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ABSTRACT: This work focuses on the development of economic model predictive control (EMPC) systems for transport-
reaction processes described by nonlinear parabolic partial differential equations (PDEs) and their applications to a non-
isothermal tubular reactor where a second-order chemical reaction takes place. The tubular reactor is modeled by two nonlinear
parabolic PDEs. Galerkin’s method is used to derive finite-dimensional systems that capture the dominant dynamics of the
parabolic PDEs which are subsequently used for the EMPC design. The EMPC formulation uses the integral of the reaction rate
along the length of the reactor as an economic cost function subject to constraints on the control action and states over an
operation period. Closed-loop simulations are conducted of a low-order EMPC system, formulated with a constraint on the
available reactant material over each operation period, applied to a high-order discretization of the PDEs and of a high-order
EMPC system formulated with a specific state constraint and with the constraint on the available reactant material. Simulation
results demonstrate that the EMPC operates the process in a time-varying fashion and improves the economic cost over steady-
state operation using the same amount of reactant material over a fixed period of operation, as well as meeting state constraints.

■ INTRODUCTION

Transport-reaction processes are characterized by significant
spatial variations and nonlinearities due to the underlying
diffusion and convection phenomena and complex reaction
mechanisms, respectively. Currently, the approach followed for
the solution of the control problem of transport-reaction
processes is essentially determined by the well-known
classification of PDE systems into hyperbolic, parabolic, or
elliptic.1 Specifically, processes whose convective mechanisms
dominate over diffusive ones can be adequately described by
systems of quasi-linear hyperbolic PDEs. However, the diffusive
phenomena also play a prominent role in the dynamic models of
several industrially important transport-reaction processes, e.g.,
tubular, fluidized bed, and packed bed reactors, and should be
accounted for. These processes are typically modeled by quasi-
linear parabolic PDEs whose spatial differential operators can be
characterized by a spectrum that can be partitioned into a finite
(possibly unstable) slow part and an infinite dimensional stable
fast complement.2

On the basis of the above, the traditional approach to the
control of quasi-linear parabolic PDEs involves the application of
eigenfunction expansion techniques to the PDE system to derive
systems of finite-dimensional ordinary differential equations
(ODEs) that accurately describe the dynamics of the dominant
(slow) modes of the PDE system. In detail, the solution of the
original PDE system is initially expanded as the sum of an infinite
series of the eigenfunctions of the spatial differential operator
with time-varying coefficients. This expansion is used to derive an
infinite set of ODEs for the coefficients of the expansion. Then, a
finite-dimensional ODE model is derived by discarding an
infinite set of equations. The finite-dimensional ODE model is
subsequently used as the basis for the synthesis of finite-
dimensional controllers (e.g., refs 3−5). A potential drawback of
this approach is that the number of modes that should be
retained to derive an ODE system which yields the desired
degree of approximation may be very large. To overcome these

controller synthesis and implementation problems, research
efforts focused on taking advantage of the concept of inertial
manifold (IM) (e.g., ref 6) and approximate inertial manifolds
(AIMs) (e.g., refs 7−9) for the construction of low-order ODE
systems of desired accuracy. On the basis of this, significant work
over the last 20 years has focused on the synthesis of low-order
controllers for quasi-linear parabolic PDE systems on the basis of
low-order nonlinear ODE models derived through a combina-
tion of Galerkin’s method (using analytical or empirical basis
functions) with the concept of approximate inertial manifolds
(e.g., refs 9−11 and the book12 for results and references in this
area).
Model predictive control (MPC), known also as receding

horizon control, is a popular control method for handling
constraints (both on manipulated inputs and state variables)
within an optimal control setting. Numerous research studies
have investigated the properties of model predictive controllers
and led to a plethora of MPC formulations that focus on a
number of control-relevant issues, including issues of closed-loop
stability, performance, implementation, and constraint satisfac-
tion (e.g., refs 13−15 for results and references in this area). In
the past 10 years, significant work has been done on the
application of MPC to distributed parameter systems. Con-
tributions include analyzing the predictive control problem on
the basis of the infinite-dimensional system using control
Lyapunov functionals,16 the use of the finite difference method
to derive approximate ODE models for MPC design,17 the
methodology of model predictive control design for highly
dissipative PDEs,18 and the application of MPC to a catalytic
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reverse flow reactor (RFR).19 Furthermore, computationally
efficient predictive control algorithms for nonlinear parabolic
and hyperbolic PDEs with state and control constraints have
been proposed in refs 20−22.
Economic MPC (EMPC) has been extensively studied

recently in the context of finite dimensional systems (e.g., refs
23−27 for results and references in this area). The work of ref 24
deals with a reformulation of the conventional MPC quadratic
cost function in which an economic (not necessarily quadratic)
cost function is used directly as the cost inMPC, and thus, it may,
in general, lead to time-varying process operation policies
(instead of steady-state operation), which directly optimize
process economics. Most of the research in the area of EMPC,
however, has focused on lumped-parameter processes modeled
by ODE systems. Compared with lumped-parameter systems, no
work has been done on the problem of designing EMPC for
distributed parameter systems modeled by PDEs. Moreover,
operation of transport-reaction processes typically requires that
the state of the closed-loop system be maintained within certain
bounds to achieve acceptable performance like requiring the
temperature of a tubular reactor not to exceed a certain limit, and
is also limited by the finite capacity of control actuators and
constraints on reactant availability. Therefore, EMPC of
parabolic PDEs is an important theoretical problem with
practical implications.
In this work, we focus on the development of economic model

predictive control (EMPC) systems for transport-reaction
processes that are described by nonlinear parabolic partial
differential equations (PDEs). Through the application of
Galerkin’s method, finite-dimensional ordinary differential
equation models are first derived that capture the dominant
dynamics of the parabolic PDEs. The reduced-order models are
then used to formulate finite-dimensional EMPC systems of
varying dimension depending on the type of state constraints
imposed. The EMPC systems are applied to a non-isothermal
tubular reactor, described by two nonlinear parabolic PDEs,
where a second-order chemical reaction takes place. A state
constraint that bounds the reactor temperature as well as an input
constraint that bounds the available reactant material over a fixed
period of operation are considered in the formulations of the
EMPC systems which use the average reaction rate along the
length of the reactor as the economic cost function. Closed-loop
simulations are conducted where a low-order EMPC system and
a high-order EMPC system are separately applied to a high-order
discretization of the reactor PDE model, and they demonstrate
that the EMPC systems operate the process in a time-varying
fashion to improve the economic cost over steady-state operation
and meet input and state constraints.

■ PRELIMINARIES
Class of Parabolic PDE Systems. In this work, we consider

parabolic partial differential equation systems with a state-space
representation of the following form:

∂ ̅
∂

= ∂ ̅
∂

+ ∂ ̅
∂

+ + ̅
x
t

A
x
z

B
x

z
Wu t f x z t( ) ( ( , ))

2

2 (1)

subject to the boundary conditions:

∂ ̅
∂

= ̅ =

∂ ̅
∂

= ̅ =

x
z

g x z

x
z

g x z

, 0

, 1

0

1 (2)

and the initial condition:

̅ = ̅x z x z( , 0) ( )0 (3)

where x(̅z, t) = [x1̅(z, t) ... xn̅x(z, t)]′ denotes the state vector of
the system, the notation x′̅ denotes the transpose of x,̅ f(x(̅z, t))
denotes a nonlinear vector function, z ∈ [0, 1] is the spatial
coordinate, t∈ [0,∞) is the time, A, B,W, g0, and g1 are matrices
and vectors of appropriate dimensions, and u(t) denotes the nu-
dimensional manipulated input vector and is subject to the
following input constraints:

≤ ≤u u t u( )min max (4)

where umin and umax are the lower and upper bound vectors of the
manipulated input u(t). Moreover, the system states are also
subject to the following constraints:

∫≤ ̅ ≤x r z x z t z x( ) ( , ) dxmin
0

1

max (5)

where xmin and xmax are the lower and upper state constraints,
respectively. The function rx(z) ∈ L2(0,1) is the state constraint
distribution function used to describe how the state constraint is
enforced in the spatial domain [0, 1], and L2(0, 1) is used to
denote the space of measurable functions that are square-
integrable on the interval [0, 1].

Galerkin’s Method. To present our results, we first
formulate the PDE system as an infinite dimensional system in
the Hilbert space ([0, 1]; IR )nx , with being the space of
measurable vector functions defined on [0, 1], with inner product
and norm:

∫ω ω ω ω
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where ω1 are ω2 are two elements of ([0, 1]; IR )nx and the
notation · ·( , )IRnx denotes the standard inner product in IRnx. The
state function x(t) on the state-space is defined as

= ̅ > ≤ ≤x t x z t t z( ) ( , ), 0, 0 1 (7)

and the operator is defined as
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Then, the system of eq 1 takes the following infinite-
dimensional quasi-linear form:

̇ = + + =x t x t u t x t x x( ) ( ) ( ) ( ( )), (0) 0 (9)

where x0 = x0̅(z), =u t Wu t( ) ( ), and x t( ( )) is a nonlinear
vector function in the Hilbert space. For the operator , the
eigenvalue problem takes the form
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where ϕk is an eigenfunction corresponding to the kth eigenvalue
and ϕ̅k is an adjoint eigenfunction of the operator .
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Assumption 1 below characterizes the class of parabolic PDEs
considered in this work and states that the eigenspectrum of
operator can be partitioned into a finite part consisting of m
slow eigenvalues which are close to the imaginary axis and a
stable infinite complement containing the remaining fast
eigenvalues which are far in the left half of the complex plane,
and that the separation between the slow and fast eigenvalues of

is large. We also note that the large separation between slow
and fast modes of the spatial operator in parabolic PDEs ensures
that a controller which exponentially stabilizes the closed-loop
ODE system also stabilizes the closed-loop infinite-dimensional
system.3 This assumption is satisfied by the majority of diffusion-
convection-reaction processes.12

Assumption 1.

(1) Re(λ1) ≥ Re(λ2) ≥ ... ≥ Re(λj) ≥ ..., where Re(λj) denotes
the real part of the eigenvalue, λj.

(2) The eigenspectrum of , σ( ), is defined as the set of all
eigenvalues of , i.e., σ λ λ=( ) { , , ...}1 2 . σ( ) can be
partitioned as σ σ σ= ∪( ) ( ) ( )1 2 , where σ ( )1
consists of the first m finite eigenvalues, i.e.,
σ λ λ=( ) { , ..., }m1 1 , and |Re(λ1)|/|Re(λm)| = O(1).

(3) Re(λm+1) < 0 and |Re(λ1)|/|Re(λm+1)| =O(ε), where ε < 1 is
a small positive number.

Next, we apply the standard Galerkin's method to the infinite-
dimensional system of eq 9 to derive a finite-dimensional system.
Let s and f be modal subspaces of defined as

ϕ ϕ ϕ= span{ , , ..., }s m1 2 a n d ϕ ϕ= + +span{ , , ...}f m m1 2 .

The existence of s and f follows from the properties of .
Defining the orthogonal projection operators, Ps and Pf, which
project the state x onto the subspaces s and f of ,

respectively (i.e., = ∈x Pxs s s and = ∈x P xf f f ), the state x
of the system of eq 9 can be decomposed as

= + = +x x x Px P xs f s f (12)

Applying Ps and Pf to the system of eq 9 and using the above
decomposition for x, the system of eq 9 can be rewritten in the
following equivalent form:

̇ = + +
= =

̇ = + +
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x t x t x t x t u t
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w h e r e = Ps s , = Ps s , = Pf f , = Pf f ,

= Pf f , a n d = Ps s . I n t h e a bo v e s y s t em ,

λ= diag{ }s j , j = 1, ..., m, is a diagonal matrix of dimension m
× m and may contain unstable eigenvalues (i.e., Re(λj) > 0). The
operator f is an unbounded exponentially stable differential
operator. Neglecting the fast modes, the resulting ODE system is

̇ = + + =x t x t x t u t x Px( ) ( ) ( ( ), 0) ( ), (0)s s s s s s s s 0
(14)

which is a finite-dimensional system that describes the slow
(dominant) dynamics of the PDE system of eq 1 andmay be used
for standard model-based control synthesis.
Remark 1.Whenever the eigenfunction ϕj of the operator

cannot be calculated analytically, one can still use Galerkin’s
method to perform model reduction by using the empirical
eigenfunctions of the PDE system as basis functions in s and

f (such empirical eigenfunctions can be extracted from detailed
numerical simulations of the PDE system using the Karhunen−
Loeve expansion; see ref 28).

■ ECONOMIC MODEL PREDICTIVE CONTROL
PROBLEM FORMULATION

We consider the application of economic model predictive
control (EMPC) to the infinite-dimensional system of eq 9 to
optimize an economic measure. We assume that the EMPC
receives state measurements continuously and synchronously at
sampling periods denoted as tk = kΔ with k = 0, 1, .... The EMPC
optimization problem has the form

∫ τ τ τ̃
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where Δ is the sampling period, S(Δ) is the family of piecewise
constant functions with sampling period Δ, N is the prediction
horizon, x ̃(t) is the predicted state function evolution with input
u(t) computed by the EMPC, and x(tk) is the state measure-
ments. In the optimization problem of eq 15, the cost function of
eq 15a defined as L(x ̃(τ), u(τ)) is formulated to directly account
for the economics of the PDE system. The constraint of eq 15b is
the PDE system in the Hilbert space used to predict the future
evolution of the PDE system with the initial condition of eq 15c
obtained through state feedback. The constraints of eqs 15d and
e are the available control energy and state constraints,
respectively. The optimal solution to this optimization problem
is u*(t|tk) defined for t∈ [tk, tk+N). The EMPC applies the control
action computed for the first sampling period to the system in a
sample-and-hold fashion for t ∈ [tk, tk+1). The EMPC is resolved
at the next sampling period, tk+1, after receiving new state
measurements, x(tk+1). The infinite dimensional nature of the
controller of eq 15 in this case, however, renders it unsuitable for
the purpose of practical implementation.

Low-Order Economic Model Predictive Control For-
mulation. In this formulation, a Lyapunov-based EMPC
(LEMPC) system (see ref 24 for results on LEMPC) is designed
on the basis of the low-order, finite-dimensional slow subsystem
of eq 14 describing the evolution of xs (the fast subsystem is
neglected). The low-order EMPC law is obtained by solving, in a
receding horizon fashion, the following finite-dimensional
optimization problem:

∫ τ τ τ
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The constraints of eqs 16b and c are used to predict the future
evolution of the slow subsystem with the initial condition given
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in eq 16c. The constraints of eqs 16d and e are the available
control energy and the state constraints, respectively. The
constraint of eq 16f is a quadratic Lyapunov function (P is anm×
m dimensional positive definite matrix) of the slow subsystem
and ensures that the predicted state trajectory is restricted inside
a predefined stability region which is a level set of the Lyapunov
function (see ref 24 for a complete discussion of this issue).
Remark 2. The reduced-order EMPC formulation may

achieve suboptimal solutions compared to the infinite dimen-
sional EMPC problem, but it is not possible to quantify how
suboptimal the solution obtained via the reduced-order
formulation is (due to the inability to compute the solution of
the infinite-dimensional problem).
Remark 3. To improve the accuracy of the slow finite-

dimensional xs subsystem, the finite-dimensional approximation
of the system of eq 14 may be obtained through combination of
Galerkin’s method with approximate inertial manifolds. This
approach can be used to further reduce the dimension of the xs
subsystem and ensure that it is of an appropriately low order
suitable for controller design and online controller implementa-
tion.12

High-Order Economic Model Predictive Control For-
mulation. Accounting for the evolution of the fast subsystem is
important for the purpose of satisfying state constraints. To
formulate a finite dimensional EMPC optimization problem, the
fast subsystem is truncated at the lth fast state (i.e., the l + 1, l + 2,
... states are discarded). The notation · ̂ is used to denote the
finite-dimensional truncation of the fast subsystem. The
computational complexity associated with accounting for the
fast subsystem could be eased by neglecting the nonlinearity in
the dynamic model of the fast modes, while retaining the
nonlinear dynamics of the slow modes (so as to not adversely
effect the task of stabilization). The term ̂

f behaves like 1/ε (in
Assumption 1), where ε is a small positive parameter. Therefore,

̂
f is much greater than ̂

f and ̂
f can be neglected from the

equation (see ref 12 for more discussion and analysis of this
approximation). Using this approximation, the EMPC for-
mulation takes the following form:
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In the optimization problem of eq 17, the constraint of eq 17c is
the finite-dimensional truncation of the fast subsystem (non-
linear part of the dynamics being neglected) which is used to
predict the evolution of the fast subsystem states and x ̌(t) is used
to denote the vector of all the states (i.e., both the slow subsystem
and fast subsystem states). The cost function and the remaining
constraints are similar to eq 16.

Remark 4. We choose a certain number of modes of the
dynamic system of eqs 17b and 17c for the synthesis of the high-
order EMPC formulation to make sure that further increase in
the number of modes leads to identical numerical results.

Remark 5. State constraints arise either due to the necessity to
keep the process state variables within acceptable ranges to avoid,
for example, runaway reactions (in which case they need to be
enforced at all times and treated as hard constraints) or due to the
desire to maintain process state variables within desirable bounds
dilated by performance considerations (in which case they may
be relaxed, and treated as soft constraints). In the formulations
presented in this work, we consider state constraints that are hard
constraints but could also be treated as soft ones; for predictive
controller formulations where the state constraints are handled
as soft constraints, see, e.g., refs 29 and 30.

■ APPLICATION TO A TUBULAR REACTOR
In this section, we apply the low-order and high-order EMPC
systems to a transport-reaction chemical process example. First,
we present the model of the transport-reaction process which is a
tubular reactor. Second, we apply Galerkin’s method to the
chemical process example to construct a reduced-order model in
modal space. Finally, we present a series of simulations with
EMPC systems formulated with various state and input
constraints to assess the performance of the closed-loop system
under the EMPC.

Reactor Description.We consider a non-isothermal tubular
reactor shown in Figure 1, where an irreversible second-order

reaction of the form A → B takes place. The reaction is
exothermic, and a cooling jacket of constant temperature is used
to remove heat from the reactor. Under the standard
assumptions of constant density (ρ) and heat capacity (Cp) of
the reacting fluid, and constant axial fluid velocity (v), the
dynamic model of the process can be derived from mass and
energy balances and takes the following form:

ρ ρ
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(18)

where T and CA denote the temperature and concentration of
species A in the reactor, respectively, k and DA are the thermal
conductivity and mass diffusivity of the reacting fluid,
respectively, k0, E, and −ΔH represent the pre-exponential
constant, activation energy, and heat of the reaction, respectively,
h is the heat transfer coefficient between the reactor and the
cooling jacket, As is the surface area of the reactor walls, and Tc is
the jacket temperature. The system is subject to the boundary
conditions:

Figure 1. A tubular reactor with reaction A → B.
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where Tf and CAf denote the inlet temperature and concentration

of species A in the reactor and L is the length of the reactor. In

this case, we choose the inlet concentration of species A, CAf, as

the manipulated input. In order to simplify the presentation of

our results, we introduce the following dimensionless variables:
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where T0 and C0 are the reference temperature and

concentration, respectively, to write the system of eqs 18 and

19 in the following form:
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subject to the following boundary conditions:
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Furthermore, in order to simplify the computation of the

eigenvalues and eigenfunctions of the spatial differential operator

which will be used in our calculations, we insert the non-

homogeneous part of the boundary conditions of eq 22 into the

differential equation and obtain the following nonlinear parabolic

partial differential equation (PDE) model for the process (we

suppress the bar notation for t ̅ and z)̅:4

δ

γ
β

δ

γ

∂ ̅
∂

= −
∂ ̅
∂

+
∂ ̅
∂

+ − +

̅
+ ̅

+ ̅ + − ̅

∂ ̅
∂

= −
∂ ̅
∂

+
∂ ̅
∂

+ − −

̅
+ ̅

+ ̅

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

x
t

x
z Pe

x
z

z T B B

x
x

x T x

x
t

x
z Pe

x
z

z u B

x
x

x

1
( 0)

exp
1

(1 ) ( )

1
( 0)

exp
1

(1 )

i T C

T s

C

1 1

1

2
1

2

1

1
2

2
1

2 2

2

2
2

2

1

1
2

2

(23)

where δ is the standard Dirac function, subject to the following
transformed boundary conditions:

=
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Finally, we present the solution to the eigenvalue problem of
the spatial differential operator of the process, i.e.,
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for i = 1, 2, j = 1, ...,∞. The index i is used to denote the ith PDE,
and the index j is used to denote the jth eigenmode. The solution
of the eigenvalue problem of the spatial differential operator of
the ith PDE can be obtained by utilizing standard techniques
from linear operator theory and is of the form
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for i = 1, 2, j = 1, ..., ∞, where λij, ϕij, and ϕ̅ij denote the
eigenvalues, eigenfunctions, and adjoint eigenfunctions of the
spatial differential operator of the ith PDE, respectively. The
parameters Bij and ai̅j can be calculated from the following
formulas:
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for i = 1, 2, j = 1, ..., ∞.
The following typical values are given to the process

parameters: Pe1 = 7, Pe2 = 7, BT = 2.5, BC = 0.1, βT = 2, Ts = 0,
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Tf = 0, and γ = 10. In all simulations reported below, the second-
order finite-difference method was used to discretize, in space,
the two parabolic PDEs describing the tubular reactor and obtain
a 400th-order set of ODEs in time describing the tubular reactor
behavior; this discretized model was used to describe the process
dynamics in all simulations. We note that further increase on the
order of the process model led to identical open-loop and closed-
loop simulation results.
Remark 6. The Pećlet numbers (Pe1 and Pe2) essentially

quantify the ratio of convective transport phenomena to diffusive
transport phenomena. If these numbers are large, convective
transport phenomena dominate over the diffusive transport
phenomena. If they are small, diffusive transport phenomena
dominate over the convective transport phenomena. For
processes with Pe1 = Pe2 = c, where c is a constant on the order
of 1, both transport mechanisms are significant and the diffusive
and convective phenomena are comparable in importance for
both the mass and heat transport. In this work, we are
considering processes where both the diffusive and convective
phenomena play an important role like in most industrially
important transport-reaction processes. The choice of Pe1 = Pe2 =
7 reflects this point: mass and heat transport are fully coupled
(i.e., no time scale separation where the assumption can be made
that one of the two equations is at steady state), and both the
diffusive and convective phenomena have to be accounted for.
However, this choice of Pećlet numbers is not a limitation of

our approach, as we can still construct a model on the basis of
separation of time scales in the modal space. As pointed out
below, the first four eigenvalues (for each PDE) of the spatial
differential operator are λ11 = λ21 =−2.36, λ12 = λ22 =−4.60, λ13 =
λ23 = −9.14, and λ14 = λ24 = −16.29. From this analysis, we
observe a separation in magnitudes of the first two eigenvalues
from the second two eigenvalues. Following our previous work
(e.g., ref 12), the error associated with the reduced-order model
constructed with the first two eigenvalues will have error on the
order of ε λ λ= | | | | =/ (0.1)1 3 . Please see the “Case 3: High-
Order Economic Model Predictive Control Formulation with
Both State and Input Constraints” subsection which contains a
closed-loop simulation with Pe1 = 1 and Pe2 = 7.
Galerkin’s Method. To simplify the presentation of the

results, we will work with the amplitudes of the eigenmodes of
the PDE. To reduce the PDEmodel of eq 23 into anODEmodel,
we take advantage of the orthogonality property of the
eigenfunctions. Specifically, using Galerkin’s method, we first
derive a high-order ODE system for each of the PDEs that
describes the temporal evolution of the amplitudes correspond-
ing to the first li eigenmodes. The state xi̅(z, t) for i = 1, 2 can be
written as the sum of the amplitudes and eigenfunctions of the
first li eigenmodes:

∑ ϕ̅ =
=

x z t a t z( , ) ( ) ( )i
j

l

ij ij
1

i

(29)

where aij(t) and ϕij(z) are the amplitude and eigenfunction
associated with the jth eigenvalue of the spatial differential
operator of the ith PDE. Substituting the right-hand side of eq 29
into the ith PDE and taking the inner product of the resulting
system with the adjoint eigenfunction, we can construct the
temporal evolution of the amplitudes of the ith PDE:
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where as,i(t) = [as,i1(t) as,i2(t) ... as,ij(t) ... as,imi
]′ with elements

as,ij(t) ∈ IR associated with the amplitudes of the first mi
eigenmodes and af,i is a vector of similar structure to as,i(t) and
is associated with the next mi + 1 to li eigenmodes. The notation
as(t), af(t), and a(t) is used to denote the following vectors:
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The matrix As,i = diag{λij} is an mi × mi matrix (i.e, j = 1, ..., mi),
the matrix Af,i = diag{λij} is an (li−mi) × (li−mi) matrix (i.e., j =
mi + 1, ..., li), and the matrices Bs,i and Bf,i and the nonlinear vector
fields Fs,i and Ff,i can be constructed through the appropriate
inner product, e.g.,
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The initial conditions of the ODEs in eq 30 are
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After truncating the fast subsystem of eq 30, we can construct a
low-order finite-dimensional model for the first j = 1, ..., mi
eigenmodes of each PDE:

̇ = + + =a t A a t F a t B u t i( ) ( ) ( ( ), 0) ( ), 1, 2s i s i s i s i s s i, , , , ,

(34)

with initial conditions constructed using a similar procedure as in
eq 33. Using eq 27, the first four eigenvalues of the spatial
operator of the ith PDE are λ11 = λ21 = −2.36, λ12 = λ22 = −4.60,
λ13 = λ23 = −9.14, and λ14 = λ24 = −16.29. These values indicate
that the eigenspectrum exhibits a two-time-scale property.
Therefore, we consider the first two eigenvalues, namely, m1 =
m2 = 2, as the dominant/slow eigenmodes and the remaining
infinite eigenmodes as the fast ones. We will refer to the ODE
system of eq 34 with m1 = m2 = 2 as the low-order model.
We can also account for the fast subsystem by retaining the

first li eigenmodes of each PDE. As described previously in the
“High-Order Economic Model Predictive Control Formulation”
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subsection, the nonlinear part of the fast subsystem can be
neglected to improve the computational efficiency. The resulting
ODE system is given by

̇ = + + =

̇ = + =

a t A a t F a t a t B u t i

a t A a t B u t i
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, , , , ,

, , , ,

(35)

To determine the amount of eigenmodes to retain, a series of
open-loop and closed-loop simulations were preformed. On the
basis of these simulation results, the same open-loop and closed-
loop results are obtained with a 400th-order discretization,
obtained by Galerkin’s method (m1 =m2 = 2 and l1 = l2 = 200), of
the two parabolic PDEs as with the 400th order set of ODEs
obtained through the second-order finite-difference method. We
will refer to the ODE system of eq 35 withm1 =m2 = 2 and l1 = l2
= 200 simply as the high-order model.
Remark 7. In this example, the same number of eigenmodes

for each of the two PDEs is retained. However, this is not
necessary, in general, hence, the need for the index i.
Implementation of EMPC to a Tubular Reactor.We now

proceed with the description and implementation of the EMPC
formulations. To solve the EMPC optimization problem at each
sampling period, the open-source interior point solver Ipopt31

was used. To numerically integrate the finite-dimensional ODE
model of the transport-reaction process, the explicit Euler
method was used with an interation step of 10−5. For the EMPC
formulations, we consider a quadratic Lyapunov function of form

= ′V a a t Pa t( ) ( ) ( ) (36)

where P is an (m1 + m2) by (m1 + m2) and (l1 + l2) by (l1 + l2)
identity matrix for the low-order and high-order model,
respectively, and ρ̅ = 3 which has been chosen through closed-
loop simulations of the PDE system of eq 23 with the low-order
EMPC formulated below as an estimate of the closed-loop
stability region. The control objective that we consider is to
maximize the total reaction rate along the length of the reactor
and over one process operation period for tf = 1. The economic
measure used to accomplish this objective is

∫=L x u r z t z( , ) ( , ) d
0

1

(37)

where r(z, t) = k0 exp(−E/RT)CA
2 is the reaction rate in the

tubular reactor.
The control input is subject to constraint as follows: −1 ≤ u ≤

1. We also consider that there is limitation on the amount of
reactant material which can be used over one period tf.
Specifically, the control input trajectory of u should satisfy the
following constraint:

∫ τ τ =
t

u
1

( ) d 0.5
f

t

0

f

(38)

This constraint means that the total amount of reactant during
one period is fixed. We will refer to eq 38 as the reactant material
constraint or the integral input constraint. Since the EMPC is
evaluated at discrete-time instants during the closed-loop
simulation, the reactant material constraint is enforced as
follows:

∑ =
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i
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(39)

where M = tf/Δ. Moreover, to ensure that the reactant material
constraint is satisfied through the period tf, the EMPC utilizes the
previously computed input u(ti), i = 0, 1, ..., (k − 1) to constrain
the control input trajectory u(t), t ∈ [tk, tk+N), at the current
sampling time tk:
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whereM/2 is the total amount of material that can be supplied to
the reactor over one operating period, M is the total number of
sampling periods over each operating period, and tk/Δ is the
number of sampling periods since the beginning of the operating
period. To simplify the notation, we use the notation u∈ g(tk) to
denote this constraint.
In terms of the state constraint, we consider that the

temperature T along the length of the reactor is subject to the
following constraint:

≤ ≤x x z t x( , )1,min 1 1,max (41)

where x1,min = −1 and x1,max = 3 are the lower and upper limits,
respectively. Since the models used in the formulations of the
EMPC optimization problems are the low-order and high-order
models, we cast the state constraint in terms of the amplitudes of
the eigenmodes to prevent unnecessary computation required to
convert from the modal space back to the state space when
solving the optimization problem at each sampling period:

∑ ϕ− ≤ ≤
=

a t z1 ( ) ( ) 3
j

j j
1

200

1 1
(42)

Remark 8.The operating period tf is chosen to be on the order
of the time scale of the process dynamics and is used for imposing
the integral input constraint (i.e., the available amount of reactant
material over one operating period is fixed). Since the reaction is
second-order, the optimal strategy to maximize the reaction rate
(without the integral constraint) would be to feed the maximum
allowable amount of reactant material to the reactor for all time.
From a practical (economic) perspective, it is more important to
address the case where the available reactant material is fixed. For
this case, the EMPC determines the optimal distribution method
of the reactant material to the reactor to maximize the reaction
rate. As the results of the first simulation case (input constraint
only) demonstrate, for a fixed amount of reactant material over
some finite-time operating window, it is better, from an
economic standpoint, to distribute the material in a periodic
fashion, as this distribution method yields greater average
production rates over each operation period compared to
uniform in time distribution of the reactant material to the
reactor.
We also note that the input and integral constraints are

imposed for two fundamentally different reasons. The input
constraint is imposed as a result of the physical limitations of the
control actuator or available control actuation (e.g., the limits on
available actuation with a flow valve are fully closed or fully
open). As pointed out above, the integral material constraint is an
economic or practical constraint that the EMPCmust satisfy. For
example, consider the case where the integral constraint and
input constraint are imposed on the EMPC (no state constraint).
If the integral constraint was imposed, but not the input
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constraints, the EMPC would choose to feed in all the material
over the first sampling period tomaximize the reaction rate which
is not practical and most likely not physically possible due to
control actuator limitations. If we imposed the input constraint,
but not the integral constraint, the EMPC would feed in the
maximum allowable material for all time which is not as practical
as considering the best method to distribute a fixed amount of
reactant material to the reactor over time. Therefore, the input
and integral constraints taken together are not overlapping.
Case 1: Low-Order Economic Model Predictive Control

Formulation with Input Constraint. In the first set of
simulations, we propose a low-order EMPC formulation using
the low-order model of eq 34 and considering only input
constraints which takes the following form for the tubular reactor
example:
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where g(tk) is the control input constraint to make the computed
input profile over the entire operating period, tf, satisfy the
integral reactant material constraint. The economic cost function
of eq 43a that the EMPC works to maximize is the average
reaction rate along the length of the reactor. The EMPC of eq 43
is implemented with a prediction horizon N = 3 and sampling
time Δ = 0.01.
For an initial condition x(z, 0) = 0, the manipulated input and

closed-loop state profiles under the EMPC controller of eq 43 are
shown in Figures 2 and 3/4, respectively. It has been pointed out
(e.g., refs 32−34) that, by periodic operation through switching
between the upper and lower bounds on the reactant material
feed concentration, the average production rate can be improved
owing to the second-order dependence of the reaction rate on
reactant concentration. Thus, to achieve the maximum reaction
rate over one operation period, the EMPC feeds the maximum
allowable amount of reactant material to the reactor at the
beginning of the process operation period. After a while, the
EMPC needs to satisfy the reactant material constraint, so it
decreases the amount of reactant material fed to the reactor to
the lowest allowable amount, as displayed in Figure 2. We also
completed a simulation where the reactant material is fed to the
reactor uniformly in time and the input profile is given in Figure 2
(dotted black line). The corresponding closed-loop evolution of
the state profiles is given in Figures 5 and 6.
In order to confirm that the economic measure from the

manipulated input profile under the low-order EMPC
formulation is better than that from uniform in time distribution
of the reactant material, we compare the reaction rate values
along the length of the reactor from these two input distribution
profiles in Figure 7. The average reaction rate along the length of
the reactor (i.e., J = (1/L)∫ 0

L r(z, t) dz) under the low-order
EMPC formulation of eq 43 increases much faster than that from

uniform in time distribution of the reactant material because of
the second-order reaction and the EMPC input distribution.
Over this one operation period, the total reaction rate from the
system under the EMPC formulation is about 15.45% higher
than that from the closed-loop system under flat input
distribution.

Figure 2.Manipulated input profiles under the EMPC formulation of eq
43 (solid red line), under uniform in time distribution of the reactant
material (dotted black line), and under the finite-difference EMPC
(dotted blue line) over one operation period. The input profiles of the
two EMPCs (solid red line and dotted blue line) are overlapping.

Figure 3. Closed-loop profile of x1 under the low-order EMPC
formulation of eq 43 over one operation period.

Figure 4. Closed-loop profile of x2 under the low-order EMPC
formulation of eq 43 over one operation period.
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To verify the accuracy of the low-order EMPC, we formulate
an EMPC with the 400-order finite-difference method, which we
refer to as the finite-difference EMPC, to compare the closed-
loop evolution obtained under the finite-difference EMPC with
the low-order EMPC. The manipulated input profile under the
finite-difference method is also shown in Figure 2. From this
simulation, the same input profile is computed by the high-order
finite-difference EMPC as the low-order EMPC. However, the

low-order model uses four ODEs to predict the future evolution
of the PDE system, while the high-order finite-difference EMPC
uses 400 ODEs. From Figure 8, we observe a significant

computational improvement with using the low-order EMPC.
Furthermore, if we formulate an EMPC with a fourth-order
model obtained through the finite-difference method and apply it
to the PDE system, the resulting EMPC does not compute the
optimal trajectory, as it cannot accurately predict the future
evolution of the system.
Since chemical reactors are typically operated continuously

over long periods of time, we conduct another simulation of
multiple (20) consecutive periods of operation. The reactant
material constraint is enforced over each of the 20 consecutive
operating periods where the system at the beginning of each
period starts from a different initial condition. Figure 9 displays

the manipulated input profiles under the EMPC controller of eq
43, and Figures 10 and 11 depict the closed-loop evolution of the
two states under the low-order EMPC formulation of eq 43,
respectively. After two operation periods in the 20-period
operation simulation under the low-order EMPC of eq 43, the
closed-loop economic measure becomes constant over each
operation period, as shown in Figure 12. The total reaction rate
over each operation period under the low-order EMPC after two

Figure 5.Closed-loop profile of x1 under uniform in time distribution of
the reactant material over one operation period.

Figure 6.Closed-loop profile of x2 under uniform in time distribution of
the reactant material over one operation period.

Figure 7. Average reaction rate J along the length of the reactor (i.e., J =
(1/L)∫ 0

L r(z, t) dz) under the low-order EMPC formulation of eq 43
over one operation period (solid line) and under uniform in time
distribution of the reactant material (dashed line).

Figure 8. Computational time required to solve the low-order EMPC
optimization problem and the finite-difference EMPC optimization
problem over one operation period.

Figure 9. Twenty-period operation manipulated input profile under the
low-order EMPC formulation of eq 43.
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operation periods is still 3.89% greater than that of the case under
uniform in time distribution of the reactant material.
Remark 9. Regarding the oscillations (e.g., Figures 9−12

where the evolution of the tubular reactor is simulated over 20
operating intervals and the process evolution appears to be
oscillatory), we point out that this is not open-loop periodic

behavior or a numerical issue. This behavior is enforced by the
EMPC to maximize the cost over many periods. We refer the
interested reader to any of the literature on periodically operated
reactors (e.g., refs 33 and 34) for more commentary on this issue.

Case 2: High-Order Economic Model Predictive
Control Formulation with State and Actuator Con-
straints. Second, we consider the addition of a state constraint
and use the high-order EMPC formulation of eq 17 with the
high-order model of eq 35; the average reactant material
constraint is removed. The high-order EMPC formulation for
this chemical process example has the following form:

∫ ∫
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The EMPC of eq 44 is implemented with a prediction horizonN
= 5 and sampling time Δ = 0.02. The prediction horizon N and
sampling time Δ are greater than case 1 to increase the overall
prediction horizon length, which helps to guarantee that the
temperature does not violate its upper nor lower limit. For this
case, the initial condition is the steady state of the system under
uniform input distribution, u = 0.5, as shown in Figures 5 and 6.
The manipulated input and closed-loop state profiles under

the high-order EMPC of eq 44 are shown in Figures 13 and 14/
15, respectively. From Figure 13, the EMPC initially feeds in
more reactant material to the reactor to increase the reaction rate.
Since the reaction is exothermic, the temperature in the reactor
also increases. When the temperature approaches the maximum
allowable temperature, the input reactant concentration
decreases to avoid the temperature in the reactor from exceeding
x1,max = 3. After this phase, the high-order EMPC maintains
operation at a steady state associated with the maximum
temperature in the reactor being equal to the maximum
allowable temperature. For this simulation, the corresponding
maximum temperature in the reactor trajectory is shown in
Figure 16.
We compare the closed-loop evolution of the tubular reactor

under the high-order EMPC and under the high-order finite-
difference EMPC formulated with the state constraint (no
integral input constraint). The manipulated input profile
computed by the finite-difference EMPC is shown in Figure 13
(dotted blue line) along with the profile of the high-order EMPC.
The closed-loop state trajectories under the finite-difference
EMPC are shown in Figures 17 and 18. The overall difference
between the two input trajectories is small, as shown in Figure 13,

Figure 10. Twenty-period operation closed-loop profile of x1 under the
low-order EMPC formulation of eq 43.

Figure 11. Twenty-period operation closed-loop profile of x2 under the
low-order EMPC formulation of eq 43.

Figure 12.Average reaction rate along the length of the reactor J (i.e., J =
(1/L)∫ 0

L r(z, t) dz) under the low-order EMPC formulation of eq 43
over a 20-period operation (solid line) and under uniform in time
distribution of the reactant material (dashed line).
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and as a result, the closed-loop states under the high-order

EMPC and under the finite-difference EMPC evolve in a similar

fashion. Since both EMPCs use a 400-order model albeit

obtained through different methods, the computational time

required to solve the EMPC optimization problems are

comparable.

Case 3: High-Order Economic Model Predictive

Control Formulation with Both State and Input Con-

straints. Finally, we add the reactant material constraint into the

high-order EMPC formulation, and thus, the high-order EMPC

formulation considering both the state and input constraints for

this chemical process example has the following form:

Figure 13. Manipulated input profile under the high-order EMPC
formulation of eq 44 (solid red line) and under the finite-difference
EMPC (dotted blue line) over one operation period.

Figure 14. Closed-loop profile of x1 under the high-order EMPC
formulation of eq 44 over one operation period.

Figure 15. Closed-loop profile of x2 under the high-order EMPC
formulation of eq 44 over one operation period.

Figure 16. Closed-loop profile of the maximum value of x1 along the
length of the reactor under the high-order EMPC formulation of eq 44
over one operation period.

Figure 17. Closed-loop profile of x1 under the finite-difference EMPC
formulation with the state constraint over one operation period.
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We consider the prediction horizonN = 5 and sampling timeΔ =
0.02. For this case, the initial condition is the steady state of the
system under uniform input distribution, u = 0.5, as shown in
Figures 5 and 6.
Figures 19 and 20 show the closed-loop evolution of the states

under the EMPC formulation of eq 45. The corresponding
manipulated input profiles are given in Figure 21 (solid line).
Here, again, the EMPC initially feeds in the maximum allowable
reactant material until the maximum allowable temperature in
the reactor is reached and the EMPC feeds less reactant material
to the reactor to maintain operation at the maximum allowable
temperature. In the beginning, the optimal input trajectory
follows a similar path to case 2, since the input constraint has no
effect on the choice of the optimal input value. After some time,
the reactant material constraint needs to be satisfied, so the input
reactant concentration decreases at t = 0.8 to satisfy the
constraint. The corresponding highest temperature in the reactor
also decreases when the input is limited by the reactant material
constraint, as shown in Figure 22.

For this case study, in order to confirm that the economic
measure from the control input profile under the high-order
EMPC formulation is better than that from the system under

Figure 18. Closed-loop profile of x2 under the finite-difference EMPC
formulation with the state constraint over one operation period.

Figure 19. Closed-loop profile of x1 under the high-order EMPC
formulation of eq 45 over one operation period.

Figure 20. Closed-loop profile of x2 under the high-order EMPC
formulation of eq 45 over one operation period.

Figure 21. Manipulated input profile under the high-order EMPC
formulation of eq 45 over one operation period.
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uniform in time distribution of the reactant material, we compare
the reaction rate along the length of the reactor from these two
input distribution profiles, shown in Figure 23. Since the initial

condition for this case study is the steady state of the system
under uniform input distribution, the overall reaction rate is a
constant throughout the operation period when the reactant
material is distributed uniformly in time to the reactor. On the
other hand, the average reaction rate along the length of the
reactor, J, under the EMPC formulation of eq 45 increases
dramatically because of the second-order reaction, and after
some time, it reaches a steady state when the input is held
constant. Lastly, it drops to zero, since the reactant material
constraint needs to be satisfied over one operation period. Over
this one operation period, the total reaction rate from the system
under the EMPC formulation is still 6.91% higher than that from
the system under uniform in time distribution of the reactant
material.

To demonstrate that the EMPC performance is not associated
with the specific process parameters, we conduct another
simulation where Pe1 = 1. This represents the case where the
time scales of heat diffusive and convective phenomena are
roughly equivalent and the heat convective phenomena are
slower than the mass convective phenomena compared to the
case where Pe1 = 7. As a result of the slower heat convection, the
temperature does not increase as much over the course of the one
operating period simulation compared to the case with Pe1 = 7.
To demonstrate the ability of the high-order EMPC to satisfy
state constraint, we set the maximum allowable temperature to
be x1,max = 2. The closed-loop state and manipulated input
profiles are shown in Figures 24−26, respectively. Over the one

operation period (with Pe1 = 1), the total reaction rate from the
system under the high-order EMPC is 7.09%. For the case of
x1,max = 3 and Pe1 = 1, we have also verified that the EMPC will
compute the same input profile as case 1 because the upper
bound on the temperature is never reached over the course of
one operating period.

Remark 10.While the argument can be made that the optimal
operating policy of the first simulation (the EMPC formulated

Figure 22. Closed-loop profile of the maximum value of x1 along the
length of the reactor under the high-order EMPC formulation of eq 45
over one operation period.

Figure 23.Average reaction rate along the length of the reactor J (i.e., J =
(1/L)∫ 0

L r(z, t) dz) under the high-order EMPC formulation of eq 45
over one operation period (solid line) and under uniform in time
distribution of the reactant material (dashed line).

Figure 24. Closed-loop profile of x1 under the high-order EMPC
formulation of eq 45. For this case, the heat transfer Pećlet number is Pe1
= 1.

Figure 25. Closed-loop profile of x2 under the high-order EMPC
formulation of eq 45. For this case, the heat transfer Pećlet number is Pe1
= 1.
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with an input constraint only) can be determined through
physical intuition owing to the second-order reaction rate, our
motivation for performing this simulation is to demonstrate that
the EMPC, formulated with a low-order model (in this case, the
model is constructed with the first four (2 × 2) modes only), can
return the optimal operating strategy. In the subsequent
simulation studies, we demonstrate the ability of EMPC to
determine a more complex optimal operating strategy in real
time while also accounting for other process constraints.
Specifically, the EMPC is able to return the optimal operating
strategy by considering a state constraint that limits the
maximum allowable operating temperature in the reactor.

■ CONCLUSION
In this work, we developed low-order and high-order finite-
dimensional economic model predictive (EMPC) systems,
through the application of Galerkin’s method and involvement
of singular perturbation arguments, for transport-reaction
processes described by nonlinear parabolic PDE systems. The
formulated EMPC systems were applied to a tubular reactor
example described by two nonlinear parabolic PDEs, where the
average reaction rate along the length of the reactor was used as
the cost function. Closed-loop simulations demonstrated that, in
the absence of state constraint, the low-order EMPC system is
sufficient to meet the constraint on the availability of the reactant
material over one operation period, and yields improved closed-
loop economic performance compared to when the reactant
material is fed uniformly in time to the reactor by requesting a
suitable time-varying reactor operation. On the other hand, when
a state constraint on the maximum value of the temperature
along the length of the reactor is imposed, the use of a high-order
(yet computationally efficient) EMPC system allows one to
account for the process dynamics with sufficient accuracy and
meet both the input and state constraints simultaneously while
improving the economic cost over uniform in time feeding of the
reactant material.
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