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a  b s t  r  a c t

Transport-reaction  processes,  which are  typically described by  parabolic  partial differential  equations

(PDEs),  play an important  role  within the  chemical  process industries.  Therefore,  it is  important  to develop

feedback  control techniques that operate transport-reaction processes  in  an  economically  optimal  fashion

in  the  presence  of  constraints  in  the  process  states and manipulated inputs. Economic  model predictive

control  (EMPC) is  a predictive  control  scheme  that  combines  process  economics  and  feedback  control  into

an  integrated framework  with  the  potential  of improving the  closed-loop process  economic  performance

compared  to traditional control  methodologies.  In this work,  we focus on  systems of  nonlinear parabolic

PDEs  and propose a novel  EMPC design  integrating adaptive  proper  orthogonal  decomposition (APOD)

method  with  a high-order  finite-difference method  to  handle  state constraints.  The  computational  effi-

ciency  and constraint  handling  properties of  this design  are  evaluated  using a tubular  reactor  example

modeled  by two  nonlinear parabolic PDEs.

© 2015  Elsevier Ltd. All rights  reserved.

1. Introduction

The development of computationally efficient control methods

for partial differential equation (PDE) systems has been a major

research topic in the past 30 years (e.g., [6]). The design of feed-

back control algorithms for  PDE systems is usually achieved on the

basis of finite-dimensional systems (i.e., sets of ordinary differential

equations (ODEs) in time) obtained by applying a  variety of spatial

discretization and/or order reduction methods to the PDE system.

The classification of PDE systems, which is based on the proper-

ties of the spatial differential operator into hyperbolic, parabolic,

or elliptic, typically determines the finite-dimensional approxi-

mation approaches employed to derive finite-dimensional models

(e.g., [6,24]). A class of processes described by PDEs within chemi-

cal process industries is transport-reaction processes. For example,

tubular reactors are typically described by parabolic PDEs since

both convective and diffusive transport phenomena are  significant.

For parabolic PDE systems (e.g., diffusion-convective-reaction

processes) whose dominant dynamics can be adequately repre-

sented by a finite number of dominant modes, Galerkin’s method
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with spatially global basis functions is a  good way among many

weighted residual methods (e.g., [9,21])  to construct a  reduced-

order model (ROM) of the PDE system. Specifically, it can be used

to derive a finite-dimensional ODE model by applying approximate

inertial manifolds (AIMs) (e.g., [10])  that capture the dominant

dynamics of  the original PDE system. The basis functions used in

Galerkin’s method may  either be analytical or empirical eigen-

functions. After applying Galerkin’s method to the PDE system

and a low-order ODE system is derived, the control system can

be designed by utilizing control methods for linear/nonlinear ODE

systems [6].

One way to construct the empirical eigenfunctions is by apply-

ing proper orthogonal decomposition (POD) (e.g., [23,12,15]) to

PDE solution data. This data-based methodology for constructing

the basis eigenfunctions has been widely adopted in the field  of

model-based control of  parabolic PDE systems (e.g., [5,25,4,17,15]).

However, to achieve high accuracy of the ROM derived from the

empirical eigenfunctions of the original PDE system, the POD

method usually needs a large ensemble of solution data (snapshots)

to contain as  much local and global process dynamics as possible.

Constructing such a large ensemble of snapshots becomes a  signif-

icant challenge from a  practical point of  view; because currently,

there is no general way  to realize a  representative ensemble. Based

on this consideration, an adaptive proper orthogonal decomposi-

tion (APOD) methodology was proposed to recursively update the

ensemble of snapshots and compute on-line the new empirical
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eigenfunctions in the on-line closed-loop operation of PDE sys-

tems (e.g., [20,22,26,19]). While the APOD methodology of [26,19]

demonstrated its ability to capture the dominant process dynamics

by a relatively small number of snapshots which reduces the over-

all computational burden, these works did not address the issue

of computational efficiency with respect to optimal control action

calculation and input and state constraint handling. Moreover, the

ROM accuracy is limited by the number of the empirical eigenfunc-

tions adopted for the ROM; in practice, when a  process faces state

constraints, the accuracy of the ROM based on a limited number of

eigenfunctions may  not be able to allow the controller to avoid a

state constraint violation.

Economic model predictive control (EMPC) is a practical optimal

control-based technique that has recently gained widespread pop-

ularity within the process control community and  beyond because

of its unique quality of effectively integrating process economics

and feedback control (see [8] for an overview of recent results

and references). It  deals with a reformulation of  the conventional

MPC quadratic cost function in which an economic (not necessarily

quadratic) cost function is used directly as the cost in  MPC, and,

it may, in general, lead to time-varying process operation policies

(instead of steady-state operation), which directly optimize pro-

cess economics. However, most of previous EMPC systems have

been designed for lumped parameter processes described by lin-

ear/nonlinear ODE systems (e.g., [1,2,14,11,13]). In our previous

work ([16,15]), an EMPC system with a  general economic cost func-

tion for parabolic PDE systems was  proposed which operates the

closed-loop system in a  dynamically optimal fashion. Specifically,

the EMPC scheme was developed on the basis of low-order nonlin-

ear ODE models derived through Galerkin’s method using analytical

eigenfunctions [16] and empirical eigenfunctions derived by POD

[15], respectively. However, no  work has been done on  applying

APOD techniques for model order reduction to parabolic PDE sys-

tems under EMPC. Typically, EMPC will operate a  system at its

constraints in order to achieve the maximum closed-loop eco-

nomic performance benefit. Thus, the challenge is to formulate

EMPC schemes that can handle state constraints (i.e., prevent state

constraint violation).

Motivated by  the above considerations, in this work, we apply

APOD to parabolic PDE systems by considering process control

system computational efficiency and some specific constraints

imposed on the process (i.e., state and input constraints), and

propose a novel EMPC design integrating APOD method with a

high-order finite-difference method. The proposed EMPC method is

applied to a non-isothermal tubular reactor where a second-order

chemical reaction takes place and  the computational efficiency,

state and input constraint satisfaction, and  closed-loop economic

performance are evaluated.

2. Preliminaries

2.1. Parabolic PDEs

We consider parabolic PDEs of the form:

∂x

∂t
= A

∂x

∂z
+ B

∂2
x

∂z2
+ Wu(t) + f (x) (1)

with the boundary conditions:

∂x

∂z
|z=0 = g0x(0, t),

∂x

∂z
|z=1 = g1x(1, t) (2)

for t ∈ [0, ∞)  and the initial condition:

x(z, 0) = x0(z) (3)

where z ∈ [0, 1] is  the spatial coordinate, t  ∈ [0,  ∞)  is the time,

x(z, t) = [x1(z, t) . . .  xnx (z, t)]T ∈ R
nx is the vector of the state

variables (xT denotes the transpose of x), and f(x) denotes a non-

linear vector function. The notation A,  B, W,  g0 and g1 is used  to

denote (constant) matrices of appropriate dimensions. The control

input vector is denoted as u(t) ∈ R
nu and is subject to the following

constraints:

umin ≤ u(t) ≤  umax (4)

where umin and umax are the lower and  upper bound vectors of  the

manipulated input vector, u(t). Moreover, the system states are also

subject to the following state constraints:

xi,min ≤
∫ 1

0

rxi
(z)xi(z, t)dz ≤ xi,max (5)

for i  = 1, .  .  ., nx where xi,min and  xi,max are  the lower and upper

state constraint for the i-th state, respectively. The function rxi
(z) ∈

L2(0,  1)  where L2(0, 1) is  the space of measurable square-integrable

functions on the interval [0, 1], is the state constraint distribution

function.

2.2. Galerkin’s method with POD-computed basis functions

To reduce the PDE model of  Eq. (1) into an ODE model, we

take advantage of the orthogonality of the empirical eigenfunctions

obtained from POD ([23,12]). Specifically, using Galerkin’s method

([7,10]), a low-order ODE system for the PDEs of  Eq. (1) describing

the temporal evolution of the amplitudes corresponding to  the first

mi eigenfunctions of the i-th PDE state in Eq. (1) has the following

form:

ȧs(t) = Asas(t) + Fs(as(t)) + Wsu(t)

xi(z, t) ≈
mi∑
j=1

aij
s (t)�ij(z),  i = 1, . .  .,  nx

(6)

where as(t) = [aT
s,1(t) . . . aT

s,nx
(t)]

T
is  a  vector of the total eigen-

modes, as,i(t) = [ai1
s (t) . .  .  aimis (t)]

T
is a  vector of the amplitudes of

the first mi eigenfunctions, aij
s (t) is the j − th eigenmode of i − th PDE,

As and Ws are constant matrices, Fs(as(t)) is a nonlinear smooth

vector function of the modes obtained by applying weighted resid-

ual method to Eq. (1), and {�ij(z)}
j=1:mi

are the first mi dominant

empirical eigenfunctions computed from POD for  the i-th PDE state,

xi(z, t).

3.  EMPC of parabolic PDE systems with state and control
constraints

3.1. Adaptive proper orthogonal decomposition

Compared with POD, APOD is a more computationally efficient

algorithm because it only needs an ensemble of a small number of

snapshots in the beginning. It  can complete the recursive update

of the computation of the dominant eigenfunctions, while keep-

ing the size of the ensemble small to reduce the computational

burden of updating the ensemble once a new process state mea-

surement is  available. Moreover, APOD can also adaptively adjust

the number of the basis eigenfunctions under a  desired energy

occupation requirement, �.  Out of N  possible eigenvalues from the

covariance matrix of the ensemble, the most dominant m eigen-

values of the covariance matrix occupies �  energy of the whole

ensemble, i.e.,
∑m

j=1
�j/

∑N
j=1

�j ≤ �. Then, the computational effi-

ciency of the control system whose construction is based on the

ROM with the dominant eigenfunctions will be improved due to the

adaptive property of APOD [26]. Since the basis eigenfunctions are
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updated on-line, the initial ensemble of process snapshots may  con-

tain significantly less process solution data  than POD. More details

of the APOD methodology can be found in [26] and  [19]. The imple-

mentation steps of the APOD methodology can be summarized as

follows:

1. At t < 0, generate an ensemble of solutions of the PDE system

(e.g., Eq. (1)) for single manipulated input value u(t)  from certain

initial condition;

1.1. Apply POD to this ensemble to  derive a set of first mi(t0)

most dominant empirical eigenfunctions for each state xi,

i = 1, . . .,  nx which occupy � energy of the chosen ensemble

[3];

1.2. Construct a  ROM in  the form of a low-dimensional nonlinear

ODE system based on these empirical eigenfunctions within

a Galerkin’s model reduction framework from the infinite

dimensional nonlinear PDE system;

2. The ensemble (or basis eigenfunctions) is updated based on  a

constant update frequency with the update period, � (constant).

In the context of EMPC, the update period, �,  is equal to the

sampling time in EMPC. For all k,  repeat: at t  = tk = k� > 0, when

the new process state measurements are  available, update the

ensemble by utilizing the most important snapshots approach

[19] which analyzes the contribution of the current snapshots

in the ensemble and replaces the snapshot that corresponds to

the lowest contribution of representativeness with new state

measurement to keep the size of the ensemble the same;

2.1. Recompute the dominant eigenvalues corresponding to the

first mi(tk−1) eigenfunctions by constructing small scale

matrix to reduce the computational burden;

2.2. Adopt orthogonal power iteration methodology to get the

(mi(tk−1) + 1)  − th dominant eigenvalue;

2.3. Get the new size of the basis eigenfunctions, mi(tk)  which

should still occupy � energy of the updated ensemble (the

new size of the basis eigenfunctions, mi(tk), may  increase,

decrease or keep the same compared with mi(tk−1));

3.2. Methodological framework for  finite-dimensional EMPC

using adaptive proper orthogonal decomposition

3.2.1. EMPC using adaptive POD

Utilizing the empirical eigenfunctions from APOD, we formulate

a state feedback Lyapunov-based EMPC for the system of Eq. (1)

to dynamically optimize an economic cost function. We  assume

that the state profile across the entire spatial domain is available

synchronously at sampling instants denoted as tk = k� with k = 0, 1,

. . ..  To formulate a finite-dimensional EMPC problem, the first mi

modes of Eq. (6) are adopted to construct the ROM, and  the EMPC

formulation takes the following form:

max
u∈S(�)

∫ tk+N

tk

Le(�)d�  (7a)

s.t. ȧs(t) = Asas(t) + Fs(as(t)) + Wsu(t), (7b)

aij
s (tk) =

∫ 1

0

�ij(z)xi(z, tk)dz, for j  = 1, . . .,  mi (7c)

x̂i(z, t) =
mi∑
j=1

aij
s (t)�ij(z),  (7d)

umin ≤ u(t) ≤ umax, (7e)

xi,min ≤
∫ 1

0

rxi
(z)x̂i(z, t)dz ≤ xi,max, (7f)

aT
s (t)Pas(t) ≤ � (7g)

where the constraints are enforced for all t  ∈ [tk, tk+N) and i = 1, .  .  .,
nx, � is the sampling period, S(�)  is the family of piecewise con-

stant functions with sampling period �, N is the prediction horizon,

x̂i(z, t) is the predicted evolution of state variables with input u(t)

computed by  the EMPC and xi(z, tk) is the state measurement at

the sampling time tk. Since the empirical eigenfunctions derived

from the APOD procedure are all self-adjoint, i.e., {�ij(z)} = {�ij(z)}
(more details can be found in  [23,12]), we can use the empirical

eigenfunction {�ij(z)} directly to calculate the estimated eigen-

mode amplitude aij
s (tk) by  taking advantage of the orthogonality

property of  the eigenfunctions in  Eq. (7c).

In the optimization problem of Eq. (7), the objective function of

Eq. (7a) describes the temporal economic cost of the process which

the EMPC maximizes over a horizon N�. The constraint of Eq. (7b) is

used to predict the future evolution of the subsystem based on the

first mi dominant eigenfunctions with the initial condition given in

Eq. (7c) (i.e., the estimate of aij
s (tk)  computed from the state mea-

surement xi(z, tk)). The constraints of Eq. (7e)–(7f) are the available

control action and the state constraints, respectively. Finally, the

constraint of Eq. (7g) ensures that the predicted state trajectory is

restricted inside a  predefined stability region, � which is a  level set

of a quadratic Lyapunov function V(as)  = aT
s Pas where P is a positive

definite matrix (see [11] for a complete discussion of this issue). The

optimal solution to this optimization problem is  u*(t|tk) defined for

t ∈  [tk, tk+N). The EMPC applies the control action computed for  the

first sampling period to  the system in a sample-and-hold fashion

for t  ∈  [tk, tk+1).  The EMPC is resolved at each sampling period, tk+1,

after receiving a  new state measurement of each state, xi(z, tk+1)

and updating basis functions, {�ij(z)} from APOD.

3.2.2. EMPC scheme of integrating APOD and finite-difference

method to avoid state constraint violation and improve

computational efficiency

Although APOD only needs an ensemble of a small number of

snapshots which can improve the computational efficiency of the

eigenfunction update calculation, smaller size of ensemble usually

results in a  single or a few dominant eigenfunctions. The accu-

racy of the ROM based on fewer eigenfunctions computed from

an ensemble of small size is usually worse than that of  the ROM

constructed by adopting more eigenfunctions from a  large ensem-

ble of snapshots. However, as  pointed out in  [18],  eigenfunctions

that have high frequency spatial profiles (corresponding to small

empirical eigenvalues) should be discarded because of potentially

significant round-off errors. In this situation, only a  single or a

few eigenfunctions can be adopted from APOD keeping the dimen-

sion of the reduced-order model low. So there exists a  trade-off

between the ROM accuracy and computational efficiency of  APOD

in practical implementation. Moreover, under a  dynamic opera-

tion of a process, the state error between the estimated state value

from ROM and the actual state value cannot be predicted (i.e., it

is almost impossible to predict whether the estimated state value

will be an overestimate or an underestimate of the actual state

value). From  the point of view of practical implementation, when

the process faces some specific state constraints, a controller which

is constructed based on  the ROM may  produce an input trajectory

misleading the process to violate state constraints.

To circumvent this problem, we propose an EMPC methodol-

ogy to avoid potential state constraint violation. The methodology

integrating APOD and a  high-order finite-difference method in

EMPC is  designed to  improve the computational efficiency com-

pared to using EMPC with a  model constructed from a  high-order

finite-difference method only. Before a detailed algorithm of the

methodology can be  presented, we  define the following notation

which will be used in  the algorithm. To ensure that the state
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constraint is satisfied, we will make use of the following two

inequalities to define a so-called alert region:

∫ 1

0

rx,i(z)xi(z, t)dz ≥  xalert
i,max

, (8a)

∫ 1

0

rx,i(z)xi(z, t)dz ≤ xalert
i,min

(8b)

where xalert
i,max

< xi,max and xalert
i,min

> xi,min are tuning parameters cho-

sen to ensure that the state constraints are always satisfied under

the EMPC methodology described below. With abuse of notation,

we use xi(z, t) ∈ 	i to denote the fact that one  of the inequalities of

Eq. (8)  is satisfied for the state profile of the i-th PDE state, and we

use xi(z, t) /∈ 	i to denote that neither inequalities are satisfied. Also,

	i is referred to as  the i-th state constraint alert region. The abbre-

viation EMPC-FD will denote an EMPC scheme formulated with a

model from a  high-order finite-difference method, while EMPC-

APOD will be used to denote an EMPC with a  model resulting from

APOD. The corresponding input trajectory from each EMPC will be

denoted as uFD(t|tk) and uAPOD(t|tk), respectively. The algorithm is

initialized with POD, that is  an ensemble of solutions of the PDE sys-

tem of Eq. (1) are  collected, mi is derived by applying standard POD

method to the initial ensemble for each state, and an EMPC with

a model generated through POD computes the control action for

the first sampling period (i.e., from t  = 0 to t  = �). The control action

applied to the system over the first sampling period is denoted as

u*(t0) = uPOD(t|t0) and k  = 0.

Considering that the APOD procedure (i.e., updating the empir-

ical eigenfunctions) is computationally expensive especially when

the size of the ensemble is  large, the state measurement value x(z,

tk) is adopted to update the basis eigenfunctions by  APOD proce-

dure for ROM construction at t  = tk+1 which is  completed during the

sampling time between t  = tk and t  = tk+1.  In other words, the APOD

update is performed over the sampling period tk to tk+1 in paral-

lel to the EMPC calculation that is done at a  sampling instance tk.

The detailed steps of  EMPC system flow chart which integrates the

APOD methodology with a finite-difference method are  explained

as follows:

Basis update procedure

1. At tk,  obtain a measurement of the state profile, go to

Step 2.

2. Use the state profile measurement x(z, tk)  to complete the APOD

procedure and compute the number of the basis eigenfunc-

tions for the next sampling period, m(tk+1) where m(tk+1)  =
[m1(tk+1) . . . mnx (tk+1)]T is a  vector containing the number of

basis eigenfunctions for each PDE state; go  to Step 3.

3. If u*(tk) = uFD(tk),  go  to Step 4; otherwise, go to Step 5.

4. Enforce the number of the basis eigenfunctions to be increased

by 1 for the i-th PDE state (each): mi(tk+1)  = mi(tk+1)  + 1 (increase

the ROM accuracy by using more eigenfunctions since the

process enters into the state constraint alert region) and

update the basis eigenfunctions for the i-th PDE state; go to

Step 5.

5. k ← k + 1; go to Step 1.

EMPC computational procedure

1. Obtain a measurement of the state profile at tk; go to Step 2.

2. Solve the EMPC-APOD problem using the updated basis eigen-

functions with the size of m(tk) and get the trial input trajectory,

uAPOD(t|tk); go  to Step 3.

3. If xi(z, tk) ∈ 	i, go  to Step 3.1. Else, set the actual optimal input

trajectory, u*(tk)  = uAPOD(tk|tk);  go to Step 4.

3.1.  Apply the trial optimal input trajectory uAPOD to the finite-

difference model and compute the predicted state at the

next sampling time instant, x̂(z, tk+1).  If x̂i(z, tk+1) violates

the state constraints, go to Step 3.2. Else, u*(tk) = uAPOD(tk|tk)

and go  to Step 4.

3.2 Solve the EMPC-FD problem to compute new trial input tra-

jectory, uFD(t|tk),  and set u*(tk)  = uFD(tk|tk);  go  to Step 4.

4. Apply the optimal control action u*(tk) over the sampling period

from t  = tk to t = tk+1 and k  ← k + 1; go to  Step 1.

Fig. 1 illustrates the designed EMPC system flow chart for

increasing the computational efficiency and avoiding potential

state constraint violation. With respect to the APOD update cycle

length, the availability of the full state profile across the entire spa-

tial domain is assumed at each sampling instance (i.e., t  = tk = k�)

and the update cycle of APOD is equal to the sampling time of EMPC,

�. Based on the proposed methodology, the computational time of

APOD procedure (Steps 2  and 3  noted as “Basis Update Procedure”

in Fig. 1) is not accounted for in  the total EMPC calculation time

(Steps 3.1 and 3.2 noted as  “EMPC Computational Procedure” in

Fig. 1).

Remark 1. We note here that in practice, the sampling time

length � should be longer than the time needed to complete the

APOD procedure otherwise the EMPC system will not be able to

get the updated basis eigenfunctions at the new sampling time

instant t = tk+1.  On the other hand, since the state measurements

are available only at every �,  large � may  result in APOD miss-

ing the appearance of new process dynamics when the process

goes through different regions in  the state-space. Based on this

consideration, the sampling should be chosen properly.

Remark 2. By setting the state constraint alert region of  state

constraint, the EMPC based on the ROM from APOD or POD method

with few modes may  lead to state constraint violation. However,

the EMPC system based on a high-order discretization of the PDE

system by  finite-difference method can provide more accurate opti-

mal manipulated input values to  avoid potential state constraint

violation.

Remark 3. In terms of the effectiveness of eigenfunctions,

eigenfunctions that have high frequency spatial profiles (i.e., cor-

responding to small eigenvalues) should be discarded because of

potentially significant round-off errors. When implementing the

proposed methodology, the eigenfunctions corresponding to eigen-

values smaller than �min are not included to avoid round-off errors.

This consideration is implemented in Steps 1 and 2.1 of  Fig. 1.  Fur-

thermore, one  may  set the maximum number of basis functions

used in APOD to avoid using eigenfunctions with high frequency

spatial profiles.

Remark 4. Since the energy occupation percentage �  has no direct

relationship with the state prediction accuracy, to  ensure the state

constraint satisfaction during the whole process operation, the

state violation alert region 	i should be large enough for a specific

energy occupation requirement. For the process state outside the

chosen state violation alert region 	i,  the EMPC using APOD only

is assumed to not lead the process to violate the state constraint

under its ROM’s accuracy.

4. Application to a tubular reactor modeled by a parabolic
PDE system

4.1. Reactor description

We consider a  tubular reactor, where an exothermic, irreversible

second-order reaction of the form A → B  takes place (Fig. 2). A cool-

ing jacket of constant temperature is used to remove heat from the
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Fig. 1. EMPC system flow chart which integrates the APOD methodology with a finite-difference method to increase the computational efficiency and avoid potential state

constraint  violation.

Fig. 2. A  tubular reactor with reaction A → B.

reactor. The states of the tubular reactor are  temperature and con-

centration of reactant species A in the reactor, and the input is  the

inlet concentration of the reactant species A. In order to simplify

the presentation of our results below, we use dimensionless vari-

ables and obtain the following nonlinear parabolic PDE model for

the process (details and model notation can be  found in  [16] and

[21]):

∂x1

∂t
= −∂x1

∂z
+ 1

Pe1

∂2
x1

∂z2
+ ˇT (Ts − x1)

+BT BC exp

(

x1

1 + x1

)
(1 + x2)2 + ı(z − 0)Ti

∂x2

∂t
= −∂x2

∂z
+ 1

Pe2

∂2
x2

∂z2
− BC exp

(

x1

1 + x1

)
(1 + x2)2

+ı(z − 0)u

(9)
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where ı is the standard Dirac function, subject to the following

boundary conditions:

z = 0 :
∂x1

∂z
= Pe1x1,

∂x2

∂z
= Pe2x2;

z = 1 :
∂x1

∂z
= 0,

∂x2

∂z
= 0;

(10)

The following typical values are given to the process parameters:

Pe1 = 7, Pe2 = 7, BT = 2.5, BC = 0.1, ˇT = 2, Ts = 0, Ti = 0  and 
 = 10.  The

following simulations were carried out using Java programming

language in a  Intel Core i7-2600, 3.40 GHz computer with a 64-bit

Windows 7 Professional operating system.

4.2. Implementation of EMPC with adaptive proper orthogonal

decomposition

We formulate an EMPC system like that of Eq. (7)  for the tubular

reactor with the ROM derived from the procedure described above.

Ipopt [27] was used to  solve the EMPC optimization problem. To

numerically integrate the ODE model, explicit Euler’s method was

used with an integration step of 1 × 10−5 (dimensionless). Cen-

tral finite-difference method was adopted to discretize, in space,

the two parabolic PDEs and  obtain a  set of 101 ODEs in  time for

each PDE state (further increase on the order of  discretization led

to identical open-loop and closed-loop simulation results); this

discretized model was  also used to describe the process dynam-

ics. In the first case studies reported below, with respect to EMPC

settings, we used a  prediction horizon, N  = 3 and sampling time

length, � = 0.01 (dimensionless) which can sufficiently capture the

appearance of new patterns by the newly available snapshots as

the process moves through different regions in  the state-space.

The cost function of Eq. (7)  considered involves maximizing the

overall reaction rate along the length of the reactor in the prediction

horizon, tk to tk+N and  over one  operation period with tf = 1. The

temporal economic cost along the length of the reactor then takes

the form:

Le(t) =
∫ 1

0

r(z, t)dz (11)

where r(x1(z, t), x2(z, t))  = BC exp((
x1(z, t))/(1 + x1(z, t)))(1 + x2(z, t))2

is the reaction rate (dimensionless) in the tubular reactor.

The control input is subject to constraints as follows: −1  ≤ u ≤ 1.

Owing to practical considerations, the amount of reactant material

which can be fed to the tubular reactor over the period tf is fixed.

Specifically, u(t) satisfies the following constraint over  the period:

1

tf

∫ tf

0

u(�)d� = 0.5 (12)

which will be referred to  as the reactant material constraint. Details

on the implementation of this constraint can by  found in  [16]

and [15]. Furthermore, the temperature (dimensionless) along the

length of the reactor is subject to the following constraint:

x1,min ≤ min(x1(z, t)), max(x1(z, t)) ≤ x1,max (13)

where x1,min = −1 and x1,max = 3  are the lower and upper limits,

respectively.

To design the Lyapunov-based EMPC, a quadratic Lyapunov

function of the following form was adopted for  the constraint of

Eq. (7g):

V(as(t)) = aT
s (t)Pas(t) (14)

where P is an identity matrix of approximate dimension and � = 3

(see [11] for more details on Lyapunov-based EMPC).

4.3. Simulation study

4.3.1. Case 1: APOD Compared to POD

This case study is introduced to demonstrate the effectiveness

of the APOD method to capture process dynamic information (i.e.,

more accurate reduced order model) when compared with the

traditional POD method; this comparison is conducted under the

assumption that both APOD and POD methods are applied to a  large

snapshot ensemble.

To  compute the empirical eigenfunctions, we use the set of

101 ODEs of each PDE in Eq. (9) (i.e., 101 discretized points).

In detail, 15 different initial conditions and arbitrary (constant)

input values, u(t) were applied to the process model to  get the

spatiotemporal solution profiles with a  time length of 2 (dimen-

sionless). Consequently, from each simulation solution profile, 200

uniformly sampled snapshots were taken and combined to  gen-

erate an ensemble of 3000 solutions which is noted as  Ensemble

1. The POD method was  applied to  the developed ensemble of

solutions to compute empirical eigenfunctions that describe the

dominant spatial solution patterns embedded in the ensemble

where the Jacobian in the POD method is calculated through a cen-

tral finite-difference method. After truncating the eigenfunctions

with relatively small eigenvalues (�ij < �min = 1 ×10−5), we were left

with the first 4 eigenvalues for each state which occupy more than

99.99% (i.e., �  = 99.99%) of the total energy included in the entire

ensemble. These 4 eigenfunctions for each PDE state are utilized for

the POD method and as the initial eigenfunctions for APOD method

to construct the ROM. To demonstrate the ability of APOD to cap-

ture the dominant trends that appear during closed-loop process

evolution as the process goes through different regions of the state-

space, we  use EMPC of Eq. (7) based on POD using Ensemble 1  and

based on APOD using Ensemble 1  (as  the starting ensemble) to the

tubular reactor, respectively. For the POD method, we constructed

2 ROMs which use the first 3  and 4 dominant eigenfunctions of the

previously constructed eigenfunctions, respectively, for the EMPC

system of Eq. (7). The EMPC utilizing ROM with 4  eigenfunctions is

denoted as EMPC based on POD 1  and  the other is denoted as  EMPC

based on  POD 2.

The maximum temperature (dimensionless) profiles of the

tubular reactor under the EMPC systems of Eq. (7) based on  POD

1, POD 2  and APOD using Ensemble 1 are  shown in  Fig. 4. Since

the temperature directly influences the reaction rate (i.e., higher

temperature leads to higher reaction rate), the optimal operating

strategy is to operate the reactor at the maximum allowable tem-

perature. From Fig. 4,  the EMPC system based on POD 1 and APOD

operate the tubular reactor with a maximum temperature less  than

the maximum allowable which is a  consequence of the error associ-

ated with the ROM. However, the process under the EMPC system

based on POD 2  violates the state constraint imposed on x1(z, t)

due to fewer eigenfunctions used for constructing the ROM in  the

EMPC system of Eq. (7). On the other hand, since the APOD is  able to

more accurately compute the state profile owing to its continuously

updated dominant eigenfunctions, the EMPC system formulated

with the ROM using APOD eigenfunctions operates the reactor at  a

greater temperature than the other EMPC system as demonstrated

by the magnified plot in Fig. 4.

The computed manipulated input profiles from the EMPC sys-

tems of Eq. (7) based on POD 1 and APOD using Ensemble 1,

respectively, over one period are  shown in Fig. 3. From Fig. 3, the

EMPC system based on APOD computes a  less smooth manipulated

input profile than that of the EMPC system based on POD  1 due

to its continuously updated dominant eigenfunctions so that new

process dynamics information is included in the dominant eigen-

functions. These updated dominant eigenfunctions improved the

ROM which may be different from the previous ones when com-

pared with the dominant eigenfunctions POD 1 used which are  kept
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Fig. 3. Manipulated input profiles of the EMPC system of Eq. (7) based on POD 1

(dotted  line) and APOD  using Ensemble 1 (solid line) over one operation period.
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Fig. 4. Maximum x1(z,  t)  profiles of the process under the EMPC system of Eq. (7)

based  on POD  1 (dotted line), POD  2 (dash-dotted line)and APOD using Ensemble 1

(solid  line) over one operation period.

the same during the whole operation period. Due to more accurate

ROMs produced by APOD method, over one period tf = 1, the total

reaction rate of the process of Eq. (11) under the EMPC system based

on APOD is 1.18% greater than that of  the EMPC system based on

POD 1.

Here, we have compared the EMPC calculation time for the EMPC

systems of Eq. (7) based on POD 1  and APOD using Ensemble 1.

As displayed in Fig. 5,  the EMPC based on APOD achieves 38.8%

improvement on the average computational time compared with

that of the EMPC based on  POD 1. As  shown in  Fig. 6,  the APOD can

adaptively adjust the required minimum number of eigenfunctions

to satisfy the energy occupation requirement for each state while
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Fig. 5. EMPC computational time profiles for  the EMPC system of Eq. (7) based on

POD  1 (dotted line) and APOD  using Ensemble 1 (solid line) over  one operation

period.
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Fig. 6.  Numbers of dominant eigenfunctions based on POD 1 (solid line) and APOD

using  Ensemble 2 (dotted line with circles) over one operation period.

the number of the eigenfunctions utilized by  the POD 1 is fixed at

m1 = m2 = 4. ROM using m1 = m2 = 4 of eigenfunctions increases the

computational burden to the EMPC optimization problem based

on POD 1  since the size of the dynamic model of  Eq. (7b) is higher

when compared with EMPC using APOD method. In terms of com-

putational time of the recursive APOD procedure for updating basis

eigenfunctions, it requires 45.2s on the average for the case of  EMPC

based on APOD using Ensemble 1. We  note here that the APOD is

completed before the EMPC problem is solved at t  = tk (k = 0, 1, .  . .)
which follows the methodology we proposed in Fig. 1. Therefore,

for the EMPC calculation time in Fig. 5,  the time of completing the

APOD procedure is not included.

4.3.2. Case 2: APOD with an ensemble of small size

As we  pointed out in Case 1, although the EMPC system based

on APOD scheme using Ensemble 1  yields high state-approximation

accuracy of the resulting ROM and of the process economic perfor-

mance owing to the fact that the APOD continuously updates the

dominant eigenfunctions, the APOD procedure and EMPC calcula-

tion is more computationally expensive when compared with that

of the EMPC system based on a set of 101 ODEs for each PDE state.

The computational efficiency difference is mainly caused by  the

number of  the eigenfunctions adopted for constructing the ROM of

the PDE system. Below, we construct the EMPC scheme using the

APOD method with a small snapshot ensemble and demonstrate

its advantage on  computational efficiency and ability to on-line

capture dynamic process information.

Based on the above consideration, in  this case, we reduce the

size of the ensemble by  adopting an ensemble of  125 snapshots

denoted as Ensemble 2 and  apply Ensemble 2 to the APOD proce-

dure for EMPC system of Eq. (7). The required energy occupation

is still the same (� = 99.99%). Moreover, from the practical point of

applying the APOD to  the process, the APOD procedure is completed

by using the full state profile at t  = tk−1 for the dominant eigenfunc-

tions at t  = tk as we show in Fig. 1  which means the APOD can be

completed during the sampling time. In detail, as  long as we update

the APOD during the sampling time, using the state value at the

previous sampling time, x(tk−1),  we can complete the APOD update

and this computational time has no effect on the EMPC computa-

tional efficiency. The computed manipulated input profiles from

the EMPC systems of Eq. (11) based on APOD using Ensemble 1  and

APOD using Ensemble 2, respectively, over one period are com-

pared in  Fig. 7.  From Fig. 7, the EMPC system based on  APOD using

Ensemble 2 computes a less smooth manipulated input profile than

that of the EMPC system based on APOD using Ensemble 1  due to

the fact that fewer snapshots are used to get the dominant eigen-

functions. In terms of the process economic cost of Eq. (11),  over one

period tf = 1, the total reaction rate of the process under the EMPC
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Fig. 7. Manipulated input profiles of the EMPC systems of Eq. (7) based on APOD

using  Ensemble 1 (dotted line) and on APOD (solid line) using Ensemble 2 over one

operation  period.

system based on APOD using Ensemble 2 is only 0.83% smaller than

that of EMPC system based on  APOD using Ensemble 1 and 1.74%

smaller than that of the EMPC system based on the set of 101 ODEs

for each PDE state.

We have compared the EMPC calculation time for the above

EMPC systems based on APOD using Ensemble 1, APOD using

Ensemble 2, and  a  model of a  set of 101 ODEs for each PDE state

in Fig. 8. As displayed in  Fig. 8,  the EMPC calculation time for  the

EMPC system based on APOD using Ensemble 2 is less than that of

the EMPC system based on APOD using Ensemble 1. The computa-

tional time of EMPC system based on Ensemble 2 is  12.5% less than

that of the EMPC system based on the model of a  set of 101 ODEs

for each PDE state. This computational efficiency improvement of

the EMPC system based on APOD using Ensemble 2 results from the

fact that fewer number of dominant eigenfunctions are  adopted for

constructing the ROM as compared in  Fig. 9. We  set a  99.99% energy

occupation requirement for the APOD using Ensemble 1  and the

corresponding number of eigenfunctions for each  state is kept at

mi = 4, i = 1, 2  over one operation period; while for  the EMPC based

on the APOD using Ensemble 2, the corresponding number of eigen-

functions for each state adaptively changes as  different process

dynamics are collected and integrated into the dominant eigen-

functions. Moreover, the APOD using Ensemble 2 which has a  much

smaller size of ensemble also decreases the computational time of

the APOD update procedure to 0.24s.

Since Ensemble 2  with a size of 125 snapshots only reflects part

of process dynamics, it may  not contain enough process dynamic

behavior to guarantee the accuracy of the ROM of the PDE system.
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Fig. 8. EMPC calculation time profiles of the process under the EMPC systems of Eq.

(7) based on APOD using Ensemble 1 (dotted line), on APOD using Ensemble 2 (solid

line),  and a set of 101 ODEs  for each PDE  state (dash-dotted line) over one operation

period.
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Fig. 9. Number of dominant eigenfunctions based on APOD using Ensemble 1 (dot-

ted  line) and on APOD using Ensemble 2 (solid line) over one operation period.
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Fig. 10. Maximum x1 profiles of the process under the EMPC systems of Eq. (7) based

on  APOD using Ensemble 2 (solid line) and on APOD using Ensemble 3 (dotted line)

over  one operation period.

Especially, when there exists a  specific state constraint, the ROM

may not be a good approximation of the original PDE  system to

help the EMPC avoid the state constraint violation due to its poor

or incomplete state representation. In other words, the ROM either

from POD or APOD may  overestimate or underestimate the state

value of Eq. (7b) in the EMPC optimization problem of  Eq. (7).  For

the state constraint in  this case, when the ROM underestimates

the state value of max
z

(x̂1(z, t)), it may  mislead the EMPC to  com-

pute and implement a  higher optimal input value to the actual

process which may  result in  the state constraint violation due to

the second-order exothermic reaction rate. Here, we constructed

another ensemble of 125 snapshots from different process solu-

tions which is noted as Ensemble 3. We constructed EMPC systems

using both of these 2  ensembles and applied them to the process.

The maximum temperature (dimensionless) profiles of  the tubular

reactor under the EMPC systems of Eq. (7) based on APOD using

Ensemble 2 and APOD using Ensemble 3  are  shown in  Fig. 10.  From

Fig. 10, the EMPC system based on APOD using Ensemble 2  opera-

tes the process around the maximum allowable temperature but

at some points, it is close to the state constraint. While, from the

magnified plot of Fig. 10, the EMPC system based on  APOD using

Ensemble 3  violates the state constraint around t = 0.51.

Remark 5. The number of snapshots affects not only the compu-

tational burden but also the state constraint satisfaction. A large

size of ensemble usually results in  more dominant eigenfunctions

and at the same time, it increases the EMPC and  APOD computa-

tional time. However, more eigenfunctions can improve the ROM

accuracy and help the EMPC system to avoid the state constraint

violation. Therefore, the choice of the number of snapshots (i.e., the



106 L. Lao et al. / Journal of Process Control 32 (2015) 98–108

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

t

E
M

PC
 O

pt
im

al
 I

np
ut

 V
al

ue
, u

(t
)

EMPC Using
Finite−Difference Model
EMPC System of Fig.1

Fig. 11. Manipulated input profiles of the EMPC system of Fig. 1 (solid line) and the

EMPC  system of Eq. (7) based on the finite-difference method (dash-dotted line)

over  one operation period.

number of the dominant eigenfunctions) is a tradeoff between the

computational efficiency and reduced order model accuracy.

1 For POD method, the ensemble must have enough snapshots

which contain as  much global process dynamics as  possible

to help the EMPC system predict the state value more accu-

rately. Since POD is only conducted once, it has no effect on the

EMPC computational burden which only depends on how many

modes/energy occupation is required.

2 For APOD method, the number of snapshots depends on the

model accuracy although the ROM can be updated during the

closed-loop operation. More snapshots will increase the APOD

computational burden. But  it will help the system avoid the state

constraint violation. As  long as the APOD update time is less

than the sampling time size, we can use as many snapshots as

possible, but large number of snapshots usually decreases the

computational efficiency of the EMPC system.

4.3.3. Case 3: proposed flow chart of integrating APOD with

finite-difference method

Based on the weakness of APOD with a small snapshot ensemble

in state estimation accuracy which is shown by Case 2, in this case

study, the proposed method of integrating APOD and finite differ-

ences is applied to construct the predictive models in  EMPC scheme

to achieve both computational efficiency and  high reduced-order

model accuracy (i.e., state estimation accuracy) so that the state

constraint violation can be successfully avoided.

A set of 101 ODEs for  each PDE state as  the result of applying

central finite-difference method to each PDE state is integrated into

the EMPC scheme. An ensemble of 150 snapshots which is noted

as Ensemble 4 is initially adopted for the EMPC system based on

APOD method. We  still request that the dominant eigenfunctions

occupy � = 99.99% of the total energy of the ensemble. The EMPC

system of Eq. (7)  based on  the finite-difference method resulting

in a set of 101 ODEs for each PDE state is taken as the comparison

method for the proposed EMPC formulation. The same prediction

horizon, sampling time and integration step are adopted as the

previous cases. We  assume the state violation alert region, 	1, for

dimensionless temperature, x1(z,  t), is defined as:

	1 := {x ∈ R|| max(x1(z, tk))  − x1,max|  ≤ 0.05}  (15)

The computed manipulated input profiles over one period

tf = 1.0 from the EMPC system of Fig. 1 and the EMPC system of

Eq. (7) based on the finite-difference method over one period are

shown in Fig. 11. From Fig. 11, the EMPC system of Eq. (7) based

on the finite-difference method computes a  smoother manipulated

input profile than that of the EMPC of Fig. 1.  The temporal economic
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Fig. 12.  Temporal economic cost along the length of the reactor, Le(t),  of the EMPC

system  of Fig. 1 (solid line) and the EMPC system of Eq. (7) based on the finite-

difference  method (dash-dotted line) over one operation period.

cost profiles of the process under the EMPC of Fig. 1 and the EMPC

system of  Eq. (7) based on  the finite-difference method are shown

in Fig. 12. From Fig. 12,  over one  period tf = 1, the total reaction rate

of the process under the EMPC of Fig. 1  is only 0.33% smaller than

that of the EMPC system of Eq. (7) based on the finite-difference

model.

With respect to the performance of the EMPC, we have com-

pared the maximum temperature (dimensionless) profiles of the

tubular reactor under the EMPC systems as  shown in Fig. 13. From

Fig. 13, we see that the EMPC system of Fig. 1  can operate the process

at the maximum allowable temperature and meanwhile avoid the

state constraint violation issues by adopting the integrated EMPC

system based on the finite-difference method when the process

state value enters into the alert region of Eq. (15).

We finally have compared the calculation time  of  the EMPC

system of Fig. 1 and the EMPC system of Eq. (7) based on the finite-

difference method in Fig. 14. As  displayed in Fig. 14, the EMPC of

Fig. 1  achieves 8.71% improvement compared with the EMPC sys-

tem of Eq. (7) based on the finite-difference method. In terms of

Fig. 14, we  point out that when the state value enters in  the viola-

tion alert region, both the EMPC based on APOD method (to get a

trial optimal input value) and the EMPC system of Eq. (7) based on

the finite-difference method (to get an accurate optimal input value

to help the EMPC scheme to avoid the state constraint violation if

the previous optimal input value leads to constraint violation) are

conducted which results in a longer computational time.
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over  one operation period.
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Fig. 14. EMPC computational time profiles for the EMPC system of Fig. 1 (solid line)

and  the EMPC system of Eq. (7) based on the finite-difference method (dash-dotted

line)  over one operation period.

Based on the above results and analysis, the proposed EMPC

scheme of Fig. 1  successfully improves the whole computational

efficiency while avoiding the state constraint violation.

Remark 6. We  note here that the proposed EMPC scheme of  Fig. 1

also has its drawbacks and  limitations as  follows:

1 Due to the automatic transition of the proposed EMPC scheme

between APOD and finite-difference method after the process

enters into the state violation alert region, the smoothness of

the manipulated input trajectories is usually not guaranteed

which may  increase fluctuations on process state and economic-

index trajectories in  practice (e.g., production rate). This also

reflects APOD method’s limitation on capturing the global pro-

cess dynamics and application on dynamic operation because of

its requirement for a  relatively smaller size of ensemble.

2 The proposed EMPC scheme achieves better computational effi-

ciency compared with EMPC based on  finite-difference method. If

real-time computational constraints are not critical, EMPC based

on a high-order finite-difference method which has a  higher

model accuracy would be a  better choice. In terms of the limita-

tion of the finite-difference method, if the size of the discretized

model is large, EMPC based on this discretized model requires

much more computational time compared with EMPC based on

APOD method.

Remark 7. To deal with potentially large fluctuations of the opti-

mal input profile brought by  the proposed EMPC scheme of  Fig. 1,

an increase of the prediction horizon and an addition of an input

fluctuation penalty term in the economic cost function of Eq. (11)

may  be adopted; such modifications of  the presented EMPC scheme

have been carried out and  have demonstrated the expected benefit

in reducing input fluctuations but are  omitted here due to space

limitations. It is  important to note that a  longer prediction horizon

will definitely sacrifice the computational efficiency of EMPC and

an input fluctuation penalty cost may  also lead to a degradation of

the process economic performance.

5. Conclusion

This work focused on developing an EMPC design for a  parabolic

PDE system which integrated the APOD method and a high-order

finite-difference method to deal with control system computa-

tional efficiency and  state constraint satisfaction. EMPC systems

adopting POD, APOD, a high-order spatial discretization by cen-

tral finite-difference method and the proposed EMPC flow chart

were applied to a non-isothermal tubular reactor where a  second-

order chemical reaction takes place. These EMPC systems were

compared with respect to their model accuracy, computational

time, APOD update requirements, state constraint satisfaction

and closed-loop economic performance of the tubular reactor.

The simulation results demonstrated the advantages of  APOD

on improving computational efficiency of EMPC design, but also

demonstrated a potential problem on state constraint violation. To

address this issue, an EMPC scheme inheriting the high computa-

tional efficiency from APOD and  the high state prediction accuracy

from high-order finite-difference method is proposed; simula-

tion results demonstrated that this EMPC scheme successfully

improves the computational efficiency, while avoiding state con-

straint violations. Future work will focus on developing an output

feedback EMPC scheme based on APOD in which the state mea-

surements will be limited to few discrete points along the spatial

domain.
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