations, update of each lattice height, execution of
events, and other details, we refer the reader to our earlier
work.11,12

Surface Kinetics. As noted in the previous work by
Nayhouse et al.11 and Kwon et al.,12 the following rate
expressions on the crystal surface follow that of Durbin and
Feher,13 which was further developed by Ke et al.32 for migration
events. Every lattice site is considered for attachment where the
attachment rate is independent of the surface microconfiguration
and defined as,

μ μ= Δ = Δ+ +r K K
k T

( ) expa 0
B (1)

where K0
+ is the attachment coefficient, kB is the Boltzmann

constant, T is the temperature in Kelvin, and Δμ = kBT ln (c/s),
where c is the solute concentration and s is the protein solubility,

and this term is the crystallization driving force. The protein
solubility is dependent on temperature (°C) and defined for pH
= 4.5 and 4% (w/v) NaCl by refs 33 and 34 with the following
third-order polynomial:
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where the solubility computed by eq 2 has an error of 6.8 %.34

The migration rate is modeled by Ke et al.32 by introducing an
additional term to the desorption rate which causes migration to
have a higher rate compared to the desorption rate, and the
desorption and migration rates are defined the following way:
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where Epb is the average binding energy per bond, i ∈ {0,1,2,3,4}
is the number of bonds, andϕ is the binding energy per molecule
of a fully occupied lattice where the binding energies cannot be
evaluated by experiments.13,35 A set of values of Epb and ϕ for
(110) and (101) is determined through open-loop kMC
simulations until the difference between the calculated and the
experimental growth rates becomes negligible.13 In contrast to
the attachment, the detachment and migration event are
dependent on the surface microconfiguration because they take
into consideration the total binding energy determined by the
number of nearest neighbors as it is shown in eqs 3 and 4.
Therefore, the growth rate cannot be computed by simply
subtracting the detachment from the attachment rates.
In summary, the nature of lysozyme crystals which only half

the molecules on the (101) face have the points of attachment for
incoming molecules, whereas every molecule on the (110) face
has dangling bonds,13 is reflected in the present study by
accepting 50% of adsorption events on the (101) face, compared
to 100% of those on the (110) face in the kMC simulation. On
the other hand, desorption events are always accepted and
migration events are always accepted as long as there exists at
least one available migration site. Specifically, an available
migration site implies an adjacent site which is lower in height
than the current lattice site where a lysozyme molecule can
migrate. If there exist multiple sites available for the migrating
molecule, a site is chosen randomly.36

Mass Balance. Shi et al.37 modeled the 3-D crystal growth by
multiplying a crystal shape factor to the third moment of the
crystal size distribution. However, the crystal shape factor is
dependent on the temperature and the solute concentration and
is not constant. In this work, the mass balance is evaluated by
considering the geometry of lysozyme crystal, and thus we are
able to model the shape evolution of lysozyme more precisely by
distinguishing the crystal growth into (110) and (101) directions
independently. In refs 6 and 13 the growth rates for (110) and
(101) faces,G110 andG101, are respectively related to h110 and h101
as follows:

= ≅
Δ

Δ
⇒ Δ = ΔG

h
t

h
t

h tG0.45
d

d
0.45 2.22101

101 101
101 101

(5)

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie400584g | Ind. Eng. Chem. Res. 2014, 53, 5002−50145003



= ≅
Δ

Δ
⇒ Δ = ΔG

h
t

h
t

h tG0.5
d

d
0.5 2110

110 110
110 110

(6)

where Δt = 1 s. We model lysozyme as a rectangular prism,
shown in Figure 1, whose bottom is a square with a side of h110

and a height of h101. From eqs 5 and 6 the crystal size at time jΔt
can be written as,
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where Δh101(k) = h101(kΔt) − h101((k−1)Δt) and Δh110(k) =
h110(kΔt) − h110((k − 1)Δt) for k = 1,2,···, j. Also, the volume of
the crystal with a side h110(t) and a height h101(t) at time t, Vc(t),
follows as

=V t h t h t( ) ( ) ( )c 110
2

101 (8)

and thus the volume change between time t − Δt and t, ΔVc(t),
can be written as,

Δ = − − ΔV t V t V t t( ) ( ) ( )c c c (9)

The amount of the protein solute that is transported from the
continuous phase to the crystal at time t can be calculated and
takes the following form:

ρΔ = ΔV c t V t N t( ) ( ) ( )c c c (10)

where V is the volume of the continuous phase (assume change
in V is negligible),Nc(t) is the number of crystals in batch at time
t, ρc is the crystal density, and Δc(t) is the change in the protein
solute concentration between time t − Δt and t where Δc(t) =
c(t) − c(t − Δt). We update the concentration after every Δt
(=1.0) seconds. To integrate eq 10 into the model predictive
controller below, we estimate the total volume changes of the
entire crystals (from i to Nc(t)) at time t as follows:
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where the average change in volume over Nc(t) crystals at time t,
⟨ΔVc(t)⟩, is approximated by
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Energy Balance. The energy balance of the batch
crystallization process takes the following form given by ref 38.

ρ
ρ

ε
ρ

=
Δ

− −T
t

H

C t

UA

C V
T T

d
d

d
d

( )j j
j

c c

p p (13)

where ε = ((V − Vc)/V) = 1 − (Vc/V) is the solids free volume
fraction, T is the crystallizer temperature and Tj is the jacket
temperature and the manipulated input. The process parameters

used in the kMC simulations are given in Table 1. Taking a
derivative of εwith respect to time and using eq 12, it follows that
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Open-Loop Simulation Results. There are many simu-
lation conditions that affect the crystal growth and the nucleation
including temperature, pH, salt, and protein solute concen-
trations. Specifically, the supersaturation σ is defined as σ = ln (c/
s) where c (mg/mL) is the protein solute concentration and s
(mg/mL) is the solubility which is determined by eq 2 in terms of
temperature (°C) at pH = 4.5 and 4% (w/v) NaCl. In Figures 2
and 3, crystal growth has been modeled at supersaturation, 2.1 ≲
σ≲ 3.95, where c = 45 (mg/mL). Through a procedure proposed
in the previous work of our group,11,12 our simulation results
have been properly calibrated with the experimental result in
Figure 2 and a set of parameters was appropriately chosen to
verify the crossover behavior of the growth rates of the (110) and
(101) faces. The estimated simulation results at 4.0% NaCl are
plotted against the experimental results at 3.5% and 5.0% NaCl
from ref 6 in Figure 2. Additionally, Figure 3 shows the results of
our kMC simulations from Figure 2 along with error bars
representing two standard deviations of 10 kMC simulations at
each point. The parameters for the kMC simulations used in this
work are listed in Table 2.
To complete the kMC simulation model, mass and energy

balances are developed to estimate the depletion in the protein
solute concentration and the drop in the crystallizer temperature
due to the heat of fusion by crystallization. The evolution of the
solute concentration, the supersaturation, and the temperature in
the kMC simulation is shown in Figure 4 for the initial solute
concentration at 47 mg/mL and the three different initial
temperatures of 6, 10, and 18 °C. It is observed that the solute

Figure 1.Model of the geometry of lysozyme crystal used in this work.

Table 1. Parameters for the Batch Crystallizer Model of
Equations 12 and 14

ρc crystal density 1400 mg/cm3

ΔHc enthalpy of crystallization 44.5 kJ/kg
ρ continuous phase solution density 1045 mg/cm3

Cp specific heat capacity 4.13 kJ/(K kg)
V crystallizer volume 5 L
Aj surface area of heat transfer between

crystallizer and jacket pipe
0.25 m2

Uj heat transfer coefficient between crystallizer
and jacket pipe

1800 kJ/(m2 h K)
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concentration decreases more rapidly as the batch process
proceeds further because, for an equivalent growth, larger crystals
require more solute to grow compared to small crystals. The
temperature of the crystallizer is also affected by the
crystallization due to the heat of fusion in the crystallization
process. It is verified from Figure 4 that at a low initial
temperature level (i.e., low solubility and thus a high super-
saturation level) crystals grow faster and it results in a significant
drop in the supersaturation level because of the loss in the protein
solute for the continuous phase. We note that the drops in the

temperature and the supersaturation depend on the length of
batch process time and the size of the crystallizer.
First of all, kMC simulations are run under existing control

strategies, a constant temperature control (CTC) strategy and a
constant supersaturation control (CSC) strategy; please see
below for results. Under CTC, the depletion in the solute
concentration throughout the entire batch process immediately
leads to the drop in the supersaturation level since temperature is
constant, and thus less nucleation and lower growth rates are
observed. Under CSC, in order to maintain a constant
supersaturation level, the depletion in the solute concentration
results in the decline in the temperature. Since there is a lower
limit on the temperature, if the solute concentration drops too
much, a method of simply lowering temperature cannot maintain
the supersaturation level to a desired value (i.e., the controller is
not robust). This problem steers us to design a new controller,
which is presented in the next section in order to provide
optimality as well as robustness in batch process. Specifically, the
crystal shape distribution of the final crystals can be driven to a
desired range by the controller design described in the following
section.

■ MODEL PREDICTIVE CONTROL OF CRYSTAL SIZE
AND SHAPE

In the kMC simulations, crystal nucleation and growth are
considered alongside mass and energy balances via molecular
attachment, detachment, and migration events. Since the role of
mass and energy balances becomes significant as crystal size
increases, the balance equations have been considered in the
controller design. The nucleation and the crystal growth rates
have been manipulated by changing the temperature for a given
concentration. In Table 2, parameters of crystal growth
conditions (e.g., Epb/kB and ϕ/kB) for kMC simulations are
chosen to show the experimentally observed crossover behavior
in the crystal growth rates between the (110) and (101) faces.6,13

In addition to the nonlinear models described in Figure 5 panels
a−c, mass and energy balances introduced play a key role in
describing the behavior of the system dynamics in the
consideration of the depletion in the solute concentration and
the heat removal in the crystallizer due to crystallization process.
Then, based on these equations, a model predictive controller is
designed to produce the crystals with the desired shape and size
through the manipulation of the jacket temperature. MPC
resolves the drawbacks of the classical control schemes like
proportional (P) control as it explicitly takes into consideration
input/state constraints, optimality issues, and nature of non-
linearity in the nonlinear growth rate. A dynamic open-loop
optimization method may be used. However, open-loop
optimizations are not robust with respect to model uncertainty
in the protein concentration and the batch crystallizer.

The Population Balance Equation for Protein Crystal-
lization. A population balance equation (PBE), shown in eq 18
below, can describe the evolution of the particle growth in a batch
protein crystallization with respect to crystal size and shape.
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Figure 2.The expected growth rate versus the degree of supersaturation
at c = 45 mg/mL and 4%NaCl are shown as the solid (110 face) and the
dashed (101 face) lines. The filled square (■) and open square (□)
represent the measured experimental data for 101 and 110 faces with 5%
NaCl; (●, ○) the measured experimental data with 3.5% NaCl;
extracted from ref 6 at pH = 4.6.

Figure 3. The expected growth rate versus the degree of the
supersaturation at c = 45 mg/mL for 110 (■) and 101 faces (▲),
respectively. Error bars represent two standard deviations of 10
simulations for each point.

Table 2. Parameters for Face (110) and (101) at 45 mg/mL
NaCl and pH = 4.5. Additionally, K0

+ = 0.211 s−1

face ϕ/kB Epb/kB

(110) 1077.26 227.10
(101) 800.66 241.65
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To describe the behavior of the crystal size and shape

distributions for the crystals nucleated at different times in a

crystallization process, it is necessary to know the nucleation rate.

In kMC simulation the characteristic crystal lengths are simply

h110 and h101 as they are in Figure 2 and n(h110,h101,t) is the

number of crystals of heights h110 and h101 for (110) and (101)

faces, respectively, at time t. The nucleation rate is denoted as

B(T,c)δ(h110,h101) and is a function of temperature, T, and

protein solute concentration, c, which acts only at h110 = h101 = 0.

Owing to the dependence of detachment and migration rates on

the surface configuration, Nayhouse et al.11 suggested kMC

simulations to compute the net, steady-state, growth rate as a

function of temperature and protein concentration in the

continuous phase. Therefore, the growth rates for (110) and

(101) faces, G110(T,c) and G101(T,c), are expressed as a function

of temperature, T, and protein solute concentration, c,

respectively. Then, we define a growth rate ratio, α(T,c) =

h110/h101 = G110(T,c)/G101(T,c), where the growth rate ratio is

equal to the aspect size ratio at the steady-state and the growth

rate ratio is obtained from kMC simulation. Then, eq 16 can be

written as follows,
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where ∂h110/∂h101 = α(T,c), and substituting this into eq 17, we
obtain,

α
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In the present work, we assume that crystals are nucleated at
negligibly small size (i.e., h110 = h101 = 0), and the number of
nuclei newly formed at time t is denoted as n(0,0,t). This
assumption can be justified by the following reasons. Initially, an
HEW lysozyme nucleus is formed through the aggregation of 3 to
4 lysozyme molecules, and its size is relatively infinitesimal
compared to the final crystal size which is in the dimension of
several hundreds micrometers.39 Additionally, a nuclei cannot be
detected until its size reaches the resolution limit, ∼0.5 μm.40

Because the B(T,c)δ(h110,h101) acts only at h110 = h101 = 0, and a

Figure 4. Open-loop simulation results of solute concentration, supersaturation, and temperature for tetragonal lysozyme protein crystals at pH = 4.5
under the consideration of the mass and the energy balances for the continuous phase. The data from the open-loop simulation shows the depletion in
the protein solute concentration and the drop in the temperature due to crystallization processes. The initial protein concentration is 47 mg/mL and the
different initial temperature values (6, 10, and 18 °C) are used to verify their effect on the crystal growth.
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nuclei size on (110) and (101) direction is uniformly negligible,
for the simplicity of calculations, we can assume that B(T,c)δ-
(h110,h101)≅ B(T,C)δ(h110). In other words, the crystal size in the
direction of (110) and (101) faces are in the same order of
magnitude. As is pointed out by Miller,41 eq 18 can be written
replacing the term with an appropriate boundary condition.
Integrating eq 18 over h110 from 0− to 0+ gives,

∫
α+

×
∂

∂

=

−

+

G T c T c G T c

n h h t
h

h
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0

0
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∫ δ =
−

+
B T c h h B T c( , ) ( ) d ( , )

0

0

110 110

and,

∫ ∂
∂

=
−

+ n h h t
t

h
( , , )

d 0
0

0
110 101

110

It also follows that n(h110,h101,t) = 0 at h110 = h101 = 0− and
n(h110,h101,t) = n(0,0,t) at h110 = h101 = 0+, assuming all nuclei
form with size h110 = h101 = 0. Then eq 19 can be reduced to the
following:

α+ =G T c T c G T c n t B T c( ( , ) ( , ) ( , )) (0, 0, ) ( , )110 101
(20)

Therefore the desired boundary condition is

α
=
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= =
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G T c T c G T c

h h
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( ( , ) ( , ) ( , ))

at 0
110 101

110 101 (21)

and with this boundary condition the resulting population

balance of eq 16 has the following form:

Figure 5. Plots of the growth rate data obtained for the (110) face, the (101) face, and the growth rate ratio between (110) and (101) faces for tetragonal
lysozyme protein crystals at pH = 4.5. The data from the open-loop kMC simulation are plotted to demonstrate the effect of temperature and
concentration variations on growth rates. Protein concentration and temperature range from 30 to 50 mg/mL and 4 to 25 °C, respectively.
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where G110(T,C) and G101(T,C) are the growth rates for (110)
and (101) faces, α(T,c) = G110(T,C)/G101(T,C), is the growth
rate ratio. The nonlinear equations, f G, f110, and f101, show their
dependencies on temperature, solute concentration, and time,
respectively. In this work, it is assumed that the nucleation on a
surface is negligible. The number of crystals nucleated at time, t,
is obtained from Galkin et al.42 and the nucleation rate,
f nucleation(0,0,t)(σ), at time t (with units [cm−3·sec−1]), was
obtained from ref 42 at pH = 4.5 and 4% (w/v) NaCl:

σ

σ σ

σ σ
=

+ ≥
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⎩

f t(0, 0, )( )
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8.0 10 exp(4.725 ) for 3.11

nucleation

8
(23)

We execute multiple kMC simulations alongside mass and
energy balances for crystals nucleated at different times which is
considered to be comparable to solving eq 22 directly.
Theoretically speaking, it requires an infinite number of lattice
sites in the kMC simulation to completely regenerate the
deterministic PBM described by eq 22. From a practical
standpoint, however, a kMC simulation with a finite number of
lattice sites is used for the simulation of crystallization process
which may lead to a mismatch between the PBM and the kMC
simulation. Here we assume that the number of lattice sites being
used in the kMC simulation is sufficient that the mismatch is
negligible since, as described previously, no size effects were
found in the systems with more lattice sites.
Model Predictive Control Formulation. We consider the

control of shape and size of crystals nucleated at different times
along with mass and energy balances as the batch crystallization
process proceeds by using a model predictive control (MPC)
design. Minimizing the expected value of the growth rate ratio,
⟨α⟩ = ⟨G110/G101⟩, is chosen as the control objective. To prevent
the crystallizer from obtaining many small crystal fines at the end
of the batch run, a desired minimum crystal size is considered in
the cost function of theMPC formulation. Among various factors
that affect the evolution of the crystal morphology and the
growth rate during the crystallization process,43−47 the jacket
temperature is used as the manipulated input, and only the solute
concentration measurement is available, assuming all other
parameters remain constant for the closed-loop simulations (e.g.,
pH, NaCl concentration, buffer concentration, etc.).
We note that the proposed modeling and control methods can

be extended to the case of multiple manipulated variables. A
number of practical considerations including mass and energy

balances of eqs 12 and 14 and additional constraints are
considered in the control problem. First, a constraint on the
range of the jacket temperature is imposed to ensure that the
protein is not damaged where 4 °C≤Tj≤ 25 °C. Second, there is
a constraint on the rate of change of the jacket temperature
because of actuator limitations of 2 °C/min. The other constraint
limits the number of crystals nucleated during the second half of
the batch run to avoid small crystal fines at the end of the batch
run. The control action (jacket temperature) at time t is obtained
by solving a finite-dimensional optimization problem in a
receding horizon fashion. The cost function in the optimal
control problem includes a penalty on the deviation of ⟨α⟩ from
its desired crystal shape. An additional penalty cost is included to
account for the negative deviation of the crystal size when its size
is less than the desired minimum. In the proposed MPC, crystal
growth and nucleation are estimated by using the nonlinear
equations, Figure 5, and eq 23, respectively. The proposed MPC
formulation is presented as follows:
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where t is the current time, ti, i = 1, 2, ..., p, is the time of the ith
prediction step, ti = t + iΔ, respectively, tf is the total time of the
batch simulation, F⟨α⟩,i is the cost function expressing the
deviation of ⟨α⟩ from its set-point ratio, αset, Fh110,i and Fh101,i are
the cost functions expressing the penalty on the negative
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deviation of ⟨h110⟩ and ⟨h101⟩ from its minimum crystal size,
h110,min and h101,min, at time ti, p is the number of prediction steps,
pΔ is the specified prediction horizon, Tj,i, i = 1, 2, ..., p, is the
jacket temperature at the ith step, Tj,i = Tj(t + iΔ), respectively,
Tmin and Tmax are the lower and upper bounds on the jacket
temperature, respectively, RT is the limit on the rate of change of
the jacket temperature, nlimit limits the number of crystals
nucleated during the latter half of the simulation time. The
number of crystals, n(h110,h101,ti), and average height of the
crystal face j, ⟨hj(ti)⟩, at time ti are updated at every sampling time
through the recursive equations (cf. eq 24), respectively. The set
of optimal jacket temperature, (Tj,1, Tj,2, ..., Tj,p), is obtained by
solving themultivariable optimization problem of eq 24, and only
the first value of the optimal jacket temperature trajectory, Tj,1, is
applied to the protein crystallization process until the next
sampling time. Then, a new measurement of protein
concentration in the continuous phase is received from the
kMC simulation, and the MPC problem of eq 24 is resolved for
the computation of the next optimal input trajectory. In a
previous work,37 empirical expressions were used to simulate the
crystal growth and nucleation. In the present work, however, the
kMC simulations are executed based on the rate equations
described previously to simulate the crystallization process to a
higher degree of precision. Furthermore, the uncertainty in the
system and the model mismatch will be taken into account in the
protein concentration variations. For further results including
robust-control of crystallization systems and model predictive
control, the reader may refer to ref 48 and ref 30, respectively.

■ BATCH CRYSTALLIZATION UNDER CLOSED-LOOP
OPERATION

In this section, the proposed model predictive controller of eq 24
is solved via a local constrained minimization algorithm using the
nonlinear algebraic models described previously (cf. Figure 5)
which show the solute concentration and temperature depend-
encies of the crystal growth rate and growth rate ratio,
respectively. At each sampling time (1 s), the optimal jacket
temperature, obtained by solving the optimization problem of eq
24, is applied to the closed-loop system until the next sampling
time.
The solute concentration randomly fluctuates following the

Gaussian distribution given by eq 25 below to simulate the
uncertainty in the system at pH 4.5 and 4.0% NaCl, i.e.,

σ⟨ ⟩ = ⟨ ′ ⟩ =C t C C t C t C( ) , ( ) ( )n n n
2 2

(25)

where Cn is the nominal concentration of the system and σn
2

shows how far a set of measured concentrations deviates from its
nominal value. We also note that the concentration variation
affects the attachment rate [cf. eq 1]. For all closed-loop
simulations, the nominal concentration is 44 mg/mL, and the
deviation, σn, is equal to 1.5%. The maximum rate of change of
the jacket temperature is 2 °C/min. The volume of the
crystallizer is 5.0 L. We note that we have taken into account
the following heuristic: In the beginning, the crystallizer operates
in the labile zone where the supersaturation level is so high that
both the nucleation and the crystal growth occur. Then the
crystallizer operates in the metastable region which is a relatively
high supersaturation region where nucleation rarely occurs, but
the crystal growth still does. This will help prevent the small
crystal fines appearing at the end of the batch run, and this
heuristic is taken into consideration in this work as one of the
constraints restricting the number of crystals nucleated during

the latter half of the simulation time, nlimit = 500. Since the MPC
formulation uses steady-state growth rates (cf. Figure 5b,c)
which implies that it is a slowly varying process, the number of
prediction steps is set to be p = 1. The time interval between the
two sampling times is 1 s. The prediction horizon of each step is
fixed at pΔ = 1 s. For the purpose of simulation, the solute
concentration is set to be fluctuating every 1 s with the nominal
valueCn(t) at time t. The computational time that is used to solve
the optimization problem with the current available computing
power is negligible with respect to the sampling time interval.
The closed-loop simulation duration tf = 8000 s.
In the closed-loop simulations the control objective is to drive

the expected growth rate ratio to the desired set-point values, ⟨α⟩
= 0.85 and ⟨α⟩ = 1.11. We chose these two values to represent
two different crystal morphologies available with lysozyme
crystals. For the former set-point value, the protein crystal shape
is slightly elongated along the (101) direction while it is more
equidimensional for the latter case. Thus, the cost function of this
problem contains a penalty on the deviation of the expected
growth rate ratio from the desired shape.
We compare the performance of the proposed MPC to that of

two other conventional control strategies, constant temperature
control (CTC) and constant supersaturation control (CSC).
Compared to MPC, the crystal shape distribution as well as the
solute concentration, the temperature, and the supersaturation
propagates in a very different manner under CTC and CSC.
Under CTC, the crystallizer temperature is maintained constant
which results in a constant solubility during the batch run, and
thus, the depletion in the solute concentration eventually leads to
the decrease of supersaturation. Under CSC, however, the
controller tries to keep a constant supersaturation throughout
the batch run. This is done by constantly decreasing the solute
concentration, thus maintaining the supersaturation level nearly
constant throughout the batch. Under CSC, therefore, the
growth rate which only depends on the supersaturation itself
remains constant during the batch run. The nucleation rate also
stays constant under CSC since it is only dependent on the
supersaturation. In the case of MPC and CTC, however, a biased
nucleation occurs (e.g., 50% of crystals nucleate in the first 10%
of the entire batch simulation time) throughout the batch run
due to the change in the supersaturation because of the depletion
in the solute concentration or the drop in the crystallizer
temperature. We note that if the temperature reaches its optimal
state relatively later in the batch run, the biased nucleation could
result in a broader crystal shape distribution from a desired set-
point value compared to that of the operation under CSC.
For the lower growth rate ratio set-point value, ⟨α⟩ = 0.85, the

results of the closed-loop simulations are shown in Figures 6, 7,
and 8 with respect to the crystallizer temperature, the solute
concentration, the supersaturation, the nucleation time distribu-
tion, and the crystal shape distribution at the end of the batch run.
Specifically, Figure 6 shows results for batch runs under three
different control strategies (i.e., MPC, CTC at three different
temperature values, and CSC at three different supersaturation
values). Note that we chose 3 values for the initial temperature
for the simulations under CTC at To = 13 °C, To = 18 °C, and To
= 23.4 °C which are two extremes, and one in the middle of the
temperature trajectory computed by the MPC executed at c = 44
mg/mL and To = 13 °C. The three values for the supersaturation
were chosen in the same manner for the simulations under CSC
at σ = 2.34, σ = 2.84, and σ = 3.41, respectively. It is also noted
that two different sets of the solute concentration and the
temperature may result in the same supersaturation σ, and it is
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the main driving force for the crystal growth and nucleation.
Therefore the evolution of supersaturation can be used with
nucleation time distribution, Figure 7, to explain the behavior of

the crystal shape distribution under MPC for different set-point
values.
It has been demonstrated in our recent work12 that the final

crystal shape distribution is very narrow when the initial
temperature is close to the optimal temperature. Additionally,
depending on the desired crystal morphology and the initial
temperature of the crystallizer, it takes a different amount of time
until the temperature reaches the desired set-point value.
Specifically in Figure 8, for the lower desired crystal growth
rate ratio, ⟨α⟩ = 0.85, the initial temperature of the crystallizer
was chosen to be To = 13 °C although it is not very close to the
optimal temperature ∼23.4 °C. Therefore, starting from a high
initial temperature is encouraging, because the system reaches its
optimal temperature faster which enables the crystals to
uniformly nucleate along the batch and they undergo an optimal
temperature profile from the beginning. Note that the proposed
MPC with a relatively low initial temperature still outperforms
other conventional polices as it is seen in Figure 8, and the

Figure 6. The propagation of temperature, concentration, and
supersaturation with time during the batch run under closed-loop
operation at different initial temperature values and supersaturation
levels alongside MPC aiming at growth rate ratio set-point value, ⟨α⟩ =
0.85.

Figure 7. Profiles of nucleated crystals with time during the batch run
under closed-loop operation under MPC aiming for different growth
rate ratio set-point values, ⟨α⟩ = 0.85 and ⟨α⟩ = 1.11, respectively. It is
noted that the nucleation time distribution is a dimensionless variable
and is normalized over the entire crystal population so that summing
over all histogram bars, for each different set of growth rate ratio, will add
up to 1.

Figure 8. The final crystal shape distribution at the end of the batch
simulation under different closed-loop operations under CTC and CSC
at different initial temperature values and supersaturation levels for CTC
and CSC, respectively, and MPC for the growth rate ratio set-point
value, ⟨α⟩ = 0.85. It is noted that the crystal shape distribution is a
dimensionless variable and is normalized over the entire population so
that summing over all histograms will add up to 1 for each control
strategy.
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performance of the MPC can be further improved by using a
higher initial temperature. Figure 6a displays that the solute
concentration has depleted significantly for the simulations
under the CSC at σ = 3.41 and the CTC atTo = 13 °Cwhich both
result in high supersaturation levels, and hence, high growth and
nucleation rates. On the other hand, the proposed MPC, CTC at
the relatively high temperature, To = 18 °C and To = 23.4 °C, and
the CSC at the low supersaturation, σ = 2.34 and σ = 2.84, show
no significant changes in their solute concentration because of a
low growth rate resulting from a low supersaturation level. We
note that in Figure 6, the solute concentration, the super-
saturation, and the temperature with time under CTC at To = 18
°C are very similar to those of CSC at σ = 2.84. The resulting
crystal size and shape distributions are very similar as it is shown
in Figure 8 and Table 3 which implies that CTC and CSC

policies result in a similar performance when their growth and
nucleation rates are low and their initial conditions are identical.
Owing to the negligible depletion in the solute concentration, the
black solid line in Figure 6b shows that the MPC computes a
jacket temperature that is first monotonically increasing to the
optimal value and then it is staying constant. Usually for a low
growth rate ratio, the optimal temperature is high where the
system is usually very sensitive to the solute concentration
changes as it is shown in Figure 5. Specifically, the growth rate
ratio declines drastically at high temperature, where the desired
low growth rate ratio is available, in response to the small
variation in the concentration. In Figure 7, for ⟨α⟩ = 0.85, the
optimal temperature is ∼23.4 °C and high initial supersaturation
levels result in the nucleation of 34% of the total crystals within
the first 500 s of the batch run. Although the MPC in this case,
owing to the favored nucleation in the beginning, results in a
similar crystal shape distribution compared to that of CTC at To
= 23.4 °C where the constant optimal temperature is maintained
for the crystallizer over the entire batch. The final crystal shape
distribution for theMPC in Figure 8 can be very narrow and even
closer to the desired values by adjusting the initial temperature
closer to the optimal temperature, from To = 13 °C to To = 23.4
°C. Evaluation of the sensitivity of the controller design with
respect to the initial temperature of the crystallizer has been
presented in our recent work.12

In Table 3, the characteristics of crystal size along the (110)
direction of the final crystals at the end of the batch run are
compared under different control strategies, including the
expected crystal size along (110) direction, ⟨h110⟩, and r10, r50,
r90, which are the 10%, 50%, and 90% population fractions of the
crystal size distribution for h110, respectively, representing the
percentage of population at crystal size less than that value. Only
the crystal size for the (110) direction, ⟨h110⟩, is included since
h110 and h101 are within the same order of magnitude. This table

also includes the span which is defined as (r90−r10)/r50, and it is a
widely used characteristic in the pharmaceutical industries.
Comparing the results of the five control strategies listed in Table
3, it is clear that the MPC is able to increase the crystal size and
achieve a low polydispersity while it also drives the expected
crystal shape, ⟨α⟩, to the desired value as it is seen in Figure 8.
Although the CTC at To = 23.4 °C results in a similar ⟨α⟩ to that
of MPC, it leads to much smaller crystal size with a high
polydispersity, where neither of them is desirable. The very low
span value for the MPC indicates a narrow crystal size
distribution (a low polydispersity) which is obtained by properly
dealing with the biased nucleation rate described previously.
Again, the controller performance can be improved if we choose
an initial temperature as close as possible to the optimal
temperature.
In contrast to ⟨α⟩ = 0.85, the case of the higher desired crystal

growth rate ratio, ⟨α⟩ = 1.11, has shown that changes in the
solute concentration are no longer negligible which can be
attributed to the high growth and nucleation rates. Specifically,
the solid black line in Figure 9 shows that the crystallizer
temperature manipulated by the proposed MPC results in the
supersaturation first increasing due to a drastic drop in the
crystallizer temperature, then decreasing almost to the lowest
level, which is then followed by a series of rise-and-fall until the
end of the batch run. Since the control objective is to obtain a
very narrow final crystal shape distribution centering around a
desired set-point value, the result can be understood as follows: a
drastic initial rise in the supersaturation (from σ = 3.4 to σ = 3.87)
which does not significantly increase the number of crystals
nucleated because a small increase in the supersaturation level
does not result in a substantial increase in the nucleation rate for
σ > 3.11 as it is shown in eq 23; then the supersaturation drops to
a low level in order to minimize the nucleation rate as the growth
regime is changing from the labile to the metastable zone.
Thereafter, the series of rise-and-fall is attributed to the optimal
jacket temperature trajectory computed from the proposedMPC
which drives the system to the vicinity of the optimal growth
conditions for a desired growth rate ratio while dealing with the
solute concentration reduction from 44 to 35 mg/mL as seen in
Figure 9a−c. Note that a high supersaturation level, which is
necessary for the desired equidimensional shape, can result in a
significant solute concentration drop due to a higher crystal
nucleation rate as well as due to very fast crystal growth. The
crystal growth rate ratio, however, is dependent on super-
saturation which is the ratio between the solute concentration
and the solubility. Thus, a desired supersaturation level can be
maintained by appropriately decreasing the solubility, which is a
function of the crystallizer temperature. In Figure 9b, the
computed trajectory for the crystallizer temperature by the
proposedMPC is similar to that of the standard CSC; however, it
is different in a sense that the MPC deals with the nuclei
formation in order not to have small crystal fines at the end of the
batch process. In Figure 7, the crystallizer was run with a
temperature which is relatively close to the optimal temperature
of∼11 °C and, as a result, crystals nucleate uniformly throughout
the batch run. Because of the insensitivity of the system to
variations in the temperature and solute concentration at a high
desired crystal growth rate ratio, the crystal shape distribution
under MPC is similar to that of the MPC at the low growth rate
ratio, ⟨α⟩ = 0.85, as it is seen in Figure 10.
As compared to the ⟨α⟩ = 0.85, in Table 4 a high span (a high

polydispersity) but a narrow and desired crystal shape
distribution is resulting from a nearly uniform crystal nucleation

Table 3. Comparison between the Simulation Results for the
Crystal Size in (110) Direction under Three Different Control
Strategies for the Desired Growth Rate Ratio of ⟨α⟩ = 0.85

control strategy ⟨h110⟩ r10 r50 r90 span

MPC 11.83 3.15 12.56 18.82 1.25
CTC: T = 13 °C 58.41 11.29 57.79 106.68 1.65
CTC: T = 18 °C 29.78 6.52 29.73 52.96 1.56
CTC: T = 23.4 °C 3.39 0.92 3.39 5.87 1.46
CSC: σ = 2.34 3.96 0.95 3.93 6.91 1.52
CSC: σ = 2.84 29.75 6.50 29.63 52.79 1.56
CSC: σ = 3.41 67.98 14.19 67.94 121.79 1.58

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie400584g | Ind. Eng. Chem. Res. 2014, 53, 5002−50145011



rate under MPC compared to the simulations under CTC and
CSC. In addition, the MPC successfully deals with the significant
concentration drop to maintain the desired crystal shape, ⟨α⟩ =
1.11. Although the CTC and CSC result in similar shape
distributions to that of MPC, their performances are not robust

to a severe concentration drop. The relatively high span value for
the MPC indicates a wide size distribution (high polydispersity)
which is resulting from the significant drop in the concentration
described previously.
In summary, MPC successfully drives the final crystal shape

distribution to a desired set-point value and is found to be robust
with respect to both an undesirable nucleation rate increased in
the earlier stage and a drastic drop in the solute concentration.
Additionally, a low polydispersity can be achieved depending on
the desired crystal morphology. For instance, for ⟨α⟩ = 1.11, it is
more likely to obtain a narrow crystal shape distribution with a
high polydispersity because the crystallizer promptly responds to
the depletion in the solute concentration which is reflected as a
series of rise-and-fall in the crystallizer temperature in Figure 9,
and the high polydispersity is resulting from uniformly nucleated
crystals. For ⟨α⟩ = 0.85, however, crystals with desired shape and
a low polydispersity can be achieved at a very high initial
temperature in the crystallizer, because the system reaches its
optimal temperature fast which results in the crystals uniformly
nucleated along the batch.

■ CONCLUSIONS AND FUTURE WORK
The present work focuses on comparing the performance of the
proposed model predictive control (MPC) scheme to that of
constant temperature control (CTC) and constant super-
saturation control (CSC) in regulating crystal shape and size
distributions to desired values. More specifically, the CTC
operating strategy drives the crystallizer conditions from the
labile zone to the metastable zone, and the CSC policy maintains

Figure 9. The propagation of temperature, concentration, and
supersaturation with time during the batch run under closed-loop
operation at different initial temperature values and supersaturation
levels alongside MPC aiming at growth rate ratio set-point value ⟨α⟩ =
1.11.

Figure 10. The final crystal shape distribution at the end of the batch
simulation under different closed-loop operations under CTC and CSC
at different initial temperature values and supersaturation levels for CTC
andCSC, respectively, andMPC for the growth rate ratio set-point value
⟨α⟩ = 1.11. It is noted that the crystal shape distribution is a
dimensionless variable and is normalized over the entire population so
that summing over all histograms will add up to 1 for each control
strategy.

Table 4. Comparison between the Simulation Results for the
Crystal Size in (110) Direction under ThreeDifferent Control
Strategies for the Desired Growth Rate Ratio of ⟨α⟩ = 1.11

control strategy ⟨h110⟩ r10 r50 r90 span

MPC 22.76 4.54 22.29 42.57 1.71
CTC: T = 11 °C 25.14 4.45 24.58 46.82 1.72
CTC: T = 13 °C 21.03 4.08 20.79 38.38 1.65
CSC: σ = 3.34 22.39 4.71 22.37 40.07 1.58
CSC: σ = 3.52 28.23 5.84 28.21 50.63 1.59
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the crystallizer conditions in the metastable zone, respectively, to
maximize the size of protein crystals.
First, we focus on the modeling of a batch crystallization

process used to produce tetragonal hen egg white lysozyme
crystals via kinetic Monte Carlo (kMC) simulation. The kMC
simulation models batch protein crystallization via adsorption,
desorption, and migration mechanisms on the (110) and (101)
faces. Then, in order to describe the nucleation occurring at
different times in the batch simulations, the nucleation rate
expression was extracted from experimental results by Galkin et
al.42 In addition, the dependence of the crystal growth on
temperature and protein solute concentration is demonstrated in
3-D nonlinear models constructed from open-loop kMC
simulations. The present work also develops mass and energy
balances to account for the depletion in the protein solute
concentration and the drop in the crystallizer temperature by
crystallization. Finally, anMPC, which makes use of the mass and
energy balances, is designed to produce crystals with a desired
morphology by regulating the crystal growth conditions in the
crystallizer through the manipulation of the jacket temperature
which is in accordance with standard batch crystallization
practice.
Simulation results show that the proposed MPC is able to

regulate the crystal shape distribution to a desired set-point value
while reducing the effect of an undesirable biased nucleation in
the earlier stage and a drastic drop in the solute concentration.
Comparing the simulation results of theMPCwith those of other
conventional operating strategies, crystals with a low polydisper-
sity can be produced depending on the desired crystal
morphology. For instance, for ⟨α⟩ = 1.11, the crystallizer under
MPC results in a narrow crystal shape distribution with a high
polydispersity, because the crystallizer immediately responds to
the depletion in the solute concentration and produces a series of
rise-and-fall in the jacket temperature computed from the
proposed MPC in Figure 9, and a high polydispersity is resulting
from uniformly nucleated crystals. For ⟨α⟩ = 0.85, however,
crystals with desired morphology and a low polydispersity can be
achieved at a very high initial temperature in the crystallizer,
because the system reaches its optimal temperature fast and it
causes a uniform nucleation rate along the batch. In this case,
therefore, we can reduce the batch time considerably, because the
system reaches its optimal state faster. Furthermore, only protein
solute concentration and temperature measurements are needed
to implement this operating policy in practice; no additional
measurements such as crystal size and shape are required in the
controller.
For the future work, crystal growth from a defect or the

dislocation of a monomer in a crystal layer can be considered
over the course of the kMC simulation run which may initiate a
spiral crystal growth due to a fast migration process. At a low
supersaturation range where it is observed in experiments that
spiral growth dominates,49 this consideration can potentially
produce more realistic kMC simulation for the crystal growth.
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