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ABSTRACT: In this work, we develop a novel run-to-run-based model predictive controller (R2R-based MPC) for a batch
crystallization process with process drift and inherent variation in solubility and crystal growth rates. In order to achieve the
production of crystals with desired product qualities, a conventional MPC system with nominal process model parameters is
initially applied to a batch protein crystallization process. However, the mismatch between the process model and the actual
process dynamic behavior because of the process drift and variability becomes severe as batch runs are repeated. To deal with this
problem of batch-to-batch variability, after each batch is over, the post-batch crystal attribute measurements, including average
crystal shape and size and the number of crystals, are used to estimate off-line the drift of the process model (used in the MPC)
parameters from nominal values via a multivariable optimization problem. Along with the adapted controller model parameters,
the exponentially weighted moving average (EWMA) scheme is used to deal with the remaining offset in the crystal shape values
and thereby to compute a set of optimal jacket temperatures. Furthermore, the crystal growth in the batch crystallization process
is modeled through kinetic Monte Carlo simulations, which are then used to demonstrate the capability of the proposed R2R-
based MPC scheme in suppressing the inherent variation and process drift in solubility and crystal growth rates. It is
demonstrated that the production of crystals with a desired shape distribution is successfully achieved after three batch runs
through the use of the proposed R2R-based MPC, while it takes 24 batch runs for the system with the EWMA-type constant
supersaturation control to achieve the same objective.

■ INTRODUCTION

The production of crystals with desired size and shape
distributions from batch crystallization processes is a subject
of great interest to the pharmaceutical industry. Specifically,
crystal size and shape significantly influence the bioavailability
of drugs, such as the stability of a carrier to the target site,
melting points, and dissolution rates.1

In recent years, model predictive control (MPC) of
crystallization has received growing attention within the
crystallization process community owing to its unique ability
to handle constraints on the inputs, the outputs, and the rate of
change of inputs.2−5 Another key benefit of using MPC is its
applicability to both dynamic and multi-input/multi-output
systems.6,7 However, the conventional MPC technique is not
designed to take advantage of the repetitive nature of batch
processes; thus, in most cases the control performance is not
improved as batch runs are repeated. Furthermore, the control
performance of the MPC is very sensitive to model
uncertainties such as changes in the kinetic parameters, which
tend to persist from run to run.8

Run-to-run (R2R) control uses data from previous batches to
adjust controller model/settings for the next batch run.9−13

Typically, the R2R control methods can be categorized into
two distinct classes. For the case of changes in the model
parameters, a parameter adaptive control (PAC) scheme, such
as the Kalman filter, is applied in order to tune the nominal
process model, which is then used to compute control inputs.14

However, if there is no explicit variation in the model

parameters, an offset drift cancellation (ODC) approach, such
as exponentially weighted moving average (EWMA), should be
employed to estimate the current offset using the post-batch
measurements from the past batch runs, and inputs are
appropriately computed to compensate for the estimated
offset.15

While significant efforts have been devoted to the develop-
ment of the R2R control for semiconductor manufacturing
processes,10,15 very limited attempts have been made to
integrate learning-type controls with feedback controls for a
variety of chemical processes. For example, the idea of
integrating MPC with repetitive control was developed in
order to improve the handling of periodic errors and reference
trajectories for continuous processes under periodic oper-
ation.16 Another example is an R2R-based concentration
control strategy that was proposed for the polymorphic
transformation of L-glutamic acid from the metastable α-form
to the stable β-form to maximize the yield of β-form.17 Lastly,
an R2R control algorithm integrated with a supersaturation
control scheme in cooling crystallization was also inves-
tigated.18
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Considering the lack of real-time measurements of the
product qualities in a standard batch crystallization process, we
propose an R2R-based MPC to enhance the controller
performance by learning from the past batch runs. Further-
more, the idea of the PAC strategy that estimates controller
model parameters and utilizes them for the computation of
improved control inputs is borrowed and used along with the
ODC scheme. The major benefit of the proposed R2R-based
MPC scheme is in its unique capability to deal with the
uncertainties and drift in the process while simultaneously
satisfying the constraints imposed on the state variables and
inputs; this integrated approach will lead to the production of
crystals with a desired shape distribution from batch to batch.
More specifically, in the present work, we consider a batch

process for the crystallization of lysozyme crystals with
uncertainties in the crystal growth rates in the direction of
(110) and (101) faces as well as in the solubility. The kinetic
Monte Carlo (kMC) simulation developed in the previous
work19 is regarded as a representation of the batch
crystallization process and used for the simulation of tetragonal
hen egg white (HEW) lysozyme crystals. In order to achieve
the production of crystals with a desired shape distribution, the
optimal jacket temperature profile is computed from a
conventional MPC using a nominal reduced-order moment
model and is applied to the first batch. After the first run, the
post-batch measurements (e.g., the crystal size and shape
distributions and number of crystals) are used to solve a
multivariable optimization problem (MOP) off-line for the
identification of the process model parameters used in the
MPC for the crystal growth rates and solubility. Additionally,
the real-time measurements for the solute concentration and
temperature in the crystallizer from the previous batch are used
in the form of constraints in the MOP to ensure the physical
meaning of the process model parameters computed from the
MOP. Along with the adapted process model parameters, the
EWMA scheme is used to deal with the remaining offset in the
crystal shape values and thereby to compute a set of new
optimal jacket temperatures. As a result, the production of
crystals with a desired shape distribution is achieved by
properly suppressing the inherent variation and process drift in
the crystal growth rates and solubility. Lastly, the control
performance of the proposed R2R-based MPC is compared
with those of the conventional MPC and EWMA-type constant
supersaturation control (CSC).

■ MODELING OF BATCH CRYSTALLIZATION
PROCESS

In this work, we focus on a batch protein crystallization process
(cf. Figure 1), the detailed geometrical parameters of which are
taken from ref 20 and presented as follows: a three-blade
propeller is used; both the inner diameter and the filling height
of the crystallizer are 0.12 m; the clearance height (i.e., the
height from the bottom to the impeller) is 0.04 m; and the
diameter of the impeller is 0.06 m.
Crystal Nucleation and Growth. The nucleation rate B of

lysozyme crystals nucleated at 4% (w/v) NaCl and pH = 4.5 is
taken from ref 21 and is presented as follows:

σ σ

σ σ
=

+ ≥

× <−⎪

⎪⎧⎨
⎩

B
0.041 0.063 for 3.11

8.0 10 exp(4.725 ) for 3.118
(1)

with units cm−3·s−1. For simulation and testing of the control
performance of the proposed R2R-based MPC control scheme,

the degree of secondary nucleation induced by the attrition
process among crystals is disregarded. The supersaturation level
σ is defined as the logarithmic ratio between the solute
concentration C and solubility s (mg/mL) as follows:

σ = C sln( / ) (2)

where the solubility s is calculated using a second-order
polynomial equation, which has been calibrated with the
experimental data22 at 4% (w/v) NaCl and pH = 4.5 and is
given as

= − +s T T0.0109 0.1146 1.17732 (3)

Note that the temperature T in the crystallizer is in Celsius.
The crystal growth is modeled through the kMC simulation
using the rate equations presented in Table 1, which were
originally developed in ref 23.

In order to capture the dependencies of the surface processes
(e.g., adsorption, desorption, and migration) on the surface
micro-configuration, a number of modeling parameters are
considered, including the adsorption coefficient K0

+, the number
of nearest neighbors i, the average bonding energy per bond
Epb, and the total binding energy ϕ when a molecule is fully
surrounded by neighbors (when i = 4).24 In this work, extensive
open-loop kMC simulations were executed in order to find a
set of physically meaningful Epb and ϕ values for (110) and
(101) faces such that the simulated growth rates are calibrated

Figure 1. Batch crystallizer configuration.

Table 1. Surface Processes
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with the experimental data in the literature. The interested
readers may find more detailed information about the
development and execution of the kMC simulation for batch
processes in ref 19.
Mass and Energy Balance Equations. The mass balance

equation that computes the amount of the protein solute C
remaining in the continuous phase is given by the following
ordinary differential equation (ODE):

ρ
= − =C

t V

V

t
C C

d
d

d

d
, (0)c

batch

crystal
0

(4)

where Vcrystal is the total volume of crystals in the crystallizer, C0
is the initial protein solute concentration, ρc is the crystal
density, and Vbatch is the volume of the batch crystallizer.
Similarly, the evolution of the temperature T in the crystallizer
is computed from the following ODE:
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where Tj is the crystallizer jacket temperature, T0 is the initial
crystallizer temperature, ΔHc is the enthalpy of crystallization, ρ
is the density of the continuous phase, Cp is the specific heat
capacity, Ac and Uc are the area and the overall heat transfer
coefficients between the crystallizer wall and the jacket stream
Tj, respectively, and the values for the process parameters are
presented in Table 2.

Population Balance Equation. The population balance
equation (PBE) that describes the evolution of the crystal
volume distribution for the batch crystallization process with
crystal nucleation and growth can be presented as follows:

σ
δ∂

∂
+

∂
∂

=n V t
t

G V n V t
V

B V
( , ) ( ( , ) ( , ))

( )vol
(6)

where B is the nucleation rate, δ(·) is the dirac delta function,
and Gvol(V,σ) is the volumetric crystal growth rate, which will
be precisely formulated in the following section. Additionally,
we assume that, at time t = 0 s, there are no crystals inside the
batch crystallizer. This PBE will be used for the design of a
moment model in the following section.
Moment Models. In order to deal with the complexity in

directly utilizing eq 6 for the numerical computation of a crystal
volume distribution in real time, the method of moments is
applied to eq 6, and moment models that describe the
dominant dynamics, including the evolution of the number of
crystals (i.e., zeroth momentM0) and the total volume (i.e., first
moment M1) of crystals in the batch process, are obtained. This
moment model can then be used for the design of an MPC.

The jth moment is defined as Mj(t) = ∫ 0
∞Vjn(V,t) dV. For the

zeroth moment,

=
M

t
B

d
d

0
(7)

and for j ≥ 1, the jth moment equation has the following form:

= −
M

t
jG M

d

d
j

jvol 1 (8)

Prediction of Crystal Shape. Based on the assumption
that the geometry of the HEW lysozyme crystals is a
rectangular prism,25 the volumetric crystal growth rate is
formulated as follows:

= ⟨ ⟩⟨ ⟩ + ⟨ ⟩G G h h G h2vol 110 110 101 101 110
2

(9)

where ⟨h110⟩ and ⟨h101⟩ are the average crystal heights in the
direction of (110) and (101) faces, which can be computed as
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where G110 and G101 are the crystal growth rates in the direction
of (110) and (101) faces, respectively. The following
expressions are calibrated with the experimental data26 for 2.1
≤ σ ≤ 4.1 and are used in the MPC in order to predict the
dynamic behavior of the crystal growth rates on each face:

σ σ σ

σ σ σ

= − + −

= − + −

G

G

0.1843 1.1699 2.8885 2.5616

0.1893 1.2264 2.9887 2.5348

110
3 2

101
3 2

(11)

■ R2R-BASED MODEL PREDICTIVE CONTROL

Model Predictive Control Formulation. In this section,
we initially propose a model predictive controller (also called
MPC) that will be used to compute a set of optimal jacket
temperatures, which will lead to the production of crystals with
a desired shape distribution at the end of the batch. The
moment models (cf. eqs 7 and 8) are derived from a population
balance model and used along with the mass and energy
balance equations to describe the dominant dynamic behavior
of the batch crystallization process. The growth rate equations
are computed from open-loop kMC simulations. The design
parameters for the proposed R2R-based MPC are chosen so
that the proposed R2R-based MPC computes an optimal
temperature profile for the production of crystals with a desired
shape distribution. An objective function (cf. eq 12a) is defined
by the sum of squared errors of the average crystal shape from a
desired set-point value throughout the prediction horizon. The
jacket temperature is used as a manipulated input, and
constraints on the range of temperatures in the crystallizer
and the rate of change of the jacket temperature are imposed
(cf. eq 12b). The average crystal height on each face is updated
according to eq 12g, and the volumetric growth rate is
computed through eq 12h. The resulting MPC formulation is
given by the following optimization problem:

Table 2. Parameters for the Batch Crystallizer Model

ρc 1400 mg/cm3

ΔHc −4.5 kJ/kg
ρ(t) 1000 + C(t) mg/cm3

Cp 4.13 kJ/K·kg
Vbatch 1 L
Ac 0.25 m2

Uc 1800 kJ/m2·h·K
C0 42 mg/cm3

T0 17 °C
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where p = 10 is the number of prediction steps, Δ = 40 s is the
sampling time, ti = t + iΔ is the time of the ith prediction step,
and Tj,i is the jacket temperature of the ith prediction step. At
every sampling time, a set of optimal jacket temperatures, (Tj,1,
Tj,2, ..., Tj,p), is computed by solving eq 12 with new
measurements (C and T) received from the crystallizer (i.e.,
kMC simulation), and the first value, Tj,1, is applied to the
crystallizer until the next sampling time.
Batch-to-Batch Parameter Estimation. The uncertainty

associated with the solubility is modeled by multiplying
correction factors, γs1, γs2, and γs3, to the coefficients of the
second-order polynomial equation (cf. eq 13c). Similarly, the
uncertainty in the crystal growth rate, which is important
because the growth mechanisms depend on the supersaturation
level, is reflected by multiplying γ110, γ101 to the nominal growth
rate expressions (cf. eq 13d). Specifically, the spiral growth will
dominate at low supersaturation while 2-D nucleation is a
prevailing mechanism at high supersaturation.27

In this work, an MOP is proposed in order to estimate the
system parameters using the post-batch measurements. The
correction factors, Γ̲ = [γ110 γ101 γs1 γs2 γs3], are chosen as the
decision variables in the MOP. An objective function consists of
the sum of squared errors of the predicted average values of the
crystal size and shape distributions at the end of the batch
process from the measurements. Additionally, the real-time
measurements (C, T) throughout the batch are imposed as
constraints in eq 13f to make sure the predicted values are close
to the measured ones where εC and εT are tolerances, and
another constraint is imposed in eq 13g for the viability of the
computed decision variables. The post-batch measurements
(⟨α⟩, ⟨V⟩, and M0) are used in eqs 13a and 13e. Note that X̂k is
a predicted variable X for the kth batch run and Xk represents a
measured variable X after the kth batch run. The resulting
optimization problem is as follows:

α α

γ γ γ

γ γ

ε ε
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̂ = − +

̂ = ̂ =

̂ =

| ̂ − | ≤ | ̂ − | ≤

̲ ≤ Γ̲ ≤ ̲

̂
̂Γ

Γ Γ

w t t
w V t V t

s T T

G G G G

M t M t

C t C t T t T t

l u

min ( ( ) ( ) )
( ( ) ( ) )

(13a)
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2 f f
2
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2 3
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0 f 0 f

Remark 1. It is important to note that, although linearly
appearing parametric uncertainties are considered in the present
work, certain classes of nonlinearly appearing parametric
uncertainties can be expressed as linear with suitable def initions
of the nonlinear terms in which the uncertain parameters appear
with linear terms; thus, they can be readily addressed within the
proposed f ramework. In general, the handling of nonlinearly
appearing parametric uncertainties may lead to the need to solve
constrained, nonlinear optimization problemsa task that can be
handled with the current optimization solvers, particularly given the
of f-line nature of the parameter estimation calculations.
Remark 2. Typically, the post-batch measurements are

conducted of f-line; thus, the measurement noise is relatively smaller
than that of real-time online measurements. Therefore, it is assumed
that the accuracy of the post-batch measurements used in this work
is acceptable.

Run-to-Run Control Implementation Algorithm. In
general, there are many different ways that an R2R controller
can be formulated, and the control performance is mainly
determined by the design of the observer, where a simple
model may be an average of consecutive errors or may be as
complicated as a Kalman filter.
For the batch crystallization process with changes in the

process parameters, the PAC scheme can be used. However, if
there are too many process parameters to estimate, a large
number of measurements may be required for sufficient
accuracy. Furthermore, by the time we have sufficient data to
estimate the process model parameters, they might have drifted
significantly.15 In this situation, using PAC may further increase
the offset. To deal with this issue, the following EWMA control
scheme is proposed along with eq 13 for the computation of
inputs in the MPC as follows:

α⟨ ⟩ = Γ̂ + ̂̂t f e( ) ( )k k kf (14)

where α⟨ ⟩ ̂t( )f k is the predicted average crystal shape at the end

of the kth batch, f(Γ̂k) is a nonlinear equation that consists of
eqs 12c−12k and depends on the system parameters Γ̂k, and ek̂
is the estimated model prediction error. A schematic
representation of the proposed R2R-based MPC structure is
illustrated in Figure 2.

1. During the kth batch run, the real-time measurements of
Ck and Tk are available from the batch crystallization

process, and Γ̂k is used in the MPC to compute a set of
optimal jacket temperatures Tj that will drive the
temperature T in the crystallizer to a desired value.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie502377a | Ind. Eng. Chem. Res. 2015, 54, 4293−43024296



2. At the end of the kth batch process, the post-batch
measurements of product qualities such as average crystal
size, shape, and number of crystals are measured and

used to re-compute Γ̂k+1 by solving eq 13.
3. The model prediction error is updated recursively

through a weighted average, ek̂+1 = (1 − λ)ek̂ +

λ(⟨α(tf)⟩k − f(Γ̂k)), where 0 < λ ≤ 1 is the learning
factor.

4. During the k+1th batch run, the predicted average crystal

shape α⟨ ⟩ ̂t( )f k+1 is computed through eq 14 and used in

the MPC to compute a set of optimal Tj values.
5. Increase k by 1 and repeat steps 1−5.
Remark 3. In general, the learning factor can be understood as a

process gain in the conventional P-controller in that a high λ would
guarantee fast convergence while a low λ is preferred for stability of
the controlled output. Therefore, the trade-of f between fast
convergence and stability has to be evaluated by a trial-and-error
procedure. Note that the nominal system parameters are used a
priori for Γ̂0, and it is assumed that there is no parametric model
mismatch in the beginning (i.e., e0̂ = 0).
Remark 4. Both ideas of an of fset drif t cancellation (ODC)

scheme and an parameter adaptive control (PAC) schemes are used
in the proposed R2R-based MPC along with a conventional MPC
to reduce the of fset while simultaneously achieving fast convergence.
Therefore, the proposed R2R-based MPC is able to deal with the
parametric mismatch (i.e., inherent variation) of crystal nucleation
and growth rates as well as the process drif t by adapting the process
model parameters through the parameter estimation algorithm
described above (cf. eq 13), which cannot be done by a conventional
MPC with a nominal process model (cf. eq 12). Because of the
predictive ability of an MPC, the proposed R2R-based MPC is also
able to predict the evolution of crystal shape with good accuracy
during the process when the measurements of the product qualities
are not available, which will lead to an improvement in the control

performance achieving the production of crystals with a desired
shape distribution.

■ SIMULATION RESULTS
There are many factors, including the pH and the
concentration of added electrolyte (e.g., NaCl), that affect the
solubility of a system. Because of a change in the solubility, the
crystallization process parameters to be estimated can be
perturbed from a nominal operation regime, which may lead to
a poor control performance unless appropriate adjustments are
made to the nominal process model used in the MPC. In order
to evaluate the control performance of the proposed R2R-based
MPC in the presence of variation in the solubility, the pH value
used in the kMC simulation (representing the batch
crystallization process) is perturbed to 4.5 from the nominal
value 4.4, while the NaCl concentration remains constant at
4%. This causes roughly 50% drop in the solubility level.
Furthermore, a process drift with a rate at which it takes 50
batch runs for solubility to completely drift 5% from its nominal
value is applied to the batch crystallization process, which is
consistent with the one defined in ref 10 for a slowly drifting
process.
Typically, an ODC controller is used to deal with the process

drift, and it is robust with respect to the process drift at the
expense of using less aggressive control actions. On the other
hand, a parameter adaptive controller is preferred in order to
achieve a fast convergence if a correct process model is
assumed, but the control performance can be degraded if there
are many process model parameters to estimate compared to
the number of measurements available. Therefore, it is
important to choose which controller type to use, depending
on the goal we want to achieve.
In this work, the ideas of both the ODC and parameter

adaptive controllers are integrated with a conventional MPC
such that the proposed R2R-based MPC directly adapts the
model parameters and at the same time handles the remaining
offset through an EWMA-type control scheme. In Figure 3, it is
presented that the proposed R2R-based MPC with λ = 0.3 is
able to achieve the production of crystals with a desired crystal
shape distribution after three iterations (i.e., fast convergence),
while the control performance of a conventional MPC with
nominal system parameters (cf. eq 12) becomes progressively

Figure 2. Closed-loop system under R2R-based MPC scheme.

Figure 3. Evolution of the average crystal shape at t = 20 000 s
obtained from the kMC simulations from batch to batch under the
conventional MPC and R2R-based MPC with the desired set-point
⟨αset⟩ = 0.85. Additionally, the drift of the solubility profile from the
nominal model is plotted.
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worse as runs are repeated, owing to process drift and
variability.
For comparison purposes, the proposed R2R-based MPC

scheme is compared with an EWMA-type CSC strategy, where
its desired set-point (i.e., supersaturation) for the kth batch run
is updated as is described below.

1. The desired supersaturation level σset,k, which will be
applied to the kth batch run, can be computed as follows:

= +−s s dk k kset, set, 1

where the correction factor dk has the form

λ α α= + ⟨ ⟩ −− −d d t( ( ) )k k k1 f 1 set

2. At the end of the kth batch run, the average crystal shape
⟨α(tf)⟩k is measured.

3. Increase k by 1 and repeat steps 1−3.
As is shown in Figure 4, although both control schemes are

able to produce crystals with a desired shape distribution after

multiple runs, the convergence of the EWMA-type CSC is
significantly slower than that of the proposed R2R-based MPC
(24 runs vs 3 runs to achieve the same performance).
Furthermore, the crystal shape distribution obtained by the
proposed R2R-based MPC in Figure 5 is closer to the desired
set-point value, ⟨αset⟩ = 0.85, than that of the EWMA-type
CSC. The superiority in the control performance of the
proposed R2R-based MPC over the EWMA-type CSC and
conventional MPC without R2R model adaptation is because of
the parameter estimation step implemented in the proposed
R2R-based MPC that effectively estimates the process model
parameters by solving eq 13 with the post-batch measurements
received from the previous run. As a result, the predicted
solubility value approaches to the actual solubility value as is
shown in Figure 6 with an about 2% offset between the two
profiles. The remaining offset induced by the process drift
introduced to the current batch crystallization process is
properly handled by an EWMA scheme (i.e., steps 3 and 4 in
the proposed R2R-based MPC); thus, in Figure 7, the solubility
at the end of each batch is successfully regulated to a constant
value.

Furthermore, a comparison of a conventional MPC with an
ODC and APC scheme is shown in Figure 8. A conventional
MPC with a PAC scheme converges fast (after three iterations)

Figure 4. Evolution of the average crystal shapes at t = 20 000 s
obtained from the kMC simulations from batch to batch under the
EWMA-type CSC and R2R-based MPC. The desired set-point is ⟨αset⟩
= 0.85. Additionally, the drifted of the solubility profile from the
nominal model is plotted.

Figure 5. Normalized crystal shape distributions at t = 20 000 s
obtained from the kMC simulations under the conventional MPC,
EWMA-type CSC, and R2R-based MPC. The desired set-point is
⟨αset⟩ = 0.85.

Figure 6. Evolution of the predicted and true solubilities in the
beginning of batch runs from batch to batch under the R2R-based
MPC. The discrepancy between the two profiles is about 2%.

Figure 7. Evolution of the solubility at the end of batch runs from
batch to batch under the R2R-based MPC.
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but with a persistent offset, while a conventional MPC with an
ODC converges slowly but eventually will produce crystals with
a desired shape. Therefore, both the ODC and APC schemes in
the proposed R2R-based MPC are needed, along with a
conventional MPC, to reduce the offset while simultaneously
achieving fast convergence.
In Figures 9 and 10, the jacket temperature profiles for the

process under EWMA-type CSC and R2R-based MPC at

different batch runs are presented. Note that the jacket
temperature profiles reach the optimal condition relatively
fast in the beginning and remain constant throughout the
process. Moreover, the temperature profile over the entire
batch run is added as an inset to each figure.
In addition to the constant process drift rate (i.e., 0.1% drop

per batch) introduced to the simulations discussed above, a
random process drift with an exponential distribution and a
decaying process drift are also introduced to closed-loop
simulations in order to evaluate the robustness of the proposed
R2R-based MPC with respect to different types of process drift.
As is presented in Figure 11, the type 1 process drift is a

decaying process drift, where the process drift rate slows down
as runs are repeated, which is the most prevailing type of drift
in the industry.11 Type 2 is a process drift with a constant rate,
and type 3 is a process drift where its rate (i.e., variation from
batch to batch) follows an exponential distribution. Note that
the means of the type 2 and type 3 process drifts are identical,
at 0.1% drop per batch, and the y-axis implies how much the
system has drifted from a nominal system after each batch run.
Thus, the value 1 in the y-axis indicates that it is a nominal
system, and the value becomes lower as the system drifts away
from a nominal system. Additionally, the cumulative process
drifts are shown in Figure 12, where the decaying characteristic
of the type 1 process drift is more evident. Similar to Figure 7,
the parametric mismatches in the solubility induced by different
types of the process drifts are successfully handled. It is
apparent from Figure 13 that the control performances of the
proposed R2R-based MPC in response to the type 1 and type 3
process drifts are worse than that of the type 2 process drift. In
particular, the control performance for the system with the type
3 process drift is even worse than that of the type 1 process
drift because the type 3 process drift changes more drastically,
which is difficult to compensate for quickly through the

Figure 8. Evolution of the average crystal shape at t = 20 000 s
obtained from the kMC simulations from batch to batch under the
conventional MPC with ODC and PAC, respectively, and the R2R-
based MPC. The desired set-point is ⟨αset⟩ = 0.85.

Figure 9. Evolution of the jacket temperature (Tw) computed by
solving the R2R-based MPC with respect to time for t < 1000 s when
the desired set-point is ⟨αset⟩ = 0.85. The inset shows the Tw profile
from t = 0 to t = 20 000 s.

Figure 10. Evolution of the jacket temperature (Tw) computed by
solving EWMA-type CSC with respect to time for t < 1000 s when the
desired set-point is ⟨αset⟩ = 0.85. The inset shows the Tw profile from t
= 0 to t = 20 000 s.

Figure 11. Evolution of the process drift rate from batch to batch. The
rate of the process drift type 1 follows a decaying curve; type 2 follows
a constant; and type 3 follows an exponential distribution.
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proposed R2R-based MPC. This offset might become more
significant if the process drift changes more frequently with a
greater magnitude. As presented in Figure 14, for a high λ value,
the proposed R2R-based MPC becomes vulnerable to the
rapidly changing process drift introduced to the system, while
this effect is relatively suppressed by using small λ values in the
proposed R2R-based MPC. One potential solution to this
problem is to adapt the learning factor λ after each batch to
properly deal with the varying process drift rate.
Finally, for the purpose of testing the control performance

with respect to unmodeled uncertainty in the nucleation rate
from a controller point of view, the nucleation rate in the kMC
simulation is deliberately reduced by 10% by multiplying eq 1
by 0.9. Since this uncertainty is not modeled in the controller
process model, the other parameters, Γ̲ = [γ110 γ101 γs1 γs2 γs3],
must be adjusted to compensate for the unmodeled uncertainty
in the nucleation rate. Furthermore, the equality constraint (cf.
eq 13e) enforces the proposed R2R-based MPC with an
estimated parameter to produce the same number of crystals as
the previous batch run. As a result, it is shown in Figure 15 that

the controller model parameters are appropriately adjusted, and
thus the effect of the unmodeled uncertainty on the control
performance is properly mitigated, producing crystals with a
shape that is close to the desired set-point. However, the
closed-loop performance under such an unmodeled uncertainty
is slightly degraded, with an offset from a desired set-point.
Such minor degradation is expected due to the nonlinear nature
of the unmodeled uncertainty in the nucleation rate while the
ODC scheme used in the proposed R2R-based MPC is linear.
To deal with this problem, a nonlinear ODC scheme could be
adopted in order to improve the robustness of the proposed
R2R-based MPC with respect to unmodeled uncertainties.
In this work, the closed-loop simulation results show that the

average crystal shape distribution is already driven close to a
desired value after three batch runs under the proposed R2R-
based MPC scheme; hence, varying the learning factor does not
notably influence the control performance, as is shown in
Figure 16. Therefore, the proposed R2R-based MPC is able to
leverage smaller λ values (e.g., λ = 0.1) to reduce the effect of
the measurement noise without significantly sacrificing the
convergence speed.

Figure 12. Evolution of the cumulative process drift from batch to
batch that indicates how much the real system has been drifted from
an initial nominal system. The rate of the process drift type 1 follows a
decaying curve; type 2 follows a constant; and type 3 follows an
exponential distribution.

Figure 13. Evolution of the average crystal shape obtained from the
kMC simulations from batch to batch under the R2R-based MPC with
three different process drift types described in Figure 12. The rate of
the process drift type 1 follows a decaying curve; type 2 follows a
constant; and type 3 follows an exponential distribution.

Figure 14. Evolution of the average crystal shape obtained from the
kMC simulations from batch to batch under the R2R-based MPC for λ
= 0.1, 0.3, and 0.9, with the type 3 process drift described in Figure 12.

Figure 15. Evolution of the average crystal shape obtained from the
kMC simulations from batch to batch under the R2R-based MPC for
two cases when there is an unmodeled uncertainty in the nucleation
rate vs no uncertainty in the nucleation rate. The desired set-point is
⟨αset⟩ = 0.85.
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Remark 5. If the measurement noise is suf f iciently high, an R2R
controller may fail because the past measurements are not
autocorrelated with the future runs.28,29 The best practice to deal
with the measurement noise is to use a small learning factor λ in an
EWMA design at the cost of slower convergence. Additionally, a
low-pass f ilter may be used to reduce the ef fects of noise of the
measurements (both real-time and postbatch) to the operation of
the batch crystallization process.

■ CONCLUSIONS
In this work, we considered the design of a novel R2R-based
MPC for a batch crystallization process with significant process
drift and inherent variation in solubility and crystal growth
rates. In order to achieve the production of crystals with desired
crystal shape distribution, a conventional MPC with nominal
process model parameters (cf. eq 12) was initially applied to
the process. However, due to the process drift, the mismatch
between the controller model and the process dynamic
behavior became severe as batch runs were repeated. To deal
with this problem, an R2R-based MPC was proposed in which,
after each batch was over, the post-batch measurements,
including average crystal shape and size and the number of
crystals, were used to estimate off-line the drift of the process
model parameters from nominal values via a multivariable
optimization problem. Along with the adapted model
parameters, the EWMA scheme was used to deal with the
remaining offset in the model and thereby to compute via MPC
a set of optimal jacket temperatures in real time that drives the
process to a desired condition. Furthermore, the crystal growth
in the batch crystallization process was modeled through kMC
simulations, and this model was then used to demonstrate the
ability of the proposed control scheme to suppress the inherent
variation and process drift in solubility and crystal growth rates.
Through the proposed approach, the production of crystals
with a desired shape distribution was successfully achieved after
three batch runs through the use of R2R-based MPC, while it
took 24 batch runs to achieve this for the system with the
EWMA-type CSC strategy.
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