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a b s t r a c t

This work focuses on modeling and control of a continuous plug flow crystallizer (PFC) used to produce
tetragonal hen-egg-white (HEW) lysozyme crystals and proposes an optimization-based control scheme
to produce crystals with desired size and shape distributions in the presence of disturbances. Initially, a
kinetic Monte Carlo (kMC) model is developed to simulate the crystal growth in a seeded PFC, which
consists of five distinct segments. The crystal growth rate equations taken from (Durbin and Feher, 1986)
are used in the kMC simulations for the modeling of the crystal growth in the direction of (110) and (101)
faces. Then, a population balance equation (PBE) is presented to describe the spatio-temporal evolution
of the crystal volume distribution of the entire crystal population, and the method of moments is applied
to derive a reduced-order moment model. Along with the mass and energy balance equations, the
leading moments that describe the dominant dynamic behavior of the crystal volume distribution are
used in the optimization-based controller to compute optimal jacket temperatures for each segment of
the PFC and the optimal superficial velocity, in order to minimize the squared deviation of the average
crystal size and shape from the set-points throughout the PFC. Furthermore, a feed-forward control (FFC)
strategy is proposed to deal with feed flow disturbances that occur during the operation of the PFC.
Using the proposed optimization and control schemes, crystals with desired size and shape distributions
are produced in the presence of significant disturbances in the inflow solute concentration and size
distribution of seed crystals.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Crystallization plays an essential role in the context of separa-
tion and purification methods for the production of therapeutic
drugs. Considering the fact that crystal size and shape distribu-
tions have significant influence on the bioavailability of drugs such
as the dissolution rate, filterability, and stability as a carrier to the

target site, it becomes of particular interest to the pharmaceutical
industry to produce crystals with desired size and shape distribu-
tions (Patience and Rawlings, 2001; Yang et al., 2006; Wang et al.,
2008).

Traditionally, batch crystallization processes have been widely
used in the pharmaceutical industry. However, the batch process
has a few well-known potential drawbacks such as the batch-to-
batch variability, and the difficulty in the scale-up and the
consistent production of crystals with desired crystal size and/or
shape distributions. Motivated by this, a mixed suspension mixed
product removal (MSMPR) crystallization process, which is analo-
gous to the conventional continuously stirred tank crystallizer
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(CSTC), has received a growing attention, and many efforts have
been made in order to produce crystals from the MSMPR process
with a higher production rate and desired product quality (Griffin
et al., 2010; Alvarez et al., 2011; Hou et al., 2014; Ferguson et al.,
2014). However, due to the presence of back-mixing, which is
commonly modeled by employing the residence time mixing
model, those crystals nucleated at a later stage during the crystal-
lization process will reside a relatively short amount of time in the
crystallizer and thus they will end up leaving the crystallizer with
undesired size and shape distributions (Kwon et al., 2014). To this
end, plug flow crystallizer (PFC) has been proposed to produce
crystals with narrow size and shape distributions (Eder et al.,
2011; Vetter et al., 2014).

More specifically, a strategy for the fines removal in the PFC
was proposed through the manipulation of the growth and
dissolution rates (Majumder and Nagy, 2013). Furthermore, the
effect of the antisolvent injections along the axial direction of the
PFC on the crystal volume distribution has been investigated
(Alvarez and Myerson, 2010; Ferguson et al., 2013; Ridder et al.,
2014).

Model-free control schemes such as a proportional-integral-
derivative (PID) control scheme and a direct nucleation control
approach are not able to handle alone constraints on the inputs,
the outputs, and the rate of change of inputs while computing
optimal jacket temperature values. Therefore, the necessity of
incorporating the constraints to account for the physical limita-
tions on the manipulated inputs and operating conditions makes
the model-based control strategy (Miller and Rawlings, 1994;
Worlitschek and Mazzotti, 2004; Shi et al., 2005; Mesbah et al.,
2010) the method of choice for crystal size distribution control.
Specifically, the model predictive control (MPC) scheme was
employed by Kalbasenka et al. (2007) and Kwon et al. (2013,
2014, in press) in order to control the crystal size and shape
distributions along with the consideration of the crystal growth
and nucleation processes in both batch and MSMPR processes
based on a reduced-order model. Furthermore, in addition to
model-based optimization to compute optimal jacket temperature
values, a feed-forward control (FFC) is proposed in the present
work for the production of crystals with desired size and shape
distributions owing to its unique ability to deal with feed flow
disturbances that occur during the operation of the PFC though the
use of the online measurements of the inflow solute concentra-
tion, PFC temperature, and crystal seed size.

In the pharmaceutical industry, disturbances (e.g., changes in
the inflow solute concentration) influence the size and shape
distributions of the crystal products during the steady-state
operation of the PFC process (Sen et al., 2014). However, the
conventional operating strategy such as the constant supersatura-
tion control (CSC) scheme is not able to deal with the disturbances
because it is not able to predict the spatio-temporal transient
behavior of the system in response to disturbances in the inflow
solute concentration and the seed size distribution.

Motivated by the above considerations, this work focuses on
modeling and control of a continuous PFC used to produce
tetragonal HEW lysozyme crystals and proposes an optimization-

based control scheme to produce crystals with desired size and
shape distributions in the presence of feed disturbances. Initially,
we model a continuous plug flow crystallizer with 5 segments for
the production of lysozyme crystals through kinetic Monte Carlo
(kMC) simulation methods in the way described in Kwon et al.
(2013) using the rate equations originally developed by Durbin
and Feher (1991). A seeding strategy is used to decouple the
nucleation from the crystal growth processes (Liu et al., 2010; Eder
et al., 2011; Besenhard et al., 2014; Ferguson et al., in press).
Furthermore, an upper bound of the supersaturation level is
imposed as a constraint so that the system is enforced to stay in
the metastable regime where the degree of primary nucleation is
negligible (Shi et al., 2005). Then, a population balance
equation (PBE) is presented to describe the spatio-temporal
evolution of the crystal volume distribution, and by applying the
method of moments to the PBE, a reduced-order moments model
is derived because kMC models are not available in a closed form
(Kalani and Christofides, 2002; Cogoni et al., 2014). Together with
the mass and energy balance equations, the leading moments are
used for the estimation of the spatio-temporal evolution of the
crystal size and shape distributions in an optimization problem.
Specifically, the crystallizer jacket temperatures at each segment
and the superficial flow velocity are chosen as the decision
variables in the optimization problem and the objective function
is defined by the sum of the squared deviation of the average
crystal size and shape from desired set-points throughout the PFC.
Subsequently, the dynamic model developed in Section 2 is used
for the design of an FFC strategy for the production of crystals with
desired size and shape distributions properly suppressing the
undesired effect caused by disturbances (Gnoth et al., 2007).
Lastly, the simulation results are presented followed by discussion
and conclusions.

2. Modeling of plug flow crystallizer

2.1. Process configuration

We consider a continuous plug flow crystallizer used to
produce crystals with desired size and shape distributions through
the manipulation of a set of jacket temperatures and of the
superficial flow velocity which are computed by solving a multi-
variable optimization problem. The system parameters for the
crystallizer considered in this work are taken from Alvarez and
Myerson (2010) and Majumder and Nagy (2013), and are pre-
sented as follows: each segment of the PFC is 400 cm in length and
1.27 cm in inner diameter, and the PFC consists of 5 segments
where the configuration of the PFC is presented in Fig. 1. It is
assumed that the segments are connected without any gap.
Additionally, we assume that the PFC is perfectly mixed in the
radial direction and there is no back-mixing in the axial direction.

In order to study the effect of a set of jacket temperatures on
the shape and size distributions of crystals produced by the plug
flow crystallizer, it is operated in the regime where the primary
nucleation is negligible. Therefore, a number of seed crystals with

TW,1

Ti, Ci, Q

TW,2 TW,3 TW,4 TW,5

zone1 zone2 zone3 zone4 zone5

T, C, Q

Fig. 1. Plug flow crystallizer configuration. T is the crystallizer temperature, Ti is the inflow temperature, Tw;k is the crystallizer jacket temperature at segment k, Ci is the
inflow solute concentration, C is the solute concentration, and Q is the flow rate of the inflow stream.
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a height of 30 μm in both the direction of the (110) and (101) faces
are fed through the entrance of the crystallizer. Specifically, the
kMC simulations are used to simulate the crystal growth in the
plug flow crystallizer described above. The crystal growth rates
obtained from the kMC simulations are calibrated with literature
data (Durbin and Feher, 1986). Additionally, the kMC simulations
can be used to predict the crystal growth dynamics at the
operating conditions where experimental data are not currently
available. The details of the kMC simulations for the growth of the
tetragonal lysozyme crystal, the basic assumptions and the rate
equations for the microscopic processes (adsorption, desorption
and migration) have been discussed extensively in the previous
work (Kwon et al., 2013) and will not be repeated here.

During the PFC simulations, crystals are seeded at a rate of Bseed
and travel along the PFC at the flow velocity until they exit the
final segment. During this time the kMC simulations (Kwon et al.,
2013) are used to model the crystal growth depending on the local
environment at the current location of the crystal. Each segment of
the PFC has 80 sections where the solute phase properties are
considered to be constant and an upwind finite difference method
is used to update the solute concentration and temperature values
every 0.333 s. It is noted that a variable number of sections were
tested to ensure stability of the finite difference method.

2.2. Mass balance

The mass balance employed in this work to compute the
spatio-temporal evolution of the solute concentration becomes
as follows:

∂C
∂t

¼ �vz
∂C
∂z

�ρc

Z 1

0
GvolðV ; σÞnðV ; z; tÞ dV ð1Þ

where nðV ; z; tÞ is the number distribution of lysozyme crystals and
is a function of crystal volume V, and of the position zA ½0; L� in the
axial direction at time t, L is the length of the reactor, vz is the
superficial flow velocity of the incoming flow into the axial
direction, Cðz; tÞ is the protein solute concentration in the contin-
uous phase, ρc ¼ 1400 mg=cm3 is the crystal density, and
σ ¼ lnðC=sÞ is the relative supersaturation where s mg/mL is the
solubility. The solubility depends on temperature T, the pH of the
solution, and the concentration of added electrolyte. At 4%(w/v)
NaCl and pH¼4.5, Cacioppo and Pusey (1991) represented the
experimental solubility data as a function of temperature T in
Celsius with the following 3rd-order polynomial:

sðTÞ ¼ 2:88� 10�4T3�1:65� 10�3T2þ4:62� 10�2Tþ6:01� 10�1: ð2Þ
Alternatively, since the saturated liquid solution is sufficiently
dilute in protein, the experimental solubility data at 4%(w/v) NaCl
and pH¼4.5 can be fitted with the following van't Hoff type of
formula:

lnðsÞ ¼ΔHc

R
1

Tþ273:15

� �
þc: ð3Þ

Linear regression gives c¼27.45 and ΔHc ¼ �4:5 kJ=kg for the
enthalpy of crystallization, which is in good accord with experi-
ments (Schall et al., 1996). For modeling and control purposes, the
polynomial representation, Eq. (2), that gives the same results as
van't Hoff equation in the operating range of interest, is used in
this work. Additionally, GvolðV ; σÞ is the volumetric crystal growth
rate, which can be calculated as follows:

GvolðV ; σÞ ¼ 2G110〈h101〉þG101〈h110〉2 ð4Þ
where 〈h110〉 and 〈h101〉 are the average crystal heights in the
direction of (110) and (101) faces, respectively, and G110 and G101

are the crystal growth rates in the direction of (110) and (101)
faces, respectively, where the geometry of the HEW lysozyme

crystals considered in this work is presented in Fig. 2. The kMC
simulations produce a dense grid of points of the growth rates for
both (110) and (101) faces as a function of σ and thus, for a given σ,
the value of the growth rate for each is obtained from interpola-
tion. Lastly, Eq. (1) is subject to an initial condition at t¼0 and a
boundary condition at z¼0 as follows:

Cðz;0Þ ¼ Ci

Cð0; tÞ ¼ Ci ð5Þ
where Ci is the inflow concentration and initial concentration of
the PFC.

Remark 1. In this work, the HEW lysozyme protein is chosen
because it is one of the most widely studied proteins, and thus
there are available a number of experimental data in the literature
for the nucleation and crystal growth rates of HEW lysozyme
protein crystals. The proposed control scheme can be applied to
other plug flow crystallization systems provided that experimental
data for the crystal nucleation and growth rates are available.

2.3. Energy balance

Similar to the mass balance equation, the spatio-temporal
evolution of the crystallizer temperature can be obtained by
solving the following energy balance equation:

∂T
∂t

¼ �vz
∂T
∂z

�ρcΔHc

ρCp

Z 1

0
GvolðV ; σÞnðV ; z; tÞ dV�Ucac

ρCp
ðT�Tw;kÞ ð6Þ

where T is the crystallizer temperature, ac is the heat transfer area
per unit volume ð4=DÞ where D is the inner diameter of the plug
flow crystallizer, Tw;k is the crystallizer jacket temperature of the
kth segment, ΔHc ¼ �4:5 kJ=kg is the enthalpy of crystallization
(Schall et al., 1996), ρðz; tÞ ¼ 1000þCðz; tÞ mg=cm3 is the suspen-
sion density, Cp ¼ 4:13 kJ=K kg is the specific heat capacity, and
Uc ¼ 500 kJ=m2 h K is the overall heat transfer coefficient of
crystallizer wall. Due to the small value of the enthalpy of
crystallization, the term associated with latent heat effects in Eq.
(6) has negligible contribution to the rate of change of tempera-
ture. Furthermore, Eq. (6) is subject to an initial condition at t¼0
and a boundary condition at z¼0 as follows:

Tðz;0Þ ¼ Ti

Tð0; tÞ ¼ Ti ð7Þ
where Ti is the inflow temperature and initial temperature of
the PFC.

2.4. Population balance equation

The population balance describing the spatio-temporal evolu-
tion of the crystal volume distribution for the PFC processes with

Fig. 2. Figure of HEW lysozyme crystal.
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seeding can be written in the form of the following equation:

∂nðV ; z; tÞ
∂t

þvz
∂nðV ; z; tÞ

∂z
þ∂ðGvolðV ; σÞnðV ; z; tÞÞ

∂V
¼ BseedδðV�V0; z�z0Þ

ð8Þ
where Bseed is the seeding rate, δð�Þ is the Dirac delta function and
V0 is the size of the crystal seed. The term vz∂nðV ; z; tÞ=∂z
corresponds to the transport of crystals due to convection, and
∂ðGvolðV ; σÞnðV ; z; tÞÞ=∂V corresponds to the crystal growth.

2.5. Method of moments

By applying the method of moments to Eq. (8), we derive
moment models that allow us to compute the spatio-temporal
evolution of the number of crystals (i.e., zeroth moment M0) and
the total volume (i.e., first moment M1) of crystals in the PFC
processes. The jth moment equation has the following form:

∂Mj

∂t
¼ �vz

∂Mj

∂z
þ jGvolMj�1 ð9Þ

where we define the jth moment as Mjðz; tÞ ¼
R1
0 VjnðV ; z; tÞ dV .

For the derivation of the moment model, refer to Appendix A.

3. Steady-state model

Initially, we study the behavior of the PFC process at steady
state. The steady-state mass and energy balance equations, and
the steady-state population balance equation, are obtained by
setting the accumulation terms in Eqs. (1), (6), and (8) equal to
zero. The population balance equation at steady state is a one-
dimensional hyperbolic partial differential equation (PDE) and
thus suggests the use of the method of characteristics for the
computation of its solution, which will transform Eq. (8) to two
ordinary differential equations (ODEs) of the crystal location, z,
and of the crystal volume distribution, V, along the characteristic
line (cf. Eq. (B.3)). As a result, it is derived in Appendix B that a
spatial profile of the average volume distribution is described as

dV
dz

¼ Gvol

vz

3.1. Moment models

Specifically, the zeroth moment (j¼0) of the moment model,
Eq. (9), at steady state is as follows:

0¼ �vz
dM0

dz
ð10Þ

Thus, it follows that M0ðzÞ is an explicit function of z:

M0ðzÞ ¼M0ð0Þ ð11Þ
where M0ð0Þ is the number of seed crystals fed to the plug flow
crystallizer through the entrance at steady state. This result is
expected due to the lack of nucleation, aggregation, or breakage in
the PFC process.

3.2. Spatial profiles at steady state

The spatial profiles of both the solute concentration and the
crystallizer temperature are derived in Appendix C. Specifically,
the solute concentration C(z) at steady state is as follows:

CðzÞ ¼ Ci�
ρcGvolM0ð0Þ

vz
z

Furthermore, the crystallizer temperature T(z) at steady state is
obtained as follows:

TðzÞ ¼ Tw;k�
A
B

� �
ð1�e�BzÞþTie�Bz

where A¼ ρcΔHcGvolM0ð0Þ=ρCpvz and B¼Ucac=ρCpvz

Remark 2. The transient solution obtained from the dynamic
model has been computed and has been found to converge to
the steady-state profile obtained from the steady-state model for a
sufficiently large time and for the same set of parameters.

4. Multivariable optimization problem formulation

In this section, we propose a multivariable optimization pro-
blem (MOP), which will be solved in order to compute a set of
optimal crystallizer jacket temperatures and the superficial flow
rate for the multi-segment PFC to produce crystals with desired
size and shape distributions. To this end, an objective function is
defined by the sum of squared errors of the average crystal size,
ð〈Vðz; tÞ〉�V setÞ2, and shape, ð〈αðz; tÞ〉�αsetÞ2, of the crystals
throughout the PFC from the desired set-point values. In particular,
〈αðz; tÞ〉 is the average crystal shape which is defined by the ratio
between the average crystal heights in the direction of (110) and
(101) faces throughout the PFC as follows: 〈αðz; tÞ〉�
〈h110ðz; tÞ〉=〈h101ðz; tÞ〉. The average crystal shape is approximated
by these expressions in order to make use of 〈h110〉 and 〈h101〉
which are available through the real-time online measurements
as is shown in Kwon et al. (2014). The decision variables are
the jacket temperatures at each segment of the PFC
ðTw;1; Tw;2; Tw;3; Tw;4; Tw;5Þ and the superficial flow velocity, vz. A
constraint on the range of the crystallizer temperature is imposed
4 1CrTðz; tÞr25 1C to make sure that the model protein remains
in a proper condition for crystal growth. Note that the growth rate
expressions, G110 and G101, used in the MOP below are calibrated in
Kwon et al. (2013) with the experimental data of Durbin and Feher
(1986) for 2:1rσr4:1 and is presented in Fig. 3. We want to note
that the constraint (cf. σðz; tÞr2:6) in Eq. (12) is chosen in this
range. Additionally, the inflow temperature, Ti, is set to be 18 1C.

Fig. 3. The solid and dashed lines show the growth rates for the kMC model on the
(110) and (101) faces, respectively, at C¼45 mg/mL and 4% NaCl. The ð�Þ and ð○Þ
represent, respectively, the growth rates for (101) and (110) faces with 3.5% NaCl
and the ð■Þ and (□) represent the growth rates with 5% NaCl at pH ¼4.6, which both
are taken from Durbin and Feher (1986).
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The resulting optimization problem is as follows:

Minimize
Tw;1 ;Tw;2 ;Tw;3 ;Tw;4 ;Tw;5 ;vz

∑
tf

t ¼ 1
∑
L

z ¼ 1
w1ð〈αðz; tÞ〉�αsetÞ2þw2ð〈Vðz; tÞ〉�VsetÞ2

subject to

G110 ¼ 0:1843� σ3�1:1699� σ2þ2:8885� σ�2:5616

G101 ¼ 0:1893� σ3�1:2264� σ2þ2:9887� σ�2:5348

4 1CrTr25 1C; σðz; tÞr2:6

∂M0

∂t
¼ �vz

∂M0

∂z
∂M1

∂t
¼ �vz

∂M1

∂z
þGvolM0

∂C
∂t

¼ �vz
∂C
∂z

�ρc
∂M1

∂t
∂T
∂t

¼ �vz
∂T
∂z

�ρcΔHc

ρCp

∂M1

∂t
�Ucac

ρCp
ðT�Tw;kÞ

Gvol ¼ 2G110〈h101〉〈h110〉þG101〈h110〉
2; kA 1;2;3;4;5f g

d〈hi〉
dz

¼ Gi

vz
; iA 110;101f g

〈αðz; tÞ〉� 〈h110ðz; tÞ〉
〈h101ðz; tÞ〉

; 〈Vðz; tÞ〉¼ 〈h110ðz; tÞ〉2〈h101ðz; tÞ〉 ð12Þ

where the weighting coefficients of the two objective function terms,
w1 and w2, are determined by trial and error until the optimal jacket
temperatures and the superficial flow velocity drive both size and
shape distributions of the crystal products to a set of desired values.
Furthermore, the supersaturation level is defined as the logarithmic
difference between the solute concentration level and the solubility,
σðz; tÞ ¼ lnðCðz; tÞ=sðz; tÞÞ, and tf is the total simulation time. A range of
supersaturation is provided as a constraint (cf. σðz; tÞr2:6) in Eq. (12)
to prevent the primary nucleation of crystals during the process. The
corresponding range of the average crystal shape is 〈α〉r1:05. The
polynomial expressions for the growth rates G110 and G101 are obtained
from open-loop simulations in Kwon et al. (2014). The forward
upwind (FU) discretization scheme, which guarantees the stability of
the system if the time and spatial discretization steps are relatively
small (Graham and Rawlings, 2013), is applied to the moment models
and the mass and energy balance equations in the MOP (cf. Eq. (12)) to
evaluate spatio-temporal evolution of the system variables. Then, a set
of optimal jacket temperatures and the superficial flow velocity (Tw;1,
Tw;2, Tw;3, Tw;4, Tw;5, vz) is obtained by solving Eq. (12) offline, and is
applied to the crystallizer. We observed that the computational time
needed to solve the optimization problem using the moments model
is about 5–10 s. Therefore, if real-time measurements of crystallizer
outlet stream are available with a reasonable sampling time, the
proposed method can be applied to an experimental plug flow
crystallization system. In general, the computational time and the
convergence of the solution computed from an optimization problem
depend on the integration step used to solve the moments model and
thus it should be chosen carefully to obtain an accurate solution
meeting real-time computational requirements.

Remark 3. The growth rates of the HEW lysozyme in the direction
of (110) and (101) faces used in the simulations presented in the
paper have been calibrated with available experimental results.
However, no experimental results are currently available for the
production of HEW lysozyme crystals through PFC. We note that
the proposed optimization and control framework can be applied
to other plug flow crystallization systems provided that the
modeling, measurement, and computational requirements needed
to implement the proposed approach in a practical setting are
satisfied.

5. Feed-forward control

In continuous crystallization processes, disturbances (e.g., changes
in the inflow solute concentration) influence the size and shape
distributions of the crystal products during the steady-state opera-
tion of the PFC process (Sen et al., 2014). Motivated by this, the
following feed-forward control (FFC) strategy is proposed for the
production of crystals with desired size and shape distributions
properly dealing with the disturbance in the inflow solute concen-
tration. We assume that the actuator limit on the rate of change of
the jacket temperature is sufficiently high such that the crystallizer
temperature can be changed instantaneously. We note that if the
jacket temperature change is not instantaneous, it will take an
additional time for the PFC temperature to reach a desired profile,
and as a result the systemmay lead to the production of crystals with
undesired size and shape distributions over the time required for the
PFC temperature to reach the desired profile:

1. Initially, we compute a set of optimal jacket temperatures
ðTw;1; Tw;2; Tw;3; Tw;4; Tw;5Þ and an optimal superficial flow velo-
city, vz, for the initial solute concentration, Ci, and they are
applied to the crystallizer until the change in the inflow solute
concentration is measured (i.e., a disturbance is detected). In
this step, the spatial temperature profile at the steady state is
similar to the one for t¼4 h in Fig. 4.

2. When the change in the solute concentration is measured at the
entrance of the PFC, a set of new optimal jacket temperatures
ðTnew

w;1 ; T
new
w;2 ; T

new
w;3 ; T

new
w;4 ; T

new
w;5 Þ is computed for the new inflow

solute concentration, Cnew
i , while the superficial flow velocity

remains identical. Then, the old jacket temperature for zone 1 is
immediately replaced with the new jacket temperature and, for
zone 2 to zone 5, the jacket temperatures remain identical
because the inflow with the new solute concentration, Cnew

i , has
not reached zone 2 to zone 5 yet. Thus, a set of resulting jacket
temperatures becomes ðTnew

w;1 ; Tw;2; Tw;3; Tw;4; Tw;5Þ.
3. When the inflow with the new solute concentration, Cnew

i , has
reached zone 2, the old jacket temperature, Tw;2, is replaced with
a new jacket temperature, Tnew

w;2 . Thus, a set of resulting jacket
temperatures becomes ðTnew

w;1 ; T
new
w;2 ; Tw;3; Tw;4; Tw;5Þ and it is main-

tained until the inflow with the new solute concentration, Cnew
i ,

reaches zone 3. In this step, the spatial temperature profile at the
steady state is similar to the one for t¼10 h in Fig. 4.

4. This strategy continues until the inflow with a new solute concen-
tration, Cnew

i , reaches the entrance of zone 5, and it is the timewhen
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Fig. 4. The spatial evolution of the crystallizer temperature (T) at different times
under FFC. The desired set-point values are h110 ¼ 130 μm and 〈α〉¼ 0:85 for the
average crystal height in the direction of (110) face and crystal shape, respectively.
The disturbance was introduced at t¼8.33 h (¼30 000 s) when the inflow solute
concentration was changed from Ci¼43 to 34.4 mg/cm3. It is noted that some of the
data points for t¼10 h have been excluded for clarity since they overlay with the
data points for t¼4 h.

J. Sang-Il Kwon et al. / Chemical Engineering Science 119 (2014) 30–3934



a set of jacket temperatures becomes ðTnew
w;1 ; T

new
w;2 ; T

new
w;3 ; T

new
w;4 ; T

new
w;5 Þ,

which will be maintained for the rest of simulation. In this step, the
spatial temperature profile at the steady state is similar to the one
for t¼16 h in Fig. 4.

5. If a new disturbance in the inflow solute concentration is
detected, Step 1 to Step 4 will be repeated.

For example, a set of optimal jacket temperatures for the inflow
solute concentration, Ci ¼ 43 mg=cm3, is presented in Fig. 5, which is
applied to the PFC until a change in the inflow solute concentration
is measured at t¼8.33 h (¼30 000 s). Specifically, this disturbance to
the system is modeled by decreasing the inflow solute concentration,
Ci, from 43 to 34.4 mg/cm3 at t¼30 000 s in the kMC simulations.
Then, a set of new optimal jacket temperatures for the new inflow
solute concentration Cnew

i ¼ 34:4 mg=cm3 is computed, and applied
for 8:33oto14:16 h according to the FFC strategy described above.
For the production of crystals with desired size and shape distribu-
tions, the optimal superficial velocity vz¼0.0763 cm/s is computed for
a given simulation time, tf¼20 h. In Table 1, a set of jacket tempera-
tures at different times is presented for clarity. For t414:16 h, the
inflow disturbance has reached zone 5 and as a result the set of old
jacket temperatures has been completely replaced with a set of new
jacket temperatures as is presented in Fig. 5. Owing to the FFC scheme,
existing crystals that are in the middle or close to the outlet of the PFC
can grow through the previous optimal jacket temperature profile, and
as a result they are successfully produced with desired size and shape
distributions. Furthermore, this FFC strategy only requires the mea-
surement of the inflow solute concentration at the entrance of the PFC
so it is robust to the inaccuracy of the online measurements. More
results on the robust control of crystallization process can be found in
the work by Chiu and Christofides (2000).

Remark 4. The proposed optimization/control approach can be
extended to account for crystal agglomeration and/or breakage
events by constructing moment models that capture the dominant
dynamic behaviors of the agglomeration and breakage processes
within the crystallization process.

Remark 5. As a complementary strategy to the proposed FFC
scheme, a set of proportional-integral-derivative (PID) control
schemes can be implemented for each zone to make slight
adjustments to the optimal jacket temperatures (for a given
crystallizer feed) and is used to suppress the effect of unmodeled
disturbances/modeling uncertainty through the use of real-time
online measurements of the size and shape distributions of the
crystals of the PFC outlet stream.

6. Simulation results of continuous plug flow crystallizer

Continuous PFC processes have been traditionally operated at
steady states. However, there is a limitation in the steady-state model
in which it cannot describe a transient behavior of the system when
there is a disturbance such as an abrupt change in the inflow solute
concentration during the steady-state operation of the PFC. To this
end, we have developed a dynamic model in Section 2 that describes
the spatio-temporal evolution of system variables including the
average crystal volume and shape, the number of crystals, and the
solute concentration and the crystallizer temperature. In this work, we
work at 4%(w/v) NaCl and pH¼4.5. In Fig. 6, the solute concentration
profile obtained from the dynamic model employed in the kMC
simulation at different times proceeds gradually and eventually it
reaches the steady state at tC26 500 s.

The constant supersaturation control (CSC) strategy is one of
the most widely used operating strategies for the operation of the
crystallization processes in the industry. Furthermore, the con-
troller performance of using a CSC strategy in batch processes can
be close to that of the model predictive control (MPC) if the
desired supersaturation level is chosen appropriately. For the PFC,
however, it is rather difficult to maintain a constant supersatura-
tion level because the solute concentration drops along the spatial
coordinate of the crystallizer. Thus it requires a design of a
particular spatial temperature profile to compensate the concen-
tration drop, which is not possible without using a steady-state/
dynamic model. In addition to the spatial supersaturation profile,
the size distribution of the crystals produced from the PFC
depends on the total length of the PFC. Therefore, using the
model-free CSC scheme does not guarantee the production of
crystals with desired size and shape distributions simultaneously.

Fig. 5. The spatial profile of the jacket temperature (Tw) computed by solving MOP
when the desired set-point values are h110 ¼ 130 μm and 〈α〉¼ 0:85 for the average
crystal height in the direction of (110) face and crystal shape, respectively. To deal
with the disturbance introduced to the inflow solute concentration, a set of new Tw
values for 8:33oto14:16 h is updated according to the FFC strategy.

Table 1
A set of jacket temperatures at different times.

Time (h) Jacket temperature (1C)

Tw;1 Tw;2 Tw;3 Tw;4 Tw;5

ð0rto8:33Þ 23.91 23.62 23.07 22.09 20.18
ð8:33r to9:79Þ 21.66 23.62 23.07 22.09 20.18
ð9:79r to11:24Þ 21.66 21.31 23.07 22.09 20.18
ð11:24r to12:70Þ 21.66 21.31 20.64 22.09 20.18
ð12:70r to14:16Þ 21.66 21.31 20.64 19.33 20.18
ð14:16r to20Þ 21.66 21.31 20.64 19.33 15.92

Fig. 6. The spatial evolution of the protein solute concentration level (C) at
different times when there is no disturbance. The desired set-point values are
h110 ¼ 130 μm and 〈α〉¼ 0:85 for the average crystal height in the direction of (110)
face and crystal shape, respectively.
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In this work, however, the production of the crystals with
both desired size and shape distributions is achieved by applying
the set of optimal jacket temperatures and the superficial flow
velocity computed by solving the MOP (cf. Eq. (12)) according to
the proposed FFC strategy to deal with the change (i.e., distur-
bance) in the inflow solute concentration. All simulations are
performed in parallel using Message Passing Interface (MPI) to
make use of heightened computational and memory requirements
for this continuous crystallization process. The desired set-point
value, 〈α〉¼ 0:85, is chosen for the crystal shape because of the
desire to work in a zone where the nucleation rate is negligible (i.
e., metastable regime). Also, the set-point of 〈h110〉¼ 130 μm is
chosen for the crystal size in the direction of (110) face. As
presented in Figs. 7 and 8, the effect of the disturbance is
sufficiently suppressed and as a result the average crystal size in
the direction of the (110) face and the average crystal shape are
successfully regulated to a set of desired values, respectively.
Without the implementation of the proposed FFC scheme, as
presented in Figs. 7 and 8, the effect of the disturbance cannot
be sufficiently suppressed and as a result � 30% of the crystal
products deviates from the desired set-point values. The optimal
superficial flow velocity used in the kMC simulation is

vz¼0.0763 cm/s, and sets of the optimal jacket temperatures are
(23.91, 23.62, 23.07, 22.09, 20.18) 1C and (21.66, 21.31, 20.64, 19.33,
15.92) 1C for Ci¼43 and Ci¼34.4 mg/cm3, respectively.

The spatio-temporal profiles of the solute concentration, the
crystallizer temperature, and the supersaturation level are pre-
sented in Figs. 9, 10 and 11, respectively. Because of the difference
between a new jacket temperature profile computed for a new
inflow solute concentration and the old jacket temperature profile,
a set of discontinuous jumps is observed in Fig. 11. In Fig. 12, when
the system is at a transient state at t¼4 h, the spatial profile of the
solute concentration is determined by the combination of the
neighboring steady-state profiles at t¼0 and t¼8 h, and a similar
behavior is observed for another transient state at t¼12 h. The
benefit of this discontinuity in the jacket temperature is that we
can avoid the unnecessary temperature change for those crystals
which are quite far from the disturbance and there is no need to
change the jacket temperature for those crystals. As a result,

Fig. 7. The normalized crystal size distribution obtained from the kMC simulations
under the FFC scheme is compared with that under no control scheme. The jacket
temperatures computed by solving the MOP are applied to the PFC, and these
crystals are collected throughout the PFC. The desired set-point values are
h110 ¼ 130 μm and 〈α〉¼ 0:85 for the average crystal height in the direction of
(110) face and crystal shape, respectively.

Fig. 8. The normalized crystal shape distribution obtained from the kMC simula-
tions under the FFC scheme is compared with that under no control scheme. The
jacket temperatures computed by solving the MOP are applied to the PFC, and these
crystals are collected throughout the PFC. The desired set-point values are
h110 ¼ 130 μm and 〈α〉¼ 0:85 for the average crystal height in the direction of
(110) face and crystal shape, respectively.

Fig. 9. The spatio-temporal evolution of the protein solute concentration level
obtained from the kMC simulations in response to the disturbance introduced to
the inflow solute concentration at t¼8.33 h (¼30 000 s) when the solute concen-
tration is changed from Ci¼43 to 34.4 mg/cm3. A set of optimal jacket temperatures
is obtained for the desired set-point values, h110 ¼ 130 μm and 〈α〉¼ 0:85, for the
average crystal height in the direction of (110) face and crystal shape, respectively.
Note that the origin, ðz; tÞ ¼ ð0;0Þ, is at the upper left of the position axis.

Fig. 10. The spatio-temporal evolution of the crystallizer temperature obtained
from the kMC simulations in response to the disturbance introduced to the inflow
solute concentration at t¼8.33 h (¼30 000 s) when the solute concentration is
changed from Ci¼43 to 34.4 mg/cm3. The desired set-point values are
h110 ¼ 130 μm and 〈α〉¼ 0:85 for the average crystal height in the direction of
(110) face and crystal shape, respectively. Note that the origin, ðz; tÞ ¼ ð0;0Þ, is at the
upper left of the position axis.
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crystals with a desired size and shape distribution can be pro-
duced while the crystallizer is in a transient state.

The sensitivity of the size and shape of the crystals produced at
the outlet of the PFC on the size of the initial seed crystals has also
been investigated. Specifically, crystal size and shape distributions
obtained from the kMC simulations for monodisperse seed crystals
with different heights, 10, 20, 30, 40, 50, 60 μm, in the direction of
the (110) face have been reported in Figs. 13 and 14, respectively.
The weighting coefficients of the two objective functions used are
w1¼0.085 and w2 ¼ 1. In Fig. 13, it is presented that the average
size of the crystals obtained by applying the jacket temperatures
computed from the MOP becomes smaller than the desired set-
point if the seed crystals are large while the small seed crystals can
grow to a desired product size. In Fig. 14, the shape of the crystals
produced from large crystal seeds deviates from a desired set-
point value than that of crystals produced from small crystal seeds.
For larger crystal seeds, they have to grow slowly because they are
already close to the desired crystal size, and as a result the crystal
shape does not change significantly from the initial cubical shape.
On the other hand, for small crystal seeds, they have to grow

considerably to reach the desired size, and as a result the solute
concentration is dropped to a regime where the production
of crystals with a relatively low crystal shape is achieved. We
want to note that for a different crystal seed size a set of
appropriate weighting factors, w1 and w2, would need to be found
to properly drive crystal shape and size to desired set-point values,
respectively.

In conclusion, the proposed FFC scheme along with the optimal
solution obtained by solving the MOP can successfully drive the
average size and shape of the crystal population produced from
the PFC to desired set-point values. Additionally, the effect of
change in the inflow concentration that occurred during the
steady-state operation is suppressed by the proposed FFC, and,
owing to the absence of back-mixing in the PFC, the production of
crystals with a very narrow size distribution (i.e., low polydisper-
sity) is achieved. Lastly, the number of segments in the PFC can be
easily extended if it is necessary for the better performance of the
proposed FFC scheme.

Fig. 11. The spatio-temporal evolution of the supersaturation level obtained from
the kMC simulations in response to the disturbance introduced to the inflow solute
concentration at t¼8.33 h (¼30 000 s) when Ci is changed from 43 to 34.4 mg/cm3.
The desired set-point values are h110 ¼ 130 μm and 〈α〉¼ 0:85 for the average
crystal height in the direction of (110) face and crystal shape, respectively.

Fig. 12. The spatial evolution of the protein solute concentration level (C) at
different times under FFC. The desired set-point values are h110 ¼ 130 μm and
〈α〉¼ 0:85 for the average crystal height in the direction of (110) face and crystal
shape, respectively. The disturbance was introduced at t¼8.33 h (¼30 000 s) when
the inflow solute concentration was changed from Ci¼43 to 34.4 mg/cm3.
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Fig. 13. The normalized crystal size distribution obtained from the kMC simula-
tions for seed crystals with different heights, 10, 20, 30, 40, 50, 60 μm, in the
direction of (110) face where the shapes of these crystal seeds are all cubical. For
each run, the jacket temperatures computed by solving the MOP are applied to the
PFC, and these crystals are collected throughout the PFC. The desired set-point
values are h110 ¼ 130 μm and 〈α〉¼ 0:85 for the average crystal height in the
direction of (110) face and crystal shape, respectively.

Fig. 14. The normalized crystal shape distributions obtained from the kMC
simulations for seed crystals with different heights, 10, 20, 30, 40, 50, 60 μm, in
the direction of (110) face where the shapes of these crystal seeds are all cubical.
For each run, the jacket temperatures computed by solving the MOP are applied to
the PFC, and these crystals are collected throughout the PFC. The desired set-point
values are h110 ¼ 130 μm and 〈α〉¼ 0:85 for the average crystal height in the
direction of (110) face and crystal shape, respectively.
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7. Conclusions

In this work, we first modeled the plug flow crystallization
process where crystals grow from the seeds through kMC simula-
tions. In general, a continuous PFC is operated at a steady state,
and thus the steady-state model is typically used to describe the
spatial profile of the important system variables, however, it
cannot describe the transient behavior of the PFC. To this end, a
dynamic model was developed to describe the spatio-temporal
evolution of the number of crystals, the total crystal volume, the
crystallizer temperature and the solute concentration, and the
average crystal shape at a transient state as well as at a steady-
state. Then, the method of moments was applied to the dynamic
model to derive a reduced-order moments model which was used
in the MOP to compute a set of optimal crystallizer jacket
temperatures and superficial flow velocity that minimizes the
sum of the squared deviation of the average crystal shape and
size throughout the PFC from the desired set-point values,
respectively.

In particular, when the disturbance was introduced, a set of
new optimal jacket temperatures for each crystallizer segment
was computed by solving the MOP for a new inflow solute
concentration, and applied to the kMC simulation through the
proposed FFC scheme. As a result, the production of crystals with
desired size and shape distributions is achieved while � 30% of
the crystal products are off the desired set-point values when the
disturbance in the inflow solute concentration is not handled
through the proposed FFC scheme.
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Appendix

For the purpose of the derivation of the moment models
(Appendix A), the characteristic curve (Appendix B), and the
steady-state model (Appendix C), the volumetric growth rate is
assumed to be size independent and is only a function of the
supersaturation level, that is GvolðV ; σÞCGvolðσÞ.

Appendix A. Derivation of the moment models

To begin with the derivation, we multiply Vj to Eq. (8):Z 1

0
Vj∂n

∂t
þvz

Z 1

0

∂n
∂z
Vj dVþGvol

Z 1

0

∂n
∂V

Vj dV

¼
Z 1

0
BseedδðV�V0; z�z0ÞVj dV

By setting Mjðz; tÞ ¼
R1
0 nðV ; z; tÞ dV and switching the order of

operations

∂Mj

∂t
þvz

∂Mj

∂z
þGvol nVj

���V ¼ 1

V ¼ 0
� j

Z 1

0
nVj�1 dV

� �
¼ BseedV

j
0δðz�z0Þ

because nðV ; z; tÞ goes to 0 as V goes to 1, and nðV ; z; tÞ ¼ 0 when
V¼0 since there is no nucleation inside the crystallizer. Lastly, by
rearranging it, we obtain

∂Mj

∂t
¼ �vz

∂Mj

∂z
þ jGvolðσÞMj�1þBseedV

j
0δðz�z0Þ ðA:1Þ

where the terms ∂Mj=∂z and BseedV
j
0δðz�z0Þ are associated with

crystal seeding, which acts only at z¼ z0 (i.e., it acts like an
impulse), and thus their orders of magnitude are much higher
than that of ð∂Mj=∂tÞdz and jGvolðσÞMj�1. Therefore, integrating Eq.
(A.1) from z�0 to zþ0 gives

0¼ �vz

Z zþ
0

z�
0

∂Mj

∂z
dzþBseed

Z zþ
0

z�
0

Vj
0δðz�z0Þ dz

as a result a boundary condition follows that

Mjðz; tÞjz ¼ z0 ¼
Bseed

vz
Vj
0 ðA:2Þ

Therefore, Eq. (A.1) can be written as follows:

∂Mj

∂t
¼ �vz

∂Mj

∂z
þ jGvolðσÞMj�1

with a boundary condition, Eq. (A.2).

Appendix B. The method of characteristics

The two characteristic ODEs are derived as follows: First of all,
by taking the derivative of nðV ; zÞ with respect to an arbitrary
characteristic s, it gives

dn
ds

¼ ∂n
∂V

� �
dV
ds

þ ∂n
∂z

� �
dz
ds

ðB:1Þ

But from Eq. (8), assuming that the growth rate is independent of
size

∂n
∂t

¼ ∂n
∂V

� �
Gvolþ

∂n
∂z

� �
vz ðB:2Þ

Comparing coefficients on Eqs. (B.1) and (B.2) gives the equations
for the characteristic curve as follows:

dV
ds

¼ G;
dz
ds

¼ vz ðB:3Þ

and thus

dV
dz

¼ Gvol

vz

which defines the characteristic curve in the V–z plane and it
allows calculation of the crystal volume distribution at any loca-
tion z in the plug flow crystallizer. We note that the population
distribution along a characteristic curve is constant because
dn=ds¼ 0 by Eqs. (B.1) and (B.2).

Appendix C. Balance equations at steady state

The solute concentration C(z) at steady state can be computed
by substituting Eq. (11) into Eq. (1) and has the following form:

CðzÞ ¼ Ci�
ρcGvolM0ð0Þ

vz
z

In a similar way, by substituting Eq. (11) into Eq. (6) and since Tw;j

is a constant within each crystallizer segment, the crystallizer
temperature T(z) at steady state can be obtained as follows:

dT
dz

þBTðzÞ ¼ �AþBTw;k ðC:1Þ

where A¼ ρcΔHcGvolM0ð0Þ=ρCpvz and B¼Ucac=ρCpvz. Since this is
a first order ordinary differential equation, we can compute the
solution T(z) by multiplying an integrating factor eBz to Eq. (C.1) as
follows:

eBz
dT
dz

þBTðzÞ
� �

¼ ð�AþBTw;kÞeBz
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by grouping the left-hand side and integrating yieldsZ
dðeBzTðzÞÞ ¼ ð�AþBTw;kÞ

Z
eBz dz

and applying the boundary condition for T(z) at z¼0 gives

eBzTðzÞ ¼ ð�AþBTw;kÞ
1
B
eBz

���z
0
þT0

and it follows that

TðzÞ ¼ Tw;k�
A
B

� �
ð1�e�BzÞþT0e�Bz
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