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ABSTRACT: In this work, we focus on the development of a parametric drift detection and isolation (PDDI) method for the
handling of batch-to-batch parametric drifts in a batch crystallization process used to produce hen egg-white (HEW) lysozyme
crystals. We consider that the batch crystallization process is controlled by an in-batch model predictive control (MPC) system
and is subject to batch-to-batch parametric drifts in the solubility, growth rates, continuous-phase mass and energy balance
parameters, and nucleation rate. The proposed PDDI scheme consists of two parts: preparatory stage before batch-to-batch
operation and post-batch stage during batch-to-batch operation. The goal of the preparatory stage is to compute the threshold
values and signatures for each parametric drift using simulations and batch process common cause variance described by noise.
During batch-to-batch operation, the proposed PDDI system monitors closed-loop process residuals, which are computed by
taking the difference between the time profiles of the states obtained through in-batch and postbatch measurements from the
time profiles of the states obtained from the drift-free simulation with noise. While the measurements of the protein solute
concentration and the temperature in the crystallizer are available in real-time, post-batch measurements are usually available for
the quality of the crystal products (e.g., number of crystals, average crystal size and shape) and this key characteristic is taken into
account in the PDDI method. We then compare the residuals with signatures obtained in the preparatory stage for each
parametric drift for isolation of a parametric drift. The PDDI system estimates the magnitude of the parametric drift and updates
the parameters of the batch process model used in the in-batch MPC system to compute a set of jacket temperatures for the
production of crystals with a desired shape distribution in the next batch. The performance of the MPC with the proposed PDDI
scheme is demonstrated by applying it to a multiscale simulation of a batch crystallization process with parametric drifts in the
solubility and crystal growth rates. The closed-loop system simulations demonstrate that crystals with a crystal shape distribution
that is closer to a desired set-point value are produced under a parametric-drift handling scheme that integrates the in-batch MPC
with the proposed PDDI system compared to those under the MPC with the nominal process model.

■ INTRODUCTION

Modeling and control of batch crystallization is of significant
interest to the pharmaceutical industry, because the bioavail-
ability of drugs is highly dependent on the size and shape
distributions of their active pharmaceutical ingredients. Within
this context, the dominant dynamic behavior of the evolution of
key crystallization variables is modeled through a process
model, which is used to compute a set of manipulated inputs
that drives the average crystal shape to a desired setpoint at the
end of the batch. However, because of unknown batch-to-batch
parametric drifts, the process model employed for in-batch
control and estimation purposes may significantly deviate from
the actual process behavior. For example, a small batch-to-batch
change in the pH level or impurity concentration in the
feedstock container may significantly alter the quality (e.g., size
and shape) of the crystal products.
Model-free control schemes, such as a proportional−

integral−derivative (PID) control scheme, are not able to
handle constraints on the inputs, outputs, and the rate of
change of inputs while computing optimal jacket temperature
values. Therefore, the necessity of incorporating the constraints
to account for the physical limitations on the manipulated
inputs and operating conditions makes model-based control
strategy (e.g., refs 1−4) the method of choice for crystal size
distribution control. More specifically, the model predictive

control (MPC) scheme was employed in refs 5−8 in order to
control the crystal size and shape distributions, along with the
consideration of the crystal growth and nucleation processes in
both batch and mixed suspension mixed product removal
(MSMPR) processes, based on a reduced-order model.
With the ultimate goal of better understanding of the effect

of variation in the process model parameters on the size and
shape distributions of crystals produced by batch crystallization
processes, this work considers the estimation of kinetic
parameters when there exist batch-to-batch parametric drifts
in multiple sources. A commonly used method to estimate
process model parameters is the method of least-squares,9,10

where its application to a crystallization process can be found
in, for example, ref 11. In addition, the Bayesian approach has
been applied to many chemical engineering problems, because
of its capability to predict the occurrence of a parametric drift in
the next batch run by taking into account historical batch
process data.12−15 Lastly, considering the repetitive nature of
operation of a batch process, the general idea of the run-to-run
(R2R) control scheme has been applied to address batch-to-
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batch parametric drifts in a variety of batch processes.16−20 In
particular, when there is a noticeable trend in the batch-to-
batch parametric drift, utilizing post-batch measurements over
multiple batch runs through a moving horizon estimation
(MHE) scheme guarantees the improved control performance
from batch to batch.21

In the context of continuously improving batch process
monitoring and control schemes, the design of systems capable
of timely detection and isolation of batch-to-batch parametric
drift and efficient handling of such drift has received growing
attention. Generally, parametric drift detection and isolation
(PDDI) methods can be divided into two categories: model-
based and data-based.
Specifically, model-based PDDI schemes rely on mathemat-

ical models of the process developed from first-principles that
can be solved in real time. With an accurate process model, the
data generated from the batch process model are compared
with process measurements to calculate residuals that will be
used for the detection and isolation of a specific parametric drift
in a manner similar to model-based fault detection and
isolation.22−24 On the other hand, data-based PDDI methods
make use of process measurements in order to perform PDDI.
Analyzing historical batch process data allows the construction
of data-based thresholds for the residuals, which can be used to
distinguish between normal and abnormal process opera-
tion.25−27 A common characteristic of the aforementioned
works on both model-based and data-based PDDI methods is
that they only consider synchronously sampled measurements
(e.g., real-time measurements in continuous processes), and
they do not account for measurements that arrive asynchro-
nously (e.g., post-batch measurements in batch processes).
Motivated by these considerations, the goal of this work is to
develop a PDDI scheme for a batch protein crystallization
process where the protein solute concentration and the
temperature in the crystallizer are available in real time (i.e.,
in-batch) at each sampling time, while only post-batch
measurements are available for the number of crystals, average
crystal size, and average crystal shape. This is due to the nature
of the measurement techniques, because the measurements of
crystal quality (such as the crystal size and shape distributions)
are difficult to obtain in real time with high accuracy,28,29 while
real-time measurements of the solute concentration and of the
temperature are usually available in the crystallizer.30,31

In a previous work of our group (cf. ref 21), we developed a
R2R model parameter estimation scheme based on MHE
concepts. This method brought together R2R control and
optimization-based parameter estimation schemes. Provided
that a nonlinear trend exists in the batch-to-batch parametric
drift and it can be approximately modeled by an explicit
function, it becomes possible to perform PDDI utilizing post-
batch measurements from multiple batches, following a moving
horizon approach. The purpose of the present work is to
further refine the approach proposed in ref 21 by relaxing the
requirement of the process measurements over multiple batch
runs and developing the use of the proposed PDDI scheme for
the detection and isolation of the parametric drift. Thus, it
becomes easier to precisely calculate the magnitude of the
process drift, because we determine the parameter(s) in which
the parametric drift is located. First, a PDDI scheme is
proposed for the purpose of the detection and isolation of
parametric drifts introduced to a batch crystallization process.
Then, a parametric drift-tolerant control scheme (PDTC) is
proposed that uses the PDDI scheme to improve the model of

the in-batch model predictive controller (MPC) to achieve the
production of crystals with a desired shape distribution.
The manuscript is organized as follows: we initially describe a

batch crystallization model used for our case study. Then, we
develop the PDDI and in-batch MPC schemes in order to
detect, isolate, and handle batch-to-batch parametric drifts. This
is followed by the section of closed- loop simulation results,
where the control and estimation performances of the proposed
schemes to various batch-to-batch parametric drifts in the
process model parameters are presented. For demonstration
purposes, we consider two cases: parametric drifts in the
growth rates and solubility curve. Lastly, the closed-loop
performance of the PDTC with MPC is compared with that of
the MPC based on the nominal batch process model.

■ BATCH CRYSTALLIZATION MODEL
We focus on a batch crystallization process used to produce hen
egg-white (HEW) lysozyme crystals in order to demonstrate
the proposed technique for parametric drift detection and
isolation.

Crystal Nucleation. The nucleation rate, B(σ), of lysozyme
crystals is given below:32

σ
σ σ

σ σ
=
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B(σ) has units of cm−3 s−1. The supersaturation level (σ) is
computed through the logarithmic ratio between the solute
concentration in the continuous phase C and the solubility s as
follows:
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where the solubility is calculated using the following
equation:33
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and T is the temperature in the crystallizer (in °C).
Crystal Growth. The growth rate equations of Table 1 are

originally adopted from ref 34 and used to model the crystal
growth through the kMC simulation.
Please note that the desorption and migration rates depend

on the surface microconfiguration (i.e., they take into account
the number of nearest neighbors i). The crystal growth rates
obtained from the kMC simulations are calibrated with the
experimental data35 by manipulating a set of Epb and ϕ values
for the (110) and (101) faces and K0

+ through extensive open-

Table 1. Surface Growth Rate Reactionsa

surface reaction rate equation

adsorption, ra: σ+K exp( )0

desorption, rd(i): ϕ −+ ⎛
⎝⎜

⎞
⎠⎟K

k T
i
E

k T
exp0

B

pb

B

migration rm(i): ϕ − ++ ⎛
⎝⎜

⎞
⎠⎟K

k T
i
E

k T

E

k T
exp

20
B

pb

B

pb

B

aK0
+ is the adsorption coefficient, ϕ is the total binding energy of a fully

occupied lattice, i is the number of nearest neighbors, and Epb is the
average bonding energy per bond.
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loop kMC simulations. The parameters used for the kMC
simulation are listed in Table 2. The reader may refer to ref 36
for more details regarding the execution of the kMC simulation.

Mass and Energy Balance Equations. The following
mass and energy balance equations37 are employed in this work
to compute the evolution of the solute concentration and
temperature in the crystallizer with time:

ρ
= − =C

t V

V

t
C

d
d

d

d
, (0) 48 mg/cmc

batch
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where Vcrystal is the total volume of crystals in the crystallizer
and Tj is the jacket temperature (i.e., manipulated input). The
process parameter values are shown in Table 3.

The enthalpy of crystallization is taken from ref 38, and the
specific heat capacity of the solution is assumed to be identical
to that of water, since the amount of the protein solute in the
solution is small, in comparison to that of water.
While it would be difficult to capture in the crystallizer

model, in which the control action is applied to, the entire plant
physical realization, the model employed here accounts for a
significant part of the complexity of a crystallization process,
including its multiscale character.
Population Balance Equation. The evolution of the

crystal volume distribution for the batch crystallization process
with nucleation and crystal growth is described by the following
population balance equation (PBE):39

σ δ∂
∂

+ ∂
∂

=n V t
t

G V n V t
V

B V
( , ) ( ( , ) ( , ))

( )vol
(6)

where n(V, t) is the number of crystals of volume V at time t,
δ(·) is the dirac delta function, and Gvol(V, σ) is the volumetric
crystal growth rate which will be formulated with more details
in the following section. Equation 6 states that crystals are
nucleated with an infinitesimal size. The dirac function in the
population balance equation capturing the effect of nucleation

rate will be stated as a boundary condition and used to simulate
the nucleation process.

Moment Models. By applying the method of moments to
the PBE of eq 6, a moments model that describes the zero and
first moments of the crystal volume distribution in the batch
crystallizer can be derived using standard techniques and has
the following form:37

=M
t

B
d

d
0

(7)

=M
t

G M
d
d

1
vol 0 (8)

where Mj(t) = ∫ 0
∞Vjn(V, t) dV is the jth moment for j = 0, 1,

and Gvol is formulated as follows:

= ⟨ ⟩⟨ ⟩ + ⟨ ⟩G G h h G h2vol 110 110 101 101 110
2

(9)

where G110 and G101 are the crystal growth rates in the direction
of the (110) and (101) faces (cf. Figure 1), respectively. The

following polynomial expressions for the growth rates G110 and
G101 are obtained from open-loop simulations of the multiscale
model used to model the batch crystallization process:

σ σ σ= − + −G 0.1843 1.1699 2.8885 2.5616110
3 2

(10)

and

σ σ σ= − + −G 0.1893 1.2264 2.9887 2.5348110
3 2

(11)

Lastly, the dynamic evolution of the average crystal heights,
⟨h110⟩ and ⟨h101⟩, are formulated as follows:

⟨ ⟩ = − ⟨ ⟩

⟨ ⟩ = − ⟨ ⟩

h
t

G
BV h

M

h
t

G
BV h

M

d
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Thus, the average crystal shape, ⟨α⟩, and size, ⟨V⟩, can be
computed as follows:

α⟨ ⟩ ≈ ⟨ ⟩
⟨ ⟩

⟨ ⟩ =h
h

V
M
M

110

101

1

0 (13)

The reader may refer to ref 40 for a more-detailed derivation of
the moments model.

Table 2. Parameters for the Faces (110) and (101) at 4% (w/
v) NaCl and pH = 4.5 at T = 18 °Ca

Value

parameter (110) face (101) face

Epb/kB 1077.26 800.66
ϕ/kB 227.10 241.65

aK0
+ = 0.211 s−1.

Table 3. Parameters for the Batch Crystallizer Model

symbol property value

ρc crystal density (mg/cm3) 1400
ΔHc enthalpy of crystallization (kJ/kg) −4.5
ρ(t) density of the continuous phase (mg/cm3) 1000 + C(t)
Cp specific heat capacity (kJ/(K kg)) 4.13
Vbatch volume of the crystallizer (L) 1
Ac contact area of the crystallizer wall and jacket (m2) 0.25
Uc overall heat transfer coefficient (kJ/(m2 h K)) 1800

Figure 1. HEW lysozyme crystal.
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■ PARAMETRIC DRIFT DETECTION AND ISOLATION
SYSTEM DESIGN

In-Batch MPC. We initially design an in-batch model
predictive controller (MPC) for the drift-free batch crystal-
lization process used for the production of HEW lysozyme
crystals. First, the dominant dynamic behavior of the evolution
of the crystal shape distribution in the batch crystallization
process is modeled through the process model (cf. eqs 1−13),
which is used to compute a set of optimal jacket temperatures
that minimizes the squared deviation of the average crystal
shape from a target value over the entire prediction horizon.
We note that the term “optimal” is used for constrained
optimization as well, in reference to a solution that optimizes
the cost functions while satisfying the constraints. There are
constraints imposed on the rate of change of the jacket
temperature and on the magnitude of the temperature in the
crystallizer. The resulting optimization problem for the
proposed in-batch MPC is formulated as follows:

∑ α α⟨ ⟩ −
=

tmin ( ( ) )
T T i

p

i
, ...,

1
set

2

j j p,1 , (14a)

−s.t. eqs 1 13 (14b)

° ≤ ≤ °
−

Δ
≤ °+T

T T
4 C 25 C 2 C/minj i j i, 1 ,

(14c)

= + Δt t ii (14d)

where p is the length of the prediction horizon (p = 10), Δ the
sampling time (Δ = 40 s), and Tj,i the jacket temperature at the
ith prediction step ti. The in situ measurements of C and T are
available at every sampling instant. Then, the optimization
problem of eqs 14 is solved to compute a set of optimal jacket
temperatures, (Tj,1, ..., Tj,10), and the first value, Tj,1, is applied
to the crystallizer until the next sampling instant. Note that,
since we impose explicit constraints on the magnitude of the
crystallizer temperature, there is no need to impose explicit
constraints of the magnitude of the jacket temperature (i.e.,
manipulated input), because it is implicitly constrained by the
crystallizer temperature constraint. The simulations were
carried out on the Hoffman2 cluster at UCLA and the
optimization problems were solved using the open source
interior point optimizer, IPOPT.
Parametric Drift Detection and Isolation. We consider

batch-to-batch parametric drifts in a batch crystallization
process, particularly in the parameters of the mass and energy
balance equations, the nucleation and crystal growth rate
expressions, and the solubility expression. These batch-to-batch
parametric drifts can be detected and isolated by observing the
evolution of measured outputs of the closed-loop system
through in-batch (e.g., C, T) and post-batch (e.g., ⟨α⟩, M0,
⟨h110⟩, ⟨h101⟩) measurement techniques. This consideration
requires that each parametric drift be the one influencing a
certain subset of the process outputs (i.e., each parametric drift
has a unique parametric drift signature).
As described in Figure 2, we first design and employ a PDDI

scheme in order to detect a parametric drift in real time over
the course of a batch run via in-batch measurements and to
further detect the drift at the end of a batch run via post-batch
measurements. The information generated by the nominal
batch crystallizer model initialized at the same state as the
actual batch process, provides an estimate of the parametric

drift-free batch process variables and allows detection of the
parametric drifts by comparing the nominal behavior with the
actual process behavior (i.e., in-batch and postbatch process
measurements). Specifically, the PDDI residual for each
variable can be defined as

α
= | ̅ − | ∈
= | ̅ − | ∈ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩

r t x t x t x C T

r t x t x t x M h h

( ) ( ) ( ) for { , }

( ) ( ) ( ) for { , , , }

x

x f f f 0 110 101

(15)

where x ̅ is the predicted evolution for the variable x, which is
obtained from the nominal process model (cf. eqs 1−13) with
noise for the same initial state and input trajectory as the one
applied to the actual batch process. The residuals rT and rC are
calculated at every sampling instant through in-batch measure-
ments while residuals r⟨α⟩, rM0

, r⟨h110⟩, and r⟨h101⟩ are evaluated
once, using the above procedure at the end of the batch run,
because only post-batch measurements are available for those
variables.
When there is a parametric drift in the process from batch-to-

batch, process residuals affected directly by the parametric drift
will deviate from zero. Furthermore, it is assumed that the
parametric drifts of interest will be sufficiently large so that their
effect will not be masked by process or measurement noise.
Therefore, the thresholds, with respect to which the residuals
will be compared, should account for the effect of process and
measurements noise. If no parametric drift occurs, the
measurements are close to the nominal behavior (depending
on the process and measurement noises levels) obtained via
post-batch closed-loop kMC simulations, using the input profile
applied to the process at the last batch run. However, because
of process and sensor measurement noise, the residuals rx(t)
will be nonzero. This necessitates the use of parametric drift
detection thresholds so that a parametric drift in the variable x
is declared only when a residual exceeds a specific threshold
value, rx,max, that accounts explicitly for the effect of process and

Figure 2. Structure integrating parametric-drift detection and isolation
scheme with in-batch MPC.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b00422
Ind. Eng. Chem. Res. 2015, 54, 5514−5526

5517



measurement noise. Below, we describe the PDDI scheme in
detail.
Specifically, the proposed PDDI scheme consists of two

parts: preparatory stage before batch-to-batch operation and
post-batch stage during batch-to-batch operation. Before batch-
to-batch operations, the goal of the preparatory stage is to
compute the threshold values and signatures for each
parametric drift and it is described as follows:
(1) In the preparatory stage, we simulate batch runs under

the MPC with the nominal process model. The noise (common
cause variance), which is obtained from historical data and
sensor information, is added to the process model used to
simulate the batch crystallization process but not added to the
batch process model used in the MPC. Then, these runs are
used along with the same type of simulations for batch runs
under MPC but without noise to compute residuals and
calculate the threshold value for each variable x (rx,max), based
on the maximum deviation (absolute values) of the time
profiles of the residuals with and without noise from zero
(difference of the time profiles of the variables of these two
distinct sets of simulations), respectively.
(2) We also calculate signatures for each drift in the

preparatory stage. We simulate batch runs under MPC with the
nominal process model. Again, the noise is added to the process
model used to simulate batch crystallization, but it is not added
to the process model used in the MPC. Furthermore, we add a
parametric drift in each of the five variables separately (i.e,
therefore we need at least as many separate simulations as the
number of drifts considered). We then compute the residuals
for each variable by calculating the difference between the time
profiles of the states obtained using this simulation with
parametric drifts and the time profiles of the variables obtained
from the simulation, where it has noise but no drift in the
process model. The residual of C and T that exceeds its
threshold first is recorded, and the signature of this specific drift
is calculated.
Note that if two or more parametric drifts are defined by the

same signature, isolation between them is not possible on the
basis of the parametric drift signature (i.e., no isolation). This
problem will be addressed via another set of simulations
discussed below. The post-batch stage of the proposed PDDI
scheme during batch-to-batch operation is described as follows:
(1) At the end of each batch run, we compute the residuals

by calculating the difference between the time profiles of the
states obtained through in-batch and post-batch measurements
from the time profiles of the states obtained from the drift-free
simulation with noise using the input trajectory applied to the
process during the last batch. Then, we compare these residuals
(calculated post-batch) with signatures obtained in the
preparatory stage for each parametric drift.
(2) After we narrow down the overall set of drift candidates

to a few parametric drift candidates, we run optimization
problems with the remaining drift candidates to match
simulated drift behavior with the in-batch experimental output
post-batch measurements in order to isolate the parametric drift
and to estimate the magnitude of the parametric drift. Details of
this step are given below in the Parametric Drift Estimation
section.
(3) The parameters of the batch process model used in the

MPC for the next batch then is updated to account for the
presence of drift.
Precise isolation of the parametric drift, such as the one

attained by the proposed PDDI scheme, would allow for the

design of a model predictive controller that will directly handle
the parametric drift in its formulation by updating its model
before each batch. As a result, the PDDI scheme can enhance
the controller performance by minimizing the production of
crystals with undesired characteristics attributed to the
parametric drift.
Also, it is important to point out the difference of the

proposed PDDI scheme with the MHE formulation employed
in ref 13 for computing parameter updates for the model used
in the MPC in the next batch run. If the detection and isolation
of the parametric drift is possible, then the model parameters
that are being updated are only the ones that are being directly
affected by the drift; as a result, the accuracy of the model used
in the MPC in the next batch is superior to that of the model
that uses a generic update for a larger set of its parameters.

Parametric Drift Estimation. After a parametric drift has
been detected and isolated, the PDDI system will estimate the
magni- tude of the parametric drift (i.e., how much the batch
process is perturbed from a nominal batch behavior). If two or
more parametric drifts are defined by the same signature,
isolation between them is not possible on the basis of the
parametric drift signature and, thus, we must find one drift that
better matches the in-batch and the post-batch measurements
by running the following optimization problem with candidates
which have been narrowed down from the set of all possible
drift candidates.
Specifically, a least-squares optimization problem is solved to

estimate the magnitude of the particular parametric drift (one
at a time) utilizing the in-batch and post-batch measurements
(e.g., C, T, ⟨α⟩, M0, ⟨h110⟩, ⟨h101⟩) and the control inputs (e.g.,
Tj) applied in the last batch run. In the optimization problem of
eqs 16 below, parametric drifts associated with the nucleation
rate, the crystal growth rate in the direction of the (110) and
(101) faces, the parameters of the solubility equation, and the
parameters of the mass and energy balance equations are taken
into account by multiplying the correction parameters γnu, γ110,
γ101, γs, γC, and γT to the nominal expressions, respectively.
Furthermore, the objective function (cf. eq 16a) consists of a
sum of squared errors between the predicted average crystal

size and shape, α⟨ ⟩ ̂t( )f and ⟨ ⟩ ̂V t( )f , and the measured ones,
⟨α⟩measured and ⟨V⟩measured. The resulting optimization is
formulated as follows:

α α⟨ ⟩ − ⟨ ⟩ + ⟨ ⟩ − ⟨ ⟩̂ ̂
αΓ
w t w V t Vmin ( ( ) ) ( ( ) )f V fmeasured

2
measured

2

(16a)

−s.t. eqs 1 14 (16b)

γ σ γ σ̂ = ̂ =s t s t B B( ) ( ), ( ) ( )s nu (16c)

γ γ̂ = ̂ =G t G t G t G t( ) ( ), ( ) ( )110 110 110 101 101 101 (16d)

γ γ̂ = ̂ =T t T t C t C t( ) ( ), ( ) ( )T C (16e)

γ γ γ γ γ γΓ = [ , , , , , ]T C110 101 nu s (16f)

Assuming we have already isolated a parametric drift, we can
use only one correction factor (cf. PDDI with γx) and leave the
other entries equal to one. For example, if a parametric drift in
the solubility equation has been isolated, the correction
parameters in Γ become γ110 = γ101 = γT = γC = γnu = 1 and
γs = d, where d is the magnitude of the parametric drift for the
solubility equation. Therefore, solving the optimization
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problem of eqs 16 is reduced to finding the value of the
magnitude d. If two or more parametric drifts are defined by the
same signature, we have to run them one by one, as described
above, until we find one that better matches the in-batch and
post-batch measurements. Once the parametric drift is isolated
and its magnitude d is estimated, the PDDI system will send the
parametric drift information to the in-batch MPC to update its
model, which will be used for the computation of the optimal
jacket temperature in the next batch run. This control scheme is
essentially a PDTC. A schematic representation of the PDTC
scheme is shown in Figure 2.
Using the PDTC scheme, the parameters in the process

model used in the MPC in the next batch are updated based on
the parametric drift detection and isolation via the proposed
PDDI scheme. The parametric drifts in the growth rates and
the solubility curve are used for demonstration purposes. The
proposed scheme can be applied to handle parametric drifts in
the other parameters as well. However, the performance of the
proposed PDDI scheme is dependent on the specific
crystallization system, and in some cases, the parametric drift
may be such that it is not possible to achieve good parametric
drift detection and isolation.
While the decision variables in the optimization problems of

eqs 14 (MPC) and 16 (post-batch parameter estimation) are
finite, because of the sample-and-hold implementation of the
control actions (jacket temperature) to the crystallizer and the
estimation of a finite number of parameter values, respectively,
the dynamics of the crystallizer taken into account in the MPC
model are continuous, and, therefore, they are modeled by
differential equations. Of course, these differential equations are
integrated numerically with a much smaller time step than the
sampling time during the solution of the MPC optimization
problem at each sampling time that leads to the calculation of
the control actions.
More specifically, the optimization problem of eq 14 was

solved to local optimality using the open-source interior point
optimizer, IPOPT, and the optimization problem of eq 16 was
also solved to local optimality using the Matlab function
fmincon at the end of the batch process. Although a negligible
amount of time is needed for the former problem to be solved
(well-within the sampling time limits), ∼5−10 s are needed for
the latter.

■ APPLICATION OF MPC WITH PDDI TO BATCH
PROTEIN CRYSTALLIZATION

Process and Measurement Noise. Measurement and
process noise is added to the process model used to simulate
the batch crystallization process. Specifically, measurement
noise is introduced to the C(t) and T (t) measurements as
follows:

= ̅ + = ̅ +C t C t w t T t T t w t( ) ( ) ( ), ( ) ( ) ( )C T (17)

where C̅(t) and T̅(t) are the average solute concentration in the
continuous phase and the crystallizer temperature, wC(t) and
wT(t) are both Gaussian white noise with zero mean and a
standard deviation of 2% of C̅(t) and T̅(t), respectively.
Furthermore, the process noise is introduced to the nucleation
and growth rates in the direction of the (110) and (101) faces
as follows:

σ σ σ= ̅ +
= ̅ +

= ̅ +
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G t G t w t

G t G t w t
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( ) ( ) ( ),

( ) ( ) ( )

B

G

G

110 110

101 110

110

110 (18)

where B̅(σ), G̅110(t), and G̅101(t) are the nominal nucleation
rate and the growth rates in the direction of the (110) and
(101) faces, wB(σ), wG110(t), and wG101(t) are also Gaussian white
noise variables with zero mean and a standard deviation of 2%
of B̅(σ), G̅110(t), and G̅101(t), respectively.

Drift-Free Operation and Parametric Drifts. In the
Parametric Drift Estimation section, an in-batch MPC is
designed for the drift-free batch crystallization process. The
performance of the in-batch MPC is demonstrated by applying
it to a drift-free closed-loop simulation with the noise under
nominal operation conditions where Figure 3 shows the
trajectory of the real-time in-batch measurements of T (t) and
C(t) and Table 4 shows the post-batch measurements ⟨α(t)⟩,
M0(t), ⟨h110(t)⟩, and ⟨h101(t)⟩ at t = 18 h.
Note that, under drift-free operating conditions, the

production of crystals with a shape distribution that is very
close to a desired set-point value, αset = 0.89, is achieved. The
parametric drifts considered in this work and their magnitudes
are given in Table 5. Specifically, the values corresponding to

Figure 3. Profiles of the protein solute concentration and of the
crystallizer temperature with time during batch crystallization under
nominal (drift-free) operating conditions, for the growth rate ratio set-
point value, αset = 0.89.
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the percentage change presented in Table 5 for each variable
are multiplied to the expressions for B, G110, G101, and S,
respectively (e.g., multiply eq 10 by 0.7 to model the parametric
drift described in Table 5 for G110).
Preparatory Stage of PDDI. In the preparatory stage, we

simulate batch runs using the process model with the noise
under the MPC with the nominal process model. These runs
then are used along with the same type of simulations for batch
runs but without noise to get the threshold values that are
mainly attributed to the effect of the noise in the process
model. Specifically, the maximum value of each variable
throughout the batch run is chosen as the threshold value for
each variable (rx,max), and they are presented as follows:

=
= °
=
=

= = μ

α⟨ ⟩

⟨ ⟩ ⟨ ⟩

r

r

r

r
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110 101 (19)

and signatures for each parametric drift are also determined
based on these threshold values. First, in-batch measurements
are used for detection and isolation of parametric drifts at the
end of the batch. Specifically, a parametric drift is detected if
rx(tx) > rx,max for x ∈ {C, T} where tx is the first time rx exceeds
the threshold value rx,max. Depending on which residual exceeds
its threshold first between C and T, the process signature for a
parametric drift in the variable x, Wx,in = [WC;WT], is built as
follows:

> → =t t W W[ ; ] [1; 0]C T C T (20a)

< → =t t W W[ ; ] [0; 1]C T C T (20b)

where, as a result, the possible candidates for parametric drifts
can be divided into two subgroups based on their in-batch
process signatures, Wx,in, as follows:

= = =
= = =

W W W

W W W
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[0; 1]

C S N

T G G

,in ,in ,in

,in ,in ,in110 101 (21)

If tC = tT, it indicates that the in-batch measurements are not
able to be used for the isolation of parametric drifts. The post-
batch measurements (e.g., ⟨α⟩, M0, ⟨h110⟩, ⟨h101⟩) then are used
to compute the post-batch signature for a parametric drift in the
variable x, Wx,post = [W⟨α⟩, WM0

, W⟨h110⟩ W⟨h101⟩], as described
below:

> → =r r W 1x x x,max (22a)

≤ → =r r W 0x x x,max (22b)

for x ∈ {⟨α⟩,M0,⟨h110⟩,⟨h101⟩}. Note that which one exceeds its
threshold value first does not matter, because all residuals
exceed their thresholds at t = 18 h. For example, if we simulate
a batch run with a parametric drift in the solubility curve and
observe that rx > rx,max for ⟨α⟩, ⟨h110⟩, and ⟨h101⟩ only, we obtain
the post-batch process signature for the parametric drift in the
solubility curve, WS,post = [1;0;1;1]. In this work, however, all
residuals will eventually exceed their thresholds and thus all
signatures are identical as follows:

= = = =
= =

W W W W W
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110

101 (23)

Therefore, it is not possible to further isolate parametric drifts
based on the post-batch measurements (i.e., the post-batch
measurements do not give any information for isolation of
parametric drifts). Instead, once we have narrowed down to
two subgroups using the in-batch measurements (cf. eq 21), we
will run simulation for the remaining drift candidates one by
one to find the one that better matches the in-batch and post-
batch measurements.

Post-Batch Stage of PDDI. In the post-batch stage of the
proposed PDDI, we compute the residuals by calculating the
difference between the time profiles of the states obtained
through in-batch and post-batch measurements from the time
profiles of the states obtained from the drift-free simulation
with noise used in the preparatory stage above. We then
compare the residuals with signatures obtained in the
preparatory stage for each parametric drift. An optimization
problem then is solved to isolate the parametric drift and to
estimate the magnitude of the parametric drift. Then, the batch
process model used in the MPC for the next batch is updated.

Parametric Drift in Solubility. The first scenario
considered in this work has a parametric drift triggered in the
solubility equation producing crystals that do not meet the
desired product quality. Specifically, a parametric drift (for
example, a change in the pH level of a feedstock container) is
introduced at the beginning of the batch run, such that the
solubility is increased by 10% for a given temperature level. As a
result, a set of the optimal jacket temperatures computed by the
in-batch MPC using a nominal process model will not drive the
temperature in the crystallizer to a desired level, because of the
mismatch between the actual batch process and the solubility
model used in the in-batch MPC.
We now look at how the PDDI system responds to the same

parametric drift in the solubility equation. During batch-to-
batch operations, the PDDI system performs two actions. First,
at the end of each batch, it computes the residuals rC and rT,
using in-batch measurements of those variables. If the residuals
exceed their thresholds, a parametric drift is detected and
isolated by comparing its in-batch process signature with the
parametric drift signatures presented in eq 21. Specifically, the
detection of a parametric drift is most evident in Figure 4 and

Table 4. Post-Batch Measurements for the Batch
Crystallization Process under Drift-Free Closed-Loop
Operation at t = 18 h

parameter value

⟨α⟩ 0.895
M0 384 000
⟨h110⟩ 174 μm
⟨h101⟩ 185 μm

Table 5. Magnitude of Parametric Drift for Each Variable

type % change of nominal value

ρc in mass balance, eq 4 −10%
Uc in energy balance, eq 5 −10%
G110 rate, eq 10 −30%
G101 rate, eq 11 −23%
nucleation rate, eq 1 +40%
solubility, eq 3 +10%
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Table 6, where the residuals rC(t) and rT(t) exceed their
thresholds at t = 15.2 and t = 16 h, while r⟨α⟩(t), rM0

(t), r⟨h110⟩(t),

and r⟨h101⟩(t) exceed their threshold values at t = 18 h. The
resulting in batch process signature [1;0] coincides with the
signatures for parametric drifts in the solubility curve, mass
balance parameters, or nucleation rate (cf. eq 21). Since, in this
work, the post-batch measurements do not provide any
information for isolation of the parameter drift, the second
action of the PDDI scheme is to determine the one that better
matches the in-batch and post-batch measurements. Assuming

that only one parametric drift occurs at a single batch, the
magnitude of each parametric drift is computed by solving eqs
16 for γs, γC, and γnu separately. As a result, the correction
parameter for the solubility equation gives the best matching
with the process measurements when γs = +10%. This
information is used to update the model of the MPC system
to deal with the persistent parametric drift in the solubility
curve that would have an effect on the product quality in the
next batch run. The performance of the successful model
parameter updating at the next batch run can be seen in Figure
5 and Table 7, where the residuals obtained by the multiscale
simulations under the PDTC scheme remain far below their
threshold values.

For the purpose of testing of the closed-loop performance,
with respect to the use of more correction factors, the control
performance of the PDTC with γs is compared with that of the
PDTC with Γ, where all six correction factors are used to
compensate for the parametric drift in the solubility equation.
In Figure 6 and Table 7, the residuals obtained under the
PDTC with γs are smaller than those under the PDTC with Γ,
indicating that the former scheme estimates the effect of the
process drift in the solubility curve better than the latter
scheme. It is also apparent in Figure 7 that the crystal shape
distribution obtained at t = 18 h under the PDTC with γs is

Figure 4. Residual profiles of the protein solute concentration (rC) and
of the crystallizer temperature (rT) with time during batch
crystallization, in response to a parametric drift in the solubility
equation (eq 3), under the MPC scheme with the nominal process
model, for a growth rate ratio set-point value of αset = 0.89.

Table 6. Residuals Based on the Post-Batch Measurements
Obtained at t = 18 h for the Batch Crystallization Process
with a Parametric Drift in the Solubility Equation under No
PDTC

parameter value

r⟨α⟩ 0.17

rM0
128 000

r⟨h110⟩
40.1 μm

r⟨h101⟩ 34.8 μm

Figure 5. Residual profiles of the protein solute concentration (rC) and
of the crystallizer temperature (rT), relative to time during batch
crystallization, in response to a parametric drift in the solubility
equation (eq 3), under the PDTC scheme with γs, for a growth rate
ratio set-point value of αset = 0.89.
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more narrow and closer to the set-point value than that under
the PDTC with Γ.
Parametric Drifts in Growth Rates G110 and G101. In this

scenario, we look at simultaneous parametric drifts in the
growth rates in the direction of the (110) and (101) faces by
multiplying the expressions for G110 and G101 (cf. eqs 10 and 11,
respectively) by factors of 0.7 and 0.77, respectively. This is a
very typical parametric drift in the crystallization process,
because the presence of impurities will reduce the overall
crystal growth rates, inhibiting the attachment of molecules of
interest to the crystal surface. Furthermore, an impurity may
favor one face over the other, which could cause the growth

rate of one face to decrease more than the growth rate of the
other face. When there is no PDTC implemented, as shown in
Figure 8, we can observe that the values of the rC(t) and rT(t)
increase progressively, because of the parametric drifts in the
G110 and G101, and eventually they exceed their thresholds, at t
= 17.7 and 15.2 h, respectively. As a result, the in-batch process
signature of [0;1] is obtained, indicating that there is a chance
of a parametric drift in the mass balance parameters and growth
rates in the direction of the (110) and (101) faces. The
presence of a parametric drift is also apparent in Table 8,
because the residuals r⟨α⟩(t), r⟨h110⟩(t), and r⟨h101⟩(t) have
exceeded their thresholds at t = 18 h.
Then, we solve eq 16 to determine the magnitude of which

one among the remaining three candidates better matches the
in-batch and post-batch measurements. Specifically, we used
both γ110 and γ101 at the same time, because it is very common
in practice that growth rates in the direction of more than one
face are affected by, for example, impurities. The proposed
PDTC scheme then is applied to the next batch run to address
the persistent parametric drifts in the G110 and G101, where its
control performance is shown in Figure 9 and Table 9,
indicating that all residuals remain far below their threshold
values. The performance of the parameter estimation becomes
noticeable when the residuals in Tables 8 and 9 are compared.
Similar to the previous case, a comparative study between the
PDTC with γ110 and γ101 and the PDTC with Γ is made and
shown in Figure 10 and Table 9, where the former outperforms
the latter in handling the effect of the parametric drifts in the
G110 and G101 parameters. This is because the PDTC with Γ
may have degenerate solutions due to a limited access to the
crystal product quality. As a result, it is shown in Figure 11 that
crystals produced under the PDTC with γ110 and γ101 are much
closer to the desired crystal shape set-point value than that
under the PDTC with Γ.
Also, because of the persistent parametric drift and the nature

of the batch crystallization process, it is often the case that the
original set-point value is not accessible anymore and the MPC
system attempts to regulate the system as close as possible to
the original set-point value. For example, if G101 is increased by
15% (i.e., the growth rate curve for the G101 has shifted along
the arrow in Figure 12), the optimal supersaturation level

Table 7. Comparison of the Residuals Based on the Post-
Batch Measurements for the Batch Crystallization Process
with a Parametric Drift in the Solubility Equation under
PDTC Scheme with γs and PDTC Scheme with Γ at t = 18 h

Value

parameter PDTC with γs PDTC with Γ

r⟨α⟩ 0.0047 0.019
rM0

32000 92000

r⟨h110⟩ 1.95 μm 12.1 μm

r⟨h101⟩ 1.72 μm 8.51 μm

Figure 6. Comparison of the residual profiles of the protein solute
concentration (rC) and of the crystallizer temperature (rT), relative to
time during batch crystallization, in response to a parametric drift in
the solubility equation (eq 3) under the PDTC scheme with γs and the
PDTC scheme with Γ (i.e., Γ = [γ110, γ101, γT, γC, γnu, γs]), for a growth
rate ratio set-point value of αset = 0.89.

Figure 7. Normalized crystal shape distribution obtained from the
kMC simulations under the PDTC scheme with γs is compared with
that of the PDTC scheme with Γ (i.e., Γ = [γ110, γ101, γT, γC, γnu, γs])
for the batch crystallization process with a parametric drift in the
solubility equation (eq 3). The desired set-point value for the average
crystal shape is αset = 0.89.
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required to achieve the set-point value (αset = 0.89) is also
increased, resulting in more rapid crystal growth and, as a
result, more significant depletion in the protein solute
concentration. As shown in Figure 13, the concentration may
decrease to the level where it cannot be compensated by
additionally reducing the jacket temperature, because of the
constraint on the temperature of the crystallizer (cf. eq 14c).
Therefore, the production of crystals with an undesirably low
aspect ratio is achieved in Figure 14.
The proposed PDDI scheme can be applicable to other batch

crystallization systems provided that both in-batch and post-
batch measurements are available. More measurements would
enhance the performance of the proposed PDDI scheme.

Furthermore, in the case in which a first-principles model is not
available for MPC design, the proposed PDDI scheme can be
coupled with a model used in MPC that is derived from process
data (i.e., a data-based model), using system identification
techniques.

■ CONCLUSIONS
In this work, a parametric drift detection and isolation (PDDI)
scheme that consists of a preparatory stage before batch-to-
batch operation and a post-batch stage during batch-to-batch
operation was proposed for the detection and isolation of

Figure 8. Residual profiles of the protein solute concentration (rC) and
of the crystallizer temperature (rT), relative to time during batch
crystallization, in response to parametric drifts in the crystal growth
rates in the direction of the (110) and (101) faces (eqs 10 and 11,
respectively) under the MPC scheme with the nominal process model,
for a growth rate ratio set-point value of αset = 0.89.

Table 8. Residuals Based on the Post-Batch Measurements
Obtained at t = 18 h for the Batch Crystallization Process
with Parametric Drifts in the Growth Rates in the Direction
of the (110) and (101) Faces under No PDTC

parameter value

r⟨α⟩ 0.088

rM0
96000

r⟨h110⟩
21.1 μm

r⟨h101⟩ 16.6 μm

Figure 9. Comparison of the residual profiles of the protein solute
concentration (rC) and of the crystallizer temperature (rT), relative to
time during batch crystallization, in response to parametric drifts in the
growth rates in the direction of the (110) and (101) faces (eqs 10 and
11, respectively) under the PDTC scheme with γ110 and γ101, for a
growth rate ratio set-point value of αset = 0.89.

Table 9. Comparison of the Residuals Based on the Post-
Batch Measurements for the Batch Crystallization Process
with a Parametric Drift in the Growth Rates in the Direction
of the (110) and (101) Faces under a PDTC Scheme with
γ110 and γ101 and a PDTC Scheme with Γ at t = 18 h

Value

parameter PDTC with γ110, γ101 PDTC with Γ

r⟨α⟩ 0.0088 0.028
rM0

32000 40800

r⟨h110⟩ 2.21 μm 6.28 μm

r⟨h101⟩ 2.65 μm 9.45 μm
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batch-to-batch parametric drifts in a batch crystallization
process. In the preparatory stage, the threshold values and
signatures for each parametric drift are computed without

Figure 10. Comparison of the residual profiles of the protein solute
concentration (rC) and of the crystallizer temperature (rT), relative to
time during batch crystallization, in response to parametric drifts in the
growth rates in the direction of the (110) and (101) faces (eqs 10 and
11, respectively) under a PDTC scheme with γ110 and γ101 and a
PDTC scheme with Γ (i.e., Γ = [γ110, γ101, γT, γC, γnu, γs]), for a growth
rate ratio set-point value of αset = 0.89.

Figure 11. Normalized crystal shape distribution obtained from the
kMC simulations under the PDTC scheme with γ110 and γ101,
compared with that of the PDTC scheme with Γ (i.e., Γ = [γ110, γ101,
γT, γC, γnu, γs]) for the batch crystallization process with parametric
drifts in the growth rates in the direction of the (110) and (101) faces
(eqs 10 and 11, respectively). The desired set-point value for the
average crystal shape is αset = 0.89.

Figure 12. Solid and dashed lines show the growth rates obtained
from the kMC model in the direction of the (110) and (101) faces,
respectively, which are calibrated with the experimental data at 4%
NaCl and pH 4.6 (taken from ref 35). The arrow indicates that the
growth rate in the direction of the (101) face is increased by 15%.

Figure 13. Comparison of the profiles of the protein solute
concentration and of the crystallizer temperature with time during
batch crystallization, in response to a parametric drift in the growth
rate in the direction of the (101) face (eqs 10 and 11), under the
PDTC scheme with γ101 for a growth rate ratio set-point value of αset =
0.89.
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process measurements. Then, during the batch-to-batch
operation, this scheme computes residuals by evaluating the
absolute value of the difference between the process variables
obtained from the drift-free simulation with noise from the time
profiles of the states obtained through post-batch (e.g., number
of crystals, average crystal size and shape) as well as in-batch
(e.g., protein solute concentration, temperature in the
crystallizer) process measurements. The residuals were
compared with thresholds and signatures obtained in the
preparatory stage for the detection and isolation of a parametric
drift. Subsequently, the magnitude of the batch-to-batch
parametric drift is estimated by the PDDI system and it is
used to update the parameters of the batch process model
which is used in the in-batch model predictive control (MPC)
to compute a set of optimal jacket temperatures for the
production of crystals with a desired shape distribution in the
next batch. Using closed-loop simulations, the batch-to-batch
process model parameter variation in the solubility and crystal
growth rates were properly handled by the proposed parametric
drift-tolerant control (PDTC) scheme and, as a result, the
production of crystals with a desired shape distribution that is
closer to a desired set-point value was achieved, compared to
that of the MPC with the nominal process model. Furthermore,
the performance of the proposed PDTC was evaluated, with
respect to the number of correction parameters used to
estimate various parametric drifts.
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