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a b s t r a c t

In this work, we develop a run-to-run (R2R) model parameter estimation scheme based on moving
horizon estimation (MHE) concepts for the modeling of batch-to-batch process model parameter
variation using a polynomial regression scheme in a moving horizon fashion. Subsequently, the batch
process model parameters computed via the proposed R2R model parameter estimation scheme are
used in a model predictive controller (MPC) within each batch to compute a set of optimal jacket
temperatures for the production of crystals with a desired shape distribution in a batch crystallization
process. The ability of the proposed method to suppress the inherent variation in the solubility caused by
batch-to-batch parametric drift and handle the noise in post-batch measurements is demonstrated by
applying the proposed parameter estimation and control method to a kinetic Monte Carlo (kMC)
simulation model of a batch crystallization process used to produce hen-egg-white (HEW) lysozyme
crystals. Furthermore, the performance of the proposed R2R model parameter estimation scheme is
evaluated with respect to different orders of polynomials and different moving horizon lengths in order
to calculate the best parameter estimates. The average crystal shape distribution of crystals produced
from the closed-loop simulation of the batch crystallizer under the MPC with the proposed R2R model
parameter estimation scheme is much closer to a desired set-point value compared to those of the
double exponentially weighted moving average-based MPC (dEWMA-based MPC) and that of MPC based
on the nominal process model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Batch configuration is one of the most widely used reactor
and crystallization configurations in the specialty chemicals and

pharmaceutical industries. However, due to unknown systematic
trends or drifts in the process parameter values, for example, in
initial pH level, operating conditions, and impurity concentrations
in raw materials, the values of the parameters used in batch pro-
cess models (employed for control and estimation purposes) may
significantly deviate from the actual parameter values resulting in
poor control and estimation performance (e.g., FloresCerrillo and
MacGregor, 2004). Such a drift in the pH level of a feedstock con-
tainer, for example, may be challenging from the standpoint of
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operating batch crystallization processes because even a small
change in the pH level may have a significant influence on the size
and shape distribution of crystal products, and thereby, on the
bioavailability of crystals produced from a batch crystallization
process. As another example, in a chemical–mechanical planariza-
tion process, a negative drift may occur when the interior diam-
eter of a spray nozzle decreases due to clogging, thereby causing
a decrease in the amount of liquid passing through the nozzle. On
the other hand, positive drift may occur when process equipment
gradually wears out. These issues can be addressed by cleaning the
spray nozzle or replacing the part, but certainly make difficult the
consistent production of parts (Rahim and Banerjee, 1988).

In general, common uncertainties in batch processes include
fully stochastic (random) variations (e.g., noise in the measure-
ments) and process drift of repetitive nature. There are previous
contributions that have considered parameter uncertainty in batch
crystallization processes. Specifically, while stochastic filtering
techniques such as Kalman filtering and its variants such as the
extended Kalman filter (EKF) are known for their ability to handle
stochastic fluctuations effectively (Mesbah et al., 2011), the ability
of Kalman filtering to handle process drift is limited as batch-to-
batch parametric drift cannot be explicitly taken into account in
the EKF design (Haseltine and Rawlings, 2005). Additionally, the
kinetic parameters may be estimated by Bayesian inference from
batch data collected from in situ measurements (Hermanto et al.,
2008). The difficulty in making in situ measurements for real-time
control during each batch run and the high sensitivity of the prod-
uct quality on the feedstock stream have led to numerous imple-
mentations of run-to-run (R2R) control on batch processes to deal
with random variations and drift (e.g., Sachs et al., 1990, 1995).
Several significant efforts have been made to the parameter esti-
mation of multiscale models. For example, a maximum likelihood
scheme was used for the estimation of the process parameters
(Kannan et al., 2000), and modeling and control of thin film
morphology using uncertain processing parameters was studied
in Gallivan et al. (2001) and Lou and Christofides (2003). Addi-
tionally, parameter estimation for other multiscale chemical pro-
cesses was investigated in Raimondeau and Vlachos (2002) and
Gunawan et al. (2003).

The best known method for handling batch-to-batch drift, parti-
cularly in the application of run-to-run control to batch semiconduc-
tor manufacturing processes, is the exponentially weighted moving
average (EWMA) control scheme because of its ability to detect mean
shifts in the presence of strong autocorrelation from batch-to-batch
(Castillo and Yeh, 1998; Moyne et al., 2001; Campbell et al., 2002; Lee
and Dorsey, 2004; Wang et al., 2009; Kwon et al., 2014a). While
significant efforts have been devoted to the improvement of the
stability and sensitivity in response to process noise of the EWMA
scheme (e.g., Wang, 2010; Wang et al., 2010), this scheme becomes
insufficient for processes subject to highly nonlinear batch-to-batch
dynamics of the process drift. Motivated by this, several authors have
proposed using a double exponentially weighted moving average
(dEWMA) formula, which can capture the changes in the rate of the
process drift, and thus, forecast the process drift in the next batch run
(Bulter and Stefani, 1994; Simith et al., 1998; Castillo, 1999; Chen and
Guo, 2001; Castillo and Rajagopal, 2002; Su and Hsu, 2004; Tseng and
Hsu, 2005; Wu and Maa, 2011).

However, when the batch-to-batch dynamics of the process
drift is nonlinear, the effectiveness and convergence speed of the
dEWMA scheme are highly restricted, and thus, the remaining
parametric mismatch between the process model used in the
controller and the actual process variables may significantly affect
the controller performance. While higher-order EWMA schemes
such as triple EWMA schemes may improve the control perfor-
mance in batch systems (Fan et al., 2002), they are impractical due
to their tuning complexity because of the trade-off between the

convergence speed and the stability of the closed-loop system,
which has to be evaluated by a trial-and-error procedure. Further-
more, the dEWMA is a suboptimal filter for stochastic processes,
no matter how the process gains in the dEWMA are tuned off-line
(Ramaswamy and Lee, 2003).

Motivated by the above considerations, in this work, a run-to-run
model parameter estimation scheme based on moving horizon
estimation concepts is proposed in order to model the batch-to-
batch dynamics of the process drift and compute improved estimates
of process model parameters, utilizing post-batch measurements
from multiple batch runs. The MHE approach is employed because it
provides improved parameter estimation and greater robustness to
poor guesses for initial states because of its capability to incorporate
physical constraints into the optimization problem used for para-
meter estimation. Specifically, the key elements of the proposed R2R
model parameter estimation scheme based on MHE concepts are the
following: first, the variation of the process model parameters from
batch-to-batch is estimated by solving an R2R model parameter
estimation scheme along with the post-batch measurements from
multiple batch runs. Second, the batch-to-batch parametric drift is
modeled through the use of a nonlinear function (e.g., second-, third-
or fourth-order polynomials), and used to update the parameters of
the model predictive controller (MPC) model (used for real-time
feedback control within each batch) to suppress the undesired effect
of the process drift in the next batch run.

The paper is structured as follows: we initially discuss the model
of our case study, a batch crystallization process used to produce
tetragonal hen-egg-white (HEW) lysozyme crystals, focusing on the
nucleation and crystal growth processes in the direction of (110) and
(101) faces. Then, we develop an R2R model parameter estimation
scheme in order to identify the batch-to-batch dynamics of the
process drift by solving a multivariable optimization problem along
with the post-batch measurements from multiple batch runs in a
moving horizon fashion. The computed model parameters are used in
an MPC for the computation of a set of optimal jacket temperatures
that drive the average shape of the entire crystal population at the
end of the batch to a desired value. The performance of the proposed
R2R model parameter estimation scheme is evaluated with respect to
the different orders of polynomials and different moving horizon
lengths in order to find the best parameter estimates. Lastly, the
closed-loop performance of the MPC with the proposed R2R model
parameter estimation scheme is compared with those of a double
exponentially weighted moving average-based MPC (dEWMA-based
MPC) and MPC with no model parameter update.

2. Modeling of batch crystallization process

To present and evaluate the proposed technique for process
model parameter estimation, we will focus on a batch crystal-
lization process used to produce HEW lysozyme crystals.

2.1. Crystal nucleation

At 4%(w/v) NaCl and pH¼4.5, the lysozyme crystals are nucleated
according to the following rate expressions (Galkin and Vekilov, 2001)

B¼
0:041σþ0:063 for σZ3:11
8:0� 10�8expð4:725σÞ for σo3:11

(
ð1Þ

where B is the nucleation rate with units [cm�3 s�1], and the
supersaturation level σ is defined as follows:

σ ¼ lnðC=sÞ ð2Þ
where C is the solute concentration and s is the solubility, which is
calculated using the following third-order polynomial equation taken

J.S.-I. Kwon et al. / Chemical Engineering Science 127 (2015) 210–219 211



from Cacioppo and Pusey (1991):

sðTÞ ¼ 2:88� 10�4T3�1:65� 10�3T2þ4:62� 10�2Tþ6:01� 10�1

ð3Þ
where the temperature in the crystallizer, T, is in degrees Celsius.

2.2. Crystal growth

The crystal growth is modeled through the kMC simulation
using the following rate equations, which are adopted from Durbin
and Feher (1991). The adsorption rate, ra, is independent of each
lattice site and is defined as follows:

ra ¼ K þ
0 expðσÞ ð4Þ

where K þ
0 is the adsorption coefficient. On the other hand, the

desorption and migration rates depend on the surface micro-con-
figuration (i.e., the number of particles that surround the particle
of interest). Thus, the desorption rate for a lattice site with i nea-
rest neighbors, rd(i), is given by

rdðiÞ ¼ K þ
0 exp

ϕ
kBT

� i
Epb
kBT

� �
ð5Þ

where Epb is the average bonding energy per bond, ϕ is the total
binding energy when chemical bonds of a molecule are fully
occupied by nearest neighbors (i.e., i¼4). In order to account for
the fact that the migration rate is higher than the desorption rate,
the migration rate, rm(i), is defined by multiplying an additional
term to Eq. (5) and is shown below

rmðiÞ ¼ K þ
0 exp

ϕ
kBT

� i
Epb
kBT

þ Epb
2kBT

� �
ð6Þ

The crystal growth rates obtained from the kMC simulations are
calibrated with the experimental data (Durbin and Feher, 1991) by
manipulating a set of Epb and ϕ values for the (110) and (101) faces
through extensive open-loop kMC simulations. The parameters for
the kMC simulation are listed in Table 1.

2.3. Mass and energy balance equations

The mass and energy balance equations that calculate the amount
of the protein solute remaining in the continuous phase, C, and the
temperature in the crystallizer, T, are given by the following ordinary
differential equations:

dC
dt

¼ � ρc

Vbatch

dVcrystal

dt
; Cð0Þ ¼ C0 ð7Þ

dT
dt

¼ � ρcΔHc

ρCpVbatch

dVcrystal

dt
� UcAc

ρCpVbatch
ðT�TjÞ; Tð0Þ ¼ T0 ð8Þ

where Vcrystal is the total volume of crystals in the crystallizer,
C0 ¼ 42 mg=cm3 is the initial protein solute concentration, ρc ¼
1400 mg=cm3 is the crystal density, and Vbatch ¼ 1 L is the volume of
the batch crystallizer, T0 ¼ 17 1C is the initial crystallizer tempera-
ture,ΔHc ¼ �4:5 kJ=kg is the enthalpy of crystallization, ρðtÞ ¼ 1000
þCðtÞmg=cm3 is the density of the continuous phase, Cp¼4.13 kJ/K kg
is the specific heat capacity, Ac¼0.25 m2 and Uc¼1800 kJ/m2 h K are

the area and the overall heat transfer coefficients between the jacket
stream Tj and the crystallizer wall, respectively.

2.4. Moment models

Due to the complexity of a population balance equation (PBE),
it cannot be directly used for the computation of a crystal volume
distribution in real-time. Motivated by this, a moments model is
used to describe the zero and first moments of the evolution of the
number and the total volume of crystals in the batch crystal-
lization process in the process model used in the controller of the
form

dM0

dt
¼ B ð9Þ

dM1

dt
¼ GvolM0 ð10Þ

where MjðtÞ ¼
R1
0 VjnðV ; tÞ dV is the jth moment for j¼0, 1, nðV ; tÞ

is the number of crystals with volume V at time t, and Gvol is the
volumetric crystal growth rate, which is formulated as follows:

Gvol ¼ 2G110〈h110〉〈h101〉þG101〈h110〉2 ð11Þ
where the crystal growth rates in the direction of (110) and (101) faces,
G110 and G101, can be obtained through the following expressions:

G110 ¼ 0:1843σ3�1:1699σ2þ2:8885σ�2:5616

G101 ¼ 0:1893σ3�1:2264σ2þ2:9887σ�2:5348 ð12Þ
which are calibrated with the experimental data (Durbin and Feher,
1986). Similarly, the average crystal heights, 〈h110〉 and 〈h101〉, are
calculated by using the following ordinary differential equations:

d〈h110〉
dt

¼ G110�
BVbatch〈h110〉

M0

d〈h101〉
dt

¼ G101�
BVbatch〈h101〉

M0
ð13Þ

and thereby the average crystal shape, 〈α〉, and size, 〈V〉, can be
computed as follows:

〈α〉� 〈h110〉
〈h101〉

; 〈V〉¼M1

M0
ð14Þ

A more detailed description regarding the derivation of the moment
model that accounts for the dynamic evolution of the crystal volume
distribution for the batch crystallization process can be found in Kwon
et al. (2014b).

3. MPC with R2R model parameter estimation

3.1. MPC formulation

In this subsection, a model predictive controller (MPC) is presented
for in-batch control. Specifically, the dominant dynamic behavior of
the evolution of crystal shape distribution in the batch crystallization
process is modeled through the process model (cf. Eqs. (1)–(3) and
(7)–(14)), which are used to compute a set of optimal jacket tempera-
tures that minimizes the squared deviation of the average crystal shape
from a set-point value over the entire prediction horizon. Constraints
on the rate of change of the jacket temperature (i.e., manipulated input)
and the temperature in the crystallizer are imposed. The resulting MPC
formulation is given by the following optimization problem:

min
Tj;1 ;…;Tj;i ;…;Tj;p

Xp
i ¼ 1

〈αðtiÞ〉�αsetð Þ2 ð15aÞ

s:t: Eqs: ð1Þ–ð3Þ and ð7Þ–ð14Þ ð15bÞ

Table 1
Parameters for the faces (110) and (101) at 42 mg/mL NaCl
and pH¼4.5% at T¼18 1C. Additionally, K þ

o ¼ 0:211 s�1.

Face Epb=kB ϕ=kB

(110) 1077.26 227.10
(101) 800.66 241.65
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4 1CrTr25 1C
Tj;iþ1�Tj;i

Δ

���� ����r2 1C=min ð15cÞ

where p¼10 is the length of the prediction horizon, T is the crystallizer
temperature, Δ¼ 40 is the sampling time, αset is the desired average
crystal shape (i.e., set-point), ti ¼ tþ iΔ, Tj;i, and 〈αðtiÞ〉 are the time, the
jacket temperature, and the average crystal shape of the ith prediction
step, respectively. At every sampling time, the real-time measurements
for the solute concentration in the continuous phase and the tempera-
ture in the crystallizer are used to compute a set of optimal jacket
temperatures, ðTj;1; Tj;2;…; Tj;pÞ, by solving Eq. (15) where the first
value, Tj;1, is applied to the crystallizer over the next sampling time.

3.2. MPC with R2R model parameter estimation scheme

For the batch crystallization process with changes in the process
model parameters owing to a process drift, an R2R model parameter
estimation scheme based on MHE concepts is proposed and used
along with post-batch measurements from multiple batch runs in a
moving horizon fashion to estimate parameters of the batch crystal-
lization model (cf. Eqs. (1)–(3) and (7)–(14)). Then, the updated
process model parameters are used in the MPC for the computation
of control inputs applied to a batch crystallization process.

3.2.1. R2R model parameter estimation scheme based on MHE
concepts

There are many different formulations for an R2R parameter
estimation scheme and the design of the observer significantly affects
the estimator performance. In this work, an optimization-based para-
meter estimation scheme is proposed in order to estimate the process
model parameters using several sets of post-batch measurements.
Specifically, the uncertainty in the solubility of the protein solute is
accounted for by multiplying a correction factor, γs, to the nominal
third-order polynomial equation for solubility, Eq. (3). The uncertainty
associated with the crystal growth rates in the direction of (110) and
(101) faces is taken into account bymultiplying the parameters γ110 and
γ101 to the nominal growth rate expressions for the (110) and (101)
faces, respectively. Furthermore, to account for the remaining offset
between the predicted and measured values for the average crystal
shape and size, a set of correction factors (γα and γV ) is directly
introduced to the objective function.

Specifically, the optimization problem for the proposed R2R
model parameter estimation scheme based on MHE concepts after
the nth batch run is formulated as follows:

min
Q

1
;…;Q

p

Xn
k ¼ n�mþ1

wα
dαðtf Þ� �

kþγαðkÞ� 〈αðtf Þ〉k
� �2

þwV
dVðtf Þ� �

kþγV ðkÞ� 〈Vðtf Þ〉k
� �2

ð16aÞ

s:t: Eqs: ð1Þ–ð3Þ and ð7Þ–ð14Þ ð16bÞ

ŝðkÞ ¼ γsðkÞsðkÞ ð16cÞ

Ĝ110ðkÞ ¼ γ110ðkÞG110ðkÞ; Ĝ101ðkÞ ¼ γ101ðkÞG101ðkÞ ð16dÞ

γxðkÞ ¼
Xp
r ¼ 1

qðx;rÞ γxðk�1Þ	 
r 8γxA ½γ110 γ101 γs γα γV � ð16eÞ

where s is the solubility, and G110 and G101 are the crystal growth rate in
the direction of (110) and (101) faces, respectively. Note that X̂ k is a
predicted variable X for the kth batch run and Xk represents ameasured
variable X after the kth batch run. Furthermore, the correction factors
are initially Γ ð0Þ ¼ [1 1 1 0 0] which are the nominal values of the
process model for the batch crystallization process, and more details
about correction factors are described below.

Referring to Eq. (16), we note that Eq. (16e) is used in order to
approximate the batch-to-batch parameter drift from the k�mþ1 to

k batch run with a pth order polynomial through the manipulation of
the decision variables, Q

1
¼[qð110;1Þ qð101;1Þ qðs;1Þ qðα;1Þ qðV ;1Þ], …, Q

p
¼

[qð110;pÞ qð101;pÞ qðs;pÞ qðα;pÞ qðV ;pÞ] in a moving horizon fashion. For
example, the pth order polynomial for the solubility correction factor
γsðkÞ can be written in the form of γsðkÞ ¼

Pp
r ¼ 1 qðs;rÞ½γsðk�1Þ�r .

Then, the batch-to-batch dynamics of the process drift is estimated by
using Eq. (16e) to predict a set of correction factors for the kþ1 batch
run, Γ ðkþ1Þ¼[γ110ðkþ1Þ γ101ðkþ1Þ γsðkþ1Þ γαðkþ1Þ γV ðkþ1Þ].
The objective function (cf. Eq. (16a)) consists of sum of squared errors

between the predicted average crystal size and shape, d〈αðtf Þ〉 andd〈Vðtf Þ〉, and the measured ones, 〈αðtf Þ〉 and 〈Vðtf Þ〉, which are obtained
at the end of the batch crystallization process from the k�mþ1 to k
batch run where m is the moving horizon length. In the beginning of
the batch-to-batch estimation, the number of post-batch measure-
ments is allowed to grow until it reaches the length of the horizon (i.e.,
until the batch number becomes equal to m).

We note that the sensitivity of the proposed R2R model para-
meter estimation scheme based on MHE concepts with respect to
the different orders of polynomials and different moving horizon
lengthes is further discussed in Section 4 below in order to find the
best parameter estimates for the batch crystallization process.

Remark 1. While the sign and the magnitude of the rate of the
process drift change from batch-to-batch, if the overall batch-to-
batch dynamics of the process drift can be described by a smooth
function, Eq. (16e) in the proposed R2R model parameter estima-
tion scheme should be able to capture such a drift, which should
lead to good parameter estimates for the next batch run. Further-
more, the idea of the proposed R2R model parameter estimation
scheme based on MHE concepts is related to that of least square
estimation in that the relationship between the independent variables
and the dependent variables is modelled through a pth order poly-
nomial and is used to find the best fit polynomial of multiple data
points. Other nonlinear functions besides polynomials could be also
used if necessary.

Remark 2. A short horizon length allows the proposed model
parameter estimation scheme to follow fast batch-to-batch dynamics
of the process drift while a longer horizon length (i.e., post-batch
measurements from multiple batch runs) is able to better deal with
the noise in the process and post-batch measurements.

3.2.2. MPC with R2R model parameter estimation scheme:
implementation algorithm

An MPC with the proposed R2R model parameter estimation
scheme is implemented to a batch crystallization process for the
computation of the control inputs as follows:

1. At the end of the kth batch run, the post-batch measurements
of the product qualities such as the number of crystals and the
average size and the shape of the crystals are measured.

2. Then, the real-time measurements of the solute concentration
in the continuous phase and the temperature in the crystallizer
(½Ck�mþ1ðtÞ; Tk�mþ1ðtÞ�;…; ½CkðtÞ; TkðtÞ� 8 tA ½0; tf �) over the last
m measurements (i.e., moving horizon length) are used to
compute Q

1
;…;Q

p
that minimize the cost function, Eq. (16a).

3. The one-step-ahead correction factors for the kþ1 batch run,
Γ̂ kþ1, are predicted through the use of Q

1
;…;Q

p
obtained from

Step 2. Then, the process model parameters are updated through
Γ̂ kþ1 and they are used in the model employed in the MPC to
compute a set of optimal jacket temperatures Tj which will drive
the temperature T in the crystallizer to a desired value.

4. Increase k by 1 and repeat Step 1 to Step 4.
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We note that the real-time measurements of the solute concen-
tration and the temperature in the crystallizer are assumed to be
available at each sampling time. A schematic representation of the
MPC with the proposed R2R model parameter estimation scheme
is shown in Fig. 1.

4. Application of MPC with R2R model parameter estimation
to batch crystallization

One of the reasons that the control of the size and shape
distributions of crystals produced from a batch process may be
difficult is because even minor contaminations in the feedstock
container (e.g., variations in the pH and added electrolyte con-
centration levels) may lead to a significant drift of key process
parameters from batch-to-batch. Furthermore, minor contamina-
tions in the feedstock container cannot be identified immediately,
and thus, their undesired effect on the product quality continues
to the next batch runs until the feedstock container is replaced by
a new one. To tackle this problem, we initially use the proposed
R2R model parameter estimation scheme based on MHE concepts
where a polynomial regression scheme is applied in a moving
horizon fashion to approximate the batch-to-batch dynamics of
the drift and adjust the MPC model parameters at the beginning of
each batch. Then, the MPC with the updated process model
parameters is used to compute the optimal jacket temperature
by suppressing the effect of the process drift in the next batch. In
the proposed estimation scheme, we note that only post-batch
measurements are used for the parameter estimation scheme.
Furthermore, process noise (approximately 2%) due to the sto-
chastic nature of the crystal growth mechanisms and measure-
ment noise (approximately 8%) are intrinsically modeled through
the kMC simulation. In order to simulate the operation of each
batch run, a single kMC simulation is executed and used for the
analysis per batch run.

The controller performance of the MPC with the proposed R2R
model parameter estimation scheme is initially evaluated in response
to an exponentially decaying process drift whose rate decays expo-
nentially from 1 (i.e., nominal system) to 0.95 over 10 batch runs (see,
e.g., Fig. 2). Additionally, a more complicated process drift whose rate
fluctuates is considered in order to evaluate the robustness of the
MPC with the proposed R2R model parameter estimation scheme for
a more realistic environment for the operation of the batch crystal-
lization process (see, e.g., Fig. 3). For comparison purposes, the
dEWMA-based MPC that captures the changes in the rate of the
process drift and properly adjusts outputs in the process model and

the MPC that uses the nominal process model are also applied to the
batch crystallization process model. To evaluate the controller perfor-
mance, the mean squared error (MSE) of the offset (〈αðtf Þ〉i�αset)
between the measured average crystal shape after the ith batch run
and the set-point value is introduced as follows:

MSE¼
Pn

i ¼ 1 〈αðtf Þ〉i�αset
� �2

n
ð17Þ

where n is the total number of batch runs.

4.1. dEWMA-based model predictive control

For the sake of comparison, a double exponentially weighted
moving average (dEWMA) scheme, which is known for its ability
to capture batch-to-batch dynamics of the process drift (Bulter and
Stefani, 1994; Simith et al., 1998; Chen and Guo, 2001; Wang et al.,
2010), is integrated with the MPC and its closed-loop performance
is presented along with that of the MPC with the proposed R2R
model parameter estimation scheme. In the dEWMA scheme, the
predicted average crystal shape for the kth batch run can be
written as follows:

g〈αðtf Þ〉k ¼ d〈αðtf Þ〉kþ êkþΔêk ð18Þ

Model Batch-to-Batch
Dynamics Using MHE Batch

Crystallization
(kMC Simulation)

MPC

Adjust Process
Model Parameters
Used in MPC

real-time Ck & Tk
measure-
ments

< >k, <V>k, M0,k

Tj,k

Predict Process Drift
For Next Batch

Q1 , , Qp

Γk+1

k k+1

Fig. 1. Model predictive control with R2R model parameter estimation.
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Fig. 2. The evolution of the cumulative process drift with an exponentially
decaying rate from batch-to-batch. Note that the y-axis shows how much the
batch system is perturbed from a nominal batch system (nominal batch system
corresponds to the y-axis value equal to 1).
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Fig. 3. The evolution of the cumulative process drift where its rate changes from
batch-to-batch. Note that the y-axis implies how much the batch system is
perturbed from a nominal batch system (nominal batch system corresponds to
the y-axis value equal to 1).

J.S.-I. Kwon et al. / Chemical Engineering Science 127 (2015) 210–219214



where g〈αðtf Þ〉k is the predicted average crystal shape at the end of the

kth batch, d〈αðtf Þ〉k is the predicted average crystal shape using only the
nominal process model that consists of Eqs. (1)–(3) and (7)–(14), êk is
the estimated model prediction error, and Δêk is used to compensate
for the error in the parameter estimation caused by the change in the
rate of the process drift. For a dEWMA-based MPC, the process model
used in MPC (cf. Eqs. (1)–(3) and (7)–(14)) is not directly adjusted but
its offset from the actual process model is approximated by êkþΔêk.
The following control scheme is implemented for the computation of
inputs in the proposed dEWMA-based MPC as follows:

1. At the end of the kth batch run, the post-batch measurements
of the product variables such as average crystal size and shape
of crystals are obtained.

2. Then, the average crystal shape measured from Step 1, 〈αðtf Þ〉k,
is used to compute the estimated model prediction error, êk,
and the estimated change in the rate of the process drift, Δêk,
through the following equation:

êkþ1 ¼ω1 〈αðtf Þ〉k� d〈αðtf Þ〉kh i
þð1�ω1Þêk ð19aÞ

Δêkþ1 ¼ω2 〈αðtf Þ〉k� d〈αðtf Þ〉k� êk
h i

þð1�ω2ÞΔêk ð19bÞ

where 0oω1r1 and 0oω2r1 are the learning factors.
3. Then, the predicted average crystal shape for the kþ1 batch

run, g〈αðtf Þ〉kþ1, that accounts for the change in the rate of the
process drift is obtained byg〈αðtf Þ〉kþ1 ¼ d〈αðtf Þ〉kþ1þ êkþ1þΔêkþ1 ð20Þ
and is used in the model employed in the MPC to compute a set
of optimal jacket temperatures Tj which will drive the tem-
perature T in the crystallizer to a desired value.

4. Increase k by 1 and repeat Step 1 to Step 5.

Note that the first equation, Eq. (19a), is used to estimate the offset
in the average crystal shape (i.e., output) and the second equation,
Eq. (19b), is used to capture an additional offset in the average
crystal shape due to the change in the rate of the process drift.

4.2. Exponentially decaying process drift

When the process drift decays with an exponential rate (Fig. 2), the
closed-loop performance of the MPC with the nominal process model
becomes progressively worse (Fig. 4) as runs are repeated due to the
increasing mismatch between the process model and actual batch
crystallization process. In Fig. 4, it is also shown that the dEWMA-
based MPC is able to produce crystals with a desired shape distribu-
tion compared to that of the MPC with the nominal process model,
however, its convergence speed is so slow that there still remains an
offset from the desired crystal shape. On the other hand, the crystal
shape distribution obtained by the MPC with the proposed R2R model
parameter estimation scheme (Fig. 4) converges fast (after 5 batch
runs) and becomes much closer to a desired set-point value compared
to those of the MPC with the nominal process model and dEWMA-
based MPC, because the exponentially decaying process drift can be
better captured by the proposed R2R model parameter estimation
scheme based on MHE. Specifically, the change in the solubility
induced by the process drift introduced to the batch crystallization
process is properly predicted by the proposed R2R model parameter
estimation scheme as is shown in Fig. 5. The superiority is due to more
accurate estimates of the process model parameters which are
obtained by solving Eq. (16). Lastly, we summarize the performances
of the MPC with the proposed R2R model parameter estimation,
dEWMA-based MPC, and MPC with no parameter estimation in res-
ponse to the process drift described in Fig. 2 by comparing their MSE
values in Table 2.

4.3. Sensitivity to different drift types and tuning parameters

In this section, we consider a more complicated drift. As is shown
in Fig. 3, the rate of this process drift changes more rapidly from
batch-to-batch (e.g., the system drifts from 1 to 0.9 over the first
4 batch runs) compared to the process drift with an exponentially
decaying rate (see, e.g., Fig. 2), and 5 inflection points (i.e., a point of a
curve at which a change in the direction of the curvature occurs) are
introduced in order to model a significant fluctuation in the rate of
the process drift.

For a given polynomial order, although longer horizon length
provides better attenuation of random fluctuations, fast batch-to-
batch drift dynamics may not be captured effectively, therefore, an
optimal horizon length should be chosen to balance the trade-off
between noise handling and capturing fast drift dynamics. A com-
parative study of using different moving horizon lengths for the
proposed R2R model parameter estimation scheme is carried out. A
third-order polynomial is chosen for Eq. (16e) for the comparison
because it is the lowest order polynomial to effectively describe a
curve with a pair of inflection points. Specifically, it is shown in Fig. 6
that the closed-loop performance initially improves with increasing
horizon length (from m¼4 to m¼5) due to the better handling of
noise in the post-batch measurements, then decreases with further
increase of the horizon length (from m¼5 to m¼7) because fast
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Fig. 4. The evolution of the average crystal shape at t¼20,000 s obtained from the
kMC simulations from batch-to-batch under the MPC with the nominal process
model, the dEWMA-based MPC with (w1,w2)¼(0.5,0.5), and the proposed MPC
with R2R model parameter estimation, with the desired set-point 〈αset〉¼ 0:88.
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Fig. 5. The evolution of the predicted and true solubilities in the beginning of batch
runs. The predicted solubility is calculated using the proposed R2R model para-
meter estimation scheme. Note that the average discrepancy between the two
profiles from run 3 to run 10 (i.e., after the estimation scheme is applied to the
batch system) is about 0.2%.
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batch-to-batch dynamics of the process drift (e.g., drastic batch-to-
batch fluctuations) are not captured withm¼7. Therefore, the closed-
loop simulation under the MPC with the proposed R2R model para-
meter estimation scheme with m¼7 leads to the production of more
off-spec crystals while crystals whose shapes are closer to a desired
set-point value are produced under the MPC with m¼5. Additionally,
it is presented in Fig. 7 that the solubility at the beginning of each
batch predicted by the proposed R2R model parameter estimation
scheme with a horizon length of 5 is much closer to the true value
than those with the moving horizon lengths of 4 and 7 for the given
third-order polynomial.

For a given horizon length, the performance for parameter estima-
tion increases with the order of polynomials due to additional degrees
of freedom, then its performance decreases with the order increase as
a higher order polynomial overfits the process and measurement
noise. For a horizon length ofm¼5, which is found to be optimal from
the previous analysis, the performance of the proposed R2R model
parameter estimation scheme is tested with respect to different func-
tions for Eq. (16e) such as second-, third-, and fourth-order polyno-
mials. Subsequently, it is shown in Fig. 8 that the average crystal shape
of the crystals produced from a batch process under the MPC with the
proposed R2R model parameter estimation scheme with a third-order
polynomial is closer to a desired set-point value compared to those of
the MPC with second- and fourth-order polynomials. Additionally, it is
presented in Fig. 9 that the solubility predicted by the proposed R2R
model parameter estimation scheme based on MHE concepts with a
third-order polynomial is much closer to the true value than those
with second- and fourth-order polynomials for a given horizon length.
Therefore, we can conclude that a horizon length of m¼5 and a third-
order polynomial is indeed optimal. We note that the proposed
R2R model parameter estimation scheme is not applied to the batch
crystallization process until the second batch run because at least two
post-batch measurements are required to apply the polynomial reg-
ression scheme for the prediction of the batch-to-batch dynamics of
the process drift. Additionally, it is possible that, if a process drift in a
particular batch is significantly off from the dominant trend in the
batch-to-batch dynamics of a process drift, it cannot be easily modeled
by a function. For example, the 11th batch run in Figs. 7 and 9 cannot
be appropriately modeled by any polynomial, which results in a poor
controller performance by the MPC with the proposed R2R model
parameter estimation scheme as is shown in Fig. 10.

The controller performance of the MPC with the proposed R2R
model parameter estimation scheme is also compared with those of
the dEWMA-based MPC and MPC with the nominal process model. In
Fig. 10, it is evident that the MPC with the nominal process model is
not able to handle the process drift described in Fig. 3, and as a result
it may lead to the production of crystals with an undesired shape
distribution. Furthermore, the production of crystals whose shapes are
relatively closer to a desired set-point is achieved under the dEWMA-
based MPC, which demonstrates that this scheme is more suitable for
process drifts of a more random nature. We summarize the perfor-
mance of the MPC with the proposed R2R model parameter estima-
tion, dEWMA-based MPC, and MPC with the nominal process model
in response to the process drift described in Fig. 3 by comparing their
MSE values in Table 3.

Since each batch has its own average crystal shape at the end of
the process, there is a distribution for the average crystal shapes
from all the batches (from 1st to 20th batch runs). In this work, we
define the distribution as a batch-wise crystal shape distribution
as follows: a good batch-wise crystal shape distribution should
have small batch-to-batch variations and its average should be
close to a set-point value, while a poor batch-wise crystal shape
distribution has large batch-to-batch variations and its average is
away from a set-point value. In order to compare the batch-wise
crystal shape distributions obtained from the closed-loop simula-
tions under different control schemes, a quantile plot is presented

Table 2
Comparison among the MPC with R2R model parameter estimation, dEWMA-based
MPC, and MPC with no parameter estimation in response to the process drift with
an exponentially decaying rate.

Control schemes MSE

MPC with R2R model parameter estimation 1:14� 10�5

dEWMA-based MPC 8:17� 10�5

MPC with no parameter estimation 5:51� 10�4
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Fig. 6. The evolution of the average crystal shape obtained from the kMC
simulations from batch-to-batch under the MPC with the proposed R2R model
parameter estimation for the process drift described in Fig. 3. Different moving
horizon lengthes (m¼4, 5, and 7) are used in order to estimate the batch-to-batch
dynamics of the process drift.
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in Fig. 11 where the batch-wise crystal shape distribution obtained
under the MPC with the proposed R2R model parameter estima-
tion scheme is found to be better than those of the MPC with the
nominal process model and dEWMA-based MPC. Furthermore, the
quantile plot indicates that the average of the points obtained
under the proposed MPC with R2R model parameter estimation
scheme is very close to a desired set-point value, 〈αset〉¼ 0:88. There-
fore, the process drift described in Fig. 3 was properly modeled by
the proposed R2R model parameter estimation scheme based on
MHE concepts with a third-order polynomial for the moving horizon
length of 5.

Remark 3. The implementation of the proposed R2R model para-
meter estimation scheme based on MHE concepts can guarantee the
best performance for a given moving horizon length when an
appropriate function is chosen for the modeling of the batch-to-
batch dynamics of the process drift. Once the batch-to-batch dynamics
of the process drift is modeled well using a function, the proposed
scheme becomes robust with respect to a rapidly changing process
drift, while the dEWMA scheme may suffer from convergence issues
given the difficulty in choosing the learning factors, w1 and w2.
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Fig. 7. The evolution of the predicted and true solubilities in the beginning of batch
runs. The predicted solubility is calculated using the proposed R2R model para-
meter estimation scheme. Different moving horizon lengthes (m¼4, 5, and 7) are
used in order to estimate the batch-to-batch dynamics of the process drift.
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Fig. 8. The evolution of the average crystal shape obtained from the kMC
simulations from batch-to-batch under the MPC with the proposed R2R model
parameter estimation for the process drift described in Fig. 3. Different orders of
polynomial expressions are used in order to estimate the bath-to-batch dynamics
of the process drift. (a) Second-order polynomial approximation. (b) Third-order
polynomial approximation. (c) Fourth-order polynomial approximation.
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5. Conclusions

In this work, we proposed an R2R model parameter estimation
scheme based on a moving horizon approach in order to model batch-
to-batch parametric drift using a polynomial regression scheme. Then,
the batch process model parameters computed by the proposed
parameter estimation scheme are used in an MPC within each batch
to compute a set of optimal jacket temperatures for the production of
crystals with a desired shape distribution. The ability of the proposed

parameter estimation scheme to suppress the inherent variation in the
solubility incurred by batch-to-batch drift and deal with the noise in
real-time and post-batch measurements was demonstrated by apply-
ing the MPC with the proposed estimation scheme to a kMC simula-
tion of a batch crystallization process used to produce HEW lysozyme
crystals. The performance of the proposed R2R model parameter
estimation scheme was evaluated with respect to the use of different
orders of polynomials and different moving horizon lengths. Lastly, for
comparison purposes, the performance of the MPC with the proposed
R2R model parameter estimation scheme was favorably compared
with those of the MPC based on the nominal process model and
dEWMA-based MPC.
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Fig. 9. The evolution of the predicted and true solubilities in the beginning of batch
runs. The predicted solubility is calculated using the proposed R2R model para-
meter estimation scheme. Different orders of polynomial expressions are used in
order to estimate the batch-to-batch dynamics of the process drift. (a) Second-
order polynomial approximation. (b) Third-order polynomial approximation. (c)
Fourth-order polynomial approximation.
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Fig. 10. The evolution of the average crystal shape obtained from the kMC
simulations from batch-to-batch under the MPC with the proposed R2R model
parameter estimation scheme, dEWMA-based MPC with (w1,w2)¼(0.5,0.5), and
MPC with no parameter estimation, for the process drift described in Fig. 3.

Table 3
Comparison among the MPC with R2R model parameter estimation, dEWMA-based
MPC, and MPC with no parameter estimation in response to the process drift
described in Fig. 3.

Control schemes MSE

MPC with R2R model parameter estimation 3:62� 10�4

dEWMA-based MPC 4:45� 10�4

MPC with no parameter estimation 1:25� 10�3
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Fig. 11. The quantile plot for the distributions of the average crystal shapes
obtained from the kMC simulations from batch-to-batch under the MPC with the
proposed R2R model parameter estimation scheme, dEWMA-based MPC with (w1,
w2)¼(0.5,0.5), and MPC with no parameter estimation, for the process drift
described in Fig. 3. Note that the dotted lines represent standard normal distribu-
tions for each data set and the unit for the x-axis is in standard deviation.
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