
Multiscale, Multidomain Modeling and Parallel Computation:
Application to Crystal Shape Evolution in Crystallization
Joseph Sang-Il Kwon,† Michael Nayhouse,† and Panagiotis D. Christofides*,†,‡

†Department of Chemical and Biomolecular Engineering and ‡Department of Electrical Engineering, University of California, Los
Angeles, California 90095, United States

ABSTRACT: We focus on the development of a parallelized multiscale, multidomain modeling scheme that directly reduces
computation time requirements without compromising the accuracy of established chemical models. Specifically, creating a
parallel computation program from a sequential one consists of three steps: (1) decomposition of the original problem into tasks
or domains, (2) assignment of tasks to processors, and (3) orchestration (using a programming mechanism) to communicate
and synchronize the information flow among all processors involved. In this work, we applied a parallelized multiscale modeling
strategy according to the above three steps to a multiscale model of a batch crystallization process. First, we decomposed the
nucleation and crystal growth processes in a batch crystallization system into the collection of tasks where each task represents
the crystal growth of a nucleated crystal. Second, the tasks (i.e., simulating the crystal growth of nucleated crystals) are assigned
according to a modulus function where the number of crystal modules is equal to the number of processors available. Third, the
message-passing interface (MPI) settings that use the information passing between the processors is used to link the macroscopic
model (e.g., mass and energy balance equations describing continuous-phase variables) to the microscopic models (e.g., kinetic
Monte Carlo model describing crystal nucleation, growth, and shape evolution). The parallelized multiscale simulation utilizes a
manager−worker MPI computational scheme: There is a processor (i.e., manager) that is responsible for decomposing an
original sequential problem (e.g., multiscale model to simulate batch crystallization system) into a number of tasks (e.g., crystal
growth of a group of crystals) and allocating those tasks to processors (i.e., workers). Workers are responsible for solving
assigned tasks, and when a worker completes the simulation of an assigned task, it notifies the manager. Then, the manager
allocates a new task to the processor. Before initiating their following task executions, all processors wait until they have received
all the data computed by the other processors at the previous task execution step, allowing for a synchronization of the tasks over
the processors used. Therefore, we are able to achieve a significant decrease in time required to complete the batch simulation as
the number of cores is increased. A series of results demonstrating the computational efficiency of the approach using the batch
crystallization process multiscale model are presented. Specifically, a linear speedup behavior is observed up to the use of 32
cores, and the maximum speedup of about 39-fold is achieved when we use 64 cores.

■ INTRODUCTION
The modeling of multiscale systems has made fundamental
understanding and quantitative prediction possible for
processes with complex behavior and product characteristics,
and it has tremendous potential to significantly contribute to
the chemical, pharmaceutical, and microelectronic indus-
tries.1−4 Motivated by the advances in high-performance
computing power, an increasing interest in multiscale, multi-
domain modeling has been triggered. Moreover, chemical
engineers, among other scientists and engineers, have the
potential to impact the field of multiscale process modeling
because of our unique discipline ranging from molecular
modeling to large-scale chemical process modeling.
More specifically, kinetic Monte Carlo (kMC) modeling has

received growing attention for dynamic simulations of micro-
scopic/mesoscopic process behavior. The basic principle of
kMC is that in order to efficiently simulate a dynamical system
with a variety of different rates of processes (e.g., adsorption,
migration, and desorption of molecules on a surface in crystal
growth) at each step in the simulation, the next process is
determined on the basis of a probability proportional to the rate
for that process, and after an event is executed, the rates for all
processes are updated. The time of the next event is
determined by the overall rate for the microscopic surface

processes and a suitably defined random number. The standard
kMC algorithm is a serial algorithm in the sense that one event
can occur at each time step. For many problems of practical
interest, however, one needs to simulate systems with larger
temporal and spatial scales than the ones that can be simulated
using a serial algorithm and available computing power. For
these problems, motivated by the recent efforts to develop
parallel computation frameworks for the simulation of multi-
sacle process models,5−14 it would be desirable to develop
efficient parallel kMC algorithms so that many processors can
be used simultaneously in order to accomplish realistic
computations over extended temporal and spatial scales.
One of the most frequent uses of parallel architectures is

simply performing independent simulations of a model under
different conditions on different processors. Additionally, for
very large problems, parallel architectures can be used to
improve the speed of the simulation dramatically by
decomposing the system into different components/domains
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and assigning each component/domain to a different processor.
When we design a parallel computation algorithm, it is
important to compare the relative order of magnitude
difference between communication time and computation
time because we can use it to compute the theoretical
maximum speedup via Amdahl’s law. For example, if the size
of the individual tasks to be executed is too small, then the time
used to communicate information between processors may not
be small compared to the time needed by each processor for
computation. In such a case, the performance may actually
worsen as processors are added. In contrast, for microscopic
systems with long-range molecular interactions, most of the
computational effort goes into the calculation of energy
changes; thus, the communication overhead is much less of a
problem and is minimal relative to the computation time.
Recently, there has been a great deal of work on the

development of rigorous asynchronous parallel algorithms for
equilibrium Monte Carlo simulation (eMC).15−18 However,
there has been surprisingly little work completed on parallel
algorithms for kMC simulation. This is because the interval
between successive events in kMC algorithms depends on the
surface microconfiguration (e.g., in the evolution of surface
microconfiguration in this film growth and crystal growth);
thus, it requires additional bookkeeping to keep track of the
rates (probabilities for each event to be selected). In particular,
for systems such as crystallization and thin film deposition,
surface processes play a key role; therefore, the possible rates or
probabilities for events can vary by several orders of magnitude.
Several contributions have been made to the development of
multiscale models used to simulate the deposition of thin films
for a variety of applications,19−23 whereas the development of
efficient parallel algorithms for kMC simulations remains a
challenging problem.
Motivated by this, in a previous work,24 we explored a hybrid

kMC algorithm originally developed for the growth of silicon
films as in ref 25. More specifically, because of the high
frequency of surface migration events relative to that of other
surface processes, a brute force kMC algorithm would spend
more than 99% of computation time on migration alone. The
brute force kMC algorithm refers to the kMC simulation that
uses a single core with no changes made to the surface
processes of the program (e.g., adsorption, migration, and
desorption) in the context of improving the computational
efficiency. The simulation of surface migration process is
decoupled from the standard kMC implementation and
separately executed using a 1D lattice random-walk process.24

As a result, a significant computation time savings was achieved
by a very small compromise of the accuracy of the results,
which is due to the fact that in the decoupling strategy all
migration events are executed at the same time via 1D random
walk whereas in the brute force kMC simulation every
migration event is executed one by one keeping track of the
effect of each migration event to the surface microconfiguration
and thereby to other surface processes (e.g., adsorption and
desorption).
In this work, we have attempted to directly deal with the

problem of reducing computational requirements without
compromising the accuracy of established chemical models
via a parallelized kMC. We show that choosing an appropriate
decomposition strategy is the key to reducing communication
among processors, and it is ideally suited for parallel
implementation without compromising precision. Specifically,
the message-passing interface (MPI) settings that use the

information passing between the cores are selected and are
used following a “manager−worker” scheme: There is a
processor (i.e., manager) that is responsible for partitioning a
problem (e.g., kMC model to simulate batch crystallization
system) into partitions (e.g., crystal growth of a group of
crystals) and allocating the partitions to processors (i.e.,
workers). Workers are responsible for solving assigned
partitions, and when a worker completes the simulation of a
partition, it notifies the manager. Then, the manager allocates
the worker a new task.
Although the decoupling strategy introduced by ref 26

reduces the computation requirement by compromising the
accuracy of the simulation result, the proposed parallel
computation algorithm reduces the computation requirement
by directly assigning crystals to multiple cores one by one; thus,
the accuracy of the simulation result remains identical.
Furthermore, compared to the previous studies of the
multiscale and parallel computation,27−29 the novelty of the
proposed multiscale parallel computation scheme lies in its
applicability to the crystallization process by directly allocating
crystals over multiple cores evenly. As aggregation events
proceed, the number of crystals assigned to each core varies.
Using the proposed parallel computation scheme, we can
effectively deal with this issue. Furthermore, when we deal with
a heterogeneous cluster (i.e., the processor speed is not
identical over multiple cores), it is possible to assign less
crystals to the core with the slower processor speed. Instead, for
example, the fastest core will receive more crystals than the
other cores and as a result, a better speedup can be achieved
overall. A finite volume method for the parallel simulation of a
population balance model is considered in ref 30. In the present
work, a parallel computation of a multiscale framework is
considered and compared to the population balance model; it
can provide more fundamental understanding of the crystal-
lization system such as the surface microstructure dependence
of the crystal growth process and the codependence between
the microscopic surface process and the macroscopic
continuous phase in the crystallization process.
The manuscript is structured as follows: We initially describe

a parallel computational framework suitable for multiscale
models. Then, we discuss the multiscale model of our case
study, a batch crystallization process used to produce tetragonal
hen-egg-white (HEW) lysozyme crystals. The proposed parallel
computation scheme is applied to the multiscale model, and a
series of results that demonstrate the computational efficiency
and accuracy of the approach are presented.

■ PARALLELIZED COMPUTATIONS
Motivation. There are three reasons why one might want to

use parallelized computation. First, one may want to speed up
simulations by using multiple processors. More specifically,
parallelization can reduce the simulation time required for the
simulation of a large system that can be done on a single
processor. Second, one might want to do many simulations at
different conditions (e.g., in order to find suitable model
parameters by testing parameters over a large range of different
parameter values). We can also reduce the noise in a stochastic
method such as kMC simulations by running a simulation
multiple times. The process of creating a parallel program from
a serial one consists of three steps: (1) decomposition of the
original serial computation problem into small tasks, (2)
assignment of tasks to processors, and (3) orchestration of the
communication among processors and synchronization at each
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time step.31 Below we discuss these three tasks as they pertain
to parallelized simulation of multiscale models.
Decomposition. Decomposition concerns how to break up

or divide a computation problem into a collection of tasks that
may be executed concurrently. This does not simply imply a
straightforward division of a computation problem into a
number of tasks equal to the number of available computers. In
some cases, the number of tasks can vary dynamically as the
program executes, which is known as an irregular decom-
position problem.31 The main objective in decomposition is to
expose enough concurrency to keep all processors busy at all
times, yet not decompose so much that the overhead of
managing the task’s decomposition through communication
between processors becomes substantial compared to the
computation time. In parallel computations, the theoretical
maximum speedup using multiple processors can be computed
via Amdahl’s Law.31 More specifically, if P is the fraction of an
original serial program that can be parallelized and 1−P is the
fraction of a program that cannot be parallelized (thus, remain
serial), then the maximum speedup that can be achieved via
parallelization using N processors can be computed as follows:

=
− +

S N
P

( )
1

(1 ) P
N (1)

where S is the maximum speed up. If some portions of a
program’s execution do not have as much concurrency as the
number of processors used, then some processors will have to
be idle for those portions, and speedup will be suboptimal.
Initially, the parallel computations may be slower than the

serial ones because of communication and synchronization
overheads that are not incurred by the sequential program.
After the parallel program overcomes this overhead, it provides
improved performance as the number of processors increases.
Eventually, there is a tail-off region where performance does
not substantially increase as the number of processors increases.
This region occurs because the number of available tasks
obtained after the decomposition step can be bounded.
Eventually, adding computers does not improve computational
performance because there is not sufficient work to keep all
processors busy. Therefore, decomposition should provide a
number of tasks considerably greater than the number of
processors available.
There are many decomposition techniques. For example,

domain decomposition is used to divide up the data of a
program and operate on the parts concurrently (e.g., matrix
calculations and inner product calculations), whereas functional
decomposition refers to dividing up the function (e.g.,
computing the integral of a function f(x) on the closed interval
[a, b]). Furthermore, irregular problem decomposition refers to
decomposition in the case where the program structure evolves
dynamically as the program executes and cannot be determined
a priori (e.g., flow dynamics and particle flow simulations). The
size of the tasks in the irregular decomposition problem may
vary widely; thus, a method of load balancing must be
employed to keep computers busy. More detailed discussion on
the load balancing scheme will be covered in the following
section in the context of parallelized computation of a
multiscale model of a batch crystallization process.
Assignment. Assignment refers to the mechanism by which

tasks will be distributed among processors. The primary goal of
the assignment is to balance the workload among processors to
reduce communication between processors and the overhead of

managing the assignment. Specifically, the workload to be
balanced includes computation (i.e., task execution), input/
output data access, and communication between processors.
The simplest assignment strategy is to divide the total task
number by the number of cores available; thus, consecutive
partitions are packed into the same processor (i.e., packed
allocation). The other widely used strategy is to use a modulus
function such that the group number modulus is equal to the
number of processors available (i.e., round-robin allocation).
In particular, there are several load-balancing strategies to

deal with irregular problems where the size of each task changes
dynamically. Specifically, bin packing is a technique used in
cases where the time required to run a task is proportional to
the length of the task where the task size grows with time. The
goal is to keep the computation load at each processor
balanced. The manager−worker scheme is a centralized scheme
that involves a manager processor and a collection of worker
processors. The manager processor is responsible for assigning
tasks decomposed from an original problem to worker
processors. The worker processors are responsible for
processing tasks and are generally independent processors.
When a worker processor completes the assigned task, it
notifies the manager, and the manager allocates a new task.
Specifically, there are two kinds of manager−worker

schemes: synchronous and asynchronous. For the synchronous
scheme, before initiating their subsequent task executions, all
processors wait until they have received all of the data
computed by other processors at the previous task execution
step. In contrast, for the asynchronous scheme, all of the
processors perform their computations without waiting for the
data computed by other processors (i.e., they do not account
for the progression of the other processors). In general, the
synchronous manager−worker scheme is suitable for small
homogeneous clusters with fast communication, whereas the
asynchronous manager−worker scheme provides better per-
formance on large-size heterogeneous clusters. Also, when the
processors have significantly different performance from one
another, the speed of a synchronous manager−worker scheme
is limited by the slowest processors. In this case, the
asynchronous scheme achieves better performance than the
synchronous one.

Orchestration. To execute their assigned tasks, processors
need mechanisms to name and access data and to communicate
and synchronize with other processors. Orchestration uses
available mechanisms to accomplish these goals correctly and
efficiently. The major goal in orchestration is to reduce the cost
of the communication and synchronization (i.e., the overheads
of parallelism management) by preserving locality of data and
scheduling tasks so that those on which many other tasks
depend on will be located at a position which is easily accessible
by many other processors.
The MPI is one of the most widely used techniques to deal

with communication and synchronization between processors
in order to solve chemical engineering problems on parallel
processors. For example, suppose that a reaction occurs in a
batch process and that because of imperfect mixing the spatial
concentration distribution is not uniform throughout the batch
system. Next, we can consider that each core runs a kMC code
for a time step to compute the amount of reactant consumed by
a reaction in a particular spatial domain of the continuous
phase. Then, each core sends these values to the manager core
via an MPI data manager, and the manager core adds up these
values to compute the total amount of solute depletion over the
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entire spatial domain in the continuous phase. Lastly, the
manager core sends back updated values to each core (i.e., each
spatial domain). This sequence is repeated until the specified
length of time has been completed. The output files store all
the simulation results that belong to the individual kMC.

■ MULTISCALE BATCH CRYSTALLIZATION PROCESS
MODEL AND PARALLELIZATION

In a crystallization process, there is a large disparity of time and
length scales of phenomena occurring in continuous phase and
crystal surface. Therefore, the modeling of the crystallization
process from a molecular level to a process level using the
assumption of continuum is not practical because it requires
nonviable computational power and time.
Motivated by this, we present an integrated multiscale

modeling and parallel computation framework for crystalliza-
tion processes that elucidates the relationship between
molecular-level processes such as crystal nucleation, growth,
and aggregation and macroscopically observable process
behavior and allows computation of optimal design and
operation conditions. The multiscale framework encompasses
(a) eMC modeling for computing solid−liquid phase diagrams
and determining initial crystallization conditions that favor
crystal nucleation, (b) kMC modeling for simulating crystal
growth and aggregation and predicting the evolution of crystal
shape distribution, and (c) integrated multiscale computation
simultaneously linking molecular-level models (e.g., kMC
simulation) and continuous-phase macroscopic equations
(e.g., mass and energy balance equations) covering entire
batch crystallization systems.
Specifically, it is schematically illustrated in Figure 1 how the

information is exchanged between models used to describe
molecular, microscopic, and macroscopic levels. In the
beginning, the molecular interactions such as a Lennard-Jones
type potential are used as input to the equilibrium Monte Carlo
simulation in order to construct a phase diagram through which
we can predict the conditions under which a nucleation process
is favored and to determine suitable nucleation and crystal
growth conditions for initialization of the batch crystallization.
More specifically, this initial condition is used to begin the
kMC simulation that describes the evolution of crystal shape
distribution in a batch crystallizer. Similarly, using the same
initial condition, the mass and energy balance equations are

used to compute the evolution of the protein solute
concentration and the temperature in the crystallizer. By
exchanging the information (e.g., concentration, temperature,
crystal size and shape distributions, etc.) between the
microscopic and macroscopic models, we are able to construct
the multiscale process model that can be used to describe the
multiscale dynamic behavior of a batch crystallization process.
The multiscale framework introduced in this work provides a

fundamental understanding of the crystallization system such as
the surface microstructure dependence of the crystal growth
process, which can be completed only through the stochastic
simulation methods, and the codependence between the
microscopic surface process and the macroscopic continuous
phase in the crystallization process. Furthermore, the stochastic
nature of the aggregation process is also well taken into account
by considering all of the pairwise combination of crystals
through the probability-based approach introduced by ref 32.

Molecular Model. The eMC method has been applied to
the modeling of crystallization system at molecular level to
calculate suitable phase diagrams.33,34 Here we briefly review
this approach to demonstrate how the molecular level results
are used in the multiscale model of the crystallization process.
There are many types of Monte Carlo moves such as particle
displacement, volume changes, and particle switching. Addi-
tionally, periodic boundary conditions are used to approximate
the infinite dimensional system with a model with a finite
number of lattice sites. Then, the probability that the system
transits from a current state m to another state n, Prob (m→ n),
is computed following the standard Metropolis algorithm as
follows:

→ = −
−

⎪ ⎪

⎪ ⎪⎧⎨
⎩

⎛
⎝⎜

⎞
⎠⎟
⎫⎬
⎭m n

E E
k T

Prob ( ) min 1, exp n m

B (2)

where En and Em are the energies of the system in states n and
m, respectively, kB is the Boltzmann constant, and T is the
temperature in Kelvin. To compute the energy of the system,
we develop a model to compute the interactions between the
particles. A Lennard-Jones type potential is used as follows:

ε σ σ= −⎜ ⎟ ⎜ ⎟
⎡
⎣⎢⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥⎥U

r r
4

a b

(3)

Figure 1. Schematic representation of multiscale modeling for batch crystallization process.
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where U is the potential energy between two particles, σ is the
radius of particles, r is the distance between the particles, ε is
the depth of the potential well, and a and b are model
parameters to be determined. Please note that En and Em in eq
2 are the sum of U in eq 3 over all possible pairwise
combinations of particles. Then, we measure some properties
(e.g., solubility) of the material through experiments, where the
measurement is available for a small region, and use them to
determine the model parameters such as a, b, and ε in eq 3 that
provide a good agreement between simulated and experimental
data. We use eq 3 with the known parameters to calculate the
phase diagram to predict the conditions under which a
nucleation process is favored and to determine suitable initial
nucleation and growth conditions to initialize batch crystal-
lization. (Figure 2 shows a typical phase diagram like the one
that can be found in ref 35.)

In this section, we present a framework that is used to obtain
the solid−liquid phase diagram qualitatively. Theoretically, in
order to obtain a quantitative phase diagram, we need a
molecular simulation approach that takes into account the
molecular-level interaction phenomena, which is described in
detail in ref 36. Specifically, the paper focuses on the
determination of the phase diagram of a system of particles
that interact through a pair potential in the form of a Lennard-
Jones type potential. Then, the parameters of a Lennard-Jones
type potential can be adjusted in order to have good agreement
with the phase diagram that is available from the literature.
Microscopic Model. The solid-on-solid model, which is

one of the most widely used techniques to simulate crystal
growth accounting for crystal surface microstructure, is
employed in this work to model the growth of lysozyme
crystals as a specific example. In this work, the phenomena of
appearing and disappearing faces in crystal growth processes are
not considered. Each event of our kMC simulation is chosen
randomly on the basis of the rates of the three-surface
microscopic phenomena. Please note that the following
description of the surface kinetics for the present model
follows closely that of ref 37, which was further extended by ref
38 to account for migration events.
The adsorption rate is independent of crystal surface

microconfiguration and is defined as

μ= Δ+
⎛
⎝⎜

⎞
⎠⎟r K

k T
expa 0

B (4)

where K0
+ is the attachment coefficient, kB is the Boltzmann

constant, T is the temperature in Kelvin, and Δμ = kBT ln(C/
S), where C is the protein solute concentration, S is its
solubility, and Δμ is the crystal growth driving force. It is noted
that ra ∝ C.
The desorption rate of a surface particle depends on its local

environment. Thus, the desorption rate of a lattice site with i
nearest neighbors is given by

ϕ= − = −− +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟r i K i

E

k T
K

k T
i

E

k T
( ) exp expd 0

pb

B
0

B

pb

B (5)

where K0
− is the desorption coefficient, i is the number of

bonds, ϕ is the binding energy per molecule of a fully occupied
lattice, and Epb is the average binding energy per bond. The
second equality in eq 5 holds true because of the relationship
between K0

− and K0
+, which can be found in ref 39. Specifically,

surface particles with fewer nearest neighbors have a higher
desorption rate. The migration rate is defined similar to the
desorption rate in ref 38 as shown below.

ϕ= − ++
⎛
⎝⎜

⎞
⎠⎟r i K

k T
i

E

k T

E

k T
( ) exp

2m 0
B

pb

B

pb

B (6)

The migration rate is the desorption rate multiplied by the extra
exponential term, Epb/(2kBT), to account for the fact that the
migration rate is higher than the desorption rate.
In this work, simulations with hundreds of different Epb and

ϕ values were carried out in parallel until satisfactory agreement
was achieved among the growth rate computed by the kMC
simulation and the experimental growth rates obtained from the
literature.37 From this, we determined a set of model
parameters as follows: Epb/kB = 1077.26 K and ϕ/kB =
227.10 K for the (110) face, Epb/kB = 800.66 K and ϕ/kB =
241.65 K for the (101) face, and K0

+ = 0.211 s−1.
Macroscopic Model. The following mass and energy

balance equations are employed to compute the dynamic
evolution of the protein solute concentration and temperature
in the batch crystallization process with time:

ρ
= − =C

t V

V

t
C

d
d

d

d
, (0) 48mg/mLc

batch
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(7)
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− −
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U A

C V
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d
d

d

d
( ),

(0) 15 C

p p

c c

batch

crystal c c

batch
j

(8)

where Vcrystal is the total volume of crystals growing in the
crystallizer (refer to ref 40 for more details on the computation
of dVcrystal), and Tj is the jacket temperature (i.e., manipulated
input). The process parameter values are shown in Table 1.

Figure 2. Typical phase diagram. Arrow shows where the initial
condition of the batch crystallization system should be to favor
nucleation early and how to manipulate the temperature to move into
the metastable region to favor growth later in the batch.

Table 1. Parameters for the Batch Crystallization Process
Model

ρc crystal density 1400 mg/cm3

ΔHc enthalpy of crystallization −4.5 kJ/kg
ρ(t) density of the continuous phase 1000 + C(t) mg/cm3

Cp specific heat capacity 4.13 kJ/(K·kg)
Vbatch volume of the crystallizer 1 L
Ac contact area of the crystallizer

wall and jacket
0.25 m2

Uc overall heat transfer coefficient 1800 kJ/(m2·h·K)
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In the scale-up of a crystallization process, agitation is
required in order to maintain the crystal phase in suspension.
The resulting shear force induces aggregation processes that
have a significant impact on the quality of crystal products
because they decrease the total number of crystals and increase
the average particle size. Motivated by these considerations,
aggregation is taken into consideration in the modeling of large-
scale crystallization processes.
More specifically, we assume that the continuous phase is

sufficiently dilute that only binary aggregation between two
particles is possible. Furthermore, according to the Kolmogorov
length analysis, shear forces are the major contribution to the
aggregation of crystals considered in this work.41 The
corresponding kernel (cf. eq 9) can be used to calculate the
number of aggregation events taking place during the sampling
time Δ in terms of the aggregation kernel β(Vi, Vj), the batch
crystallizer volume Vbatch, the collision efficiency γ(Vi, Vj), and
the concentrations of particles of volume Vi and Vj as follows:

γ β= Δ ≤ ≤N V V V V m m V i j C( , ) ( , ) 1 ,ij i j i j i j total (9)

where mi is the number concentration (i.e., the number of
particles of volume Vi per unit volume). The number Ctotal
indicates the number of classes, and Δ = 0.5 s (i.e., the
successful collision probability is computed every 0.5 s). Please
note that the crystal size domain is linearly broken down into
different size classes with identical intervals. The sampling time
is chosen by trial and error until we obtain a negligible
improvement when a smaller sampling time is used in
predicting the number of aggregation events to occur. The
rate of formation of aggregates of volume Vk from the collision
of particles of volume Vi and Vj is ∑ + = NV V V ij

1
2 i j k

where the

summation considers all the different combinations of
aggregation which result in Vk as follows:

+ =V V Vi j k

Within the simulation, it is assumed that the shape of the
crystal resulting from aggregation is identical to that of the
larger crystal participating in the aggregation event. The crystal
shape is assumed to be constant only during the aggregation
event. In other words, after the aggregation process between
two participating particles is finished, the resulting aggregate
will grow to a larger crystal with a shape which is determined by
the subsequent supersaturation level. Although we only
considered the binary collision between crystals, all the possible
pairwise combinations among crystals with different sizes are
considered, and the formation of new aggregates is updated
every 0.5 s. Within this context, the collision of multiple crystals
at the same time can be viewed as multiple successive binary
collisions. The reader may refer to ref 32 for more extensive
simulation studies on the phenomenological effect of
aggregation on crystal shape distributions and on the
comparison of crystal shape distributions obtained from the
multiscale model and the population balance model.
Parallel Computation of Multiscale Model. The

simulation of the crystal growth process of crystals formed
via nucleation is executed in parallel by using MPI through
which we are able to divide the crystals to multiple cores by
achieving the distribution of the computational cost and
memory requirements. More detailed discussion on the step-
by-step parallelization of the crystallization process multiscale
model that incorporates nucleation, crystal growth, and
aggregation processes will be included below.

Decomposition. We can decompose the nucleation and
crystal growth processes in a batch crystallization system into
collection of tasks where each task is the crystal growth of a
nucleated crystal. Furthermore, the time required to run one
batch simulation can be further reduced by introducing a new
variable Nrp to indicate the number of crystals represented by a
single crystal that is actually running on a core. It can be viewed
as a coarse-grained model in the sense that one crystal running
in the kMC simulation actually represents Nrp crystals. At the
nucleation stage, after we wait for the time required for the
nucleation of Nrp crystals, we initiate the growth of a single
crystal in the kMC simulation that actually represents a group
of Nrp crystals. Therefore, the size and shape of the representing
crystal changes with time as it grows to a larger crystal. If Nrp =
1000, then a single crystal running in the simulation will now
represent 1000 actual crystals. Thus, we are only required to
run 10 crystals in the simulation to represent 10000 crystals,
and as a result, we compromise the computation time saving
with the accuracy of the simulation results.

Assignment. More specifically, as soon as a crystal is
nucleated, it will be assigned to one of the available cores, and it
will grow to a larger crystal via the kMC simulation (The reader
may refer to ref 42 for the equation used to determine how
many crystals are nucleated.) Because crystals are continuously
nucleated until the end of the batch process (i.e., at some point
in time, the number of crystals growing in the crystallizer will
exceed the number of cores), additional crystals need to be
assigned to each core throughout the kMC simulation, which
makes this an irregular problem where the total size of tasks
assigned to each core grows with time. More specifically,
nucleated crystals are assigned following the order described in
Table 2 (i.e., crystal number modules is equal to the number of

cores available). We note that this is a number-based allocation,
assuming that all cores have identical processor speed and
memory.
The volume of each class is a range, and crystals are allocated

to each class if their volumes fall within the volume range
corresponding to the specific class. Therefore, as crystals grow
to larger crystals, they will move from one class to another;
thus, the number of crystals contained in each class changes
with time. Subsequently, the successful collision probability
between crystals of class i and class j (i.e., crystals with volumes
Vi and Vj, respectively) during a time period can be calculated
via eq 9. Next, a random number from [0, 1) is generated, and
the aggregation event is executed if the random number is less
than the successful collision probability. If an aggregation event
occurs between class i and j, then the volume of the smaller
crystal will be removed from the kMC simulation and will be
added to the larger one, forming an aggregate whose volume is
equal to the total volume of the two crystals participating in the
aggregation event. This process applies to all possible pairwise
combinations of crystal volumes over the course of the batch

Table 2. Order in which Nucleated Crystals Are Assigned to
Each Corea

core crystal number crystal number

worker 1 1 n + 1
worker 2 2 n + 2
⋮ ⋮ ⋮
worker n n 2n

aSuppose that there are 2n crystals.
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crystallization simulation. Furthermore, the computation

requirement for the manager is not significant; thus, the core

assigned to the manager is also used as a worker to contribute

to the parallel computation as shown in Table 2 and Figure 3.
Orchestration. Figure 3 illustrates schematically how the

information passing between the cores is managed with the

MPI settings in order to link the macroscopic model (i.e., mass

and energy balance equations for the continuous phase) to the

microscopic model (i.e., kMC model). The coupled simulation

follows the manager−worker MPI computational scheme:

There is a core (i.e., manager) that is responsible for collecting

the change in the total volume of crystals assigned to each core

(i.e., worker) at each time step required for parallel processing,

which corresponds to the amount of solute transported from

the continuous phase to the crystal surface. Then, the manager

core computes the change in the total volume of the crystals in

the crystallizer at each time step and computes the protein

solute concentration C and the temperature T for the

continuous phase in the crystallizer using mass and energy

balance equations. The updated C and T will be sent back to

the worker cores, and those values at each core will remain

identical until they are updated again after a time step. Then,

the crystals assigned to each core will grow under the updated

conditions via kMC simulations.
In the parallel computation, we only consider synchronous

iterations and synchronous communication (SISC). At each

time step, all processors wait until they have received all the

data computed by the other processors at the previous task

execution step, before beginning their following computations.

The design of SISC parallelized code is quite straightforward

using the MPI setting. Please note that the SISC penalizes

algorithms on systems with a slow and heterogeneous cluster.

Pseudocode.

Please note that ΔVtotal(t) is the change in the total volume
of crystals in the crystallizer from t − Δt to t seconds, and
ΔVcore i(t) is the change in the total volume of crystals
particularly assigned to the core i from t − Δt to t seconds. The
time step to calculate V(t), C(t), and T(t) is 0.033 s. The
manager core computes the number of crystals nucleated over a
time period for a given supersaturation level. Then, the
nucleated crystals are assigned to each core in a round-robin
fashion. Specifically, the computation of ΔVcore i for those
crystals assigned to each worker is related to the computation
of the total amount of solute consumed (similarly, heat
generated) by crystal growth over the entire crystallization
process through the mass and energy balance equations. The
small crystal participating in the aggregation event will be
removed from the core on which the small crystal was growing;
thus, this core will run with one less crystal after the
aggregation event. The reader may refer to refs 42−44 for
the use of the parallelization scheme to different applications,
including the plug flow crystallizer and the continuous-stirred
tank crystallizer with a fines trap and a product classification
unit.
Theoretically, by decoupling of the simulation of surface

migration via a 2D random walk process, we can further
improve the computation efficiency as it is shown by refs 24
and 25. However, it is not necessary in this work because the
order of magnitude difference among the migration rate and
those of other processes in the crystallization system is not as
significant as the one in thin-film solar cells.

Figure 3. Manager−worker parallel computation scheme for multiscale model of batch crystallization process.
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Results. In this work, the Hoffman2 cluster, which consists
of 1200 nodes with a total of 13 340 cores and over 50 TB of
memory, is used along with MPI settings for all of the
simulations. The memory of each node varies from 8 to 128
GB, and there are many types of CPUs including Intel and
AMD, with 8, 12, and 16 cores, respectively. Because of the
variety of the CPU types, if a small number of cores (e.g., 1, 2,
4, and 8 cores) are requested to the Hoffman2 cluster for the
simulation of the multiscale model of the batch crystallization
process, then it is possible to get one bad CPU that consists of
many bad cores, which will result in poor parallelization
performance. To circumvent this issue, among the many CPU
types in the Hoffman2 cluster, Intel-E5530 with 8 cores is
specifically requested and used for the construction of the plots
and tables presented in this section.
It is shown in Table 3 that the simulation times required to

complete a batch simulation decrease as the number of cores is

increased. Also, Figure 4 shows that as the number of cores is
doubled the speedup achieved in comparison to the theoretical
maximum speedup (i.e., the theoretical maximum speedup
should be n times when n processors are used) decreases
because of overhead costs generated by communication taking
place between multiple cores. Overall, it is clear that the batch

crystallization process greatly benefits from the use of MPI for
the kMC simulations. Furthermore, we have compared
concentration and temperature profiles obtained from the
kMC simulations with different numbers of cores, and it is
verified in Figures 5 and 6 that the concentration and

temperature profiles obtained from the kMC simulations with
ncores = 1 and 64 are identical. Therefore, we can conclude that
the computation time savings is achieved by the parallelized
computations and the accuracy of the simulation results is
maintained. If the multiscale framework is not properly
parallelized, then the speedup achieved by the parallel
computation scheme could be the result of compromising the
accuracy of the simulation results. We note that the evolution
of average crystal size and shape distributions is determined by
the supersaturation level over the course of the batch process,
which in turn is a function of the solute concentration and of
the temperature in the crystallizer. Therefore, by comparing the
solute concentration and the temperature rather than the
crystal size and shape distributions, we can improve our
fundamental understanding of the underlying dynamics of the
crystallization process.

Table 3. Time Required to Run a Batch Simulation and the
Speedup Achieved by Using Different Numbers of Coresa

ncores time (h) speed-up (times) theoretical speed-up (times)

1 34.97 1.00 1
2 17.63 1.98 2
4 8.98 3.89 4
8 4.71 7.44 8
16 2.47 14.18 16
32 1.38 25.28 32
64 0.92 38.15 64

aNote that ncores is the number of cores and that the speedup is defined
as t1/tn, where t1 is the time the process takes on 1 core and tn is the
time the process takes on n cores.

Figure 4. Speedup achieved by the parallel computation of the batch
crystallization process multiscale model under open-loop operation
with the number of cores used for the kMC simulation describing the
evolution of crystal shape distribution. The ideal behavior represents
the theoretical maximum speedup.

Figure 5. Profile of the protein solute concentration with time
obtained under the open-loop operation of the batch crystallization
process multiscale model for two different numbers of cores: 1 and 64.

Figure 6. Profile of the crystallizer temperature with time obtained
under the open-loop operation of the batch crystallization process
multiscale model for two different numbers of cores: 1 and 64.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b02942
Ind. Eng. Chem. Res. 2015, 54, 11903−11914

11910



In the parallel computations, we might observe a superlinear
speed-up behavior (i.e., speedup is greater than n times when n
processors are used), as is shown in Figure 7. In Figure 7, the

batch crystallization process is operated at a higher super-
saturation level than that of Figure 4. As a result, more crystals
are nucleated, increasing the number of crystals assigned to
each core significantly (thereby increasing the computational
requirement on each core). In general, the superlinear speedup
in low-level computations is caused by the cache effect due to
the different memory hierarchies of a modern computer.31

More specifically, with the larger accumulated cache size, more
simulation tasks can fit into caches; thus, the memory access
time required to reach the higher level (e.g., RAM) for
additional memory can be reduced significantly, which results
in extra speedup on top of that is achieved by parallelizing the
serial computations.
In particular, when we do not have access to a sufficient

number of identical CPUs, we can still improve the
computational efficiency of the parallelized computations by
introducing a new variable Nrp. Table 4 shows that we can

significantly reduce the simulation time required to run one
batch simulation by increasing Nrp. However, it is shown in
Figure 8 that the speedup achieved by increasing ncores
decreases as Nrp is increased. This is because increasing Nrp
may unnecessarily simplify the sequential problem such that it
is not significantly beneficial to further parallelize the kMC
simulation. Furthermore, it is shown in Figures 9 and 10 that as
Nrp is increased (i.e., each crystal represents more crystals, less
crystals are used to run the same batch crystallization process,

Figure 7. Speedup achieved by the parallel computation of the batch
crystallization process multiscale model under open-loop operation
with the number of cores used for the kMC simulation: superlinear
speedup vs ideal speedup are compared.

Table 4. Time Required to Finish the Batch Crystallization
Process under the Open-Loop Operation by Varying Nrp for
ncores = 64

Nrp time (h)

1 34.97
10 4.41
50 1.87
100 0.557
500 0.236

Figure 8. Speedup achieved by the parallel computation of the batch
crystallization process multiscale model under the open-loop operation
with the number of cores used for the kMC simulation for different
Nrp values.

Figure 9. Profile of the protein solute concentration with time
obtained under the open-loop operation of the batch crystallization
process multiscale model for different Nrp values. The inset shows the
C profile for t = 11 800−12 400 s and C = 32.0−34.0 mg/mL.

Figure 10. Profile of the crystallizer temperature with time obtained
under the open-loop operation of the batch crystallization process
multiscale model for different Nrp values. The inset shows the T profile
for t = 11 000−11 300 s and T = 15.120−15.132 °C.
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and error may thus follow) the concentration and the
temperature profiles obtained from the parallelized kMC
simulation progressively deviate from those profiles obtained
from the kMC simulation with Nrp = 1. By introducing Nrp,
therefore, we may compromise the accuracy of the simulation
results to decrease computation time.
Increasing the stirrer speed induces the aggregation process,

which requires transferring crystals from one core to another in
parallel computations to model the aggregation of two crystals.
Thus, additional overhead costs associated with transferring
crystals will be incurred, and as a result, the speedup curve
shifts downward as more aggregates are formed, which is shown
in Figure 11.

Initially, the parallel computation scheme is applied to open-
loop systems where no feedback control is applied to the
crystallization system. Then, the same parallel computation
scheme is used to improve the computation efficiency for the
closed-loop system where a model predictive control scheme is
used to regulate the shape distribution of crystals produced at
the end of the batch process by manipulating the crystallizer
jacket temperature. Specifically, an in-batch model-predictive
controller with formulation described in ref 40 is implemented
for the batch crystallization process for the production of
crystals with a desired crystal shape distribution at the end of
the batch process (Figure 13). In this work, the crystal shape is
defined as the ratio between the average crystal heights in the

direction of the (110) and (101) faces, α = ⟨ ⟩
⟨ ⟩
h
h

110

101
. It is shown in

Figure 12 that the computation time can be reduced by the
parallel computation of the closed-loop batch crystallization
process multiscale model without any sacrifice of the accuracy
of the calculated crystal shape distribution (Figure 13);
however, the speedup achieved by the parallel computation
depends on the desired set-point value for the crystal shape
distribution. For example, the optimal supersaturation level to
produce crystals with the higher set-point value, αset = 1.05,
favors the nucleation and crystal growth processes; thus, the
computation time is significantly reduced by parallelizing the
kMC simulation. In contrast, for the lower set-point value, αset
= 0.85, the optimal supersaturation level is low, and the
nucleation and crystal growth processes are less favored, in

which case the speedup achieved via the parallel computations
is not as significant as the one for αset = 1.05. The reader may
find more results on the morphological evolution of lysozyme
crystals from one of the previous works of our group. (See refs
32, 42, and 43.)
Remark 1 The evolution of crystal shape is determined by the

supersaturation level during the crystallization process. Specif ically,
at a high supersaturation level, the crystal growth rate in the
direction of the (110) face is higher than that of the (101) face,
and as a result, the production of crystals with a high shape factor
(e.g., high aspect ratio α = h110/h101) is favored. Also, the higher
supersaturation level leads to faster nucleation and crystal growth
processes. In contrast, at lower supersaturation levels, the production
of crystals with a lower aspect ratio is favored, and the
corresponding rates of the nucleation and crystal growth processes
are lower compared to those at higher supersaturation levels.

■ CONCLUSIONS
In this work, a parallelized multiscale, multidomain modeling
scheme was proposed to directly reduce the computation time

Figure 11. Speedup achieved by the parallel computation of the batch
crystallization process multiscale model under open-loop operation
with the number of cores used for the kMC simulation under
conditions where aggregates are formed.

Figure 12. Speedup achieved by the parallel computation of the batch
crystallization process multiscale model under closed-loop controlled
operation with the number of cores used for the kMC simulation
under different set-point values: ⟨α ⟩ = 1.05 and ⟨α ⟩ = 0.85.

Figure 13. Normalized crystal shape distribution obtained under the
closed-loop operation of the batch crystallization process multiscale
model for two different numbers of cores: 1 and 64. The desired set-
point value for the average crystal shape is αset = 0.85.
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and memory requirements without compromising the accuracy
of simulation results. The parallelized multiscale modeling
strategy that consists of the three steps of decomposition,
assignment, and orchestration was applied to a batch
crystallization process multiscale model. First, we decomposed
the nucleation and crystal growth processes in the batch
crystallization system into a collection of tasks where each task
represents the crystal growth of a nucleated crystal. Second,
tasks were assigned to processors according to a modulus
function (i.e., round-robin allocation). Third, a manager−
worker MPI computation scheme was used to link the
macroscopic model (e.g., mass and energy balance equations
for the continuous phase) to the microscopic models (e.g.,
kinetic Monte Carlo model). Using the proposed parallel
computation scheme, a significant decrease in the time required
to run the batch crystallization process multiscale model under
both open-loop and closed-loop operations was achieved as the
number of cores was increased. In particular, the performance
of the parallel computation scheme applied to the closed-loop
system was dependent on the desired crystal shape.
Furthermore, we extended the use of the parallel computation
scheme to the crystallization system with a high stirrer speed, in
which case many crystal aggregates were formed, and we
evaluated the effect of aggregation on the parallelization.
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